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PUERT: Probabilistic Under-sampling and
Explicable Reconstruction Network for CS-MRI

Jingfen Xie, Jian Zhang, Yongbing Zhang, Xiangyang Ji

Abstract—Compressed Sensing MRI (CS-MRI) aims at recon-
structing de-aliased images from sub-Nyquist sampling k-space
data to accelerate MR Imaging, thus presenting two basic issues,
i.e., where to sample and how to reconstruct. To deal with both
problems simultaneously, we propose a novel end-to-end Proba-
bilistic Under-sampling and Explicable Reconstruction neTwork,
dubbed PUERT, to jointly optimize the sampling pattern and the
reconstruction network. Instead of learning a deterministic mask,
the proposed sampling subnet explores an optimal probabilistic
sub-sampling pattern, which describes independent Bernoulli
random variables at each possible sampling point, thus retaining
robustness and stochastics for a more reliable CS reconstruction.
A dynamic gradient estimation strategy is further introduced
to gradually approximate the binarization function in backward
propagation, which efficiently preserves the gradient information
and further improves the reconstruction quality. Moreover, in our
reconstruction subnet, we adopt a model-based network design
scheme with high efficiency and interpretability, which is shown
to assist in further exploitation for the sampling subnet. Extensive
experiments on two widely used MRI datasets demonstrate that
our proposed PUERT not only achieves state-of-the-art results
in terms of both quantitative metrics and visual quality but also
yields a sub-sampling pattern and a reconstruction model that
are both customized to training data. 1

Index Terms—Compressed sensing MRI, deep unfolding net-
work, joint learning, probabilistic under-sampling

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is a widely-used
biomedical imaging technology that enjoys superior

benefits of good soft-tissue contrast, non-ionizing radiation,
and the availability of multiple tissue contrasts. A main chal-
lenge lies in how to reduce the long scan time so as to improve
accessibility and decrease costs. One solution is to accelerate
MRI via Compressed Sensing (CS) [1], [2]. In Compressed
Sensing MRI (CS-MRI), sub-Nyquist sampling [1] is utilized
to get under-sampled k-space data, i.e., part of the Fourier
transform of the image, following a predetermined sampling
mask. Then, given a sub-sampled set of measurements, a
CS-MRI reconstruction algorithm with high quality and a
fast speed is expected to reconstruct the full-resolution MRI
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without aliased artifacts. Thus, there exist two important issues
within CS-MRI, i.e., where to sample and how to reconstruct.

For sampling schemes, some popular patterns in CS-MRI
include Cartesian [3] with skipped lines, Random Uniform [2]
and Variable Density (VD) [4], thanks to their simplicity and
good performance when coupled with reconstruction methods.
These sampling schemes mostly follow variable-density prob-
ability density functions, based on the empirical observation
that lower frequencies should be sampled more densely than
high frequencies to promote image recovery. Another common
Poisson disc sampling strategy [5] adopts sampling locations
separated by a minimum distance [6] in addition to following
a density, thus further exploiting redundancies in parallel MRI.
However, these masks are designed heuristically and indepen-
dently, lacking the ability to adapt to specific data and recovery
methods, leaving much room for further improvement.

For MRI reconstruction, there exist various works improv-
ing it from many aspects. On one hand, traditional model-
based MRI restoration has been widely studied [1], [3],
[7]–[14]. These methods usually adopt iterative optimization,
resulting in over-smoothed recovery and long consuming time.
On the other hand, data-driven methods have been introduced
as a promising alternative [15]–[23] with high quality and a
fast speed. In [16], a widely-used convolutional neural network
called U-Net [17] is used to reconstruct MR images. In [18],
a cascaded CNN with a data consistency layer is presented to
further ensure measurement fidelity. Most recently, some Deep
Unfolding Networks (DUNs) [24]–[30] are developed to inte-
grate the interpretability of traditional model-based approaches
and the efficiency of data-driven methods, thus yielding a
better recovery performance. Note that DUNs are not limited
to CS-MRI, but also widely studied in CS reconstruction
[31]–[35]. As an instance, a state-of-the-art method ISTA-Net
[24] unfolds the traditional iterative shrinkage-thresholding
algorithm (ISTA) update steps to a network with a fixed
number of stages, each corresponding to one iteration in ISTA.
Besides, recent works have also focused on exploring different
training objectives such as adversarial loss [36]–[38] and
cyclic loss [39], [40] to enhance perceptual recovery quality.

The above-mentioned works regard sub-sampling and re-
construction as two independent problems, in consideration
of generality and simplicity. However, they ignore the fact
that, in general, the optimal under-sampling pattern depends
on the specific MRI anatomy and reconstruction method, thus
requiring more customization.

In this paper, we jointly deal with the above two issues,
i.e., under-sampling and reconstruction, and propose a novel
end-to-end Probabilistic Under-sampling and Explicable Re-
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construction neTwork, dubbed PUERT and pronounced like
Pu’er Tea, to achieve an efficient combination of sub-sampling
learning and reconstruction network training. Specifically, con-
sidering the stochastic strategies of compressed sensing, we
develop a sampling subnet that explores an optimal Bernoulli
probabilistic sampling pattern instead of a deterministic mask,
thus achieving robustness and stochastics for a more reliable
reconstruction. Then, a dynamic gradient estimation strategy
is proposed to gradually approximate the binarization function
in backward propagation, which efficiently retains the gradient
information and further improves the recovery quality. More-
over, we adopt an efficient reconstruction subnet unfolded
by the traditional ISTA algorithm, and also emphasize the
superiority of DUN in facilitating exploration and efficient
training of the sampling subnet.

