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Abstract—We study the epidemic source detection problem in
contact tracing networks modeled as a graph-constrained maxi-
mum likelihood estimation problem using the susceptible-infected
model in epidemiology. Based on a snapshot observation of the
infection subgraph, we first study finite degree regular graphs
and regular graphs with cycles separately, thereby establishing
a mathematical equivalence in maximal likelihood ratio between
the case of finite acyclic graphs and that of cyclic graphs. In
particular, we show that the optimal solution of the maximum
likelihood estimator can be refined to distances on graphs
based on a novel statistical distance centrality that captures the
optimality of the nonconvex problem. An efficient contact tracing
algorithm is then proposed to solve the general case of finite
degree-regular graphs with multiple cycles. Our performance
evaluation on a variety of graphs shows that our algorithms
outperform the existing state-of-the-art heuristics using contact
tracing data from the SARS-CoV 2003 and COVID-19 pandemics
by correctly identifying the superspreaders on some of the largest
superspreading infection clusters in Singapore and Taiwan.

I. INTRODUCTION

The COVID-19 coronavirus pandemic has revealed severe
deficiencies in public health protection [1]. As the COVID-
19 disease is highly contagious and wide-ranging with long
incubation periods (transmission rate of 3-5 persons within
6 feet), it becomes necessary to track down all the infected
persons and their recent contacts once an outbreak has oc-
curred. It is often necessary to account for the initial source
of the outbreak (e.g., identification of superspreaders [2], [3])
so that public health is resilient against further outbreaks or to
understand the underlying cause of secondary transmissions.
Public health authorities worldwide employ contact tracing to
address these problems [1], [4]–[10].

In general, manual contact tracing is a complex and tedious
process: Once a person has been diagnosed as infected, public
health authorities fan out to trace the recent contacts of this
person for the purpose of monitoring or quarantine. This pro-
cess repeats if one of those contacts exhibits symptoms until
all the contacts who have been exposed are out of circulation.
The COVID-19 coronavirus epidemic has overwhelmed most
contact tracing capabilities due to the speed and scale of
infection [7]. For contact tracing to be efficient, especially
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to identify superspreaders in recurrent large-scale outbreaks
during the COVID-19 pandemic, efficient and scalable contact
tracing algorithms need to be developed [1], [4]–[10].

Recently, there are public health protection schemes that
employ mobile software technologies to use wireless signals
(e.g., Bluetooth) to collect data on social contact connectivity
for digital contact tracing in epidemiology [4], [10], [11].
These data lead to contact tracing networks that are essen-
tially large graphs generated by stochastic processes. From an
epidemiology perspective, all the infected persons in a contact
tracing graph are potential candidates for tracking purposes
as well as identification of Patient Zero or superspreaders
[2], [3]. A fundamental question in digital contact tracing
is how to unravel stochastic spreading processes to find the
initial outbreak source quickly, accurately and reliably with
high confidence by exploiting the topological and statistical
properties of contact tracing networks.

The spreading of epidemics and rumors share much in
common as stochastic processes in mathematical epidemiology
[12], [13]. Formulating the source detection as solving a
maximum likelihood estimation problem was first studied in
[14] using a network centrality called the rumor centrality to
optimally solve a special case of degree-regular tree graph
with countably infinite number of vertices and assuming a
SI (susceptible-infectious) spreading model. There were a
number of problem extensions subsequently, e.g., random
increasing trees in [15], probabilistic sampling in [16], star
graph topology in [17], multiple sources or observations in
[18]–[20], Markov chain Monte Carlo based algorithms in
[21] and probabilistic characterization of infection network
boundaries in [22]. Source estimation for other spreading
models include the Susceptible-Infected-Recovered model in
[23] and a random branching process for irregular trees in [15],
[24]. Related work on proactive network protection against
epidemics include [25]–[27], e.g., a maximum likelihood al-
gorithm in [27] that complements the work in [26]. How to
optimally place observations concerning the efficiency and the
cost and design message-passing algorithms were studied in
[25]. Probabilistic inference methods that use machine learning
techniques like graph neural networks and deep learning for
epidemiology have been studied in [1], [10], [28], [29].

To the best of our knowledge, there is no prior work that
solves the problem in [14] when the network has cycles or
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finite graph boundaries even under the SI spreading model.
This more general problem is computationally challenging
due to the presence of irregular vertices (vertices without
susceptible neighbors) and cycles. Irregular vertices are prac-
tical for modeling actual graph connectivity or users who are
quarantined after being infected. In addition, the presence of
cycles cannot be ignored. In essence, unlike the tree graphs,
the cycles allow the stochastic spreading process to spread
through multiple alternate paths, thus increasing the likelihood
of those vertices on the cycle. As such, the presence of cycles
and irregular vertices introduce nontrivial irregular effects that
significantly shape the way that virus spread as well as the
performance of detecting the original source on the infected
graph. To be exact, existing algorithms in the literature, e.g.,
[14], [30]–[32], are no longer optimal even with the presence
of a single cycle in degree-regular pseudo-tree graphs.

In this paper, we address the outstanding issues of epi-
demic source detection for the general cases when there are
irregular vertices and cycles. In particular, we demonstrate
that the likelihood ratios between vertices of the infection
graph provide insights to locating the most likely source,
which leads to a new network centrality connecting graph-
theoretic structures with estimation performance and enables
low-complexity algorithms using the same spreading model as
those studied in the literature [14], [16], [30], [31], [33].

A. Our Contributions

The main contributions are summarized as follows:
• We consider a general network (i.e., finite large network

with cycles) for epidemic source detection, and analyti-
cally characterize how graph distances between vertices
in an infection graph and a single cycle or irregular vertex
affect the likelihood of each vertex being the source.

• For a finite size degree-regular tree, we characterize the
globally optimal maximum likelihood estimator based on
graph distances and propose a scalable message-passing
algorithm to compute this solution in linear time.

• For a degree-regular graph with cycles, we prove that its
epidemic center can be equal to the epidemic center of
any of its spanning trees. We propose a polynomial-time
algorithm to find the epidemic center of a graph with
a single cycle by characterizing the optimal maximum
likelihood estimator based on the graph distances.

• We combine the results in finite-size degree regular
graphs and unicyclic graphs and propose a polynomial-
time distance-based algorithm to find the source esti-
mator. For synthetic data, we conduct simulations on
two finite-size regular graphs with cycles which are grid
graphs and circulant graphs. We evaluate the performance
by comparing the results with the BFS heuristic rumor
centrality [14], showing that the error (number of hops)
of our source estimator is at least 50% smaller than
BFS rumor center. Using real-world contact tracing data
(due to SARS-CoV 2003 and COVID-19 pandemic), we
apply our algorithm on some of the largest superspreading
infection clusters in Singapore and Taiwan, correctly
identifying the superspreader in this cluster.

II. PRELIMINARIES ON VIRUS SPREADING MODEL

We model a contact network by an undirected graph G =
(V,E), where the set of vertices V represents the vertices in
the underlying network, and the set of edges E represents the
links between the vertices. We shall assume that V is count-
ably finite (this is the crucial departing point from the previous
assumption of infinite graph in the literature [14], [18], [30]–
[32]). In this paper, we use the Susceptible-Infectious (SI)
model in [12], [13], [34] to model virus spreading. Vertices
that infected by the virus are called infected vertices and oth-
erwise they are susceptible vertices. The spreading is initiated
by a single vertex v? ∈ V that we call the source. Once a
vertex is infected, it stays infected and can in turn infect its
susceptible neighbors. The virus can be spread from vertex i
to vertex j if and only if there is an edge between them (i.e.,
(i, j) ∈ E). Let τij be the spreading time from i to j, which
are random variables that are independently and exponentially
distributed with parameter λ (without loss of generality, let
λ = 1). Let S denote the set of all susceptible vertices that
have at least one infected neighbor, i.e., those vertices in S
might be infected in the near future. In the real world there
are some people that are more likely to be infected by the
virus, and some are more likely to spread the virus to others.
We can assume that each person has two parameters say Ri

and Rs which are corresponding to the rate of being infected
and the rate of spreading the virus to others respectively. Due
to the memoryless property of the exponential distribution. We
have the fact that each newly infected vertex v is randomly
chosen from S with the probability that

P (v is infected) ∝ Rvi ·
∑
u
Rus ,

where each u is an infected neighbor of v, Rvi denote the
infected rate of v and Rus denote the spreading rate of u.
Hence, the probability of a vertex va being infected in the
next time period is defined as

P (va is infected) =

Rvai ·
∑
ua

Rua
s∑

v∈S
[Rvi ·

∑
u
Rus ]

, (1)

where ua and u represents each infected neighbor of va and
v respectively.

