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MIMO-OFDM Joint Radar-Communications:
Is ICI Friend or Foe?

Musa Furkan Keskin, Member, IEEE, Henk Wymeersch, Senior Member, IEEE, and Visa Koivunen, Fellow, IEEE

Abstract—Intercarrier interference (ICI) poses a significant
challenge for OFDM joint radar-communications (JRC) systems
in high-mobility scenarios. In this paper, we propose a novel
ICI-aware sensing algorithm for MIMO-OFDM JRC systems to
detect the presence of multiple targets and estimate their delay-
Doppler-angle parameters. First, leveraging the observation that
spatial covariance matrix is independent of target delays and
Dopplers, we perform angle estimation via the MUSIC algorithm.
For each estimated angle, we next formulate the radar delay-
Doppler estimation as a joint carrier frequency offset (CFO) and
channel estimation problem via an APES (amplitude and phase
estimation) spatial filtering approach by transforming the delay-
Doppler parameterized radar channel into an unstructured form.
To account for the presence of multiple targets at a given angle,
we devise an iterative interference cancellation based orthogonal
matching pursuit (OMP) procedure, where at each iteration the
generalized likelihood ratio test (GLRT) detector is employed to
form decision statistics, providing as by-products the maximum
likelihood estimates (MLEs) of radar channels and CFOs. In the
final step, target detection is performed in delay-Doppler domain
using target-specific, ICI-decontaminated channel estimates over
time and frequency, where CFO estimates are utilized to resolve
Doppler ambiguities, thereby turning ICI from foe to friend.
The proposed algorithm can further exploit the ICI effect to
introduce an additional dimension (namely, CFO) for target
resolvability, which enables resolving targets located at the same
delay-Doppler-angle cell. Simulation results illustrate the ICI
exploitation capability of the proposed approach and showcase its
superior detection and estimation performance in high-mobility
scenarios over conventional methods.

Index Terms– OFDM, joint radar-communications, intercarrier
interference, APES, CFO estimation.

I. INTRODUCTION

With the explosive growth of spectrally co-existent radars
and communication systems in 5G and beyond wireless net-
works, joint radar-communications (JRC) strategies have be-
come popular in recent years [2]–[7]. A promising approach to
practical JRC deployment is to design dual-functional radar-
communications (DFRC) systems, which employ a single
hardware that can simultaneously perform radar sensing and
data transmission with a co-designed waveform [3], [8], [9].
Orthogonal frequency-division multiplexing (OFDM) has been
widely investigated as a DFRC waveform due its wide avail-
ability in wireless communication systems and its potential to
achieve high radar performance [10]–[12]. In the literature,
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This study extends our previous work in [1] by providing additional con-
tributions including GLRT-OMP based multi-target detector design and ICI
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estimator design for OFDM radar sensing has been studied
in both single-antenna [10], [12], [13] and multiple-input
multiple-output (MIMO) [14], [15] settings.

In high-mobility scenarios, such as millimeter-wave
(mmWave) vehicular JRC systems [3], Doppler-induced in-
tercarrier interference (ICI) can significantly degrade the per-
formance of OFDM from both radar and communications per-
spective [16]–[18]. Due to lack of guard intervals in frequency
domain, Doppler shifts produced by mobile targets can destroy
the orthogonality of OFDM subcarriers at the receiver (i.e., the
ICI effect) and reduce the dynamic range of radar due to in-
creased side-lobe levels [16]. To improve OFDM radar perfor-
mance, various ICI mitigation approaches have been recently
proposed [13], [17], [19], [20]. Considering a single-target
scenario, a two-step Doppler estimation method is proposed
in [17], where transmit sequences with favorable correlation
properties are employed to eliminate ICI. In a similar fashion,
the studies in [19], [20] design ICI compensation schemes for
a single target relying on the condition that transmit symbols
consist of phase codes with certain characteristics regarding
cyclic shifts and auto-correlation. As a step further, the work
in [13] assumes arbitrary phase shift keying (PSK) symbols
and proposes a pulse compression technique to compensate for
ICI-induced phase rotations across OFDM subcarriers created
by a single target, which can compensate for Doppler shifts
at integer multiples of subcarrier spacing. In all of the above
schemes, the common observation is that ICI can be harnessed
to resolve Doppler ambiguity of a single target.

To tackle the more practical scenarios of multiple targets,
recent works investigate range-velocity estimation techniques
for multiple objects in the presence of ICI [12], [16], [21].
Under the assumption that the number of targets is known a-
priori, an alternating maximization approach that takes ICI into
account is proposed in [12] to reduce the complexity of high-
dimensional maximum-likelihood (ML) search. In [16], the ICI
effect is eliminated via an all-cell Doppler correction (ACDC)
method, which performs Doppler compensation for arbitrary
velocities with a precision on the level of Doppler resolution.
Following a similar line of reasoning, the work in [21] develops
a sparsity based ICI removal and range-velocity estimation
algorithm. For proper functioning of the methods in [16], [21]
in terms of ICI compensation, a common requirement is that
OFDM symbol matrix should be rank-one (i.e., same symbols
repeated over time).

The prior approaches to OFDM radar sensing in the presence
of ICI [12], [16], [17], [19]–[21] suffer from several major
drawbacks that can significantly limit their applicability in
practical JRC scenarios. First, most of the existing ICI compen-
sation methods focus exclusively on the radar functionality of
OFDM and impose strict constraints on transmit data symbols,
such as cyclic shift property [19], good correlation character-
istics [17], [19], identical sequences across subcarriers [20]
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and rank-one frequency-time OFDM symbol matrix [16], [21].
Such constraints, however, would lead to a substantial loss in
communications data rate (e.g., M times reduction in data rate
[16], [21], where M is the number of OFDM symbols) and
essentially impede dual-functional operation, which is one of
the core properties of OFDM. In addition, prior works either
focus on a single-target scenario [17], [19], [20], which is not
realistic, or study multi-target cases with the assumption that
targets have already been detected [12], without addressing the
problem of detection under strong ICI, which is challenging
due to high side-lobe levels. Moreover, all the existing studies
investigate the ICI effect in single-input single-output (SISO)
OFDM radar configurations; hence, potential benefits that can
be provided by a MIMO-OFDM architecture in tackling the
ICI problem have been unexplored. Finally, exploitation of ICI
has been considered only in scenarios with limited practical
relevance (e.g., containing a single target, with restricted trans-
mit symbols [13], [17], [19], [20]). In a general multi-target
setting, ICI conveys crucial information on target velocities
and must be exploited to enhance radar performance. In light
of the existing literature on OFDM radar sensing under the
effect of ICI, three fundamental questions arise:
• How can ICI effect be mitigated in a generic multi-target

scenario with arbitrary transmit data symbols, without
hampering the communication capability of the OFDM
waveform (i.e., no restrictions on data symbols)?

• In what ways can ICI be exploited to improve radar
performance in a multi-target scenario?

• How can we best leverage MIMO architectures to design
ICI-aware multi-target detection/estimation schemes?