Overall, the main contributions of this paper are four-fold:
• A novel end-to-end Probabilistic Under-sampling and

Explicable Reconstruction neTwork, dubbed PUERT, for
CS-MRI is proposed, which implements an efficient com-
bination of sampling mask learning and reconstruction
network training.

• The sampling subnet explores an optimal probabilistic
sampling pattern to retain robustness and stochastics, and
introduces a dynamic gradient estimation strategy to en-
able efficient training and promote network performance.

• The end-to-end reconstruction subnet adopts an expli-
cable ISTA-unfolding network with high reconstruction
quality and fast speed, which is also shown to facilitate
further exploration for the sampling subnet.

• Experiments show that our proposed PUERT not only
performs favorably against state-of-the-arts in terms of
both quantitative metrics and visual quality but also yields
a sub-sampling pattern and a reconstruction model that
are both customized to training data.

II. RELATED WORK

Existing sampling pattern optimization schemes consist of
two classes: 1) active algorithms [41], [42] using a sampling
subnet to predict the next k-space sample location based on
current recovery from reconstruction subnet, and 2) non-active
methods directly predicting the whole mask in every epoch.
Here, we focus on the latter kind and further divide them into
nested optimization methods and end-to-end learning methods.

A. Nested Optimization Methods

Nested optimization methods formulate the sampling matrix
learning problem as two nested optimization issues. The outer
issue is to find an optimal sub-sampling mask or trajectory that
behaves best under the current reconstruction algorithm, which
is then taken as input for the inner problem to further opti-
mize the reconstruction method. Several heuristic or greedy
algorithms [43]–[51] have been proposed to tackle the above
nested pair of problems, and has been demonstrated to achieve
better reconstructions than conventional methods [50], [52] in
an empirical study [53]. Most recently, in [54], continuous
optimization methods are applied to a formulated bilevel op-
timization problem, with the aim of learning sparse sampling

patterns for MRI within a supervised learning framework
for a given variational reconstruction method. However, the
above algorithms suffer from high computational complexity
when dealing with large-scale training data, and often lack the
flexibility to explore different types of sampling patterns.

B. End-to-end Learning Methods

Fueled by the rise of deep learning, some end-to-end data-
driven sampling optimization methods [55]–[59] are proposed
to achieve computational efficiency and improve reconstruc-
tion. PILOT [57] introduces hardware constraints into the
learning pipeline and explores an optimal physically viable k-
space trajectory that is enabled by interpolation on the discrete
k-space grid. However, the learned trajectory significantly
depends on the initialization and lacks exploration. J-MoDL
[59] proposes a multichannel sampling model consisting of a
non-uniform Fourier operator with continuously defined sam-
pling locations to promote the optimization process without
approximations. However, it constrains the sampling mask as
the tensor product of two 1D sampling patterns and restricts its
performance. Note that, due to learning a deterministic mask,
the above methods inhibit flexibility and randomness, and are
against the stochastic strategy of CS theory [60], [61].

LOUPE [56] assumes that each binary sampling location
is an independent Bernoulli random variable and learns a
probabilistic sampling pattern instead of a deterministic mask.
In this aspect, both LOUPE and our PUERT have similar
inspirations, but in fact, our PUERT enjoys three superior
advantages compared to LOUPE. First, due to the relaxation
of the binarization operation, LOUPE not only pays a perfor-
mance penalty, but also needs to retrain the reconstruction
model with the learned binary mask, whereas our PUERT
directly uses the binarization function in the forward pass
and introduces an efficient gradient estimation strategy for the
backward pass, which overcomes the above two shortcomings
and is shown to promote the recovery quality. Second, LOUPE
mainly adopts a U-Net network and does not point out the
superiority of DUNs against non-DUNs on further exploitation
of the sampling subnet. However, we emphasize that, thanks to
DUN’s intrinsic structural feature of fully utilizing knowledge
on the mask in each stage, it’s of great significance to use
DUNs to facilitate exploration and training of the sampling
subnet. Third, when testing, LOUPE directly samples from the
learned probabilistic pattern and gets a mask with an inexact
sampling ratio, whereas in PUERT, the vanilla binarization
function is replaced by a greedy version, thus achieving precise
control of sampling ratio and promoting fair comparisons.

III. PROPOSED METHOD

In this section, we elaborate on the design of our proposed
PUERT. We first formulate the problem in Section III-A. Then,
as shown in Fig. 1, our PUERT consists of a sampling subnet
and a reconstruction subnet, which are described in Sec-
tion III-B and Section III-C respectively. Finally, we describe
the details about parameters and loss function in Section III-D.
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Fig. 1. Our proposed PUERT consists of two subnets: a Sampling Subnet and a Reconstruction Subnet. In the Sampling Subnet, we learn a probabilistic
sampling pattern P to generate the binary mask M. Each value in P stands for the probability of the corresponding location in M of taking value 1. We
generate M via adopting a uniform-distributed U and a binarization function to implement Bernoulli sampling. Note that, during testing, we use a greedy
binarization function to implement precise control of the sampling ratio. In the Reconstruction Subnet, we cast the traditional ISTA method into a deep
unfolding network containing K stacked stages. Each stage (k-th) inputs x̂k−1, outputs x̂k , and is composed of a Gradient Descent Module (GDM) and a
Proximal Mapping Module (PMM). We implement PMM with 2 residual blocks, two convolutions and a long residual connection with input.