Now, we have a random spreading model over an underlying
finite graph G. We can view G as a contact network [35]–[38]
where nodes represent individuals and edges represent social
contacts such as two individuals have been in the same place
or in close contact (within about 6 feet). Contact tracing is
a process to identify the people who have been in contact
with an infected individual [10]. Hence, an epidemic contact
tracing network can be seen as a connected subgraph of a
human contact network containing infected people. Let Gn be
a subgraph of order n of G, that models a snapshot observation
of the spreading when there are n infected vertices, i.e.,
Gn is a contact tracing network in G and |Gn| = n. In
the following, we shall call Gn an infected subgraph of G
for brevity. We denote the actual source in Gn as v?. The
epidemic source detection problem is thus to find v? given
this observation of Gn. For example, in Fig. 1 the infected
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TABLE I
WE SUMMARIZE THE MAIN RESULTS OF THIS PAPER WITH A COMPARISON WITH PRIOR ART IN [14] IN THIS TABLE. ASSUME THE UNDERLYING

NETWORK G IS A DEGREE-REGULAR TREE. WE DENOTE THE IRREGULAR VERTEX AS vir AND THE EPIDEMIC CENTER AS vc . NOTE THAT, THE CASE
THAT Gn CONTAINING AN IRREGULAR VERTEX CAN BE TREATED MATHEMATICALLY AS A SPECIAL CASE OF Gn CONTAINING A SINGLE CYCLE, SINCE

AN IRREGULAR VERTEX CAN BE TREATED AS A SIZE ONE CYCLE WHICH IS ON THE BOUNDARY OF THE GRAPH. THEREFORE, THE LOGICAL FLOW OF THIS
PAPER IS SUCH THAT WE FIRST CONSIDER THE IRREGULAR EFFECT CAUSED BY AN IRREGULAR VERTEX AND THEN ANALYSIS TO GRAPHS WITH CYCLES.

Underlying model assumption Infinite-size G Finite-size G G as Pseudo-Tree (cf. Definition V.1)
An irregular vertex in Gn No Yes No

A cycle in Gn No No Yes
MLE vc On the path from vc to vir On the path from vc to Ch

Key theorems in this paper – Theorems 1, 2 Theorems 3, 4

subgraph are those vertices labeled from one 1 to 6, i.e.,
V (Gn) = {v1, v2, . . . , v6}, and the underlying network G
is the whole graph including those dotted-line vertices and
edges. Since we assume that the graph topology of Gn is the
only given information, i.e., two parameters Ri and Rs are
unknown for all vertices in Gn. Hence, we shall assume that
Ri = Rs = 1 for all vertices and we have a simplified infection
probability for vertex va

P (va is infected) =

∑
ua

1∑
v∈S

[
∑
u

1]
, (2)

which implies that the probability of va being infected is
proportional to the number of its infected neighbors. Note that,
when G is a tree network, this spreading model is equivalent to
the one considered in [14]. However, the probability defined in
(1) can be used to analyze more general cases such as graphs
with cycles. In this paper, we aim to solve the epidemic source
detection problem which is defined as follows:

maximize
v∈Gn

P (Gn|v)

subject to Gn ⊂ G,
(3)

where P (Gn|v) is the likelihood function assuming v is
the source, and G is an almost d-regular graph with some
irregular vertices, i.e., vertices with degree not equal to d.
The maximum likelihood estimator for the epidemic source is
the vertex v with the maximum P (Gn|v) [14]. In this paper,
we assume that all irregular vertices have degree less than d.

Definition II.1. For a given infection subgraph Gn over the
underlying graph G, v̂ is an maximum likelihood estimator for
the epidemic source in Gn, i.e., P (Gn|v̂) = max

vi∈Gn

P (Gn|vi).

In the remaining part of this section, we review the maxi-
mum likelihood estimation problem of this epidemic source in
the simplest case: regular-tree networks. By Bayes’ theorem,
P (Gn|v) is the probability that v is the actual epidemic
infection source that leads to observing Gn. Now, let σi be the
possible spreading order starting from v, and let M(v,Gn) be
the collection of all σi when v is the source in Gn. Then, we
have

P (Gn|v) =
∑

σi∈M(v,Gn)

P (σi|v). (4)

In particular, for a d-regular tree, we have [14]:

P (σi|v) =

n−1∏
k=1

1

dk − 2(k − 1)
. (5)

Now, if the spreading has not reached the irregular vertices,
then P (σi|v) = P (σj |v) for all σi, σj ∈ M(v,Gn). By
combining (4) and (5), we have

P (Gn|v) =
∑

σi∈M(v,Gn)

P (σi|v)

= |M(v,Gn)| · P (σ|v) ∀σi ∈M(v,Gn)

= |M(v,Gn)| ·
n−1∏
k=1

1

dk − 2(k − 1)
,

which means that P (Gn|v) is proportional to |M(v,Gn)|.
If we treat the rooted tree as a partially ordered set, then
a spreading order is a linear extension corresponding to this
poset. Hence, the quantity |M(v,Gn)| is actually the number
all linear extensions of the poset Gn rooting at v. The authors
in [14] called |M(v,Gn)| rumor centrality, which is crucial to
solving the maximum likelihood estimation for degree-regular
trees. We denote the vertex having the maximum |M(v,Gn)|
among all vertices in Gn as vc, that is

vc = argmax
v∈Gn

|M(v,Gn)|. (6)

In particular, vc is called the rumor center when Gn is
a tree in [14] and the authors in [39], [40] established its
equivalence to the graph distance center and tree centroid.
When Gn is a general graph, rumor center is only defined
on the BFS spanning tree of Gn. To avoid confusion, in this
paper we call the quantity |M(v,Gn)| epidemic centrality and
vc epidemic center for a general graph.

Definition II.2. For a graph G and a vertex v ∈ G, the
distance centrality of v can be defined as

distance centrality of v =
∑
u∈G

d(u, v),

where d(u, v) is the shortest path distance, i.e., the number of
edges along the shortest path from u to v. The distance center
of a graph is the vertex with the smallest distance centrality.
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Fig. 1. Example of G as a 3-regular tree except v5 and Gn as a subtree
with an irregular vertex vir = v5. The maximum likelihood estimate v̂ is
v1, moreover, the likelihood of v5 is also greater than v2. While a naive
application of the rumor centrality in [30], i.e., the rumor center vc of Gn,
yields both v1 and v2.

TABLE II
NUMERICAL EXAMPLE OF P (G6|vi) USING G6 IN FIG. 1

mv5
v (G6, k)

v k = 1 k = 2 k = 3 k = 4 k = 5 P (G6|v)

v1 0 8 6 6 0 0.0149
v5 10 0 0 0 0 0.0138
v2 0 0 6 8 6 0.0114
v3 0 0 0 2 2 0.002
v4 0 0 0 2 2 0.002
v6 0 2 0 0 0 0.0018

III. TREES WITH A SINGLE DEGREE-ONE IRREGULAR
VERTEX

In this section we study the effect on the maximum like-
lihood due to an irregular vertex in a regular tree network.
Assuming that the original underlying network is a regular
tree, this irregular vertex is a vertex with different number of
neighborhoods compared to other vertices. For example, in a
regular tree G of bounded size, if the infected subgraph Gn
contains a leaf v of G, then v is an irregular vertex in G since
it has no other neighbors except its parent vertex. This models
a person under quarantine in a contact tracing network with
fewer neighborhoods than other people.

We consider the case where the degree of the irregular
vertex is less than that of all other vertices. Note that a degree-
one irregular vertex is a leaf of both G and Gn. Now, assume
that the infection subgraph Gn only has a single irregular
vertex denoted as vir, where deg(vir) < d in G. Take Fig. 1
for example, we have vir = v5 since deg(vir) = 2 and other
vertices are of degree 3 in G. In the following, we study how
vir affects the maximum-likelihood estimation performance.

In particular, we compare this single irregular vertex special
case with a naive prediction that assumes an underlying infinite
graph. This illustrates that ignoring the irregular effect in
the finite graph ultimately leads to a wrong estimate and
thus requires an in-depth analysis and new epidemic source
detection algorithm design for the general case of finite graphs.

A. Impact of the Irregularity On P (Gn|v)

Example 1. Let G be a infinite 3-regular tree except v5 has
a different degree, and G6 = is a subgraph of G shown
in Fig. 1. Consider P (G6|v1) and with a spreading order
σ : v1 → v2 → v5 → v3 → v4 → v6, we have
P (σ|v1) = (1/3) · (1/4) · (1/4) · (1/5) · (1/6). Had v5 not
been the irregular vertex, then P (σ|v1) = (1/3) ·(1/4) ·(1/5) ·
(1/6) · (1/7). This demonstrates that the order at which the
virus spreads to the irregular vertex v5 is important when
computing P (σ|v1). In particular, P (G6|v1) ≈ 0.0149. We
also have P (G5|v2) ≈ 0.0114. Now, observe that v1 and v2
are two vertices with the largest epidemic centrality among all
vertices in G6, but P (G6|v1) > P (G6|v2), and thus v̂ = v.
Note that, the likelihood of v5 being the source is also greater
than that of v2 even v2 has a greater epidemic centrality.

Example 1 reveals some interesting properties of irregular
effects due to even a single irregular vertex:

• P (σi|v) increases with how soon the irregular vertex
appears in σi (as ordered from left to right of σi).

• When there is at least one irregular vertex in Gn, then
P (Gn|v) is no longer proportional to |M(v,Gn)|.

