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Abstract—In this paper, we investigate conventional
communication-based chaotic waveforms in the context of
wireless power transfer (WPT). Particularly, we present a
differential chaos shift keying (DCSK)-based WPT architecture,
that employs an analog correlator at the receiver, in order to
boost the energy harvesting (EH) performance. We take into
account the nonlinearities of the EH process and derive closed-
form analytical expressions for the harvested direct current (DC)
under a generalized Nakagami-m block fading model. We show
that, in this framework, both the peak-to-average-power-ratio
of the received signal and the harvested DC, depend on the
parameters of the transmitted waveform. Furthermore, we
investigate the case of deterministic unmodulated chaotic
waveforms and demonstrate that, in the absence of a correlator,
modulation does not affect the achieved harvested DC. On the
other hand, it is shown that for scenarios with a correlator-aided
receiver, DCSK significantly outperforms the unmodulated case.
Based on this observation, we propose a novel DCSK-based
signal design, which further enhances the WPT capability of
the proposed architecture; corresponding analytical expressions
for the harvested DC are also derived. Our results demonstrate
that the proposed architecture and the associated signal design,
can achieve significant EH gains in DCSK-based WPT systems.
Furthermore, we also show that, even by taking into account the
nonlinearities at the transmitter amplifier, the proposed chaotic
waveform performs significantly better in terms of EH, when
compared with the existing multisine signals.

Index Terms—Differential chaos shift keying, wireless power
transfer, nonlinear energy harvesting, Nakagami-m fading chan-
nel.

I. INTRODUCTION

The wireless traffic has been growing at an explosive rate

in recent years; according to Ericsson, it is expected to

increase more than five times between 2019 and 2025 [2]. For

applications like the Internet of Things and massive machine-

type communications, where a large number of devices are

deployed, the overall network lifetime is often affected due

to limited battery constraints. Thus, powering or charging

these devices becomes critical as well as costly. As a result,

low-powered and self-sustainable next generation wireless

communication networks is an important and relevant topic
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of research, for both industry and academia. In this context,

based on the advances made in recent years, wireless power

transfer (WPT) can be considered as a suitable candidate,

where the devices are wirelessly powered by harvesting energy

from ambient/dedicated radio-frequency (RF) signals. This is

achieved by employing a rectifying antenna (rectenna) at the

receiver that converts the received RF signals to direct current

(DC) [3]. One of the main advantages of this process is that it

can be controlled, unlike conventional energy sources, where

the available power for harvesting is itself erratic in nature [3].

The design of efficient WPT architectures fundamentally

relies on accurate mathematical models of the harvesting

circuit. While some works propose simplified linear energy

harvesting (EH) models [4], the work in [5] proposes a piece-

wise linear model based on the sensitivity and saturation

levels of the circuit. On the other hand, several nonlinear

EH models have also been proposed. The authors in [6]

propose a tractable logistic saturation nonlinear model that

originates from the saturation of the output power beyond

a certain input RF power due to the diode breakdown. As

this model is obtained by fitting measurements from practical

RF-based EH circuits for a given excitation signal, it is a

significantly improved version of its over-simplified piece-

wise linear counterpart. However, all these models fail to

characterize the actual working principle of the harvesting

circuit. As a result, unlike the linear, piece-wise linear, and the

logistic saturation nonlinear model, the work in [7] proposes a

realistic circuit-based nonlinear model of the harvester circuit,

which relies on the EH circuit characteristics and also enables

the design of waveforms that maximize the WPT efficiency.

This model has triggered recent interests in the area of

waveform design for WPT, with an objective of making the

best use of the harvester to deliver a maximum amount of

DC power. The authors in [8] show that the nonlinearity of

the rectification process causes certain waveforms, with high

peak-to-average-power-ratio (PAPR), to provide a higher DC

output compared to conventional constant-envelop sinusoidal

signals. Based on this observation, some works, e.g. [9]–[13],

investigate the effect of transmitted waveforms and modula-

tions on WPT. The authors in [9] propose the use of multisine

waveforms for WPT due to their high PAPR. The work in [10]

proposes a novel simultaneous wireless information and power

transfer (SWIPT) architecture based on the superposition of

multi-carrier unmodulated and modulated waveforms at the

transmitter. The authors in [11] provide insights on how

fading and diversity are beneficial for boosting the RF-to-

DC conversion efficiency; they develop a new form of signal

design for WPT, which relies on multiple dumb antennas at the

http://arxiv.org/abs/2105.13966v1
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transmitter to induce fast fluctuations of the channel. The work

in [12] proposes an asymmetric modulation scheme specifi-

cally for SWIPT, that significantly enhances the rate-energy

region as compared to its existing symmetric counterpart.

Apart from the multisine waveforms, experimental studies

demonstrate that due to their high PAPR, chaotic waveforms

outperform conventional single-tone signals in terms of WPT

efficiency [14].

Chaotic signals have been used in the past decades for

wireless information security and privacy [15], [16]. However,

due to their properties such as aperiodicity and sensitivity to

initial data, chaotic waveforms have been extensively used to

improve the performance of wireless digital communication

systems [17]. In this context, differential chaos shift keying

(DCSK), is one of the most widely studied chaotic signal-

based communication systems [18]. DCSK is a prominent

benchmark in the class of non-coherent transmitted reference

modulation techniques, which comprises of a reference and

an identical/inverted replica of the reference depending on the

data transmitted. The majority of the related works focus on

the error performance of DCSK-based systems for various

scenarios [19]–[21]. The authors in [19] propose an M -ary

DCSK system, in which successive bits are converted to a

symbol and then transmitted by using the same modulation

scheme. The work in [20] investigates a general set-up for

evaluating the performance of DCSK system over various

communication channels and the performance of a cooperative

diversity-aided DCSK-based system is analysed in [21].