A. Problem Formulation
In CS-MRI, the acquisition process can be formulated as:

y = M� Fx + ε, (1)

where x ∈ CNx×Ny and y ∈ CNx×Ny denote the origi-
nal fully-sampled image to be reconstructed and the under-
sampled k-space observation, respectively. ε ∈ CNx×Ny is the
noise generated during acquisition. F and � denote the Fourier
Transform (FT) and the element-wise multiplication operation,
respectively. M ∈ RNx×Ny is a binary sampling mask matrix
composed of 1 and 0, which separately represent whether to
sample or not at the corresponding k-space position. Note that
the CS sampling ratio, denoted by α, is defined as the ratio
of value 1 in M, i.e., α =

‖M‖0
Nx×Ny

.
To tackle the ill-posed inversion of reconstructing x from

sub-sampled data y under a given mask M, traditional CS-
MRI reconstruction methods usually reconstruct the original
image x by solving the following optimization problem:

arg min
x
‖M� Fx− y‖22 + λψ(x), (2)

where ψ(x) denotes an image prior-regularized term and λ is a
weight to balance between fidelity and regularization. Despite
the broad task defined above, note that we only consider partial
Fourier reconstruction here, excluding parallel imaging [6],
[62], [63] and structured low-rank matrix methods [64]–[66].

In pursuit of superior recovery performance, we propose to
concurrently explore an optimal sampling pattern while learn-
ing reconstruction network parameters. To this end, we take
M as learnable parameters and construct a novel end-to-end
Probabilistic Under-sampling and Explicable Reconstruction
neTwork (PUERT), which is composed of a sampling subnet
and a reconstruction subnet, as illustrated in Fig. 1.

B. Sampling Subnet

In the Sampling Subnet (SampNet), we first explore a
Probabilistic Under-sampling (PU) scheme to preserve robust-
ness and stochastics, and then adopt a Dynamic Gradient
Estimation (DGE) strategy to enable efficient training and
promote network performance.

Probabilistic Under-sampling (PU): Building on stochas-
tic strategies and the robustness requirement of compressed
sensing, stochastic sub-sampling patterns are able to create
noise-like artifacts that are relatively easier to remove [2].
Therefore, we propose to directly optimize a probabilistic
sampling pattern rather than a fixed binary mask. Further-
more, considering that adopting a classic sampling pattern
(e.g., Gaussian [4] or Uniform [2] distribution) exhibits great
limitation and lacks adaptability, we propose to learn inde-
pendent Bernoulli random variables for each k-space point,
thus learning a sampling pattern highly customized to specific
training data and recovery methods.

Concretely, a learnable probabilistic sampling pattern P ∈
RNx×Ny is introduced and each value Pi,j ∈ [0, 1] stands for
the probability of Mi,j taking value 1, i.e., Mi,j ∼ B(Pi,j),
where B(z) denotes a Bernoulli random variable with parame-
ter z. In order to draw a sample from P and generate a binary
mask M, we introduce a matrix U ∈ RNx×Ny with each
element independently drawn from a Uniform distribution on
[0, 1], i.e., Ui,j ∼ U(0, 1), and then binarize the difference
between Pi,j and Ui,j by a function Bina. So the generation
of M is formulated as:

Mi,j = Bina(Pi,j −Ui,j), (3)

where Bina is implemented by a vanilla binarization function
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Stage 1 Stage 2

Fig. 2. Our proposed Dynamic Gradient Estimation consists of two stages. The error of gradient estimation is denoted by the area of gray shades. During
Stage 1, in order to retain fast updating ability, we keep the derivative value close to one and reduce S1 by decreasing the output range. While during Stage
2, more attention is paid to achieving accurate gradients and we increase the slope of the function to make S2 shrink.

Binav in the training process:

Binav(x) =

{
1, x >= 0
0, x < 0.

(4)

Note that U is not fixed, but randomly generated every time P
generates M. In this way, the sampling subnet is able to learn
a probabilistic sampling pattern P that expresses belief or im-
portance across all k-space locations, thus gaining robustness
and stochastics for a more reliable CS-MRI reconstruction.
Note that the use of U is similar to the re-parameterization
trick used in VAE [67], which generates non-uniform random
numbers by transforming some base distribution, so as to
recast the statistical expression and tackle the stochastic node.

Another critical issue is how to control the sparsity of the
generated mask M at a given target sampling ratio α. To this
end, we first introduce a rescale operator to adjust the average
value of P, and then adopt a greedy binarization operator
specifically for testing to implement a totally accurate control.

To be concrete, before sampling out M as Eq. (3), the
probabilistic sampling pattern P is rescaled as follows:

Res(Pi,j) =

{ α
p̄Pi,j , if p̄ ≥ α
1− 1−α

1−p̄ (1−Pi,j), otherwise. (5)

Here, p̄ stands for the average value of P, i.e., p̄ =
∑

i,j Pi,j

Nx×Ny
.