With the goal of answering these questions, this paper
tackles the problem of radar sensing with MIMO-OFDM
DFRC systems in the presence of non-negligible ICI generated
by high-speed targets. Motivated by high-mobility mmWave
vehicular applications [3], our goal is to simultaneously mit-
igate and exploit ICI associated with multiple targets while
retaining the communication functionality of OFDM. Towards
that goal, we establish a novel method for ICI-aware sensing in
MIMO-OFDM DFRC systems, considering arbitrary transmit
symbols in multi-target scenarios. Specifically, we propose
an ICI-aware multi-target detection and delay-Doppler-angle
estimation algorithm for radar sensing by developing an APES-
like spatial filtering approach [22], coupled with a generalized
likelihood ratio test (GLRT) detection procedure. The key idea
is to re-formulate radar sensing as a joint carrier frequency
offset (CFO)1 and channel estimation problem, which allows
us to decontaminate the ICI effect from the resulting channel
estimates, leading to improved performance in target detection
and delay-Doppler estimation. Regarding the ICI exploitation
aspect, the proposed algorithm enables accurate estimation
of any practically relevant unambiguous velocity that well
exceeds the standard maximum limit (e.g., in [10], [23])
determined by OFDM symbol duration, thereby effectively
turning ICI from foe to friend. The main contributions can
be summarized as follows:
• Novel Formulation of ICI-aware Sensing as Commu-

nication Channel/CFO Estimation Problem: We estab-
lish an insightful duality between ICI-aware sensing in
OFDM radar and joint channel/CFO estimation in OFDM

1Referring to the OFDM communications literature [18], we draw paral-
lelism between ICI-aware sensing and CFO estimation in communications.

communications [18], [24]. This enables us to formulate
the radar delay-Doppler estimation as a joint channel
and CFO estimation problem by transforming the delay-
Doppler parameterized radar channel into an unstructured
form. The key advantage of this novel formulation is
that it can produce almost ICI-free channels specific to
each target by decoupling ICI compensation from the
subsequent delay-Doppler estimation.

• ICI-aware Multi-Target Detector/Estimator Design:
Based on the new problem formulation, we design a
three-step ICI-aware multi-target detector/estimator. Ob-
serving that spatial covariance matrix does not depend
on target delays and Dopplers, we first perform angle
estimation using the MUSIC high-resolution direction
finding algorithm [25]. Next, to suppress mutual multi-
target interferences [26] in the spatial domain, we propose
a spatial filtering approach stemming from [22] that
performs joint CFO/channel estimation and beamforming
design for each estimated target angle separately. To
take into account the presence of multiple targets at a
given angle, we devise an orthogonal matching pursuit
(OMP) procedure that implements iterative interference
cancellation, whereby at each iteration the strongest echo
is detected via GLRT and its effect is subtracted from the
received signal. As a by-product, the GLRT detector pro-
vides the ML estimates (MLEs) of radar channel and CFO
associated to the strongest target in the corresponding
iteration. In the final step of the algorithm, detection and
delay-Doppler estimation can be performed using target-
specific channel estimates (decontaminated from ICI) by
exploiting the OFDM time-frequency structure.

• ICI Exploitation: The proposed algorithm exploits the
ICI information (obtained as CFO estimates at the output
of the second step) in two different ways. First, CFO esti-
mates provide unambiguous target velocities not restricted
by OFDM symbol duration, which allows us to resolve
velocity ambiguity. Second, we lift the dimension of tar-
get resolvability by introducing a fourth dimension (CFO)
that allows for distinguishing among targets located at the
same delay-Doppler-angle cell.

Additionally, extensive simulations carried out under a wide
range of signal-to-noise ratios (SNRs) and target velocities
show that the proposed approach provides substantial perfor-
mance improvements over the conventional FFT based method
[10], [23] and achieves performance very close to that obtained
by using ICI-free radar observations, in terms of detection
and range-velocity estimation accuracy, which demonstrates its
superior ICI suppression capability. Furthermore, illustrative
examples are presented to reveal the ICI exploitation property
of the proposed algorithm2.

2Notations: Uppercase (lowercase) boldface letters are used to denote
matrices (vectors). (·)∗, (·)T and (·)H represent conjugate, transpose and
Hermitian transpose operators, respectively. The nth entry of a vector x is
denoted as [x]n, while the (m,n)th element of a matrix X is [X]m,n.
ΠX = X(XHX)−1XH represents the orthogonal projection operator onto
the subspace spanned by the columns of X, Π⊥X = I−ΠX and � denotes the
Hadamard product. 0 is an all-zeros vector and I denotes an identity matrix
of appropriate size. diag (x) represents a diagonal matrix with the elements
of x on the diagonals and vec (·) denotes vectorization operator. b·c is the
floor function.
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II. OFDM RADAR SYSTEM MODEL

Consider an OFDM DFRC transceiver that communicates
with an OFDM communications receiver while concurrently
performing monostatic radar sensing using the backscattered
signals for various radar tasks including target detection,
parameter estimation, tracking and recognition [8], [10]. The
DFRC transceiver is equipped with an NT-element transmit
(TX) uniform linear array (ULA) to transmit the joint OFDM
radar-communications waveform and an NR-element receive
(RX) ULA to perform radar receive processing [27], while
the communications receiver has multiple antennas as well to
accomplish MIMO-OFDM demodulation tasks [28]. At the
DFRC transceiver side, we assume co-located and perfectly
decoupled TX/RX antenna arrays so that the radar receiver
does not suffer from self-interference due to full-duplex radar
operation3 [31], [10], [23], [27], [32], [33]. In the mean-
time, the communications receiver is assumed to carry out
standard OFDM receive operations customarily, such as time
and frequency synchronization, channel estimation and data
detection [28]. In this section, we derive OFDM transmit and
radar receive signal models, and formulate the multi-target
detection and parameter estimation problem. We note that the
radar operation does not hinder communication functionality
as it can be interpreted as opportunistic sensing [34] to exploit
data/pilot symbols generated by the communications system
for radar purposes. Hence, the focus of the paper will be on the
sensing aspect while keeping in mind that the communications
part functions as usual without any impact or restrictions due
to radar sensing tasks.

A. Transmit Signal Model

We consider an OFDM communication frame consisting of
M OFDM symbols, each of which has a total duration of
Tsym = Tcp+T and a total bandwidth of N∆f = B. Here, Tcp

and T denote, respectively, the cyclic prefix (CP) duration and
the elementary symbol duration, ∆f = 1/T is the subcarrier
spacing, and N is the number of subcarriers [10]. Then, the
complex baseband transmit signal for the mth symbol is given
by

sm(t) =
1√
N

N−1∑
n=0

xn,m e
j2πn∆ftrect

(
t−mTsym

Tsym

)
(1)

where xn,m denotes the complex data symbol on the nth

subcarrier for the mth symbol [11], and rect (t) is a rectangular
function that takes the value 1 for t ∈ [0, 1] and 0 otherwise.
Assuming a single-stream beamforming model [14], [27],
[35], the transmitted signal over the block of M symbols for
t ∈ [0,MTsym] can be written as

<

{
fT

M−1∑
m=0

sm(t)ej2πfct

}
(2)

where fc and fT ∈ CNT×1 denote, respectively, the carrier
frequency and the TX beamforming vector.

3If the TX/RX antenna arrays are not perfectly decoupled, a certain level
of residual self-interference can leak into the radar receiver [29], which can
be treated as an increase in the noise floor [30]. Hence, the proposed methods
in this paper can also be applied to the case of imperfectly decoupled antenna
arrays with no modification, where SNR will be slightly lower compared to
the case of perfect decoupling.

B. Receive Signal Model

Suppose there exists a point target in the far-field, charac-
terized by a complex channel gain α (including path loss and
radar cross section effects), an azimuth angle θ, a round-trip
delay τ and a normalized Doppler shift ν = 2v/c (leading to
a time-varying delay τ(t) = τ − νt), where v and c denote
the radial velocity and speed of propagation, respectively. In
addition, let aT(θ) ∈ CNT×1 and aR(θ) ∈ CNR×1 denote,
respectively, the steering vectors of the TX and RX ULAs,
i.e.,

aT(θ) =
[
1, ej

2π
λ d sin(θ), . . . , ej

2π
λ d(NT−1) sin(θ)

]T
, (3)

aR(θ) =
[
1, ej

2π
λ d sin(θ), . . . , ej

2π
λ d(NR−1) sin(θ)

]T
, (4)

where λ and d = λ/2 denote the signal wavelength and an-
tenna element spacing, respectively. Given the transmit signal
model in (2), the backscattered signal impinging onto the ith

element of the radar RX array can be expressed as

yi(t) = α [aR(θ)]i a
T
T(θ)fT

M−1∑
m=0

sm
(
t− τ(t)

)
e−j2πfcτej2πfcνt.