This means that P (σi|v) is no longer a constant for each
i, and depends on the position of the irregular vertex in each
spreading order. We proceed to compute P (σi|v) as follows.
For brevity of notation, let vir be the irregular vertex and let

Mvir
v (Gn, k) = {σ ∈M(v,Gn)|vir is the kth element of σ};

P virv (Gn, k) = P (σ|v), for σ ∈Mvir
v (Gn, k),

where Mvir
v (Gn, k) is the set of all the spreading orders

starting from v and with vir at the kth position, and its size
is the combinatorial object of interest:

mvir
v (Gn, k) = |Mvir

v (Gn, k)|. (7)

Let D be the distance (in terms of number of hops) from v to
vir. Then we have

|M(v,Gn)| =
n−tvvir+1∑
k=D+1

mvir
v (Gn, k). (8)

Now, (8) shows that M(v,Gn) can be decomposed into
Mvir
v (Gn, k) for k = D + 1, D + 2, . . . , n − tvvir + 1. This

decomposition allows us to handle the irregular effect due to
the different position of the irregular vertex in each spreading
order. For example, in Table II we list out all mvir

v (Gn, k) for
each possible starting vertex v and the position k of vir. Let
P virv (Gn, k) be the corresponding probability for each k. We
can rewrite P (Gn|v) for the case with single irregularity as:

P (Gn|v) =

n−tvvir+1∑
k=D+1

mvir
v (Gn, k) · P virv (Gn, k). (9)

Thus, solving (3) means finding the vertex v̂ that solves

P (Gn|v̂) = max
vi∈Gn

P (Gn|vi). (10)

Since P (Gn|v) is no longer proportional to |M(v,Gn)|,
we now describe how to compute P (Gn|v) in Gn over an
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underlying d-regular tree except the degree of vir is d′. First,
consider P virv (Gn, k) and let zd(i) = (i− 1)(d− 2), then

P virv (Gn, k) =

k−1∏
i=1

1

d+ zd(i)
·
n−2∏
i=k−1

1

d+ zd(i) + (d′ − 2)
,

(11)

where the first factor of P virv (Gn, k) in (11) is the probability
that k vertices are infected once the virus reaches the irregular
vertex, i.e., vir is the kth vertex infected in Gn, and the
second factor is the probability that all remaining n − k
vertices are infected thereafter. On the other hand, the value
of mvir

v (Gn, k) in (7) is dependent on the network topology,
and thus there is no closed-form expression in general (though
when Gn is a line, a closed-form expression for mvir

v (Gn, k)
is given in (12)). We now use a special case, line graph, to
demonstrate how an irregular vertex and network topology
affect the probability P (Gn|v).

B. Analytical Characterization of Likelihood Function

Suppose G is a finite degree-regular tree and Gn is a line
graph with a single irregular vertex due to the bounded size of
G. Without loss of generality, suppose n is odd (to ensure a
unique vc) and n = 2t+1 for some t. We label all the vertices
in Gn from 1 to 2t+1 and assume that v2t+1 is the end vertex,
i.e.,irregular vertex with degree 1. To compute P (Gn|vi) for
vi ∈ Gn, from (9) and (11), we already have P virvi (Gn, k),
so we need to compute mvir

vi (Gn, k). The enumeration of
mvir
vi (Gn, k) can be accomplished in polynomial-time com-

plexity with a path-counting message-passing algorithm (see,
e.g., Chapter 16 in [41]). In particular, we have a closed-form
expression for mvir

v (Gn, k) given by:

mvir
vi (Gn, k) =

(
k − 2

k − n+ i− 1

)
, (12)

when i 6= n, leading to an analytical formula for P (Gn|vi):
P (Gn|vi) =

n−1∏
l=1

1

zd(l) + 1
, i = n;

n∑
k=n−i+1

(
k − 2

k − n+ i− 1

)
· P virvi (Gn, k), otherwise,

(13)
where P virvi (Gn, k) is given in (11).

In (13), we suppose that n is odd. Using (13), let us
numerically compute P (Gn|vi) for all vi in Fig. 2, where
G is a 4-regular tree and Gn is a line graph with a single
irregular vertex vir = vn as boundary for different values
of n = 7, 8, 9, 10. The x-axis is the vertex vi where i =
1, 2, . . . , 10, and the y-axis plots P (vi = v?|Gn). Fig. 2
illustrates that the influence due to the irregular vertex on
P (vi = v?|Gn) dominates that of the epidemic center when
n = 7, 8, 9. However, the situation reverses when n = 10 (i.e.,
the epidemic center on P (Gn|vi) is dominant thereafter).

Theorem 1. Suppose G is a d-regular graph (d > 2) with
finite order. If Gn is a line-graph with a single irregular vertex

Fig. 2. P (Gn|v), where Gn is a line graph with a single irregular vertex v1
over an underlying 4-regular finite graph.

at one end of the line graph, then there is a constant j such
that P (Gn|vc) > P (Gn|vir) when n > j.

Remark: When n increases, i.e., the distance between vc
and vir increases, then the location of v̂ in Gn converges to
the neighborhood of the epidemic center.

Example 2. To verify Theorem 1, we plot P (Gn|vi) for a
line graph Gn with G being a finite 4-regular graph in Fig. 2.
Clearly, we have j = 9.

Theorem 1 implies that, for any d-regular underlying graph,
when Gn is a line graph with a single irregular vertex, the
influence of the irregular vertex vir on P (vi|Gn) decreases
monotonically as n grows. In fact, this reduces to the special
case in [30], when n goes to infinity asymptotically, i.e., v̂ is
the ML estimation of the source.

C. Optimality Characterization of Likelihood Estimate
Example 1 reveals that in addition to the spreading order,

the distance (number of hops) between the irregular vertex
and v also affects the likelihood probability P (Gn|v). We
can conclude that there are two factors affect the likelihood
of v being the source, one is the distance d(v, vir) and the
other one is the epidemic centrality |M(v,Gn)|. Intuitively,
if we consider two vertices in Gn say va and vb where
|M(va, Gn)| > |M(vb, Gn)| and d(va, vir) < d(vb, vir), then
the above observation may lead us to P (Gn|va) > P (Gn|vb).
We formalize this optimality result that characterizes the
probabilistic inference performance between any two vertices
and the location of v̂ in Gn with a single irregular vertex vir
in the next theorem.

Lemma 1. Let G be a tree of size n, for any three vertices say
va, vb and vir, if one of the following conditions is satisfied

1) |M(va, Gn)| ≥ |M(vb, Gn)| and d(va, vir) < d(vb, vir)
2) |M(va, Gn)| > |M(vb, Gn)| and d(va, vir) ≤

d(vb, vir),
then we have

k∑
i=d(va,vir)+1

mvir
va (Gn, i) ≥

k∑
i=d(va,vir)+1

mvir
vb

(Gn, i),
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Fig. 3. An intuitive illustration of Theorem 2. If v1 = vc is the epidemic
center and vD+1 = vir is the irregular vertex where deg(vir) less than
other vertices. From Lemma 1, we have P (Gn|vi) > P (Gn|v) for all
v ∈ Di, where i = 1, 2, . . . , D + 1. Hence, we only need to consider
v1, v2, . . . , vD+1, to find the ML estimator for the source.

for all possible k.

Remark: Lemma 1 applies for any positive degree of vir.
We can verify Lemma 1 by Fig. 1. Let va = v1, vb = v2
and vir = v5, then |M(v1, Gn)| = |M(v2, Gn)| = 20 and
d(v1, v5) < d(v2, v5) which satisfies the first condition of
Lemma 1. Hence, the partial sum of |M(v1, G6)| is always
greater or equal to the partial sum of |M(v2, G6)|.

Theorem 2. Let G be a d−regular tree with a single irregular
vertex and Gn ⊆ G be a subtree of G with a single irregular
vertex vir ∈ Gn. where deg(vir) < d. Then, the maximum
likelihood estimator v̂ with maximum probability P (Gn|v) is
located on the path from the vc to vir.

The above theorem can be immediately deduced from
Lemma 1. In addition, we can leverage Lemma 1 in the
case when deg(vir) > d to reduce the search space of the
optimization problem (3). We can conclude only that the ML
estimator is on the path from vc to vir, which is illustrated in
Fig. 3, thus narrowing down the search for the ML estimator
to a vertex on this path.

IV. TREES WITH MULTIPLE DEGREE-ONE IRREGULAR
VERTICES

In this section, we consider the case when Gn has more
than a one irregular vertex (naturally, this also means d > 2
in G ruling out the trivial case of G being a line). The key
insight from the single irregular vertex analysis still holds:
Once the virus reaches an irregular vertex in G, v̂ can be
located near this very first infected irregular vertex. In addition,
the algorithm design approach is to decompose the graph into
subtrees to narrow the search for the maximum-likelihood
estimate solution. To better understand the difficulty of solving
the general case, we start with a special case: The entire
finite underlying network is infected, i.e., Gn = G, then
P (Gn|v) = 1/n for each vertex in Gn, as each vertex is
equally likely to spread the virus to all the other vertices in G
to yield Gn = G. In this case, P (Gn|v̂) is exactly the min-
imum detection probability. So the bound of P (Gn|v̂) given
in previous study are not suitable for the case with irregular
vertices. Therefore, when simulating the virus spreading in a

Fig. 4. Gn as a broom graph with k star-like end vertices e1 to ek .

network, we will set an upper bound n/k of the number of
irregular vertices where k is some integer greater than 1, once
the number of irregular vertices in Gn reaches to dn/ke, then
we will stop the spreading process.