It can be proven that Eq. (5) yields P with its average value
rescaled to the given CS ratio α. With this rule, the ratio of
the generated binary mask M would be close to the target α.

During the testing process, in order to achieve an accurate
control of the ratio of M, a greedy binarization function
Binag is further utilized to replace the vanilla one Binav in
Eq. (3). Specifically, the greedy binarization function Binag
used during testing is defined as follows:

Binag(x; Ω, α) =

{
1, x >= b(Ω, α)
0, x < b(Ω, α),

(6)

where Ω represents the set {Pi,j −Ui,j} and b(Ω, α) stands
for the (α× |Ω|)-th largest number in the set Ω. In this way,
our method precisely controls the ratio of M and implements
a fair comparison with other methods. Note that since the
learned probabilistic pattern P represents importance across
all k-space locations, our value-maximization design as Eq. (6)
for the testing process is actually cooperative with the training

period and exhibits nice rationality. Besides, thanks to the
adoption of U in Eq. (6), our method outputs a sampling mask
with randomness rather than a fixed mask.

Dynamic Gradient Estimation (DGE): In order to make
the above sampling subnet trainable, inspired by recent works
in Binarized Neural Networks (BNNs) [68], [69], a dynamic
gradient estimation strategy is further introduced for the vanilla
binarization function Binav in Eq. (4). To be specific, we
adopt the following dynamic function g as a progressive
approximation of Binav during backward propagation:

g(x) =
k tanh(2tx) + 1

2
, (7)

whose derivative is used as the backward gradient of Binav .
Here t and k are control variables and change as follows during
the training period:

t = Tmin10
i

Ne
×lg Tmax

Tmin , k = max

(
1

t
, 1

)
, (8)

where i is the current epoch and Ne is the number of epochs,
Tmin = 10−1 and Tmax = 101. Note that t and k controls the
slope and output range of function g, respectively.

Essentially, this is a progressive two-stage strategy to ap-
proximate the vanilla binarization function Binav . As shown
in Fig. 2, during Stage 1, i.e., the early stage of training, we
focus more on the updating ability and speed of the back-
ward propagation algorithm. Therefore, the gradient estimation
function’s derivative value is kept close to one, and then the
output range is reduced progressively from a large scope to
[0, 1]. As for Stage 2, we lay more importance on retaining
accurate gradients for parameters around zero. Consequently,
we keep the function output range as [0, 1] and gradually
increase the slope so as to push the estimation curse to the
shape of the binarization function Binav , thus achieving the
consistency of forward and backward propagation during the
late stage of training. Based on the above two-stage scheme,
our proposed DGE gradually approximates the binarization
function in backward propagation and reasonably updates all
parameters, which is shown to efficiently retain the gradient
information and promote network performance.
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VD-1D PUERT-1D Pseudo Radial Random Uniform VD-2D PUERT-2D

5%

10%

Fig. 3. Visual reconstruction comparisons of different masks under RecNet trained on Brain dataset for two different ratios α = 5% and α = 10%. VD is
short for Variable Density. Compared with VD-2D masks, the learned 2D masks are similar for lower frequencies, but different for high frequency values,
which demonstrates that our PUERT enjoys the ability to adaptively optimize sub-sampling patterns for specific ratios.

C. Reconstruction Subnet

In the Reconstruction Subnet (RecNet), without losing
generality, we construct a deep unfolding network by casting
the traditional ISTA method into a deep network form, so as
to achieve simplicity, effectiveness and interpretability.

The classic CS-MRI optimization problem Eq. (2) can be
efficiently solved with ISTA by iterating the following two
update steps:

rk = x̂k−1 − ρFH (M� Fx̂k−1 − y) , (9)

x̂k = proxλψ (rk) . (10)

Here, k denotes the iteration index, ρ is the step size, FH

denotes the Inverse Fourier Transform (IFT) and the proximal
mapping operator of regularizer ψ is defined as proxλψ(r) =

arg minx
1
2 ||x−r||22 +λψ(x). Eq. (9) and Eq. (10) are usually

called gradient descent step (GDS) and proximal mapping step
(PMS), respectively.

Following [24], our ISTA-unfolding reconstruction subnet
consists of K stages and each stage corresponds to one
iteration in ISTA. Concretely, each stage is composed of a
gradient descent module (GDM) and a proximal mapping
module (PMM), which correspond to the above two update
steps Eq. (9) and Eq. (10), respectively.

For GDM, to preserve the ISTA structure while increasing
network flexibility, the step size ρ is allowed to vary across
iterations, and GDS, i.e., Eq. (9) is casted as follows:

rk = x̂k−1 − ρkFH (M� Fx̂k−1 − y) . (11)

As for PMM in each stage, we propose a simple yet effective
module as shown in Fig. 1, which can be formulated as:

x̂k = rk +Hreck (HRB,2k (HRB,1k (Hextk (rk)))). (12)

Here, PMM consists of 2 residual blocks (RBs) HRB,1k and
HRB,2k , two convolution layers Hextk , Hreck , which devote to
extracting the image features and reconstruction, respectively,
and a long residual connection with input rk.