To exploit the benefits of both DCSK and WPT, there

are a some works [22]–[25] in the literature that investigate

SWIPT in a chaotic framework. In [22], a non-coherent short-

reference DCSK SWIPT architecture is proposed by using

the time switching architecture to achieve higher data rate

than conventional systems. The authors in [23] investigate

SWIPT with a power-splitting receiver for a multi-carrier (MC)

chaotic framework and propose two WPT protocols. In the

first protocol, a fraction of the reference sub-carrier power

is utilized for EH and in the second protocol, a fraction

of the total sub-carrier power is used for EH. Based on

the proposed MC architecture, a chaotic carrier-index (CI)

system is investigated for a basic SWIPT set-up to further

reduce the energy consumption [24]. In particular, based on the

transmission characteristics of index modulation, the proposed

SWIPT scheme exploits the inactive carriers of CI-DCSK

to deliver energy by transmitting random noise-like signals.

In [25], an adaptive link selection for buffer-aided relaying

is investigated in a decode-and-forward relay-based DCSK-

SWIPT architecture. Furthermore, by taking into account the

decoding cost at the relays, two link-selection schemes based

on the harvested energy, and not channel state information

(CSI), are proposed.

The above studies focus on the performance of SWIPT in a

DCSK-based scenario. Furthermore, they consider a simplified

linear model for harvesting, which is impractical. However,

the specific gains in EH from chaotic signals have not been

explored. Motivated by this, in this paper, we investigate

chaotic signal-based waveform designs for WPT. To the best of

our knowledge, this is the first work that presents a complete

analytical framework of DCSK-based WPT, by also taking into

account the nonlinearities of the EH process. Specifically, the

contribution of this paper is threefold.

• We propose a DCSK-based WPT architecture, where an

analog correlator-aided EH circuit is employed at the

receiver. Although WPT is the main focus of this work,

we consider DCSK, i.e. an information-based waveform.

We analytically derive the PAPR of the signal at the

harvester as a function of the transmitted waveform

parameters. We demonstrate that the analog correlator

prior to the harvester allows us to control the PAPR of

the signal at the input of the harvester and therefore the

EH performance.

• Analytical expressions of the harvested DC are derived

for both cases, i.e. with and without the analog correlator

at the receiver, under a Nakagami-m block fading sce-

nario. The derived closed-form expressions are a function

of the spreading factor and the fading parameter m and

are verified by extensive Monte Carlo simulations. They

provide a quick and convenient methodology of eval-

uating the system’s performance and obtaining insights

into how key system parameters affect the performance.

In addition, our results show that similar to [11], a

Rayleigh fading scenario results in a higher harvested DC

performance, compared to a no-fading scenario, which

shows that fading is beneficial for DCSK-based WPT.

• We apply the proposed WPT architecture to unmodu-

lated chaotic waveforms and investigate how it performs

against its modulated DCSK counterpart. We demonstrate

that modulation does not affect the EH performance with-

out the correlator at the receiver. On the contrary, with

a correlator-aided receiver, DCSK significantly outper-

forms the unmodulated case. Based on this observation,

we propose a novel short reference DCSK-based signal

design, which results in further EH performance gains.

Finally, we compare the proposed waveform with the

existing N -tone multisine signals, by taking into account

the imperfections of the high power amplifier (HPA) at

the transmitter.

The rest of this paper is organized as follows: Section II intro-

duces the proposed system architecture. Section III presents

the complete analytical framework of chaotic signal-based

WPT by considering a nonlinear rectenna model. Section IV

proposes a novel WPT-optimal chaotic waveform. Numerical

results are presented in Section V, followed by our conclusions

in Section VI.

II. A CHAOTIC SIGNAL-BASED WPT SYSTEM

ARCHITECTURE

A. System model

We consider a point-to-point WPT set-up, where the trans-

mitter employs a DCSK generator and the receiver consists of

an analog correlator (discussed in Section II-C) followed by an

EH circuit, as depicted in Fig. 1. Note that even though DCSK
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Fig. 1. Proposed architecture for chaotic signal-based WPT; “D” corresponds to the delay blocks and the symbol “
∫

” corresponds to the integrator.

is primarily a communication-based signal, in this work, we

focus on its effects on WPT1.

We assume that the wireless link suffers from both large-

scale path-loss effects and small-scale block fading. Specif-

ically, the received power is proportional to r−α, where r
is the transmitter-receiver (Tx-Rx) distance and α denotes

the path-loss exponent. Moreover, a Nakagami-m distributed

block fading channel h is considered with unit mean power,

where m ≥ 1.

B. Chaotic signals

Assume a DCSK signal, where the current symbol is

dependent on the previous symbol [17] and different sets

of chaotic sequences can be generated by using different

initial conditions. Each transmitted bit is represented by two

sets of chaotic signal samples, with the first set representing

the reference, and the other conveying information. If +1
is to be transmitted, the data sample will be identical to

the reference sample. Otherwise, an inverted version of the

reference sample will be used as the data sample [16]. During

the l-th transmission interval, the output of the transmitter is

sl,k =

{

xl,k, k = 2(l− 1)β + 1, . . . , (2l − 1)β,

dlxl,k−β , k = (2l− 1)β + 1, . . . , 2lβ,
(1)

where dl = ±1 is the information bit, xl,k is the chaotic

sequence used as the reference signal, and xl,k−β is its delayed

version. Let β be a non-negative integer, defined as the spread-

ing factor. Then, 2β chaotic samples are used to spread each

information bit. Furthermore, xl,k can be generated according

to various existing chaotic maps. Due to its good correlation

properties, we consider the Chebyshev map of degree ξ for

chaotic signal generation, which is defined as [17]

xk+1 = cos(ξ cos−1(xk)), ∀ |xk| ≤ 1. (2)

C. Analog correlator

To further boost the EH performance, we propose a WPT

receiver architecture, where an analog correlator [26] preceeds

the EH rectifier circuit (see Fig. 1). The motivation behind the

1This assumption refers to communication networks that operate based on
DCSK modulation and EH receivers are added to operate by the ambient
radiation.

employment of an analog correlator2 block is two fold: i) it

enables controlling the signal at the input of the harvester, and

ii) it enhances the PAPR of the signal. An analog correlator

primarily consists of a series of delay blocks, which result

in signal integration over a specified period of time; an ideal

ψ-bit analog correlator consists of (ψ − 1) number of delay

blocks [26]. In what follows, for the sake of simplicity, we

consider ψ as the transmitted DCSK symbol length, i.e. ψ =
2β. Accordingly, the analog correlator output yl(t) for the l-th
transmitted symbol is

yl(t) =
√

Pthl

2β
∑

k=1

sl,k(t), (3)

where Pt is the transmission power. Note that we propose

the use of a correlator and not a summing circuit in Rx.