A. Degree-Regular Tree (d ≥ 3) Special Case: Gn is Broom-
Shaped

In Section III, we have shown that, when Gn is sufficiently
large, the effect of the single irregular vertex on P (v|Gn)
for each vertex v on the line graph Gn is dominated by vc.
Now, we study the effect of multiple degree-one irregular
vertices on a class of graphs whose topology is richer than
the line graph in Section III. In particular, as shown in Fig.
4, we add degree-one irregular vertices to v2t, so that when
G is d-regular, then there will be at most d − 1 degree-one
irregular vertices in Gn. We call this the broom graph. We
can compute P (v|Gn) by extending the result in Section III.
Let P {u1,u2,...,uk}

vi ({h1, h2, . . . , hk}, Gn) be the probability of
the spreading order starting from vi with the irregular vertex
set {u1, u2, . . . , uk} and their position set {h1, h2, . . . , hk}
in this spreading order. We do not assume that hi is the
position of ui, as it can be the position of any irregular vertex
in Gn. The probability P

{u1,u2,...,uk}
vi ({h1, h2, . . . , hk}, Gn)

can be obtained by the same analysis in (11). To compute
m
{u1,u2,...,uk}
vc ({h1, h2, . . . , hk}, Gn), we first consider the

line-shaped part of Gn, i.e., the part {v1, v2, . . . , v2t}, say G′n.
From the previous discussion, we have

mv2t
vi (G′n, j) =

(
j+(2t+i−1)

j

)
,

and for each spreading order that v2t lies on the jth position,
the degree-one irregular vertices u1, u2, . . . , uk can be placed
on any position after the jth position. So for each spreading
order in mv2t

vi (G′n, j), there are k! ·
(
n−k−j+1

k

)
corresponding

spreading orders in Gn. Thus, we have

m{u1,...,uk}
vi (Gn, {h1, . . . , hk}) = k!

h1−1∑
j=2t−i+1

(
j − 2

2t− i− 1

)
.

(14)
With P

{u1,u2,...,uk}
vi and m

{u1,u2,...,uk}
vi , we can now com-

pute the probability P (vi|Gn) by going through all possible
{h1, h2, . . . , hk}. Fig. 5 shows that even though there are
five irregular vertices, the effect of vc on P (v|Gn) eventually
dominates that of the irregular vertices as n grows from 37
to 39. These result implies that: When there are more degree-
one irregular vertices in Gn, n needs to be sufficiently large
to offset the effect of irregular vertices, i.e., for the transition
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Fig. 5. Probability distribution of each vertex on Gn with five degree-
one irregular vertices when G is 6-regular, The y-axis plots the probability
P (vi|Gn) and the x-axis plots the vertex vi’s number i. In particular,
v1, . . . , v5 are the leaves (degree-one irregular vertices) corresponding to
u1, . . . , uk in Fig. 4, where k = 5. Observe that the transition phenomenon
happens when n grows from 37 to 39.

phenomenon to take place. For other d and n in the broom
graph, as shown in the proof of Theorem 1, we can prove this
in the same way to conclude that, if we fix the number of
irregular vertex, the probability P (vc|Gn) will be greater than
P (vir|Gn) when n is large enough.

B. Message-passing Algorithm

We propose a message-passing algorithm to find v̂ on the
finite regular tree G by leveraging the key insights derived in
the previous sections. We summarize these features as follows:

1) If there is only a single irregular vertex vir in Gn, then
v̂ is located on the path from vc to vir.

2) If Gn = G, then for all vi ∈ Gn, P (Gn|vi) = 1/n.
3) If Gn has q degree-one irregular vertices, then there

exists an n′ such that, if n > n′, then P (Gn|vc) >
max
1≤i≤k

{P (Gn|vui
)}. Furthermore, n′ increases as q in-

creases.
4) If two vertices v1 and v2 are on the symmetric position

of Gn, then P (Gn|v1) = P (Gn|v2). For example,
u1, u2, . . . , uk are topologically symmetric in Fig. 4.

In particular, Feature 1 is the optimality result related to
decomposing Gn into subtrees to search for v̂. The subtree
tML in Gn corresponds to first finding the decomposed subtree
containing vc and the likelihood estimate needed for Theorem
2 to apply. Then, Features 3 and 4 identify v̂ on a subtree tML

of Gn as Theorem 2 only pinpoints the relative position of v̂.
Algorithm 1 first finds the epidemic center of Gn and then

determines the number of irregular vertices corresponding to
each branch of the epidemic center vc. The final step is
to collect vertices on the subtree where v̂ is, leading to a
subtree of Gn denoted as tML. Observe that each step requires
O(n) computational time complexity and tML in a graph with
multiple irregular vertices is akin to the path from vc to the
irregular vertex in an infected subgraph with a single irregular
vertex in Section III. Finally, we obtain a set κ containing the
parent vertices of the leaves of tML and vc.

Algorithm 1 Message-passing algorithm to compute v̂ for Gn
with multiple irregular vertices
Input: Gn, κ = {}

Step 1: Compute vc of Gn.
Step 2: Choose vc as the root of a tree and use a message-
passing algorithm to count the number of irregular vertices
on each branch of this rooted tree.
Step 3: Starting from vc, and at each hop choose the
child with the maximum number of irregular vertices (if
there were more children with the same maximal number
of irregular vertices, then choose all of them). This tree
traversal yields a subtree tML rooted at vc.
Output: κ = {parent vertices of leaves of tML, vc}

Fig. 6. An illustration of how Algorithm 1 works on a tree graph rooted
at vc with six degree-one irregular vertices (more shaded). Observed that vc
branches out to three subtrees. Here, tML is the subtree containing the five
vertices within the dotted line. The numerical value on the edge indicates the
message containing the number of end vertices being counted.

Next, we use the example in Fig. 6 to illustrate Algorithm
1. Let G19 be the network in Fig. 6 with the six degree-
one irregular vertices depicted as more shaded. Suppose vc
is determined by the end of Step 1. Then, Step 2 enumerates
the number of irregular vertices at each branch of the subtrees
connected to vc, and these numbers are then passed iteratively
from the leaves to vc. These messages correspond to the
numerical value on the edges in Fig. 6. The message in Step
2 is an upward (leaf-to-root) message. Step 3 is a message
passing procedure from vc back to the leaves, which is a
downward message, and the message is the maximum of
number of irregular vertices in each branch. For example,
the message from vc to child(vc) is max{1, 2, 3} which is 3.
Lastly, the second part of Step 3 collects those vertices whose
upward message = downward message. For example, the
left hand-side child of vc is first added to tML, and then vt is
added to tML, and finally, the two leaves on the left hand-side
is added to tML. Observe that tML must be connected.

C. Simulation Results for Finite General Tree Networks

We simulate the virus spreading on finite regular tree
networks and general tree networks with |G| = 1000 and
|Gn| = 100. Each vertex in a general tree network is not
larger than a positive integer dm. The construction of G is
a random branching process in which we start with a single
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TABLE III
AVERAGE ERROR (IN TERMS OF NUMBER OF HOPS) COMPARING

ALGORITHM 1 TO TOP-k VERSION OF RUMOR CENTRALITY (RC),
JORDAN CENTER (JC) AND DYNAMICAL AGE (DA), WHEN G IS A

d-REGULAR GRAPH, FOR d = 3, 4, 5, 6.

dm |κ| Algo. 1 RC JC DA
3 6.34 1.44 3.26 4.55 2.93
4 5.65 1.50 2.64 3.52 2.18
5 4.05 1.48 2.36 3.18 2.05
6 3.72 1.40 2.32 2.94 2.00

TABLE IV
AVERAGE ERROR (IN TERMS OF NUMBER OF HOPS) COMPARING

ALGORITHM 1 TO TOP-k VERSION OF RUMOR CENTRALITY (RC),
JORDAN CENTER (JC) AND DYNAMICAL AGE (DA), WHEN G IS A FINITE
GENERAL TREE WITH DEGREE OF EACH VERTEX LESS OR EQUAL TO dm ,

FOR dm = 4, 5, 6, 7.

dm |κ| Algo. 1 RC JC DA
4 2.82 3.07 3.34 4.51 3.02
5 2.6 2.59 3.00 3.96 2.59
6 2.46 2.46 2.85 3.87 2.51
7 2.45 2.33 2.61 3.55 2.40

vertex v1, and then randomly pick an integer, say i, from 1 to
dm− 1 to be the number of children of v1, and then to assign
v2 to vi+1 to be the neighborhood of v1. Recursively applying
these steps generates a finite tree G with five thousand vertices
whose maximum degree is not larger than dm.