D. Network Parameters and Loss Function
Given the training dataset with full-resolution images
{x(i)}ND

i=1 , the sampling subnet first uses a learnable sampling
mask M to get simulation measurements y(i) = M � Fx(i),
and then, with initialization x

(i)
0 = FHy(i) as input, the

reconstruction subnet outputs the recovery results, aiming to
reduce the discrepancy between x(i) and x̂

(i)
K . Therefore, we

use the following end-to-end loss function to train our PUERT:

L(Θ) =
1

NDN

ND∑
i=1

‖x̂(i)
K − x(i)‖22, (13)

where ND is the number of training images and N is the size
of each image x(i), i.e., N = Nx×Ny . Θ denotes the learnable
parameter set in the two subnets of PUERT. Note that, in the
sampling subnet, the learnable parameters are not directly the
probabilistic sampling pattern P, but an unconstrained image
O with the same size, such that Pi,j = σ(Oi,j) to realize
Pi,j ∈ (0, 1). Here, σ denotes the sigmoid fuction with the
slope set be to 5. It is also worth emphasizing that, thanks to
the rescale operator as Eq. (5), a loss term to constrain the
sparsity ratio of the learned sampling mask is unnecessary.

IV. EXPERIMENTS

Our PUERT is implemented in PyTorch [70] on one
NVIDIA Tesla V100. We utilize Adam [71] optimization with
a learning rate of 0.0001 (3000 epochs) and a batch size
of 8. The default value of stage number K is 9. Following
common practices in previous works, we use two widely
used benchmark datasets: Brain [25] and FastMRI [72], which
contain 100 brain and 4501 knee MR images for training, and
50 brain and 657 knee MR images for testing, respectively.
Brain dataset is based on ground-truth images and follows the
simulation process stated in Section III-D. As for FastMRI
dataset, the simulation is similar, except that the fully-sampled
ground truth is in k-space (emulated single coil [73]) instead
of the image domain, and thus, is relatively more realistic.
The recovered results are evaluated with Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) [74].
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Fig. 4. Box plots for PSNR values of reconstructions obtained with four reconstruction methods, six different sampling schemes and two sub-sampling ratios
on Brain dataset. SN-1D and SN-2D denote our proposed SampNet under 1D and 2D settings, respectively. Our SampNet yields attractively better results
than competing masks when combined with any of the four reconstruction methods and under any of the two CS ratios.

TABLE I
AVERAGE PSNR COMPARISONS OF VARIOUS SAMPLING SCHEMES, WITH
FOUR RECOVERY METHODS UNDER DIFFERENT CS RATIOS FOR BOTH 1D

AND 2D SETTINGS ON BRAIN DATASET. OUR PROPOSED SAMPNET YIELDS
BEST RESULTS AMONG ALL COMPETING MASKS UNDER ALL CONDITIONS.

Ratios Methods 1D Settings 2D Settings
VD-1D SampNet Radial Uniform VD-2D SampNet

5%

PANO [75] 17.51 28.53 27.70 30.26 33.04 34.14
BM3D-MRI [76] 25.43 28.72 27.78 30.77 34.26 35.27

U-Net [72] 30.03 32.09 30.49 32.91 34.66 35.65
RecNet 30.64 32.26 31.02 33.00 35.79 36.74

10%

PANO [75] 31.66 32.79 31.93 32.69 36.26 36.75
BM3D-MRI [76] 32.06 33.65 33.19 33.83 37.58 38.09

U-Net [72] 33.32 33.68 33.45 33.82 37.31 38.03
RecNet 34.22 35.51 34.88 36.03 38.45 39.13

A. Comparisons with Classic Masks under Multiple Recon-
struction Methods

To validate the effectiveness of our proposed sampling
pattern optimization scheme, i.e., our SampNet, we compare
our learnable masks with four types of classic fixed masks
under the conditions of four reconstruction methods.

• For classic fixed masks, we consider four categories that
are widely used in the literature: Cartesian [3] with
skipped lines (dubbed VD-1D), pseudo Radial [25], Ran-
dom Uniform [2] and Variable Density under 2D (dubbed
VD-2D) [4] masks, where the first category is 1D sub-
sampling mask and the last three are 2D masks. Note that
a fixed calibration region of size 32 × 32 is adopted in
the center of the k-space for Uniform and VD-2D masks
in order to yield better recovery performance.

• For reconstruction methods, we consider two traditional
model-based methods, i.e., PANO [75] and BM3D-MRI
[76], and one widely used deep learning model called
U-Net [72]. Our reconstruction subnet (RecNet) is also
extracted as a recovery model for fair comparisons.

Example Slices Optimized under 5% Optimized under 10%
K

ne
e

B
ra

in

Fig. 5. Visual comparisons of PUERT-optimized sampling masks for the
knee and brain anatomies (under α = 5% and α = 10%). For the knee
anatomy, more attention has been paid to lateral frequencies, whereas for the
brain, the learned masks are more radially symmetric. This comparison result
highlights the importance of adapting the learnable under-sampling pattern to
the anatomy and data at hand.