We make the following standard assumptions: (i) the CP
duration is larger than the round-trip delay of the furthermost
target4, i.e., Tcp ≥ τ , [3], [13], [23], (ii) the Doppler shifts sat-
isfy |ν| � 1/N [12], [13], and (iii) the time-bandwidth product
(TBP) BMTsym is sufficiently low so that the wideband effect
can be ignored, i.e., sm(t − τ(t)) ≈ sm(t − τ) [16]. Under
this setting, sampling yi(t) at t = mTsym + Tcp + `T/N for
` = 0, . . . , N − 1 (i.e., after CP removal for the mth symbol)
and neglecting constant terms, the time-domain signal received
by the ith antenna in the mth symbol can be written as [12]

yi,m[`] = α [aR(θ)]i a
T
T(θ)fT e

j2πfcmTsymνej2πfcT
`
N ν (5)

× 1√
N

N−1∑
n=0

xn,m e
j2πn `

N e−j2πn∆fτ .

C. Fast-Time/Slow-Time Representation with ICI

For the sake of convenience, let us define, respectively, the
frequency-domain and temporal steering vectors and the ICI
phase rotation matrix as

b(τ) ,
[
1, e−j2π∆fτ , . . . , e−j2π(N−1)∆fτ

]T
, (6)

c(ν) ,
[
1, e−j2πfcTsymν , . . . , e−j2πfc(M−1)Tsymν

]T
, (7)

D(ν) , diag
(

1, ej2πfc
T
N ν , . . . , ej2πfc

T (N−1)
N ν

)
. (8)

Accordingly, the radar observations in (5) can be expressed as

yi,m = α [aR(θ)]i a
T
T(θ)fTD(ν)FHN

(
xm � b(τ) [c∗(ν)]m

)
(9)

where FN ∈ CN×N is the unitary DFT matrix with [FN ]`,n =
1√
N
e−j2πn

`
N , yi,m , [yi,m[0] . . . yi,m[N − 1]]

T and xm ,

[x0,m . . . xN−1,m]
T .

Aggregating (9) over M symbols and considering the pres-
ence of multiple targets and noise, the OFDM radar signal

4We focus on small surveillance volumes where the targets are relatively
close to the radar, such as vehicular applications.
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Fig. 1. Range profiles of OFDM radar with the parameters given in Table I for
two different target velocities. The scenario contains 3 targets having the same
velocity v, the ranges (60, 100, 150) m, the angles (25◦, 30◦, 35◦) and the
SNRs (i.e., |αk|2/σ2) (30, 5, 0) dB, respectively. In high-mobility scenarios,
ICI reduces the dynamic range of OFDM radar due to increased side-lobe
levels and causes masking of weak targets.

received by the ith antenna over a frame can be written in a
fast-time/slow-time compact matrix form as

Yi =

K−1∑
k=0

α
(i)
k D(νk)︸ ︷︷ ︸

ICI

FHN

(
X� b(τk)cH(νk)

)
+ Zi (10)

for i = 0, . . . , NR − 1, where

α
(i)
k , αk [aR(θk)]i a

T
T(θk)fT , (11)

Yi , [yi,0 . . . yi,M−1] ∈ CN×M , (12)

X , [x0 . . . xM−1] ∈ CN×M , (13)

{αk, τk, νk, θk} are the parameters of the kth target and Zi ∈
CN×M is the additive noise matrix with vec (Zi) ∼ CN (0,
σ2I).

In (10), each column contains fast-time samples within a
particular symbol and each row contains slow-time samples
at a particular range bin. The diagonal phase rotation matrix
D(ν) quantifies the ICI effect in fast-time domain, leading
to Doppler-dependent phase-shifts across fast-time samples of
each OFDM symbol, similar to the CFO effect in OFDM
communications [36], [37]. With this relation to OFDM com-
munications in mind, the parameter ν in D(ν) is often referred
to as CFO throughout the text to make a clear distinction
between the effects induced by ν via fast-time phase rotations
in D(ν) and via slow-time phase rotations in c(ν). To visualize
the effect of ICI, Fig. 1 illustrates the range profile of an
OFDM radar, obtained using a standard FFT based method
[10], [23]. It is seen that ICI manifests itself in the range profile
as increased side-lobe levels, degrading detection performance.

D. Problem Statement for OFDM Radar Sensing
Given the transmit data symbols X, the problem of in-

terest for OFDM radar sensing is to detect the presence of
(possibly) multiple targets and estimate their parameters, i.e.,
channel gains {αk}K−1

k=0 , angles {θk}K−1
k=0 , delays {τk}K−1

k=0 and
Doppler shifts {νk}K−1

k=0 , from the received NR × N × M
space/fast-time/slow-time data cube {Yi}NR−1

i=0 in (10).

III. ICI-AWARE PARAMETER ESTIMATION VIA APES
SPATIAL FILTERING

In this section, we propose an ICI-aware delay-Doppler-
angle estimation algorithm to tackle the sensing problem

formulated in Sec. II-D. For ease of exposition, we assume
the existence of at most a single target at each azimuth cell.
In Sec. IV, relying on this approach, we will develop an
algorithm that can detect multiple targets at a given angle and
estimate their parameters. Hence, this section serves as a gentle
introduction to the core idea of the paper, which will later be
complemented by rigorous detection schemes in Sec. IV. In the
following, we elaborate on the different steps of the proposed
algorithm (see Fig. 2).

A. Step 1: Angle Estimation via MUSIC for Preliminary Target
Detection

In the first step, we wish to identify a set of angles where
potential targets may reside so that receive beamformers can be
designed accordingly in the subsequent step. For mathematical
convenience, we consider the space/fast-time snapshot of the
data cube in (10) corresponding to the mth OFDM symbol:

Ym , [y0,m . . . yNR−1,m] ∈ CN×NR (14)

=

K−1∑
k=0

αk aTT(θk)fTD(νk)FHNdiag (xm)

× b(τk) [c∗(νk)]m aTR(θk) + Zm

for m = 0, . . . ,M − 1, where Zm ∈ CN×NR is the noise
component distributed according to vec

(
Zm
)
∼ CN (0, σ2I).

To distinguish targets with high resolution in the angular
domain using small number of antennas (in compliance with
mmWave automotive radar requirements [6]), we propose to
perform angle estimation using the MUSIC algorithm [25]. To
this end, we first construct the spatial covariance matrix (SCM)
of the data cube in (14) as

R ,
M−1∑
m=0

YH
mYm . (15)

The following lemma provides an approximation of R under
certain conditions.

Lemma 1. Let the covariance matrix of data symbols in
(13) be given by

E{vec (X) vec (X)
H} = σ2

xI . (16)

Assume that N and/or M is sufficiently large and targets are
non-overlapping in either delay or Doppler, i.e.,

bH(τk1)b(τk2) ≈ 0 or cH(νk1)c(νk2) ≈ 0 (17)

for any k1 6= k2. Then, the SCM in (15) can be modeled as

R = NMσ2
x

K−1∑
k=0

βk a∗R(θk)aTR(θk) +NMσ2I , (18)

where βk , |αk|2|aTT(θk)fT|2.

Proof. See Sec. S-I in the supplementary material.

Based on Lemma 1, we observe that the SCM of OFDM
radar observations in the presence of ICI is independent of
target delays and Dopplers, and follows a standard structure
that involves a low-rank (rank-K) signal covariance term and
a scaled diagonal noise covariance component [25]. Hence,
the standard MUSIC algorithm can be applied. Assuming
NR > K, let the eigendecomposition of the SCM be denoted
as R = UsΛsU

H
s +UnΛnUH

n , where the diagonal matrix Λs
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Fig. 2. The proposed three-step ICI-aware detector/estimator.

contains the K largest eigenvalues, Λn contains the remaining
NR−K eigenvalues, and Us and Un have the corresponding
eigenvectors as their columns. Then, the MUSIC spectrum can
be computed as

f(θ) =
1

aTR(θ)UnUH
n a∗R(θ)

. (19)

Let S = {θ̂0, . . . , θ̂K−1} be the set of estimated angles in
Step 1, which correspond to the peaks of the MUSIC spectrum.