A summing circuit generates an output, which is the sum

of multiple input signals [27] whereas the analog correlator

allows an effective integration of the same signal over a certain

time interval [26], i.e. it generates an output, which is the sum

of the delayed versions of the same signal. In other words,

the input signal is correlated with a delayed version of itself.

Note that the value ψ = 1 corresponds to the conventional

case without a correlator.

In the following proposition, we show the effect of the

analog correlator on the signal’s PAPR.

Proposition 1. The signal PAPR at the harvester input is

PAPR =

{

2, without correlator (ψ = 1),

4β, with correlator (ψ = 2β).
(4)

Proof. See Appendix A.

Therefore, since high PAPR signals are desirable for WPT [8],

the correlator significantly enhances the WPT performance.

D. Energy transfer model

The WPT receiver is equipped with an antenna followed by

a rectifier. The rectifier, which generally consists of a diode

(e.g., a Schottky diode) and a passive low pass filter, acts as an

envelope detector [28] and therefore neglects the phase of the

2It is to be noted that the analog correlator is an active device, but with a
nominal power consumption. Specifically, it has been observed, that a CMOS-
implemented 11-bit analog correlator consumes 40 nW of power [26]. As a
result, we have not considered this energy consumption in the context of
applying the correlator.
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received signal y(t). Based on the nonlinearity of this circuit,

the output DC current is approximated in terms of y(t) as [7]

zDC = k2RantE{|y(t)|
2}+ k4R

2
antE{|y(t)|

4}, (5)

where the parameters k2, k4, and Rant are constants deter-

mined by the characteristics of the circuit. Note that the con-

ventional linear model is a special case of this nonlinear model

and can be obtained by considering only the first term in (5).

For the sake of presentation, we will use ε1 = r−αk2RantPt

and ε2 = r−2αk4R
2
antP

2
t . Hence, from (3) and (5), we obtain

zMC = ε1E







(

|h|

2β
∑

k=1

sk

)2






+ ε2E







(

|h|

2β
∑

k=1

sk

)4






,

(6)

for the scenario with an analog correlator at the receiver, where

the expectation is taken over both |h| and sk. On the other

hand, the output DC without a correlator is

zMNC = ε1E

{

|h|2
2β
∑

k=1

s2k

}

+ ε2E

{

|h|4
2β
∑

k=1

s4k

}

, (7)

where 2β samples are considered for fair comparison. This

implies that β will have a considerable impact on the harvested

energy. Finally, note that the subscript MC and MNC refers

to the scenario of modulated waveform transmission (DCSK

in this case), with and without the correlator at the receiver,

respectively.

III. CHAOTIC SIGNAL-BASED WIRELESS

POWER TRANSFER

In this section, we investigate the effect of DCSK signals on

WPT. We analyze the performance of the proposed receiver

architecture in terms of the harvested energy, when DCSK

waveforms are transmitted. Towards this direction, we provide

the following theorem.

Theorem 1. For a WPT receiver with a correlator, the

harvested DC is given by

zMC = ε1β + ε2
3(1 +m)

m
β(2β − 1). (8)

Proof. See Appendix B.

Theorem 1 provides a generalized closed-form expression for

zMC in terms of m. Note that zMC corresponding to a no-

fading scenario (m → ∞) can also be obtained as a special

case, given in the following corollary.

Corollary 1. In a no-fading scenario, zMC is given by

lim
m→∞

zMC = ε1β + 3ε2β(2β − 1). (9)

The above corollary follows directly from Theorem 1, as

(1 +m)/m→ 1 for m→ ∞.

Remark 1. Note that in Theorem 1, m = 1 results in

an enhanced zMC compared to the m → ∞ scenario, i.e.

wireless fading enhances WPT. This observation corroborates

the claims made in [11] regarding the beneficial role of fading

in WPT systems.

Next, we consider the case of a conventional WPT receiver

without the analog correlator, which is given by the following

theorem.

Theorem 2. Without a correlator at the WPT receiver, the

harvested DC is

zMNC = ε1β + ε2
3(1 +m)

4m
β. (10)

Proof. See Appendix C.

Remark 2. From Theorems 1 and 2, we observe that zMC and

zMNC is a quadratic and linear function of β, respectively.

This highlights the benefits of the proposed architecture based

on the nonlinearity of the EH process. Note that, if a linear EH

model is considered, which only accounts for the second-order

term in (5), we obtain zMC = zMNC.

We observe that, both zMC and zMNC are inversely pro-

portional to m. We also note that the analytical expressions

obtained can be extended to Rician fading scenarios (as special

cases), by replacing m = (K+1)2

2K+1 , where K is the Rice factor

[29].

For the sake of completeness, we also provide zMNC cor-

responding to a no-fading scenario.

Corollary 2. The harvested DC zMNC corresponding to a

no-fading scenario is given by

lim
m→∞

zMNC = ε1β +
3

4
ε2β. (11)

IV. DCSK-BASED WAVEFORM DESIGN FOR WPT

We now extend the analytical model, initially proposed for

DCSK signals, to unmodulated (deterministic) chaotic wave-

forms. Then, we modify the conventional DCSK waveform

at the transmitter, in a way that further enhances the WPT

performance.