In this experiment, the aforementioned four classic masks as
well as our proposed SampNet, including 1D and 2D versions,
are experimented under the above four reconstruction methods,
thus leading to 24 possible combinations. Note that when
combining the two traditional methods PANO and BM3D-MRI
with our SampNet, we use the fixed sampling masks learned
by our PUERT to conduct the reconstruction. While for U-Net,
it is combined with our proposed SampNet to jointly optimize
the parameters for under-sampling and reconstruction. Note
that for the 1D setting, our SampNet adopts a Bernoulli
probabilistic pattern P ∈ RNx and generates a binary vector
V ∈ RNx , i.e., Vi ∼ B(Pi), which is then expanded on the
column dimension to a 1D sampling mask M ∈ RNx×Ny .
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Ground Truth VD-1D (27.19 dB) Radial (27.05 dB) Uniform (28.94 dB) VD-2D (32.01 dB) Ours-1D (29.00 dB) Ours-2D (33.15 dB)

Ground Truth VD-1D (24.62 dB) Radial (24.24 dB) Uniform (26.89 dB) VD-2D (29.47 dB) Ours-1D (25.97 dB) Ours-2D (31.72 dB)

Fig. 6. Visual reconstruction comparisons of different masks under RecNet at ratio 5% for 1D and 2D settings on Brain dataset. The proposed PUERT is
able to recover more details and much sharper edges than other competing masks, even under the aggressive 5% sampling ratio.

Fig. 3 shows the visual comparisons among the classic
masks and our optimized sub-sampling matrices trained on
Brain dataset for two different ratios α = 5% and α = 10%.
One can see that the learned 2D masks are similar to VD-2D
masks, both showing a strong preference for lower frequencies
and exhibiting a denser sampling pattern closer to the origin
of k-space. While for high frequency values, compared with
VD-2D masks, our optimized masks show a relatively smaller
density when α = 5% but larger when α = 10%, which
demonstrates that our PUERT enjoys the ability to adaptively
optimize sub-sampling patterns for specific ratios.

Furthermore, the optimized masks by our PUERT for the
knee and brain anatomies are compared in Fig. 5. We observed
that, for the knee MR images, more attention has been paid to
lateral frequencies rather than ventral frequencies, owing to the
unique asymmetric feature of the knee anatomy, where there
is dramatically more tissue contrast in the lateral direction.
The masks learned on Brain dataset, on the other hand,
exhibit a more radially symmetric feature. This comparison
highlights the importance of adapting the learnable under-
sampling pattern to the anatomy and data at hand.

Fig. 4 shows box plots for PSNR values of reconstructions
obtained with four reconstruction methods, six different sam-
pling schemes, and two sub-sampling ratios on Brain dataset.
One can intuitively observe that overall our proposed SampNet
yields attractively better results than competing masks when
combined with any of the four reconstruction methods and
under any of the two CS ratios, which demonstrates the

superiority of our proposed sub-sampling learning scheme. It
is worth emphasizing that U-Net with our proposed SampNet
achieves higher PSNR than competing classic masks, thus
validating that the proposed PUERT enjoys the generality of
being extended to other reconstruction networks.

Table I lists the concrete PSNR values of Fig. 4. We can
observe that, benefiting from our efficient probabilistic under-
sampling scheme and dynamic gradient estimation strategy, the
proposed SampNet achieves the highest PSNR results among
all competing masks. Taking RecNet under ratio 10% for
2D setting as an example, our SampNet achieves remarkable
0.68 dB PSNR gains over the state-of-the-art classic VD-2D
masks. It is also noteworthy that, when equipped with our
SampNet, U-Net still performs worse than our RecNet, thus
demonstrating that, compared with the classic data-driven re-
construction model, a deep unfolding network is more suitable
to facilitate exploration and efficient training of our SampNet.
We attribute such superiority to its intrinsic structural feature
of fully utilizing knowledge on the sampling mask in each
stage of the deep unfolding network.

Fig. 6 further shows the visual reconstruction comparisons
of different masks under RecNet at ratio 5% for 1D and 2D
settings on Brain dataset. As can be intuitively appreciated
from the two test images, the PUERT is able to consistently
recover more details and much sharper edges than other com-
peting masks, even under the aggressive 5% sampling ratio,
thus validating the effectiveness, efficiency and practicability
of our proposed PUERT.
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TABLE II
AVERAGE PSNR PERFORMANCE COMPARISONS WITH VARIOUS STATE-OF-THE-ART METHODS WITH DIFFERENT CS RATIOS ON BRAIN AND FASTMRI

DATASETS. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE COLORS, RESPECTIVELY.

Datasets Methods Masks Ratios
5% 10% 15% Avg. GPU Time

Brain

Zero-filled

Fixed
(Radial)

24.22/0.5140 26.81/0.6030 28.80/0.6713 26.61/0.5961 0.0038s
UNet-DC [16] 30.07/0.7540 32.83/0.8221 34.75/0.8639 32.55/0.8133 0.0199s

ADMMNet [25] 30.13/0.7958 34.46/0.8972 36.83/0.9306 33.81/0.8745 0.0192s
ISTA-Net+ [24] 30.64/0.8176 34.73/0.9052 37.07/0.9343 34.15/0.8857 0.0277s

RDN [20] 31.04/0.8056 34.62/0.8887 36.85/0.9221 34.17/0.8721 0.0310s
CDDN [19] 31.01/0.8163 35.21/0.9074 37.35/0.9353 34.52/0.8863 0.0483s

LOUPE-1D [56]

Learned

32.11/0.8647 35.16/0.9311 36.51/0.9447 34.59/0.9135 0.0536s
LOUPE-2D [56] 35.34/0.9245 36.88/0.9381 38.30/0.9473 36.84/0.9366 0.0699s

PUERT-1D (Ours) 32.26/0.8839 35.51/0.9285 37.44/0.9484 35.07/0.9203 0.0214s
PUERT-2D (Ours) 36.74/0.9409 39.13/0.9551 40.84/0.9636 38.90/0.9532 0.0578s