B. Step 2: Angle-Constrained Joint CFO and Unstructured
Channel Estimation via APES Beamforming

In Step 2, we formulate a joint CFO and channel estimation
problem for each θ̂ ∈ S determined in Step 1. Invoking the
assumption of spatially non-overlapping targets, we treat inter-
ferences from other target components as noise and consider
a single-target model in (14) for each θ̂ ∈ S. To that aim, let

H = [h0 . . . hM−1] ∈ CL×M (20)

denote the unstructured, single-target radar channels in the
time domain with L taps, collected over M OFDM symbols.
Here, L ≤ NTcp/T due to the CP requirement. Based on this
unstructured representation, (14) can be re-written as

Ym = D(ν)XmhmaTR(θ̂) + Zm (21)

where

Xm , FHNdiag (xm) FN,L , (22)

FN,L ∈ CN×L denotes the first L columns of FN and
Zm contains noise and interferences from other targets in S .
According to (14), the frequency-domain radar channels have
the form

FN,LH = αb(τ)cH(ν) (23)

with α , α aTT(θ̂)fT representing the complex channel gain
including the transmit beamforming effect.

Remark 1 (Duality Between CFO/Channel Estimation in
OFDM Communications and ICI-aware Sensing in OFDM
Radar). Based on the observation that radar targets can be
interpreted as uncooperative users from a communications
perspective (as they transmit information to the radar receiver
via reflections in an unintentional manner [2], [5]), we point
out an interesting duality between the OFDM radar signal
model with ICI in (21) and an OFDM communications model
with CFO (e.g., [18, Eq. (5)] and [24, Eq. (4)]). Precisely, D(ν)
represents CFO between the OFDM transmitter and receiver
for a communications setup, while it quantifies the ICI effect

due to high-speed targets for OFDM radar5. Similarly, Xm

represents data/pilot symbols for communications and probing
signals for radar6. In addition, hm represents the time-domain
channel for communications and the structured (delay-Doppler
parameterized) channel for radar.

In light of Remark 1, we re-formulate the radar delay-
Doppler estimation problem as a communication channel esti-
mation problem, where the objective is to jointly estimate the
unstructured time-domain channels H and the CFO ν from
(21). To perform channel estimation in (21), we propose an
APES-like beamformer [22]

min
w,H,ν

M−1∑
m=0

∥∥∥Ymw∗ −D(ν)Xmhm

∥∥∥2

(24)

s.t. wHaR(θ̂) = 1 ,

where w ∈ CNR×1 is the APES spatial beamforming vector
for an estimated angle θ̂ ∈ S. The rationale behind the
proposed cost function in (24) is to design the beamformer
such that the resulting observations

{
Ymw∗

}M−1

m=0
are as close

as possible to the noiseless part of the received signal in
(21), i.e.,

{
D(ν)XmhmaTR(θ̂)w∗

}M−1

m=0
. The optimal channel

estimate for the mth symbol in (24) for a given w and ν is
given by7

ĥm =
(
XH
mXm

)−1

XH
mDH(ν)Ymw∗ . (25)

Plugging (25) back into (24) yields

min
w,ν

wTQ(ν)w∗ s.t. wHaR(θ̂) = 1 , (26)

where

Q(ν) ,
M−1∑
m=0

YH
mD(ν)Π⊥

Xm
DH(ν)Ym (27)

is the null space SCM as a function of CFO, i.e., the SCM
of the CFO compensated observations projected onto the null

5While the CFO in a communications setup might result from both
mobility (Doppler) and transmitter-receiver oscillator mismatch [18], the CFO
in the considered monostatic radar setup involves only the Doppler effect
due to target motion since the DFRC transceiver uses the same oscillator for
transmission and reception.

6For radar sensing, every symbol acts as a pilot due to dual-functional
operation on a single hardware platform.

7The proposed method can be easily extended to the case where the
disturbance term Ymw∗ −D(ν)Xmhm = Zmw∗ in (24) has an arbitrary
covariance matrix Σ, i.e., Zmw∗ ∼ CN (0,Σ), where Σ may involve contri-
butions from both noise and clutter. In this case, by modifying the cost function
in (24) accordingly, the optimal channel estimate in (25) can be expressed as

ĥm =
(
XH

mDH(ν)Σ−1D(ν)Xm

)−1
XH

mDH(ν)Σ−1Ymw∗.
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space of the pilot matrices. For a given CFO ν, the optimal
beamformer in (26) can be obtained in closed-form as [22]

ŵ =
Q∗(ν)−1aR(θ̂)

aHR (θ̂)Q∗(ν)−1aR(θ̂)
. (28)

Substituting (28) into (26), the CFO can be estimated as

ν̂cfo = arg max
ν

aHR (θ̂)Q∗(ν)−1aR(θ̂) . (29)

Finally, plugging (28) and (29) into (25), the channel estimates
can be expressed as

ĥm =

(
XH
mXm

)−1

XH
mDH(ν̂cfo)YmQ(ν̂cfo)−1a∗R(θ̂)

aTR(θ̂)Q(ν̂cfo)−1a∗R(θ̂)
.

(30)
The outputs of Step 2 are the CFO estimate ν̂cfo in (29) and
the channel estimates8 Ĥ ,

[
ĥ0, . . . , ĥM−1

]
in (30).

C. Step 3: Angle-Constrained Delay-Doppler Recovery from
Unstructured Channel Estimates

The Step 3 of the proposed algorithm consists of two
substeps, as detailed in the following.

1) Delay-Doppler Estimation from Ĥ: Given the unstruc-
tured channel estimates in (30), we aim to estimate channel
gain, delay and Doppler shift via a least-squares (LS) approach
by exploiting the structure in (23) as follows:

min
α,τ,ν

∥∥∥FN,LĤ− αb(τ)cH(ν)
∥∥∥2

F
. (31)

In (31), delay and Doppler estimates τ̂ and ν̂ can be obtained
simply via 2-D FFT, i.e.,

(τ̂ , ν̂) = arg max
τ,ν

∣∣∣bH(τ)FN,LĤc(ν)
∣∣∣2 , (32)

where b(τ) in (6) and c(ν) in (7) correspond to DFT matrix
columns for a uniform delay-Doppler grid sampled at integer
multiples of delay-Doppler resolutions. From (32), channel
gain can be estimated as

α̂ =
bH(τ̂)FN,LĤc(ν̂)

‖b(τ̂)‖2 ‖c(ν̂)‖2
. (33)

2) Doppler Ambiguity Resolution via ν̂cfo: By using the
CFO estimate ν̂cfo, we can resolve ambiguity in the Doppler
estimate ν̂ in (32). Notice from (27) and (29) that ν̂cfo is
estimated based on fast-time phase rotations of D(ν) in (8),
which implies that the maximum unambiguous CFO that can
be estimated via D(ν) is9

νcfo
max = ± N

2fcT
. (34)

On the other hand, the maximum unambiguous Doppler esti-
mated in (32) from slow-time phase rotations of c(ν) in (7) is
given by

νmax = ± 1

2fcTsym
, (35)

8Please see Sec. S-II in the supplementary material for the error covari-
ance matrix of the channel estimates.

9The phase difference between consecutive elements in D(ν) is
2πfc

T
N
ν, which means that the maximum CFO ν that can be unambiguously

estimated from D(ν) is N
fcT

, or, considering the negative part, ± N
2fcT

.

which is approximately N times smaller than νcfo
max, assuming

Tcp is small compared to T . Since N is on the order of thou-
sands for typical OFDM systems, the maximum unambiguous
CFO is much larger than the maximum unambiguous Doppler.
Hence, the ambiguity in ν̂ can be resolved by using ν̂cfo as

ν̂ ← ν̂ + 2|νmax|

⌊
ν̂cfo + |νmax|

2|νmax|

⌋
. (36)

In the presence of Doppler ambiguity, i.e., |ν̂cfo| > |νmax|,
b ν̂

cfo+|νmax|
2|νmax| c will be a non-zero integer and (36) will shift

the ambiguous Doppler to its true value. If |ν̂cfo| ≤ |νmax|,
we have b ν̂

cfo+|νmax|
2|νmax| c = 0 and the Doppler estimate ν̂ will

remain the same, as expected, since there is no ambiguity10.
Referring to the unstructured ML (UML) type methods [39],

[40], we name the proposed algorithm APES-UML, which is
summarized in Algorithm 1.