A. Unmodulated chaotic signals

We consider the case of using a deterministic, unmodulated

chaotic waveform for WPT and compare its performance with

the conventional DCSK signal. For this case, the k-th bit of

the l-th transmitted unmodulated chaotic symbol is given by

sl,k = xl,k, k = 2(l − 1)β + 1, . . . , 2lβ. (12)

It is worth noting that while it is essential to have a symbol

length of 2β in DCSK, such a constraint is not required in the

unmodulated chaotic case. However, we consider a symbol

length 2β for a fair comparison of the EH performance.

Now, we state the following proposition, where we obtain the

harvested DC for unmodulated chaotic signals, with/without a

correlator at the WPT receiver.

Proposition 2. Based on the symbol structure as defined in

(12), we obtain

zUM,C = ε1β + ε2
3(1 +m)

m
β

(

β −
1

4

)

, (13)

with a correlator and,

zUM,NC = ε1β + ε2
3(1 +m)

4m
β, (14)
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chips
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Fig. 2. (a) DCSK frame, and (b) SR-DCSK frame.

without a correlator.

Proof. See Appendix D.

Remark 3. Without a correlator at the receiver, we have

zMNC = zUM,NC, for a given set of system parameters

(Theorem 2 and Proposition 2). On the other hand, when

a correlator is employed, we have zMC > zUM,C, with a

performance gain equal to ε2
3(1+m)

m
β(β − 3

4 ) (Theorem 1

and Proposition 2). In other words, a modulated DCSK signal

positively affects the EH performance in the presence of a

correlator.

The above remark can be explained as follows. In contrast

to the unmodulated waveform, DCSK also carries information

due to its inherent randomness, i.e. the first β symbols are

chaotic, followed by their replica or inverted replica. In

case of a correlator-aided receiver, this randomness of the

DCSK waveform induces fluctuations of the transmit signal

amplitude, which boosts the harvested DC. The difference in

performance, given in Remark 3, is in line with the claims

made in [10] regarding the importance of using modulated

multisine waveforms for efficient WPT.

Note that Remark 3 considers identical system parameters

and similar channel conditions between the two cases. How-

ever, this claim does not hold for all possible scenarios. Indeed,

an interesting insight can be obtained when we analyze the

energy harvested in the modulated case under the deterministic

fading scenario. Specifically, let m1 and m2 be the fading pa-

rameters of the modulated and unmodulated case, respectively.

Then, the performance gap ∆ = zMC− zUM,C can be written

as

∆ = ε2
3(1 +m1)

m1
β(2β − 1)− ε2

3(1 +m2)

m2
β

(

β −
1

4

)

.

(15)

Observe that for the special case of m1 = m2, we always

have ∆ > 0, i.e. zMC > zUM,C (Remark 3). On the other

hand, zMC in a no-fading environment (m1 → ∞) and

zUM,C in a Rayleigh fading scenario (m2 = 1) results in

∆ = − 3
2ε2β < 0. This implies that, with a correlator-

aided receiver, an unmodulated waveform in a Rayleigh fading

environment results in more harvested energy as compared to

its modulated counterpart in a no-fading environment.

Furthermore, we also observe from (15) that for finite m1

and m2, ∆ > 0 holds if and only if

(1 +m1)

m1
(2β − 1)−

(1 +m2)

m2

(

β −
1

4

)

> 0. (16)

Note that m1 and m2 are necessarily channel parameters, i.e.

they cannot be controlled. However, it is possible to tune

β accordingly to satisfy (16). After some trivial algebraic

manipulations, we obtain β > β+
opt, where

βopt =

(

1+m1

m1

)

− 1
4

(

1+m2

m2

)

2
(

1+m1

m1

)

−
(

1+m2

m2

) =
1

4

(

4m2 + 3m1m2 −m1

2m2 +m1m2 −m1

)

(17)

and x+ = max{x, 0}.

Thus, it is important to note that ∆ > 0 does not hold for

all values of β and in some scenarios, we have ∆ < 0, i.e. it is

possible to obtain more harvested energy from an unmodulated

waveform as compared to its modulated counterpart.

B. WPT optimal DCSK-based waveform

In Section III, we showed that a communication-based

chaotic waveform with the proposed architecture boosts the

WPT performance. The drawback of this approach is a long

symbol duration, which also implies that a large number of

chaotic chips are generated for every single symbol transmis-

sion. To this end, a shorter symbol duration may address both

these problems and accordingly, a short reference DCSK (SR-

DCSK) is proposed in [30].

An unmodulated chaotic component of length βr < β is

considered in SR-DCSK, followed by ζ copies of its replica,

multiplied with the information such that β = ζβr. Hence,

the symbol duration is βr(1 + ζ) = βr + β < 2β, i.e. the

transmitted symbol is characterized by a sequence of βr + β
samples of the chaotic basis signal, which is represented as

sk =

{

xk, 0 < k ≤ βr,

dxk−βr
, βr < k ≤ βr + β,

(18)

where d is the transmitted information bit. An illustrative

comparison of DCSK and SR-DCSK is demonstrated in Fig.

2. While Fig. 2(a) shows the conventional DCSK symbol

structure, the short reference SR-DCSK is depicted in Fig.

2(b). It is important to note here that the SR-DCSK is

a technique proposed mainly for the purpose of efficient

information transfer, such that its error performance always
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remains above a certain acceptable threshold. In contrast, we

investigate the impact of having a shorter symbol duration

on WPT and accordingly we propose a WPT optimal DCSK-

based waveform.

Given that ζ replicas of the βr length reference signal are

concatenated in SR-DCSK, this implies that the reference

signal is partially correlated over ζ consecutive samples of

the frame, i.e. the degree of ‘randomness’ increases within

a single frame, as compared to DCSK. In other words, this

results in an increased correlation within the frame, which

leads to enhanced WPT. This is in line with the claim made

in [31] regarding the effect of correlation in transmitted signals

with respect to WPT.