We simulate a thousand times the spread of the virus on G
by picking v?, the true source, uniformly on G, and compare
the average performance of Algorithm 1, a naive heuristic that
simply uses the rumor centrality (RC) [14], Jordan centrality
(JC) [23], and a spectral based method called Dynamical
Age (DA) [42]. To fairly compare these algorithms, when
Algorithm 1 yields a set with |κ| vertices, then other methods
find a set of |κ| vertices having the top |κ| maximum score
for all v of Gn. Obviously, the size of the solution set |κ|
depends on the topology of Gn in each run of the simulation,
and thus is not a constant in general over that thousand times.
To quantify the performance of these two algorithms, let us
define the error function of a vertex set η:

error(η) = min{d(v, v?)|∀v ∈ η}.

This is the smallest number of hops between v? and the nearest
vertex in the set η. As shown in Table IV, we can observe that
the number of vertices in κ is surprisingly small, moreover,
|κ| is decreasing as dm increases.

V. PSEUDO-TREES WITH A CYCLE

Definition V.1. A pseudo-tree is a connected graph with equal
number of vertices and edges, i.e., a tree plus an edge that
creates a cycle.

In this section, we consider the special case where G is
a degree-regular graph, and Gn has only a single cycle, i.e.,
Gn is a pseudo-tree. We denote the cycle as Ch where h
is the size (number of vertices on the cycle) of the cycle.
Here, we call those vertices on Ch cycle vertices. Assume v

1

2 3

47 8

6

11

12

9

10

5

Fig. 7. G6 is an infected subgraph with a single cycle C3 containing three
cycle vertices v1, v2 and v3. We can partition G6 into three subtrees say
tv1 = {v1, v4, v7}, tv2 = {v2, v5}, tv3 = {v3}.

TABLE V
NUMERICAL EXAMPLE OF P (σi|G6) USING G6 IN FIG. 7

σi Spreading Order P (σi|G6)

σ1 v4 → v1 → v3 → v2 → v5 → v7
2

1200

σ2 v4 → v1 → v2 → v5 → v3 → v7
2

1800

σ3 v4 → v1 → v2 → v5 → v7 → v3
2

2520

is a cycle vertex, then we define tv to be the subtree rooted
at v in Gn. Take Fig. 7 for example, tv1 is the subtree that
contains v1, v4 and v7. In this section, we study how a cycle
affects the probability P (v|Gn) when Gn contains a cycle
Ch. To generalize the analysis in [14], we should intuitively
assume that the probability of being infected is proportional to
the number of infected neighborhoods. With this assumption,
the analysis in [14] will not change, but we can consider the
case that two infected vertices have a common susceptible
neighborhood, i.e., there is a cycle in Gn.

A. Impact of a Single Cycle On P (Gn|v)

Example 3. Consider the infected subgraph G6 ⊂ G as shown
in Fig. 7, where G6 = {v1, v2, v3, v4, v5, v7} and there is a 3-
cycle in G6. Consider a spreading order σ1 ∈ M(v4, G6),
where σ1 : v4 → v1 → v2 → v3 → v5 → v7. We have
P (σ1|v4) = (1/3) · (1/4) · (2/5) · (1/4) · (1/5) = 2/1200.
Note that when v1 and v2 are infected, v3 has two infected
neighborhoods which implies that the probability of v3 be
infected in the next time period is twice higher than v5, v7 and
v8. In particular, there are three possible values for P (σi|v4)
as shown in Table V, for all σi ∈ M(v4, G6). Moreover, we
observe that the denominators are different in Table V, due to
sharing a common neighbor in the presence of a cycle. We
call this property the cycle effect.

Example 3 reveals some interesting properties of the cycle
effect due to a single cycle:

1) P (σi|v) increases with how soon the last cycle vertex
appears in σi (as ordered from left to right of σi). For
example, the last cycle vertex on σ1 is v2, and is v3 on
σ2 and σ3.

2) When there is a cycle in Gn, then P (Gn|v) is no longer
proportional to |M(v,Gn)|.

3) For each σi, there are actually two corresponding per-
mitted spreading orders due to the cycle.

The first property shows that P (σi|v) is dependent on the
position of the last cycle vertex in each spreading order. Note
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that the cycle effect is similar to the irregular effect, and the
main difference lies in that all cycle vertices may cause the
cycle effect instead of only one irregular vertex may cause the
irregular effect. We proceed to compute P (σi|v) as follows.
For brevity of notation, let vl denote the last cycle vertex.

Definition V.2. We let the distance from a vertex v to the cycle
Ch denoted by d(v, Ch) be defined by the minimum value of
distances from v to all cycle vertices on Ch. That is,

d(v, Ch) = min
vi∈Ch

{d(v, vi)}.

Take Fig. 7 for example, let C3 = {v1, v2, v3}, then
d(v7, C3) = d(v7, v1) = 2 and d(v5, C3) = 1.

Remark: For each σ ∈ |M(v,Gn)|, vl can be any vertex on
the cycle Ch except the vertex v′ with the distance d(v, v′) =
d(v, Ch). Hence, there are h− 1 possible vl.

From previous observations, we have

|M(v,Gn)| = 2 ·
n−tvl+1∑

k=d(v,Ch)+h

mvl
v (Gn, k) (15)

since the position of vl on the spreading order ranges from
d(v, Ch) + h to n− tvl + 1. For example, in Table V, we can
see that vl = v2 is the 4th element on σ1 and vl = v3 is the 6th
element on σ3 whence the order 4 comes from d(v4, C3)+h =
1 + 3, and the order 6 comes from n − tvl + 1 = 6 − 1 + 1.
Finally, the multiplication with 2 is due to the third property.

Now, we can rewrite P (Gn|v) for Gn with a cycle as:

P (Gn|v) =

n−tvl+1∑
k=d(v,Ch)+h

mvl
v (Gn, k) · P vlv (Gn, k), (16)

and our goal is to find the vertex v̂ that achieves

P (Gn|v̂) = max
vi∈Gn

P (Gn|vi). (17)

Since P (Gn|v) is not proportional to |M(v,Gn)|, we should
compute P (Gn|v) by considering each part mvl

v (Gn, k) and
their corresponding probability P vlv (Gn, k). Let zd(i) = (i −
1)(d− 2), then

P vlv (Gn, k) = 2 ·
k−1∏
i=1

1

d+ zd(i)
·
n−2∏
i=k−1

1

d+ zd(i)− 1
. (18)

The first factor in (18) is the probability that k vertices are
infected where the kth infected vertex is vl, and the second
factor is the probability of that all remaining n − k vertices
being infected thereafter. The −1 in the denominator of the
second factor and the coefficient 2 at the front are due to the
common neighbor in a cycle. Note that multiplying by 2 at
the front makes no difference when computing P (Gn|v) for
each v ∈ Gn. From (16), we see that the number of spreading
orders and the corresponding position of vl affect P (Gn|v).

B. Computing |M(v,Gn)| for v on Gn
In this section, we focus on computing |M(v,Gn)|. To

compute |M(v,Gn)|, we can leverage the message-passing
algorithm in [14] if Gn is a tree. Observe that for each infected
vertex in Gn, it is infected by one of its infected neighbors

Fig. 8. Ch is constructed by v1, v2, ..., vh, and ti is a subtree rooted at vi.

(even if it has two infected neighbors), so the actual infecting
route is a spanning tree of Gn instead of a graph with cycle.
Hence, the number of all spreading orders on a graph Gn with
a cycle can be computed as

|M(v,Gn)| =
∑

1≤i≤h

|M(v, Ti)|, (19)

where Ti is the spanning tree of Gn, for i = 1, 2, ..., h. If
Gn contains a Ch, then the time complexity of computing
M(v,Gn) for v ∈ Gn is O(hn). Since Gn has h spanning
trees, and for each spanning tree, we can use the message-
passing algorithm in [14] that has O(n) time complexity.

C. Epidemic Center on Uni-cyclic Gn

In this section, we propose a theorem and a lemma to
characterize the location of epidemic center in Gn. Instead of
computing |M(v,Gn)| for all v ∈ Gn in each spanning tree,
we leverage some analytical results to find vc. Let ti = tvi
be defined as above, and we slightly abuse the notation of the
subtree size |ti| as ti.

Theorem 3. Let G be a degree regular graph, and Gn be
a subgraph of G with a single cycle Ch = {v1, v2, ..., vh}.
The epidemic center vc of Gn satisfies one of the following
condition:

1) Each connected component of Gn\{vc} is of size less
or equal to n/2.

2) vc is a cycle vertex and ti ≤ n/2 for i = 1, 2, ..., h.

Remark: Note that v being epidemic center of Gn does not
mean that each connected component of Gn\{v} is of size
less or equal to n/2. (Had Gn been a tree, then this is true
[14].) However, condition 1 is the sufficient condition of a
vertex being the epidemic center even in a general graph.

We can locate vc of Gn by the first condition in Theorem 3,
however, if the first condition is not satisfied, then vc is on the
cycle. In the following, we proceed to consider the case that
if vc is a cycle vertex. Let Tj denote the spanning tree of Gn
which is constructed by Gn\(vj , vj+1), for j = 1, 2, ..., h− 1
and Th = Gn\(vh, v1). Note that (vh, v1) and (vj , vj + 1) for
j = 1, 2, ..., h− 1 are cycle edges of Ch.
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Proposition 1. Let vi be a cycle vertex and assume that
|M(vi, Tp)| = r, where r and p are integers and 1 ≤ p ≤ h.
Then for 1 ≤ q ≤ h, we have

|M(vi, Tq)|
|M(vi, Tp)|

=

∏
j∈Ch,j 6=i

T ip,j∏
k∈Ch,k 6=i

T iq,k
, (20)

where T ip,j is the subtree T ij of the spanning tree Tp.