Algorithm 1 APES-UML for ICI-Aware Sensing with MIMO-
OFDM Radar

1: Input: Space/fast-time/slow-time data cube {Yi}NR−1
i=0 in

(10).
2: Output: Delay-Doppler-angle-gain estimates of multiple

targets {τ̂k, ν̂k, θ̂k, α̂k}K−1
k=0 .

3: Step 1:
(a) Estimate target angles by identifying the peaks in the

MUSIC spatial spectrum in (19).
4: Step 2: For each estimated angle θ̂:

(a) Estimate the CFO ν̂cfo via (29).
(b) Estimate the time-domain channels Ĥ via (30).

5: Step 3: For each estimated angle θ̂:

(a) Estimate delay-Doppler-gain from the unstructured
channel estimates Ĥ via (32) and (33).

(b) Resolve Doppler ambiguity using ν̂cfo via (36).

IV. ICI-AWARE DETECTOR/ESTIMATOR DESIGN VIA
GLRT AND OMP

In this section, we extend the APES-UML algorithm pro-
posed in Algorithm 1 to the case where multiple targets can
be present at an azimuth cell. To accomplish multiple target
detection/estimation at a given azimuth angle, we devise an
OMP based iterative interference cancellation algorithm using
a GLRT detector at each iteration. As we will show, the
resulting algorithm will involve replacing in Algorithm 1, line
4 with Algorithm 2 and line 5 with Algorithm 3.

A. GLRT for Detection of Multiple Targets at the Same Angle
Algorithm 1 assumes the existence of a single target at

each angle estimated in Step 1. To account for the existence
of multiple targets at a given angle, the Step 2 of the algo-
rithm can be modified to detect multiple peaks in the CFO
spectrum in (29). To that end, we design a GLRT detector
that, for each θ̂ ∈ S, operates on the fast-time/slow-time
observations {Y(p)

m w∗}M−1
m=0 obtained by projection of the

10Similar to exploitation of ICI to resolve Doppler ambiguity in OFDM
radar, the intersymbol interference (ISI) effect in single-CP orthogonal time
frequency space (OTFS) systems can be turned into an advantage for radar
sensing to increase maximum unambiguous range [38].
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data cube {Y(p)
m }M−1

m=0 onto the fast-time/slow-time domain
using a receive beamformer w pointing towards θ̂. Here,
{Y(p)

m }M−1
m=0 denotes the residue at the pth iteration of the OMP

based interference cancellation procedure (whose details will
be given in Sec. IV-B), with the initialization Y

(0)
m = Ym,

where Ym is defined in (21). Our goal is to detect the
strongest echo at the pth iteration and subtract its effect from
the current residue {Y(p)

m }M−1
m=0 . Accordingly, the hypothesis

testing problem at the pth iteration can be formulated using
(21) as

y =

{
z, under H0

µ(w,H, ν) + z, under H1

(37)

where

y ,


Y

(p)
0
...

Y
(p)
M−1

w∗ ∈ CNM×1 , (38a)

µ(w,H, ν) ,

 D(ν)X0h0

...
D(ν)XM−1hM−1

aTR(θ̂)w∗ ∈ CNM×1 ,

(38b)

z ,

 Z0

...
ZM−1

w∗ ∈ CNM×1 , (38c)

with H0 and H1 denoting the absence and presence of a target
at angle θ̂.

For the composite hypothesis testing problem in (37) with
the unknowns w, H and ν, the GLRT can be written as

L(y) =
maxw∈W

θ̂
,H,ν p(y |H1; w,H, ν)

maxw∈W
θ̂
p(y |H0; w)

H1

≷
H0

η̃ (39)

for some threshold η̃, where the spatial beamformer steered
towards θ̂ is constrained to lie in the set

Wθ̂ = {w ∈ CNR×1 | wHaR(θ̂) = 1} . (40)

Assuming z ∼ CN (0, σ2I), the GLRT in (39) takes the form

L(y) =
exp

(
− 1
σ2 minw∈W

θ̂
,H,ν ‖y − µ(w,H, ν)‖2

)
exp

(
− 1
σ2 minw∈W

θ̂
‖y‖2

) H1

≷
H0

η̃ .

(41)
By plugging (38) into (41) and taking the log, we have

Llog(y) =
1

σ2
min

w∈W
θ̂

M−1∑
m=0

∥∥∥Y(p)
m w∗

∥∥∥2

(42)

− 1

σ2
min

w∈W
θ̂
,H,ν

M−1∑
m=0

∥∥∥Y(p)
m w∗ −D(ν)Xmhm

∥∥∥2 H1

≷
H0

η ,

where Llog(y) , logL(y) and η , log η̃.
We are now faced with two separate optimization problems

to derive the GLRT detector in (42). The first problem in (42)
can be re-written as

min
w∈W

θ̂

wTR(p)w∗ , (43)

where

R(p) ,
M−1∑
m=0

(
Y(p)
m

)H
Y(p)
m (44)

is the SCM of the residue at the pth iteration. The problem in
(43) represents a Capon beamforming problem [41] with the
optimal objective value

min
w∈W

θ̂

wTR(p)w∗ =
1

aHR (θ̂)
[(

R(p)
)∗]−1

aR(θ̂)
. (45)

Regarding the second problem in (42), it corresponds to the
same APES beamforming problem as investigated in (24).
Hence, using the same steps as in (29), the optimal CFO for
the second optimization in (42) can be obtained as

ν̂cfo
p = arg max

ν
aHR (θ̂)

[(
Q(p)(ν)

)∗]−1
aR(θ̂) , (46)

where

Q(p)(ν) ,
M−1∑
m=0

(
Y(p)
m

)H
D(ν)Π⊥

Xm
DH(ν)Y(p)

m (47)

is the null space SCM of the residue at the pth iteration. Then,
the optimal objective value of the second term in (42) is given
by

min
w∈W

θ̂
,H,ν

M−1∑
m=0

∥∥∥Y(p)
m w∗ −D(ν)Xmhm

∥∥∥2

=
1

aHR (θ̂)
[(

Q(p)(ν̂cfo
p )
)∗]−1

aR(θ̂)
. (48)

Finally, inserting (45) and (48) into (42), the GLRT becomes11

Llog(y) =
1/σ2

aHR (θ̂)
[(

R(p)
)∗]−1

aR(θ̂)
(49)

− 1/σ2

maxν aHR (θ̂)
[(

Q(p)(ν)
)∗]−1

aR(θ̂)

H1

≷
H0

η.

As a summary of the detection part at the pth iteration, we
perform detection using the GLRT in (49) and, if the threshold
η is crossed, obtain as a by-product the CFO estimate ν̂cfo

p in
(46) associated to the strongest target in the current residue.