FastMRI

Zero-filled

Fixed
(Catesian)

25.29/0.5759 26.31/0.6205 27.50/0.6565 26.37/0.6176 0.0045s
UNet-DC [16] 27.25/0.6347 29.19/0.7048 30.60/0.7458 29.01/0.6951 0.0226s

ADMMNet [25] 27.32/0.6372 29.05/0.6995 30.85/0.7506 29.07/0.6958 0.0227s
ISTA-Net+ [24] 27.50/0.6436 29.82/0.7210 31.57/0.7657 29.63/0.7101 0.0241s

RDN [20] 27.70/0.6487 30.19/0.7290 31.78/0.7721 29.89/0.7166 0.0252s
CDDN [19] 27.81/0.6507 30.32/0.7272 31.92/0.7715 30.02/0.7165 0.0723s

LOUPE-1D [56]

Learned

30.68/0.7217 31.15/0.7689 33.06/0.8211 31.63/0.7706 0.0487s
LOUPE-2D [56] 31.94/0.7530 33.43/0.8033 34.73/0.8409 33.37/0.7991 0.0623s

PUERT-1D (Ours) 30.71/0.7170 32.57/0.7712 33.75/0.8110 32.34/0.7664 0.0301s
PUERT-2D (Ours) 32.87/0.7557 33.96/0.7991 35.16/0.8412 34.00/0.7987 0.0694s

B. Comparisons with State-of-the-Art Methods

We compare our proposed PUERT (including 1D and
2D versions) with six representative state-of-the-art methods,
namely UNet-DC [16], ADMMNet [25], ISTA-Net [24], RDN
[20], CDDN [19] and LOUPE [56]. The first five methods are
reconstruction networks trained under some fixed sampling
mask, while the last method jointly optimizes the learnable
sampling pattern and the reconstruction network parameters.
Following [25] and [72], for those trained under some fixed
mask, we adopt Radial masks (2D) and Cartesian masks with
skipped lines (1D) on Brain and FastMRI datasets respectively.
Note that LOUPE is also able to implement both 1D and 2D
sub-sampling optimization schemes.

The average PSNR/SSIM performance reconstructions of
various methods on two datasets with respect to three CS
ratios are summarized in Table II. One can observe that meth-
ods with learnable sampling patterns, especially our PUERT,
overall yield higher PSNR than those with fixed masks,
which verifies the superiority of sampling pattern optimization
schemes. Concretely, for Brain dataset, our PUERT-1D and
PUERT-2D achieve on average 0.55 dB and 4.38 dB PSNR
gain over the state-of-the-art method CDDN respectively. It is
noteworthy that the Radial masks used for Brain dataset belong
to a 2D setting, whereas our PUERT under the 1D setting
still enjoys superiority by a large margin. As for FastMRI
dataset, our PUERT-1D and PUERT-2D achieve on average
2.32 dB and 3.98 dB PSNR gain over the state-of-the-art
method CDDN respectively.

When compared with the sampling pattern optimization
scheme LOUPE, one can observe that, on FastMRI dataset,
LOUPE-2D has a slightly better SSIM while PUERT-2D
obtains a remarkably higher PSNR on average. As for Brain
dataset, the proposed PUERT-2D consistently produces higher
PSNR and SSIM results than LOUPE-2D across three CS
ratios. The performance advantage of PUERT under 2D is

also shown under 1D. The above results verify the superiority
of the proposed PUERT against LOUPE. Note that, LOUPE
mainly adopts the U-Net architecture as the recovery network,
it also shows an example of reconstructing with a DUN called
CascadeNet [18], [56], with an observation that the perfor-
mance metrics are very close between different reconstruction
networks. However, we highlight the importance of adopting
DUNs to facilitate exploration and efficient training of the
sampling subnet, owing to the intrinsic structural feature of
fully utilizing knowledge on the sampling mask. More discus-
sions on the importance of DUN are shown in Section IV-E.

As shown in Table II, six representative state-of-the-art
methods are based on neural networks, and thus achieve a
real-time reconstruction speed, with the inference GPU time
less then 0.1s. Among the five methods trained under some
fixed mask, CDDN needs the largest amount of inference time,
owing to the dense blocks and dilated convolutions adopted
in the network. Besides, compared with LOUPE, our PUERT
achieves a comparable inference speed on average, but with
higher PSNR in reconstruction accuracy, thus demonstrating
the efficiency and superiority of the proposed PUERT.

Furthermore, visual comparisons of all the competing meth-
ods on FastMRI dataset are shown in Fig. 7 with CS ratio
α = 10%. Obviously, the proposed PUERT is able to produce
more faithful and clearer results than the other competitive
methods. Overall, the above experiments on two widely used
MRI datasets demonstrate that our proposed PUERT performs
favorably against state-of-the-arts in terms of both quantitative
metrics and visual quality.