Hence, we investigate SR-DCSK to obtain a WPT-optimal

frame structure. As the symbol structure in (18) is dependent

on βr, the two extreme cases are βr = 0 and βr = β.

Accordingly, the WPT performance for all the possible values

of βr is given by the following theorem.

Theorem 3. A βr-SR-DCSK results in zSR given by (19).

Proof. See Appendix E.

It is interesting to note from (19), that βr-SR-DCSK converges

to DCSK for βr = β. We observe that the increased degree

of ‘randomness’ in βr-SR-DCSK results in a significant per-

formance enhancement in terms of WPT, with an increase of

zSR proportional to β4, unlike zMC in Theorem 1.

Proposition 3. For a given β, the optimal zSR is achieved at

βr = 1.

Proof. We know that β = ζβr and β ∈ Z
+. Hence, by

comparing the second and fourth order terms of the EH process

separately in Theorem 3, we can state that zSR is maximum

for βr = 1, with all other system parameters remaining

constant.

Hence, the WPT-optimal transmitted symbol of (β + 1) dura-

tion is defined as

sk =

{

xk, k = 1,

dx1, 1 < k ≤ β + 1.
(20)

The corresponding harvested DC

zoptSR =
1

2
ε1(1 + β2) +

3(1 +m)

8m
ε2(1 + 6β2 + β4), (21)

is obtained by replacing βr = 1 in (19b). It is further

interesting to observe that having a single chip of chaotic

signal followed by β chips of information modulated chaos

in a symbol of β + 1 duration results in a maximum possible

correlation; this is reflected in the WPT gain of the proposed

DCSK-based waveform. Therefore for large β, the reduction in

symbol duration is approximately 2β−(β+1) ≈ β per symbol

duration; this also suggests that one chaotic chip needs to be

generated per symbol compared to β chaotic chips per symbol

in DCSK. Finally, a shorter symbol duration also signifies the

reduced receiver’s complexity.

Now, we compare the proposed chaotic waveform with

the existing multisine signal-based EH framework [9]. We

know that for a N -tone multisine signal, the PAPR at the

harvester input is 2N [8]. On the contrary, we have proved in

Proposition 1, that the PAPR of a DCSK-based signal is 4β.

As a high PAPR translates to a better EH performance [8], we

can intuitively say that the proposed waveform will result in a

higher harvested energy, even for a set of comparable N and

β. Furthermore, for an N -tone multisine signal, the linear term

of the harvested DC is independent of N and the nonlinear

term is linearly dependent on N [9]. On the contrary, in the

case of the proposed βr-SR-DCSK waveform, the linear and

nonlinear terms of zoptSR (Eq. (21)) are proportional to β2 and

β4, respectively. As a result, the proposed architecture for βr-

SR-DCSK significantly outperforms multisine waveforms, in

terms of WPT. Finally, Table I presents a summary of the main

analytical results derived in Section III and IV.

Remark 4. It may appear from the analytical results in

Table I that the limiting case of β → ∞ will result in an

infinite amount of harvested energy. However, note that the

energy transfer model considered in this work is based on the

assumption that the harvester operates in the nonlinear region

[9]. If β becomes too large, the diode inside the harvester will

be forced into the saturation region of operation, making the

derived analytical results inapplicable.

V. NUMERICAL RESULTS

We validate our theoretical analysis through extensive

Monte-Carlo simulations. Without any loss of generality, we

consider a transmission power of Pt = 30 dBm, a Tx-

Rx distance r = 20 m, and a pathloss exponent α = 4.

The parameters considered for the EH model are taken as

k2 = 0.0034, k4 = 0.3829, and Rant = 50 Ω [10]. Also recall

that, ψ = 2β and ψ = 1 corresponds to a WPT receiver with

and without the analog correlator, respectively.

A. Performance evaluation of the proposed architecture

Fig. 3 depicts the WPT performance of DCSK with respect

to the spreading factor, with and without the correlator at

the receiver. Firstly, we observe the significant gains in WPT

performance achieved with the employment of the correlator;

the theoretical results (lines) match very closely with the sim-

ulation results (markers); this verifies our proposed analytical

framework. This is related to the high PAPR, which is a

function of the spreading factor β as stated in Proposition

1. Moreover, we observe that, the harvested energy decreases

with increasingm for a given β. This observation is inline with

(8) and (10), where we note that, the harvested DC varies with

the quantity 1+m
m

, while the other system parameters remain

constant. Specifically, due to this ratio, the best performance

is achieved with m = 1, whereas the worst is obtained with

m → ∞. Moreover, the loss in performance between con-

secutive values of m decreases as m increases; for example,

observe the performance gap between m = 1, m = 4, and

m = 20.

B. Effects of data modulation on WPT

Fig. 4 illustrates the impact of using a modulated waveforms

for WPT and compares the performance with unmodulated
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zSR =















1

2
ε1β

2 +
3(1 +m)

8m
ε2β

4, βr = 0, (19a)

ε1
β2
r + β2

2βr
+ ε2

3(1 +m)

8m

(

1 + 6ζ2 + ζ4
) (

2β2
r − βr

)

, βr > 0. (19b)

TABLE I
SUMMARY OF RESULTS.

Waveform Modulation Correlator Harvested DC

zMC DCSK X ε1β + ε2
3(1 +m)

m
β(2β − 1)

zMNC DCSK × ε1β + ε2
3(1 +m)

4m
β

zUM,C × X ε1β + ε2
3(1 +m)

m
β

(

β −
1

4

)

zUM,NC × × ε1β + ε2
3(1 +m)

4m
β

zSR βr-SR-DCSK X
1

2
ε1β

2 +
3(1 +m)

8m
ε2β

4, βr = 0,

ε1
β2
r + β2

2βr
+ ε2

3(1 +m)

8m

(

1 + 6ζ2 + ζ4
) (

2β2
r − βr

)

, βr > 0

Fig. 3. Effect of the spreading factor on zDC; lines correspond to analysis
and markers correspond to simulation results.

chaotic signals in terms of WPT. The figure demonstrates that

data modulation does not affect the WPT performance without

the correlator at the receiver, i.e. both DCSK and unmodulated

chaotic symbols result in an identical harvested DC. The

only difference is the degradation in WPT performance with

increasing m, which has been discussed earlier in Fig. 3.