B. OMP for Iterative Interference Cancellation

Suppose P targets have already been detected at angle θ̂
via GLRT in the previous P iterations, with the corresponding
CFO estimates {ν̂cfo

p }P−1
p=0 . Following an OMP-like procedure

[42], we first update the channel estimates of the P targets
detected so far by solving the following optimization problem:

min
w∈W

θ̂
,{Hp}P−1

p=0

M−1∑
m=0

∥∥∥∥∥Ymw∗ −
P−1∑
p=0

D(ν̂cfo
p )Xmhm,p

∥∥∥∥∥
2

(50)

where
Hp = [h0,p . . . hM−1,p] ∈ CL×M (51)

is the channel matrix of the pth target. The motivation for
the formulation in (50) is to jointly estimate the channels of
multiple targets located at angle θ̂ given their CFO parameters
by generalizing the APES beamforming problem in (24). Let
us define

h̃(P )
m ,

[
hTm,0 . . . hTm,P−1

]T ∈ CLP×1 (52)

Φ(P )
m ,

[
D(ν̂cfo

0 )Xm . . . D(ν̂cfo
P−1)Xm

]
∈ CN×LP (53)

11Notice that R(p) � Q(p)(ν) is satisfied for any ν since R(p) =

Q(p)(ν) +
∑M−1

m=0

(
Y

(p)
m

)H
D(ν)ΠXm

DH(ν)Y
(p)
m .
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for m = 0, . . . ,M − 1. Note that Φ
(P )
m represents the current

atom set constructed using the CFO estimates of the detected
targets. The problem in (50) can now be written as

min
w∈W

θ̂
,{Hp}P−1

p=0

M−1∑
m=0

∥∥∥Ymw∗ −Φ(P )
m h̃(P )

m

∥∥∥2

. (54)

Following similar steps to those in (24)–(30), the channel
estimates can be obtained from (54) in closed form as

̂̃
h

(P )

m =

[(
Φ

(P )
m

)H
Φ

(P )
m

]−1(
Φ

(P )
m

)H
Ym

[
Q(P )

]−1
a∗R(θ̂)

aTR(θ̂)
[
Q(P )

]−1
a∗R(θ̂)

(55)

for m = 0, . . . ,M − 1, where

Q(P ) ,
M−1∑
m=0

YH
mΠ⊥

Φ
(P )
m

Ym . (56)

To ensure linear independence of the columns of Φ
(P )
m in (53),

we make the sparsity assumption P ≤ N/L, i.e., the number
of targets at an azimuth cell with distinct CFO values does
not exceed N/L. This is a typical sparse scene assumption in
radar and holds true in general since N/L = T/Tcp � 1 for
OFDM. Based on the updated channel estimates in (55), the
residue at the end of the (P − 1)th iteration is obtained as

Y(P )
m = Ym −Φ(P )

m
̂̃
h

(P )

m aTR(θ̂) (57)

for m = 0, . . . ,M − 1.
As a summary of the OMP based update part, the channel

estimates of the P targets detected so far are updated via (55)
and the residue to be used as input for GLRT based detection at
the next iteration is computed using (57). The overall algorithm
involving GLRT and OMP steps is summarized in Algorithm 2.

Algorithm 2 Joint CFO and Radar Channel Estimation with
OMP Based Iterative Interference Cancellation

1: Input: Space/fast-time/slow-time data cube {Yi}NR−1
i=0 in

(10), angle θ̂, maximum number of targets Pmax.
2: Output: CFOs and time-domain channel estimates of

multiple targets {ν̂cfo
p , Ĥp}P−1

p=0 .
3: Initialization: Set P = 0, A = ∅ and Φ

(−1)
m = [ ].

4: while P < Pmax

5: Compute Llog(y) in (49).
6: if Llog(y) > η

7: Update detected CFOs: A ← A∪ {ν̂cfo
P }.

8: Update the atom set:
Φ(P )
m ←

[
Φ(P−1)
m D(ν̂cfo

P )Xm

]
.

9: Update channel estimates of the P targets detected
so far based on the updated set of atoms via (55).

10: Set P = P + 1.
11: Update the residual via (57).
12: else
13: break
14: end if
15: end while

C. GLRT for Detection of Multiple Targets at the Same Angle-
CFO Cell

The previous two subsections focus on Step 2 of Algo-
rithm 1 and develop an OMP based interference cancellation
procedure to detect multiple targets at a given angle. Similar to
Step 2, multiple targets may exist at a given angle-CFO cell,
i.e., each channel estimate Ĥ at the output of Algorithm 2 can
be a superposition of echoes of multiple targets at the same
CFO ν̂cfo, but with different delays. To handle this case, we
propose an extension to Step 3 of Algorithm 1 by using a
GLRT approach similar to Algorithm 2.

Suppose that a channel estimate and CFO pair {ν̂cfo, Ĥ} is
obtained at the output of Algorithm 2. Based on the structure
in (23), the frequency-domain radar channels in the presence
of multiple targets can be modeled as

ĤFS , FN,LĤ =

I−1∑
i=0

αi b(τi)c
H(νi) + Z , (58)

where ĤFS ∈ CN×M represents channel estimates in
frequency/slow-time domain, Z ∈ CN×M is the noise term
with vec (Z) ∼ CN (0, σ̃2I) and I is the number of targets
located at an angle-CFO cell (θ̂, ν̂cfo), with the corresponding
delay-Doppler-gain parameters {τi, νi, αi}I−1

i=0 . Following a
similar approach to Algorithm 2, we focus on the hypothesis
testing problem to test the presence of a single target in (58)

ĤFS =

{
Z, under H0

αb(τ)cH(ν) + Z, under H1

, (59)

which leads to the GLRT with unknowns α, τ and ν:

Llog(ĤFS) =
1

σ̃2

∥∥∥ĤFS
∥∥∥2

F
(60)

− 1

σ̃2
min
α,τ,ν

∥∥∥ĤFS − αb(τ)cH(ν)
∥∥∥2

F

H1

≷
H0

η .

Note that the second term in (60) has the same form as (31).
Hence, using similar steps to those in Sec. III-C, α can be
estimated using (33) and the GLRT in (60) becomes

Llog(ĤFS) = max
τ,ν

∣∣bH(τ)ĤFSc(ν)
∣∣2

NMσ̃2

H1

≷
H0

η . (61)

Contrary to Algorithm 2, we propose to perform multiple target
detection using the metric in (61) (which is the output of 2-D
FFT, as discussed in Sec. III-C) by searching for peaks in (61)
that exceed the threshold η, without interference cancellation
iterations12. This can be done by a cell-averaging constant
false alarm rate (CFAR) detector that operates on the 2-D FFT
output in (61) [43, Ch. 6.2.4]. Similar to Sec. III-C, ambiguity
in Doppler values of the resulting detections are resolved using
ν̂cfo via (36). The overall algorithm for detection of multiple
targets residing at the same angle-CFO cell is summarized in
Algorithm 3.

12The reason is that the resolution of the CFO estimated from D(ν)
in (8) is 1/(fcT ), while the resolution in ν obtained via c(ν) in (7) is
1/(fcMTsym). Therefore, while targets may interfere with each other in
the CFO domain due to poor resolution, the probability of mutual target
interference in the delay-Doppler domain is quite low.
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Algorithm 3 Delay-Doppler Recovery from Channel Estimates
and Doppler Ambiguity Resolution via ICI Exploitation

1: Input: CFO estimate ν̂cfo, time domain channel estimate
Ĥ, probability of false alarm Pfa.

2: Output: Delay-Doppler-gain estimates of multiple targets
{τ̂i, ν̂i, α̂i}I−1

i=0 .
(a) Perform 2-D FFT on ĤFS in (58) to obtain the delay-

Doppler spectrum, i.e., GLRT metric in (61).
(b) Run a cell-averaging CFAR detector with the specified

Pfa to detect targets in delay-Doppler domain and
estimate their gains via (33).