The ratio of |M(vi, Tp)|/|M(vj , Tp)| is proportional to their
branch size in Tp if vi and vj are adjacent. Now, for the same
vertex vi, but in different spanning tree say Tp and Tx, we
can also derive the ratio |M(vi, Tp)|/|M(vi, Tq)| from (20).
Hence, if we assume |M(v1, T1)| = r, then we can derive
|M(v, T )| for all v ∈ Ch and T is a spanning tree of Gn in
terms of r and ti, where ti is the subtree size as shown in Fig.
8. The time complexity to find vc is O(n + h2) in the worst
case, where h is the size of the cycle in Gn.

Example 4. Take C3 for example, |M(v1, T1)|/|M(v1, T2)| =
t3/(t2 + t3). Assume |M(v1, T1)| = r, by (20) we can
conclude that

|M(v1, Gn)| = 2(t2+t3)
t3

r;
|M(v2, Gn)| = 2t2(t2+t3)

t1t3
r;

|M(v3, Gn)| = 2(t2+t3)
t1

r,

which implies

|M(v1, Gn)| : |M(v2, Gn)| : |M(v3, Gn)| = t1 : t2 : t3.

By Theorem 3 and Proposition 1, we conclude that if Gn
contains a C3, then vc of Gn is either a vertex that satisfies
the first condition or a vertex vi on C3 with ti = max

1≤j≤3
tj .

Lastly, we combine Lemma 1 and Theorem 3 to characterize
the location of the ML estimator on regular pseudo-tree.

Theorem 4. Let G and Gn be defined as in Theorem 3. The
optimal solution to (3) is either on the path from the epidemic
center of Gn to the cycle or on the cycle.

Remark: Theorem 4 is a combination of Theorem 3 and 2.
Besides, Theorem 4 generalizes the results in [43], [44].

VI. ALGORITHM FOR FINITE DEGREE REGULAR GRAPH
WITH CYCLES

This section proposes a novel distance-based algorithm to
solve the epidemic source detection problem on a finite degree
regular graph with cycles. From Theorem 2, we can deduce
that the likelihood of a vertex is greater if its distance to those
irregular vertices and cycles is smaller. Hence, the maximum
likelihood estimator should lie on the smallest induced sub-
graph containing three specific vertices: the epidemic center,
the vertex closest to all cycles, and the vertex closest to all
irregular vertices. Note that a degree on irregular vertex can be
treated mathematically as a size one cycle. Hence we combine
the irregular effect and the cycle effect in our algorithm.

Definition VI.1. We say is a cycle is a minimum cycle if there
is no path between any two non-consecutive cycle vertices
except the path along the cycle.

1
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Fig. 9. The infected subgraph G10 contains ten nodes colored in grey. The
epidemic centralities of v8 and v10 are the same, however, v10 is the MLE
of the true source in G10. Since the irregular effect caused by a small cycle
is greater than that of large cycle.

Since a vertex v can be contained in multiple different-size
cycles, we only take the minimum cycle that contains v into
consideration in our algorithm. Let C(v) denote the size of
the minimum cycle containing v. If v is not in any cycle and
deg(v) > 1, then we set C(v) =∞, otherwise C(v) = 1. Note
that when deg(v) = 1, v is regarded as a size 1 cycle.

Base on Theorem 2,4, we heuristically define the weight wv
of a vertex v as

wv =
C(v)

C(v) + 1
. (21)

Since we define the distance center to be the vertex with
minimum distance centrality (cf. Definition II.2), we can
design a weight such that the location of the ML estimator
tends to be close to vertices with “small weights”. This is also
motivated by the fact that the likelihood of a vertex v being
the source is greater if v has a larger epidemic centrality and
is closer to those irregular vertices or cycles (cf. Theorem 2
and Theorem 4). The definition of SDC(v,Gn) is a distance-
based centrality. Furthermore, the definition of wv reveals that
the irregular effect caused by a small cycle is greater than that
caused by a large cycle which can be observed from Table
V and (16). This definition implies that a vertex within a
smaller cycle has a smaller weight which contributes “more”
to SDC(v,G) while a vertex not in any cycle has weight 1
which contributes “less” to SDC(v,G). Fig. 9 illustrates such
an example of a regular graph G and the infected subgraph
G10 containing two different-sizes cycles, say C3 and C4. Note
that, v10 and v8 have the same epidemic centrality, however,
we have P (G10|v10) > P (G10|v8) since v10 is closer to the
smaller cycle than v8.

Definition VI.2. Given a d-regular graph G and vertex v of G,
we define the statistical distance centrality of v, SDC(v,G)
as the summation of the weighted distance from v to all other
vertices in G. Hence, the statistical distance centrality of v in
G is defined by

SDC(v,Gn) =
∑
u∈Gn

wu · d(v, u). (22)

The vertex vs with the minimum value for SDC(v,G) is called
the statistical distance center.

Algorithm 2 is based on the idea of message passing. Let
lv(v) denote the level of v in a BFS tree. In Step 2, for
a given root vr, we start a message-passing procedure in a
BFS traversal to send a downward message containing level
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Algorithm 2 Statistical Distance-based Contact Tracing (SCT)
Input: Gn

Step 1: For each vertex v, compute the size C(v) of the
minimum cycle containing v, and set wv = C(v)

C(v)+1 .
Step 2: For each vertex v, compute SDC(v,Gn).
Step 3: Let v̂ = argmin

v∈G
SDC(v,G).

information to other vertices in the BFS tree. Upon receipt of
this information, each leaf vl sends back an upward message
containing wvl · lv(vl) to its parent. Each internal vertex vin
sends an upward message, containing the summation of all
message from its children plus wvin · lv(vin), to its parent.

In the following, we provide a time complexity analysis of
Algorithm 2. For Step 1, the worst case time complexity is
O(|Cmin| · |E(Gn)|) [45], where |Cmin| is the number of all
minimum cycles in Gn. Since G is a d-regular graph, each
vertex in Gn is contained in at most d minimum cycles which
implies Cmin ≤ d · n. The worst case time complexity for the
Step 2 in the Algorithm 2 is O(n3), since the BFS traversal
for each vertex takes O(n+ |E(Gn)|). Hence, the worst case
time complexity of Algorithm 2 is O(d · n3). In comparison
with the BFS heuristic approach in [14], it applies the BFS
traversal for each vertex and compute their epidemic centrality
which ends up with worst time complexity O(n3).

A. Experimental Performance Evaluation

We provide simulation results on different finite graphs with
cycles, the first two simulations are conducted on synthetic
graphs such as finite size grid graph and circulant graphs. Both
synthetic graphs are regular graphs with cycles except those
vertices on the boundary of the grid graph. In synthetic graphs,
we first simulate the virus spreading in a given network based
on the model described in Section II, to construct the infected
subgraph Gn. Then, we apply Algorithm SCT to compute the
source estimator.

We conduct the other four experiments on real-world SARS-
CoV2003 and COVID-19 contact tracing networks in Singa-
pore and Taiwan. If we can identify the connection between
any two confirmed cases in real-world contact tracing net-
works, we denote the connection (or contact) as an edge. How-
ever, when the number of confirmed cases is too large to record
details of contact information, we can only have information
about the geographical footprint for some confirmed cases. In
this situation, we also denote those visited places as vertices,
and we add an edge between a confirmed case and a place if
the confirmed case had visited the place.

Since G is unknown in practice and contact tracing networks
are infected subgraphs Gn, we assume that G is a regular
graph with a few irregular vertices, and apply Algorithm
SCT to the contact tracing networks to compute the source
estimator. We use the graph distance from the actual source
to the estimator to evaluate its performance.

1) Grid Graph: Disease spreading on grid graph is often
considered under different spreading rules and models [34],
[46]. Hence, we select grid graph to be one of the testing
synthetic networks. Simulation results are in Table VI and

Fig. 10. Comparing the error distribution (in the number of hops) between
Algorithm SCT and the BFS heuristic [14] in a finite grid graph with |G| =
10000 and |Gn| = 150. In particular, the rate of the correct detection, i.e.,
error = 0, is 12.1% for Algorithm SCT and 2.6% for the BFS heuristic.

TABLE VI
AVERAGE ERROR (IN TERMS OF NUMBER OF HOPS) COMPARING

ALGORITHM SCT AND BFS HEURISTIC IN [14] WHEN G IS A 100× 100
GRID GRAPH WITH DIFFERENT SIZE OF Gn .

n |C4| |vir| SCT BFS heuristic [14]
150 85.5 3.5 1.87 3.79
300 199.5 7.5 2.33 6.11
500 364.2 12.2 3.14 8.37
800 625.0 19.1 4.23 11.71

one of the error distributions is in Fig. 10. We can observe
from Table VI that the statistical distance based algorithm
outperforms the BFS heuristic in [14]. Moreover, the average
error is increasing as the number of irregular vertices is
increasing which again reveals the fact that the likelihood is
evened out to those irregular vertices.