On the other hand, we observe that modulating the chaotic

symbols, it has a significant impact on the WPT performance.

Finally, it is interesting to note that the harvested DC corre-

sponding to Rayleigh fading, i.e. m = 1, with unmodulated

chaotic symbols is approximately identical to the harvested DC

obtained with modulated symbols and m = 10. This verifies

Fig. 4. Effect of the modulation on zDC.

(15), where in this case, the performance gap can be obtained

by letting m1 = 10 and m2 = 1.

C. Effects of symbol length on WPT

Fig. 5 depicts the importance of the choice of β as a

function of the channel parameter m. We consider the WPT

performance of DCSK as a function of β, for various fading

scenarios m1 = 40, 80, 100, 150 and compare it with its

unmodulated counterpart in a Rayleigh fading scenario (m2 =
1). Recall that a positive ∆ implies that DCSK performs better

in terms of WPT and vice-versa. Observe that for all values

of m1, the parameter ∆ attains a positive value only beyond a

certain β, i.e. the unmodulated waveform performs better till
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Fig. 5. Effect of the symbol length on zDC.

Fig. 6. Effect of a short reference on WPT; lines correspond to analysis and
markers correspond to simulation results.

that point and this value of β increases with increasing m1;

this verifies our analysis to obtain (17). Hence, we can rightly

state that modulating the chaotic waveform does not guarantee

enhanced EH. Even in the proposed architecture, i.e. with a

correlator at the receiver, the choice of β should be based on

both the channel condition and the modulation, to guarantee

a better EH performance.

D. Effects of a shorter reference on WPT

Fig. 6 demonstrates the effect of an SR symbol length

on the WPT performance of the proposed correlator-based

architecture. The effect of having a reference length βr < β,

with ζ copies of its data modulated replica concatenated

together such that β = ζβr , is demonstrated here, where

we consider two cases of β = 60 and β = 90, respectively.

This figure illustrates the impact of correlation in enhancing

chaotic signal-based WPT. We observe that for a given β,

increasing βr results in obtaining the maximum harvested

DC at βr = 1, followed by a monotonically decreasing

Fig. 7. Performance of WPT-optimal SR-DCSK; lines correspond to analysis
and markers correspond to simulation results.

performance. This is justified by the fact that as we have

β = ζβr, a higher βr implies a lower ζ for a given β, i.e.

the correlation decreases, which results in deteriorating WPT

performance. Finally, we observe that, for the special case of

βr = β, the WPT performance coincides with that of the

DCSK-based transmission.

E. Evaluation of WPT-optimal SR-DCSK

Fig. 7 demonstrates the performance of the proposed WPT-

optimal SR-DCSK. The figure exhibits the effect of the

spreading factor for two scenarios of Tx-Rx distance 20 m

and 30 m, respectively. While the analytically obtained values

match closely with that of Monte Carlo simulation, we also

note that the harvested DC with Tx-Rx distance 30 m is less

compared to the harvested DC with Tx-Rx distance 20 m; this

is intuitive due to the path-loss factor.

Fig. 8 illustrates the joint effect of fading parameter m and

spreading factor β on the WPT performance of the proposed

symbol structure. We observe that the performance of WPT-

optimal SR-DCSK improves with increasing β and decreasing

m for a given Tx-Rx distance, where the harvested DC is

maximum at m = 1 and β = 30, i.e. minimum m and

maximum β. We also note that even though the harvested

energy increases monotonically with β for a given m, its

variation against m for any particular β is not the same. The

harvested energy saturates with increasing m for a given β;

this observation can be justified by the fact that apart from β,

it is also a function of 1+m
m

.

F. Comparison of WPT-optimal SR-DCSK and DCSK

Fig. 9 compares the performance of the proposed WPT-

optimal SR-DCSK and DCSK against the transmit symbol

length for several values of the fading parameter m. As

expected, the proposed waveform results in a significantly

higher harvested DC at approximately half the corresponding

DCSK symbol length. A small symbol length implies less

number of chaotic signals generated per symbol transmission
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Fig. 8. Joint effect of the spreading factor β and the fading parameter m on
WPT-optimal SR-DCSK.

Fig. 9. Performance comparison of the proposed WPT-optimal SR-DCSK
and DCSK.

and also a smaller number of delay blocks inside the analog

correlator, i.e. reduction in both receiver’s complexity and cost.

Besides having a short frame duration, the proposed frame

structure successfully exploits the effect of correlation in the

transmitted signal.

G. Performance comparison with multisine waveforms

Fig. 10 compares the WPT performance of the proposed

chaotic and existing different N -tone multisine waveforms [9].

Furthermore, in this figure, we also consider the HPA non-

linearities at the transmitter [32]. The figure corroborates our

claim that the proposed waveform significantly outperforms

the multitone signals in terms of WPT. Moreover, it also

demonstrates the effect of the transmission power Pt, as we

observe that the harvested energy saturates after a certain Pt

is reached. The reason for this observation is attributed to

the limited capability of a practical HPA at the transmitter.

A typical HPA cannot transmit with any arbitrary amount of

power and beyond a certain limit, it can only transmit with a

Fig. 10. Performance comparison of the proposed WPT-optimal SR-DCSK
and multisine waveforms, considering HPA non-linearity; m = 4.

fixed Pt, irrespective of the power of its input signal [32]. In

this figure, we observe this phenomenon around Pt = 25 dBm

and hence the saturating effect in the Pt > 25 dBm range.