(c) For each detected target, use the CFO estimate ν̂cfo to
resolve Doppler ambiguity via (36).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
ICI-aware sensing algorithm by considering an OFDM system
with the parameters specified in Table I. With the vehicular
JRC scenarios in mind [6], we choose a small number of
TX/RX antennas and low bandwidth for low-cost operation.
For the signal model in (10), the data symbols X are randomly
generated from the QPSK alphabet and the transmit beam-
former is set to point towards −30◦, i.e., fT = a∗T(−30◦).
In addition, we define the SNR of a target with reflection
coefficient αk in (10) as SNR = |αk|2/σ2. For benchmarking
purposes, we compare the following schemes:
• APES-UML: The proposed ICI-aware sensing algorithm

in Algorithm 1.
• 2-D FFT: The standard 2-D FFT method employed in the

OFDM radar literature [10], [23], whose processing chain
is as follows. The angles estimated via MUSIC in Step 1
of APES-UML are used to construct receive beamformers
and project the data cube Yi in (10) onto fast-time/slow-
time domain, i.e.,

Yθ̂ =

NR−1∑
i=0

Yi

[
a∗R(θ̂)

]
i
∈ CN×M , (62)

where θ̂ denotes an angle estimated in Step 1. Then, we
perform FFT over the columns of Yθ̂ in (62) to obtain
frequency/slow-time observations:

YFS = FNYθ̂ ∈ CN×M . (63)

Finally, we apply the step (a) and step (b) of Algorithm 3
with YFS in (63) in place of ĤFS for target detection.

• 2-D FFT (ICI-free): The 2-D FFT method applied on the
ICI-free version of the received data in (10), i.e.,

YICI−free
i =

K−1∑
k=0

α
(i)
k FHN

(
X� b(τk)cH(νk)

)
+ Zi .

(64)

This will be used to set an upper bound on the perfor-
mance of APES-UML.

For all the schemes, we employ an identical CFAR detector
with the probability of false alarm set as Pfa = 10−4.

In the following, we first demonstrate the ICI suppression
and exploitation capability of the proposed approach via an
illustrative example. Then, we assess its detection and estima-
tion performance with respect to benchmark schemes.

TABLE I
OFDM SIMULATION PARAMETERS

Parameter Value
Carrier Frequency, fc 60 GHz
Total Bandwidth, B 50 MHz
Number of Subcarriers, N 2048
Subcarrier Spacing, ∆f 24.41 kHz
Symbol Duration, T 40.96µs
Cyclic Prefix Duration, Tcp 10.24µs
Range Resolution, ∆R 3 m
Unambiguous Range, Rmax 6144 m
Maximum Range due to CP, RmaxTcp/T 1536 m
Number of Symbols, M 64
Total Symbol Duration, Tsym 51.2µs
Block Duration, MTsym 3.28 ms
Velocity Resolution, ∆v 0.76 m/s
Unambiguous Velocity, vmax ±24.41 m/s
(Standard)
Unambiguous Velocity, Nvmax ±62500 m/s
(ICI Exploitation)
Number of TX Antennas, NT 8
Number of RX Antennas, NR 8

A. Illustrative Example: ICI Suppression and Exploitation
Capability of the Proposed Algorithm

In order to showcase how ICI can be turned from foe to
friend using the APES-UML approach in Algorithm 1, we
consider a challenging scenario from the perspective of radar
detection/estimation, as shown in Fig. 3, where there exist
five targets with velocity ambiguities, three of which reside
at the same range-velocity-angle cell and two of which are
located at the same velocity-angle cell, but with different
ranges. In such a scenario, the standard ICI-ignorant OFDM
radar algorithms (e.g., [10], [23]) cannot distinguish between
Target 1, Target 2 and Target 3 as they fall into the same cell in
all three domains. On the contrary, the proposed APES-UML
algorithm can resolve these targets via ICI exploitation, as will
be shown next through the different steps of Algorithm 1.

Fig. 4 shows the MUSIC spatial spectrum in (19) obtained
at the output of Step 1, along with the results of ordinary
beamforming. As expected, contrary to ordinary beamforming,
MUSIC can correctly identify the different target angles with
small number of RX antennas, which is crucial for angle-
constrained beamforming in Step 2. In Fig. 5, for each esti-
mated angle θ in Step 1, we plot the evolution of a normalized
version of the GLRT metric in (49), given by

0 ≤ 1− aHR (θ)(R∗)−1aR(θ)

aHR (θ)Q∗(ν)−1aR(θ)
≤ 1 , (65)

with respect to CFO (ν) through successive iterations of the
OMP based interference cancellation algorithm in Algorithm 2
(which corresponds to Step 2 of Algorithm 1). For threshold
setting in (65), we use a heuristic value of 0.3 to declare
detection. At iteration 0, the strongest target at θ = −35◦,
Target 1 with SNR = 20 dB, is detected at the peak of the
CFO spectrum in (65). Then, at iteration 1, we can observe
the effect of cancelling the interference from Target 1 as a
valley in the CFO spectrum centered around the velocity of
Target 1. In compliance with the scenario in Fig. 3, the second
strongest target at θ = −35◦, Target 2 with SNR = 15 dB,
yields the largest value in the CFO spectrum at iteration 1. It is
seen that as the iterations proceed with successive interference
cancellation, weaker targets become more pronounced in the
CFO spectrum (e.g., Target 3 from iteration 0 to iteration 2),
which implies that the proposed OMP based algorithm in
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-80 -60 -40 -20 0 20 40 60 80

-60

-50

-40

-30

-20

-10

0

Fig. 4. MUSIC spatial spectrum of OFDM radar in Step 1 along with the
results of ordinary beamforming (BF) for the scenario in Fig. 3.

Algorithm 2 can successfully eliminate strong target echoes
and enable detection of weak targets in the CFO domain. At the
final iteration in Fig. 5(a), the effects of all targets are removed
and thus the peak of the CFO spectrum does not exceed the
threshold. Similar trends can be observed in Fig. 5(b), where,
for the illuminated angle θ = −25◦, a single target is detected
at ν = 100 m/s, corresponding to the combined response of
Target 4 and Target 5 in Fig. 3.

The results obtained in Step 2 in Fig. 5 reveal one of the core
properties of the proposed ICI-aware sensing algorithm: the
multi-target ICI exploitation capability with arbitrary transmit
symbols. Precisely, the proposed algorithm can resolve Tar-
get 1, Target 2 and Target 3 in the CFO domain (indicated as
true velocity in the rightmost subfigure in Fig. 3) by exploiting
the velocity information conveyed by the ICI effect. As seen
from Table I, the ICI effect yields an unambiguous velocity
that is N times higher than the standard limit (e.g., in [10],
[12], [23]) by virtue of N times faster sampling of fast-time
domain compared to slow-time domain in (10). Hence, the
proposed ICI exploitation approach can distinguish Target 1,
Target 2 and Target 3 as separate objects and estimate their true
(i.e., unambiguous) velocities. This is only possible through the
novel formulation of ICI-aware sensing in Sec. III, where we
decouple the problem of estimating ν in the fast-time phase
rotation matrix D(ν) from that of estimating ν in the slow-
time steering vector c(ν)13. On the other hand, the standard 2-
D FFT based OFDM radar processing approach [10], [23] only
uses slow-time phase progressions for Doppler estimation and

13For instance, the algorithm in [12] cannot exploit ICI due to coupled
estimation of velocity in fast- and slow-time domains.
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Fig. 5. Evolutions of CFO spectrums (i.e., normalized version of the GLRT
metric in (49) with respect to CFO ν) obtained for (a) θ = −35◦ and (b)
θ = −25◦ through successive iterations of interference cancellation based
OMP procedure in Algorithm 2 for the scenario in Fig. 3. As the algorithm
proceeds through iterations, the effect of interference cancellation manifests
itself as valleys in the CFO spectrum corresponding to the velocity of the
strongest target in the corresponding iteration.

thus fails to resolve Target 1, Target 2 and Target 3 since they
appear as a unique target in range-angle-ambiguous velocity
domains, as shown in Fig. 3.