2) Circulant Graph: A circulant graph G = (N ;S) is
a class of graphs which can be defined by its vertex set
V (G) = Z and a set S. The edge set is defined by E(G) =
{(vi, vj)| if |i − j| ∈ S}. Hence, if S is a subset of [1, N/2)
then G is (2|S|)–regular. Note that a circulant graph G is
connected if and only if S generates the integer group ZN
and we only consider the connected circulant graph. In the
simulation, we fix the size of N and S and randomly choose
integers from the interval [1, N/2) to form the set S.

3) SARS-CoV2003 Contact Tracing Network in Taiwan:
We reconstruct the contact tracing network data of SARS-

TABLE VII
AVERAGE ERROR (IN TERMS OF NUMBER OF HOPS) COMPARING

ALGORITHM SCT AND BFS HEURISTIC IN [14] WHEN G IS A RANDOM
d-REGULAR CIRCULANT GRAPH WITH |G| = 6000 AND |Gn| = 400.

d #(cycles) SCT BFS heuristic [14]
6 255.6 1.67 2.75
8 198.0 1.45 2.37
10 167.1 1.33 2.07
12 147.7 1.24 1.97
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Fig. 11. Comparing the error distribution (in the number of hops) between
Algorithm SCT and the BFS heuristic in [14] on a circulant graph with
|G| = 6000 and |Gn| = 400. In particular, the rate of the correct detection,
i.e., error = 0, is 19.1% for Algorithm SCT and 7.0% for the BFS heuristic.

Fig. 12. SARS-CoV2003 Contact Tracing Network in Taiwan. Each vertex
represents either a confirmed case or a hospital. The orange and red vertices
represent the source estimator determined by Algorithm SCT and the BFS
heuristic respectively. The orange vertex is the Taipei City Hospital Heping
Branch where the major outbreak occurs and the red vertex is a confirmed
case (not the first case) who had been to this hospital.

CoV2003 Taiwan from a graph, which indicates Potential
bridges among hospitals and households, in [47]. In the
original data, there are four types of nodes which represent
the confirmed case, suspected case, hospital, and area, respec-
tively. Since cities or countries provide no information for
personal contact, we delete all area nodes from the original
data. In addition, we also delete all the nodes that represent
suspected cases. We apply Algorithm SCT on this infected
network and correctly identify the first place, Taipei Municipal
Heping Hospital (now Taipei City Hospital Heping Branch), of
cluster infection in April 2003 in Taiwan. In addition, the BFS
heuristic approach chooses the red vertex, which represents a
confirmed case (not the first case) who had been to Taipei
Municipal Heping Hospital. The network graph is shown in
Fig. 12, and the orange vertex is the statistical distance center
representing the Taipei Municipal Heping Hospital.

Fig. 13. Each vertex is a cluster (place), and the number on each vertex is the
total amount of infected people who have visited the place. On April 3, four
places form a cycle, and all vertices are on the cycle. Algorithm SCT suggests
that the source estimator is WTG where the first case in this subgraph comes
from. On April 10, the epidemic center is S11 due to the link between S11
and STL.

4) COVID-19 Contact Tracing Network in Singapore, 2020
Mar-Apr: The contact tracing network is an unconnected
network due to the asymptomatic carriers, so we focus on the
largest connected subgraph (cluster), including several worker
dormitories and a construction site. We apply Algorithm SCT
on subgraphs of the contact tracing network in Singapore
provided in [48]. In our computation, each vertex represents
either an infected person or a place where the person had
visited. An edge between two vertices implies that either a
person has visited a place or two places have at least one
common visitor. Here we omit the edge of person-person
contact since most of the contact history can only be traced
back to a place, not a single person. Hence, we treat each
person-vertex as a leaf vertex connecting to a place.

The first massive outbreak occurred at the beginning of
April and peaked on April 20. Hence, we consider the infected
subgraph after April 1. We define the source in the connected
subgraph to be the first case in this connected subgraph. As far
as we know, Case 655 attaching to Westlite Toh Guan (WTG)
is the first case found in this subgraph on March 26. On April
3, the connected subgraph formed a 4-cycle, which is shown
in Fig. 13. We can apply Algorithm SCT, which shows that
WTG is the source estimator in this subgraph. After April 10,
S11 Dorm (S11) becomes the new epidemic center due to the
link between STL and S11 Dorm (S11). Note that S11 contains
the second earliest case in this cluster and becomes the largest
cluster in Singapore, which has more than two thousand cases
confirmed in the middle of May.

5) COVID-19 Contact Tracing Network in Taiwan, 2021
Feb and 2021 May: We conduct experiments on two clus-
ter infection in Taiwan recently. The first cluster infection
originated from a northern Taiwan hospital on February. This
network contains 18 tractable domestic cases. The reason we
select this networked data is that the contact network is public
information provided by Central Epidemic Command Center
in Taiwan [49] and the relation between cases in this network
is clearly defined. Note that if we apply the BFS heuristic,
then both case 838 and case 856 have the same possibility to
be the source estimator. However, case 838 is the vertex with
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Fig. 14. The infected subgraph of the contact tracing network starting from
a single case 838 in Taiwan. The number in each vertex is the case number.
Case 838 has the maximum statistical centrality, and it is the first domestic
case in this cluster.

Fig. 15. The contact tracing network of COVID-19, at the beginning of May
2021, in Taiwan. The vertex in red is the work place of the person with the
earliest symptom onset in this cluster.

maximum statistical distance centrality, i.e., Algorithm SCT
correctly identifies the first domestic case.

The second cluster infection is the latest cluster infection
found at the beginning of May 2021. As the source of this
cluster is unknown, we let the source be the person with
the earliest symptom onset. We collect the data before May
14,2021 from [49], and apply the 2-mode network model [47]
to this cluster. Each vertex in this graph is either a workplace or
a confirmed case. Both Algorithm SCT and the BFS heuristic
identify the workplace, of the first case in this network. The
contact tracing network is shown in Fig. 15, and the red vertex
is the source estimator determined by both algorithms.

6) Simulation Results on Other Networks: In addition to
the rumor centrality approach, we have selected two other
approaches, Dynamical Age [42] and Jordan Centrality [23],
to compare to Algorithm SCT. We use the average distance-
error to measure the performance of each algorithm. The
simulation results are shown in Table VIII. In each simulation,
we repeat the following process: generate Gn, find estimators
and compute errors for five hundred times in each type of
network. All datasets in Table VIII are available at [50],
[51] or can be generated by networkx [52]. Note that SCT
works well in circulant graph and grid graph, since SCT is
designed to solve the maximum likelihood estimation problem
on finite regular graph with cycles. In addition to the selected
algorithms, there are other approaches such as PTVA [26]
and gradient maximum likelihood algorithm (GMLA) [27]

perform well on source detection problem. However, PTVA
and GMLA are uncomparable with the methods listed in Table
VIII. Since PTVA and GMLA require additional information
such as relative time stamps observed by observers. Moreover,
to fairly compare all algorithms, the number of the observers
and their location in the network also need to be carefully
considered which is out of scope of this article.

VII. CONCLUSION

We present an optimal contact tracing algorithm for epi-
demic source detection that finds application in identification
of superspreaders in an epidemic (e.g., the COVID-19 pan-
demic). Our algorithm design leverages a statistical distance
centrality based on solving a graph-constrained maximum
likelihood problem for contact tracing graphs with irregular
vertices and cycles. As a high-dimensional statistical problem,
epidemic source detection requires a careful understanding
of the interaction between stochastic spreading processes and
topological features like graph distances, cycles and finite
boundaries, allowing us to resolve an open problem of fi-
nite degree-regular graphs with cycles in [14]. Performance
analysis demonstrated that our algorithm was near-optimal in
correctly identifying superspreaders at some of the largest su-
perspreading infection clusters using data from the SARS-CoV
2003 and COVID-19 pandemics in Singapore and Taiwan. It
will be most interesting to study computational epidemiology
through the lens of “network centrality as statistical inference”
to design robust contact tracing algorithms using mathematical
and data-driven methods (e.g., machine learning techniques
like deep learning, see [1], [10], [29]) that can analyze past
epidemic behaviors to fight against newly emerging epidemics.
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APPENDIX A
PROOF OF THEOREM AND LEMMAS

A. Proof of Theorem 1

In this proof, we use the fact that

P (vc|Gn) > P vevc (Gn, n) ·mve
vc(Gn, n),

and consider the ratio between the lower bound of P (vc|Gn)
and P (ve|Gn) to simplify the proof.