VI. CONCLUSION

In this paper, we investigated the effects of conventional

communication-based chaotic waveforms in WPT. In particu-

lar, we considered a point-to-point set-up, where a transmitter

uses a DCSK generator and the receiver employs an analog

correlator followed by an EH circuit. By taking into account

the nonlinearities of the EH process, we proposed a novel

WPT architecture and analyzed it in terms of the received

signal’s PAPR as well as the achieved harvested DC. We

showed that both of these performance metrics are dependent

on the parameters of the transmitted waveform. In addition,

we demonstrated that DCSK waveforms outperform their

unmodulated counterparts, in terms of EH performance, when

a correlator is employed at the receiver. Based on this obser-

vation, a novel SR-DCSK-based waveform design has been

investigated, which further enhances the WPT performance.

Finally, we have shown that the proposed chaotic waveform

outperforms the conventional multisine signals in terms of

its WPT capability. An immediate extension of this work is

to investigate multi-dimensional chaotic signals for WPT, by

considering a generalized frequency selective fading scenario.

APPENDIX A

PROOF OF PROPOSITION 1

Without a correlator at the receiver, i.e. for ψ = 1, the

PAPR corresponding to the l-th transmitted symbol is

PAPR =

max
l

{

2lβ
∑

k=2(l−1)β+1

|hl|
2s2l,k

}

E

{

2lβ
∑

k=2(l−1)β+1

|hl|2s2l,k

} . (22)
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By considering a given channel instance hl and the invariant

probability density function (PDF) of xk, as [17]

fX(x) =

{

1
π
√
1−x2

, |x| < 1,

0, otherwise,
(23)

we obtain max
l

{

2lβ
∑

k=2(l−1)β+1

|hl|
2s2l,k

}

= 2|hl|
2β and

E







2lβ
∑

k=2(l−1)β+1

|hl|
2s2l,k







= |hl|
2

2lβ
∑

k=2(l−1)β+1

E{s2l,k}

= |hl|
2

2lβ
∑

k=2(l−1)β+1

∫ ∞

−∞
x2fX(x)dx = |hl|

2β. (24)

Hence, for ψ = 1, we have

PAPR =
2|hl|

2β

|hl|2β
= 2. (25)

On the other hand, for ψ = 2β, i.e. with a correlator at the

receiver,

PAPR =

max
l







(

2lβ
∑

k=2(l−1)β+1

|hl|sl,k

)2






E







(

2lβ
∑

k=2(l−1)β+1

|hl|sl,k

)2






, (26)

where from (23), we get

max
l







2lβ
∑

k=2(l−1)β+1

|hl|sl,k







2

= 4|hl|
2β2. (27)

Note that for chaotic sequences generated by the Chebyshev

map, we have E {sl,isl,j} = 0 for i 6= j [33, Eq. 55]. As such,

E















2lβ
∑

k=2(l−1)β+1

|hl|sl,k





2










= |hl|
2

2lβ
∑

k=2(l−1)β+1

E{s2l,k}

= |hl|
2β, (28)

which follows from (24). Therefore, we have

PAPR =
4|hl|

2β2

|hl|2β
= 4β. (29)

APPENDIX B

PROOF OF THEOREM 1

As we consider a unit mean power Nakagami-m distributed

block fading channel, the PDF of |h| is

f|h|(z) =
2mmz2m−1e−mz2

Γ(m)
, ∀ z ≥ 0, (30)

where Γ(·) denotes the complete Gamma function and m ≥ 1
controls the severity of the amplitude fading. The quantity
2β
∑

k=1

sk in (6) can be alternatively written as

2β
∑

k=1

sk = (x1 + · · ·+ xβ + d(x1 + · · ·+ xβ)) = p

β
∑

k=1

xk,

(31)

where we have p = 1 + d. Then, by assuming equally likely

transmissions of d = ±1, we have the PDF fP (p) = 1
2 , ∀

p ∈ {0, 2}. Hence, from (6) we have

zMC = ε1E







(

|h|

2β
∑

k=1

sk

)2






+ ε2E







(

|h|

2β
∑

k=1

sk

)4






= ε1E
{

|h|2
}

E







(

p

β
∑

k=1

xk

)2






+ ε2E
{

|h|4
}

E







(

p

β
∑

k=1

xk

)4






. (32)

Note that as we are considering a unit power Nakagami-m
fading scenario, we have E

{

|h|2
}

= 1 and

E
{

|h|4
}

=
2mm

Γ(m)

∫ ∞

0

z2m+3e−mz2

dz

=
1

m2Γ(m)

∫ ∞

0

vm+1e−vdv =
(1 +m)

m
, (33)

which follows from the transformation mz2 → v. Then, the

first term of (32) can be evaluated as

E







(

p

β
∑

k=1

xk

)2






= E
{

p2
}

E







(

β
∑

k=1

xk

)2






(a)
= 2E















β
∑

k=1

x2k + 2

β
∑

l1,l2=1
l1 6=l2

xl1xl2















= 2

β
∑

k=1

E
{

x2k
}

+ 4

β
∑

l1,l2=1
l1 6=l2

E {xl1xl2}

= β, (34)

where (a) follows from E{p2} = 2 and the multinomial

theorem, and the final result follows from

E
{

x2k
}

=

∫ 1

−1

x2kdx

π
√

1− x2k
=

1

2
(35)

and by using [33, Eq. 55]. Similarly, by using the multinomial

theorem, the second term of (32) can be expanded as

E







(

p

β
∑

k=1

xk

)4








11

= E
{

p4
}

E







(

β
∑

k=1

xk

)4






(b)
= E

{

p4
}

E







∑

k1+k2+···+kβ=4

4!

k1! k2! · · · kβ !