We now investigate the output of Step 3 of Algorithm 1
(implemented using Algorithm 3), which uses the channel
estimates from Step 2 to detect targets in the delay-Doppler
domain. Fig. 6 illustrates the range profiles obtained for
different angles and CFOs, estimated in Step 1 and Step 2,
respectively, along with the range profiles of the FFT based
benchmarks. For θ = −35◦, it is observed that as Target 1,
Target 2 and Target 3 lie in the same range bin, their respective
range profiles have almost an identical shape. Since these
targets are already resolved by the proposed APES-UML
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Fig. 6. Range profiles obtained for (a) θ = −35◦ and (b) θ = −25◦

in Algorithm 3, corresponding to CFOs estimated in Fig. 5, along with the
profiles obtained by the FFT benchmarks. When the standard FFT method is
employed, the ICI effect leads to masking of Target 5, while APES-UML can
successfully eliminate ICI to make the target peak visible as in the ICI-free
case.

algorithm in the CFO domain in the previous step, being co-
located in the range domain does not have any effect on their
detection performance. For θ = −25◦, two targets, Target 4
and Target 5, appear at different locations in the range profile
of APES-UML corresponding to the CFO, shown in Fig. 5(b),
and the accompanying channel estimate, which is consistent
with the scenario in Fig. 3. It is observed from both Fig. 6(a)
and Fig. 6(b) that the ICI effect leads to increased side-lobe
levels for the standard 2-D FFT approach. Meanwhile, the
proposed APES-UML algorithm can achieve approximately
the same side-lobe levels as the ICI-free case, which proves its
multi-target ICI suppression capability (i.e., it can effectively
mitigate the ICI effects caused by multiple targets having
different velocities via accurate estimation of their CFOs in
Step 2). Moreover, we see that ICI-induced high side-lobe
levels leads to masking of Target 5 in the range profile of
the FFT method, while APES-UML and FFT in the ICI-free
case produce a peak at the location of Target 5.

With regard to the implications of Fig. 5 and Fig. 6, it is
worth emphasizing another important property of the proposed
method: spatial filtering, which is enabled by the MIMO
architecture and the APES framework developed in Sec. III-B.
By comparing Fig. 5(a) and Fig. 5(b), we notice that targets
located at different angles do not spill much energy into
each other’s CFO spectrum. Similarly, inspecting Fig. 6(a)
and Fig. 6(b), no leakage can be observed between the range
profiles corresponding to different angles. We accomplish this
by designing the APES-like cost function in (24), or equiva-
lently, in (50), to perform joint optimization of beamformer,

TABLE II
SCENARIO WITH VARYING SNR AND TARGET VELOCITIES

Range Velocity Angle SNR
Target 1 40 m νm/s −35◦ 25 dB
Target 2 (Reference) 80 m νm/s −25◦ SNR dB

CFO and radar channel, which helps suppress energy leakage
outside the desired angle. Therefore, the proposed APES-UML
approach can separate out individual target reflections in the
angular domain from the mixed signal in (10) by leveraging
the multiple-antenna structure.

B. Detection and Estimation Performance

In this part, we study the detection and estimation per-
formance of the considered OFDM sensing algorithms using
100 independent Monte Carlo noise realizations. We consider
a scenario with two targets as described in Table II, where
Target 2 is chosen as the reference target to evaluate perfor-
mance metrics14. The aim is to investigate the masking effect
of ICI (due to increased side-lobe levels) under a wide variety
of operating conditions, including various SNRs of Target 2
(SNR dB) and target velocities of both targets (νm/s) in the
presence of a strong target, Target 1.

Fig. 7 shows the probability of detection of the reference
target as a function of SNR for three different target velocities.
In agreement with the side-lobe performances in Fig. 6, APES-
UML significantly outperforms the standard FFT scheme and
performs very close to the FFT benchmark that uses ICI-free
observations, which proves that the proposed approach can
effectively suppress the ICI effect associated with multiple
targets. In addition, the detection performance of APES-UML
is resilient to target velocity; it can attain the upper bound
achievable through ICI-free observations at all target velocities.
On the other hand, the performance of 2-D FFT deteriorates
as the velocity increases since the ICI effect becomes more
severe at higher velocities. At ν = 120 m/s, an OFDM radar
employing standard 2-D FFT processing [10], [23] becomes
completely blind within the SNR range of interest, which
clearly indicates the significance of ICI-aware sensing in high-
mobility scenarios.

In Fig. 8, we examine false discovery rates (FDRs), defined
as [44] FDR = V/(V + S), where V is the total number
of false alarms (i.e., detections that cannot be associated to
the existing targets) and S is the total number of reference
target detections over all Monte Carlo runs. Similar to the
probability of detection curves, APES-UML exhibits a false
alarm performance that is very close to FFT with ICI-free
observations, which proves the multi-target ICI compensation
capability of the proposed approach. From Fig. 7 and Fig. 8,
we conclude that, except for the case of high SNR and low-
mobility, the standard FFT method fails.

We now turn our attention to estimation performances of
the considered schemes. Fig. 9 shows the root mean-squared
errors (RMSEs) of range estimation of the reference target as

14For the sake of fairness towards the FFT based benchmarks, detection
decisions are based on ambiguous range-velocity values for the FFT based
schemes and on true (unambiguous) range-velocity values for the APES-UML
algorithm (i.e., contrary to the FFT based methods, APES-UML needs to
resolve ambiguities to be able to declare detection).
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Fig. 7. Probability of detection of the reference target with respect to SNR
for (a) ν = 20 m/s, (a) ν = 70 m/s, and (c) ν = 120 m/s for the scenario
in Table II.

a function of SNR for various target velocities. The RMSE is
calculated as [34]

RMSE =
(
E
{

(R̂−R)2 | target detected
})1/2

, (66)

where R̂ and R denote, respectively, the estimated and true
range values. As expected, the 2-D FFT benchmark cannot
estimate target parameters below a certain SNR threshold
(depending on velocity) due to lack of detections, in com-
pliance with Fig. 7. In addition, the proposed APES-UML
algorithm achieves almost the same range RMSE performance
as the ICI-free benchmark, which again evidences its superior
ICI elimination capability. Moreover, APES-UML exhibits
consistent range estimation performance at all target velocities;
no noticeable changes can be observed in the range RMSE
of APES-UML with increasing velocity, whereas the ICI
effect significantly degrades the performance of FFT method,
especially at high velocities.

In Fig. 10, we plot the velocity RMSEs of the reference
target with respect to SNR, calculated similarly to (66). For
ν = 20 m/s, similar trends to the case of range RMSE can be
observed. However, for ν = 70 m/s and ν = 120 m/s, both
of the FFT-based methods fail to correctly estimate velocity
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Fig. 8. False discovery rate under H1 with respect to SNR for (a) ν =
20 m/s, (b) ν = 70 m/s, and (c) ν = 120 m/s for the scenario in Table II.
No values are shown if there is neither a detection nor a false alarm.

since the unambiguous velocity is vmax = ±24.41 m/s, as
seen from Table I. Through simultaneous mitigation (via joint
CFO/channel estimation in Algorithm 2) and exploitation (by
resolving velocity ambiguity in Algorithm 3) of ICI, APES-
UML can estimate the true velocity of the target with high
accuracy. Hence, the proposed approach can even outperform
the ICI-free benchmark in such scenarios by turning ICI from
foe to friend.

VI. CONCLUDING REMARKS

We have addressed the multi-target detection/estimation
problem for a MIMO-OFDM DFRC system in the presence
of non-negligible ICI caused by high-mobility targets. By
formulating the ICI-aware sensing as a joint CFO/channel
estimation problem, we have developed a novel three-step
algorithm for multiple target detection and delay-Doppler-
angle estimation. Remarkably, the proposed algorithm can
mitigate the ICI effect induced by multiple targets having
different radial velocities, which prevents degradation in detec-
tion/estimation performance, and at the same time exploit ICI
to resolve Doppler ambiguity of the detected targets. Extensive
simulation results have shown that the proposed approach
significantly outperforms the traditional FFT based method and
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Fig. 9. Range RMSE of the reference target with respect to SNR for (a)
ν = 20 m/s, (b) ν = 70 m/s, and (c) ν = 120 m/s for the scenario in
Table II.

can attain the performance achievable in the absence of ICI,
with respect to various metrics such as probability of detection
and range/velocity estimation accuracy. This indicates that ICI
can be successfully suppressed in multi-target scenarios with
arbitrary OFDM data symbols, which is crucial for high-speed
vehicular JRC applications.
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