Proof. Let Gn be the infected subgraph. Without loss of
generality, we assume n = 2t + 1 and d ≥ 3. For ve, we
have

P (ve|Gn) = mve
ve(Gn, 1) · P veve (Gn, 1)

= 1 · P veve (Gn, 1)

=

2t−1∏
i=0

1

1 + i(d− 2)
=

n−2∏
i=0

1

1 + i(d− 2)
.
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TABLE VIII
AVERAGE ERROR (IN TERMS OF NUMBER OF HOPS) COMPARING ALGORITHM 2 (SCT) TO TOP-k VERSION OF RUMOR CENTRALITY (RC), JORDAN

CENTER (JC) AND DYNAMICAL AGE (DA) IN DIFFERENT NETWORKS

Network |G| |Gn| SCT BFS-RC JC DA
Circulant Graph(6000,6) 6,000 400 1.67 2.75 2.87 1.90
100× 100 Grid Graph 10,000 150 1.87 3.79 2.04 2.08

Random 3-regular Graph 5,000 200 1.26 1.42 1.57 1.32
Barabási-Albert(5000,3) 5,000 300 2.74 4.25 2.75 2.96
Canada Road Network 1,965,206 100 3.15 3.41 3.19 4.03

LastFM Asia Social Net. 7,624 100 2.47 2.59 2.61 2.75
Western U.S. Power Grid 4,941 200 4.26 4.87 4.46 4.82

For vc, it is simpler to consider the last term of (9) only,
that is, P vevc (Gn, n) · mve

vc(Gn, n). Note that mve
vc(Gn, n) =

|M(ve, G
′
n−1)| where G′n−1 = Gn \ {ve}. We have

P vevc (Gn, n) ·mve
vc(Gn, n)

=

[
2t−1∏
i=0

1

d+ i(d− 2)

]
· (2t)!

2t(t− 1)!t!

=
(n− 1)!

(n− 1)(n−32 )!(n−12 )!
·
n−2∏
i=0

1

d+ i(d− 2)
.

Now, let us consider the ratio given by

P vevc (Gn, n) ·mve
vc(Gn, n)

P (ve|Gn)

=
(n− 1)!

(n− 1)(n−32 )!(n−12 )!
·

n−2∏
i=0

1
d+i(d−2)

n−2∏
i=0

1
1+i(d−2)

= c1 ·
2

(n− 1) ·B(n−12 , n−12 )
·

Γ(n+ 1
d−2 − 1)

Γ(n+ d
d−2 − 1)

≈ c1 ·
2n−1√

2π
· n−c2 ,

where c1 and c2 are some positive values with respect to d.
The approximation is given by using Stirling’s formula. The
above result shows that the ratio becomes larger than 1 when
d is fixed, and n is sufficiently large enough. This leads to

P (vc|Gn)

P (ve|Gn)
>
P vevc (Gn, n) ·mve

vc(Gn, n)

P (ve|Gn)
> 1,

when n is sufficiently large.

B. Proof of Lemma 1

We first prove Lemma 2 and Lemma 1, which are tools to
help us prove our main result.

Lemma 2. Let G be a tree and va, vb ∈ G. If d(va, vb) = 2
and M(va, G) > M(vb, G), then tvbva > tvavb .

Proof. Let vm denote the vertex on the path from va to vb.
Then we can express M(va, G) as

M(va, G) =
tvmva
tvavm
·M(vm, G),

and M(vb, G) can be expressed in the same form. Since
M(va, G) > M(vb, G), we have

tvmva
tvavm

>
tvmvb
tvbvm

.

Note that tvmva = tvbva and tvmvb = tvavb , we can rewrite the above
inequality as

tvbva
tvavm

>
tvavb
tvbvm

.

Moreover, we can leverage the fact n = tvavm + tvbva = tvbvm + tvavb
to replace tvavm and tvbvm in the above inequality. Hence, we
have

tvbva
n− tvbva

>
tvavb

n− tvavb
,

which implies tvbva > tvavb .

Proof. To prove Lemma 1, we first consider the second
condition, i.e., the case when d(va, vir) = d(vb, vir) = 1.
Note that in this case, va is not on the shortest path from vb
to vir and vice versa.

We consider the ratio of mvir
va (Gn, i) to mvir

vb
(Gn, i) for all

possible i. Note that

mvir
v (Gn, i) =

(
n− i

tvvir − (i− 1)

)
M(v, tvirva ) ·M(vir, t

v
vir ),

where v = va, vb. Since M(va, t
vir
va ), M(vir, t

va
vir ), M(vb, t

vir
vb

)
and M(vir, t

vb
vir ) are fixed when Gn is given, we have

mvir
va (Gn, i)

mvir
vb (Gn, i)

∝

(
n−i

tvavir−(i−1)
)( n−i

t
vb
vir
−(i−1)

) =

(
n−i

n−tvirva −1
)(

n−i
n−tvirvb

−1
) .

Since Gn is a tree and d(va, vir) = d(vb, vir) = 1, we have
d(va, vb) = 2. By Lemma 2, we have tvbva > tvavb , which
implies tvirva > tvirvb . Hence, the ratio m

vir
va (Gn,i)

m
vir
vb

(Gn,i)
is an increasing

sequence with respect to i.
Since mvir

va (Gn, 2) = mvir
vb

(Gn, 2) and m
vir
va (Gn,i)

m
vir
vb

(Gn,i)
is in-

creasing with respect to i, we can conclude that mvir
va (Gn, i) ≥

mvir
vb

(Gn, i) which leads to

k∑
i=d(va,vir)+1

mvir
va (Gn, i) ≥

k∑
i=d(va,vir)+1

mvir
vb

(Gn, i).
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On the other hand, we consider the case when va is on the
path from vb to vir, i.e., {va, vb} ∈ E(G) and d(va, vir) =
d(vb, vir) + 1.

For brevity, we denote the distance from va to vir as D,
and relabel the vertices on the path from vp to ve as u0 to
uD+1 which are shown in Fig. A-B.

Again, we consider the ratio of m
uD+1
u1 (Gn, i) to

m
uD+1
u0 (Gn, i) for all possible i. We can express muD+1

u1 (Gn, i)
and muD+1

u0 (Gn, i) as follows:

muD+1
u1

(Gn, i) =∑
1<i1<...<iD−1<i

[D−1∏
l=1

(
n− il − tu1

ul+1

tul − 1

)]( n− i
tu1
uD+1 − 1

)
Ma,

where

Ma = M(u1, t
uD+1
u1

) ·
D+1∏
l=2

M(ul, t
ul).

We cam express muD+1
u0 (Gn, i) in the same way. Since Ma is

fixed when Gn is given, we have

m
uD+1
u1 (Gn, i)

m
uD+1
u0 (Gn, i)

∝

∑
1<i1<...<iD−1<i

[∏D−1
l=1

(n−il−tu1
ul+1

tul−1

)]
∑

1<i1<...<iD<i

[∏D
l=1

(n−il−tu1
ul+1

tul−1

)] ,

which is a decreasing sequence with respect to i.
Note that when i = D + 1, we have muD+1

u1 (Gn, D + 1) >
m
uD+1
u0 (Gn, D + 1).
Now, we can prove the main statement of Lemma 1. To

contrary, suppose there is an integer k such that

k∑
i=D+1

mvir
va (Gn, i) <

k∑
i=D+1

mvir
vb

(Gn, i).

Since the ratio of muD+1
u1 (Gn, i) to muD+1

u0 (Gn, i) is a decreas-
ing sequence, we have for all k′ > k,

k′∑
i=D+1

mvir
va (Gn, i) <

k′∑
i=D+1

mvir
vb

(Gn, i).

This leads to M(u1, Gn) < M(u0, Gn), which is a contradic-
tion to the assumption. Hence, we can conclude that ∀k,

k∑
i=D+1

mvir
va (Gn, i) ≥

k∑
i=D+1

mvir
vb

(Gn, i).

C. Proof of Theorem 2

Proof. Let D = d(vc, vir) and we relabel vertices on the path
from vc to vir as u1, u2, . . . , uD+1 . We can partition V (Gn)
as follows

V (Gn) = V (tvirvc ) + V (tvcvir ) +
D∑
i=2

V (ti).

For any vertex v in V (tvirvc ) other than vir. If d(v, vir) > 1,
then there is a neighbor of v, say u, such that d(v, vir) >
d(u, vir). Since M(u,Gn) > M(v,Gn), by the condition 1
in Lemma 1, we can conclude that

k∑
i=d(u,vir)+1

mvir
u (Gn, i) ≥

k∑
i=d(u,vir)+1

mvir
v (Gn, i).

Since the probability P (Gn|v) can be computed as follows

P (Gn|v) =

n−tvvir+1∑
i=D+1

mvir
v (Gn, i) · P virv (Gn, i),

and P virv (Gn, i) is a decreasing with respect to i. We can
conclude that P (Gn|u) > P (Gn|v). This procedure can be
continued until we reach to vir. By the same argument, we
can prove the case when v is in other parts with the remaining
uncomparable vertices being on the path from vc to vir.

D. Proof of Theorem 3

Proof. Let v ∈ Gn and v is not a cycle vertex and each
connected component of Gn\{v} is of size less or equal to
n/2. Consider any given spanning tree Tj of Gn, assume that
v is not the rumor center of Tj . Then, there is a vertex u such
that tvu > tuv on Tj . Since tvu + tuv = n, we can conclude that
the size of the connected component of Gn\{v} containing
u is greater than n/2, which contradicts to the assumption.
Hence, we have the fact that v is the rumor center on each
spanning tree Tj , for j = 1, 2, . . . , h, and v is also the rumor
center of Gn from (19).
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