β
∏

i=1

xki

i







(c)
= 8

(

β
∑

k=1

E
{

x4k
}

+ 3E2
{

x2k
}

β(β − 1)

)

(d)
= 8

(

3β

8
+

3

4
β(β − 1)

)

= 3β(2β − 1), (36)

where (b) follows from the multinomial theorem. Furthermore,

(c) follows from E{p4} = 0× 1
2 + 24 × 1

2 = 8,

E {xk} =

∫ 1

−1

xkdx

π
√

1− x2k
= 0, (37)

and (d) follows from (35) and

E
{

x4k
}

=

∫ 1

−1

x4kdx

π
√

1− x2k
=

3

8
. (38)

By combining (32), (33), (34), and (36), we obtain

zMC = ε1β + ε2
3(1 +m)

m
β(2β − 1). (39)

APPENDIX C

PROOF OF THEOREM 2

From the expression (7), we have

zMNC = ε1E

{

|h|2
2β
∑

k=1

s2k

}

+ ε2E

{

|h|4
2β
∑

k=1

s4k

}

= ε1E
{

|h|2
}

E

{

2β
∑

k=1

s2k

}

+ ε2E
{

|h|4
}

E

{

2β
∑

k=1

s4k

}

= ε1

(

1 +

β
∑

k=1

E
{

d2k
}

)(

β
∑

k=1

E
{

x2k
}

)

+ ε2

(

1 +

β
∑

k=1

E
{

d4k
}

)(

β
∑

k=1

E
{

x4k
}

)

(a)
= ε1β + ε2

3(1 +m)

4m
β, (40)

where (a) follows from (35), (38) and by assuming equally

likely transmissions of dk = ±1, ∀ k.

APPENDIX D

PROOF OF PROPOSITION 2

We prove the proposition in the form of two separate sub-

cases: i) with, and ii) without the correlator.

1) With correlator: Based on (6) and (12), we obtain the

harvested DC as

zUM,C = ε1E







(

|h|

2β
∑

k=1

xk

)2






+ ε2E







(

|h|

2β
∑

k=1

xk

)4






.

(41)

Hence,

zUM,C = ε1E
{

|h|2
}

E







(

2β
∑

k=1

xk

)2






+ ε2E
{

|h|4
}

E







(

2β
∑

k=1

xk

)4






= ε1E















2β
∑

k=1

x2k + 2

2β
∑

l1,l2=1
l1 6=l2

xl1xl2















+ ε2
(1 +m)

m
E















2β
∑

k=1

x4k + 6

β(2β−1)
∑

l1,l2=1
l1 6=l2

x2l1x
2
l2















= ε1

2β
∑

k=1

E
{

x2k
}

+ ε2
(1 +m)

m

(

2β
∑

k=1

E
{

x4k
}

+ 6β(2β − 1)E2
{

x2k
}

)

(a)
= ε1β + ε2

3(1 +m)

m
β(β −

1

4
), (42)

where (a) follows from (35) and (38).

2) Without correlator: Based on (7) and (12), we have

zUM,NC = ε1E

{

|h|2
2β
∑

k=1

x2k

}

+ ε2E

{

|h|4
2β
∑

k=1

x4k

}

(b)
= ε1 × 2β ×

1

2
+ ε2 ×

(1 +m)

m
× 2β ×

3

8

= ε1β + ε2
3(1 +m)

4m
β, (43)

where (b) follows from (35) and (38).

APPENDIX E

PROOF OF THEOREM 3

We prove the theorem in the form of two separate sub-cases

with βr = 0 and βr > 0.

A. Case βr = 0

In this case, we obtain the harvested energy zSR as

zSR = ε1E







(

d

β
∑

k=1

xk

)2






+ ε2
(1 +m)

m
E







(

d

β
∑

k=1

xk

)4






. (44)

From Appendix B, we assume an equally likely transmission

of d = ±1 and by following a similar framework, we obtain

zSR = ε1β
2
E
{

d2
}

E
{

x2k
}

+ ε2β
4
E
{

d4
}

E
{

x4k
}

=
1

2
ε1β

2 +
3(1 +m)

8m
ε2β

4. (45)
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B. Case βr > 0

Based on (6) and (18), we obtain

zSR = ε1E







(

β+βr
∑

k=1

sk

)2






+ ε2
(1 +m)

m
E







(

β+βr
∑

k=1

sk

)4






, (46)

where from (18), we have

β+βr
∑

k=1

sk = (1 + ζd)

βr
∑

k=1

xk. (47)

Then, the first term of (46) can be evaluated as

E







(

β+βr
∑

k=1

sk

)2






= E

{

(1 + ζd)
2
}

E







(

βr
∑

k=1

xk

)2






,

(48)

where

E

{

(1 + ζd)
2
}

=
1

2

{

(1 + ζ)
2
+ (1− ζ)

2
}

= 1 + ζ2, (49)

and

E







(

βr
∑

k=1

xk

)2






=

βr
∑

k=1

E
{

x2k
}

=
βr
2
. (50)

By combining (49) and (50), we obtain

E







(

β+βr
∑

k=1

sk

)2






=
βr
2

(

1 + ζ2
)

=
β2
r + β2

2βr
. (51)

Similarly, by using the multinomial theorem, the second term

in (46) can be expanded as

E







(

β+βr
∑

k=1

sk

)4






= E

{

(1 + ζd)
4
}

E







(

βr
∑

k=1

xk

)4






,

(52)

where

E

{

(1 + ζd)4
}

=
1

2

{

(1 + ζ)4 + (1− ζ)4
}

= 1 + 6ζ2 + ζ4 (53)

and

E







(

βr
∑

k=1

xk

)4






=

βr
∑

k=1

E
{

x4k
}

+ 3E2
{

x2k
}

β(β − 1)

=
3βr
8

+
3

4
βr(βr − 1). (54)

By combining (53) and (54), we obtain

E







(

β+βr
∑

k=1

sk

)4






=
3

8

(

1 + 6ζ2 + ζ4
) (

2β2
r − βr

)

. (55)

Hence, we have zSR equal to

zSR=ε1E







(

β+βr
∑

k=1

sk

)2






+ ε2
(1 +m)

m
E







(

β+βr
∑

k=1

sk

)4






= ε1
β2
r + β2

2βr
+ ε2

3(1 +m)

8m

(

1 + 6ζ2 + ζ4
) (

2β2
r − βr

)

.

(56)
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