C. Ablation on Probabilistic Under-Sampling

In this section, we present an ablation study on Probabilistic
Under-Sampling (PU) in our sampling subnet, so as to empha-
size the importance of learning a probabilistic sampling pattern
rather than a deterministic mask.
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Ground Truth ISTA-Net (29.77 dB) RDN (29.97 dB) CDDN (30.10 dB) LOUPE (32.48 dB) Ours-1D (32.21 dB) Ours-2D (32.95 dB)

Ground Truth ISTA-Net (29.57 dB) RDN (29.64 dB) CDDN (29.91 dB) LOUPE (33.57 dB) Ours-1D (32.53 dB) Ours-2D (35.15 dB)

Fig. 7. Visual reconstruction comparisons with various state-of-the-art methods on FastMRI dataset with CS ratio α = 10%. Obviously, the proposed PUERT
is able to produce more faithful and clearer results than the other competitive methods.

TABLE III
AVERAGE PSNR RESULTS FOR ABLATION STUDY ON PU WHEN RATIO IS

5% AND 10% UNDER 1D AND 2D SETTINGS ON BRAIN DATASET.

Methods PU U (test) 1D setting 2D setting
5% 10% 5% 10%

case (a) 7 7 31.02 35.06 36.60 39.09
case (b) 7 7 31.08 34.91 36.51 38.91
case (c) 3 7 32.18 35.49 36.67 39.14
PUERT 3 3 32.26 35.51 36.74 39.13

First, we consider two possible mask learning schemes
uncorrelated with probability (without PU), named case (a) and
(b), so as to demonstrate the superiority of PU during training.
Then, we consider testing without the Uniform distribution U,
called case (c), to investigate the contribution of adopting U
during testing. Table III shows the PSNR comparisons for the
above three cases and our PUERT when ratio is 5% and 10%
under 1D and 2D settings on Brain dataset. Fig. 8 further
illustrates their progression curves of test PSNR when ratio
is 10% under the 1D setting. We detail the above three cases
and their results in the following three paragraphs.

In case (a), the sampling subnet directly binarizes the
unconstrained parameter matrix O into the sampling mask M
via Mi,j = Bina(Oi,j) as a replacement of Eq. (3). Here,
a L2 loss term to constrain the sparsity ratio of the learned
sampling mask is necessary. However, such loss term still
can not stabilize the ratio to the target setup, and therefore,
in pursuit of fair comparisons, we have to test case (a) via

Fig. 8. The progression curves of test PSNR results for ablation study on PU
when ratio is 10% under the 1D setting on Brain dataset.

greedy binarization Eq. (6) but with Ω being the set {Oi,j}.
Table III shows that the final PSNR result of case (a) is inferior
against PUERT under all conditions. This is mainly due to: 1)
the limited optimization space without PU, 2) the mismatch
between training and testing, and 3) the fluctuation caused by
the poor ratio control, as shown in Fig. 8.

In order to eliminate the influence of the latter two lim-
itations in case (a), we design case (b) to adopt greedy
binarization during both training and testing, via Eq. (6) with
Ω being the set {Oi,j}. Table III reports that case (b) achieves
PSNR scores comparable with case (a), but still lower than
PUERT. Fig. 8 further shows that, during the later period of
training, the curve stability of case (b) is better than case (a).



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022 10

TABLE IV
AVERAGE PSNR RESULTS FOR ABLATION STUDY ON DGE WHEN RATIO IS

5% AND 10% UNDER 1D AND 2D SETTINGS ON BRAIN DATASET.

Methods Update
Speed

Estimation
Accuracy

1D setting 2D setting
5% 10% 5% 10%

STE 3 7 30.22 34.38 36.25 38.06
Sigmoid 7 3 31.08 34.93 36.64 39.04

DGE 3 3 32.26 35.51 36.74 39.13

However, in the earlier training period, the PNSR upgrade of
case (b) is obviously slow. We attribute such slow update speed
to the greedy binarization used for training, which adopts a
movable and relative boundary, rather than a fixed boundary
adopted in vanilla binarization (i.e., the constant 1).

With the aim of investigating the contribution of adopting
U during testing, we consider case (c) which tests PUERT
without the Uniform distribution U, i.e., testing via Eq. (6)
but with Ω being the set {Pi,j}. Without the randomness and
exploration introduced by U, case (c) completely depends on
the values in P, and thus, with an earlier P which has not yet
fully learned the probability value, case (c) achieves obviously
lower PSNR than PUERT in the earlier period, as shown in
Fig. 8. Table III also reports that case (c) achieves slightly
lower PSNR than PUERT. Note that, in actual scanning, we
might use a fixed mask as case (c), but this experiment still
verifies the contribution of adopting randomness.

Overall, the above results corroborate the importance of
learning a probabilistic sampling pattern rather than a deter-
ministic mask, thus demonstrating the superiority of our design
on Probabilistic Under-Sampling (PU) in the sampling subnet.

D. Ablation on Dynamic Gradient Estimation
In this section, we present an ablation study on our proposed

Dynamic Gradient Estimation (DGE) in our sampling subnet,
so as to underscore the great significance of two-step gradient
estimation. Note that, in LOUPE, the binarization operator is
directly relaxed to the sigmoid function to enable optimizing
the network by back-propagation. However, this relaxation not
only causes a network performance penalty, but also leads to
a non-binary output mask, which means that, after one has
obtained the optimized non-binary mask, the reconstruction
network needs to be retrained with the learned binary mask.
To overcome the above two limitations, our PUERT chooses
to still adopt the binarization in the forward pass, but develops
an efficient gradient estimator for the backward pass.

Such gradient estimators have been widely investigated in
Binarized Neural Networks (BNNs) [68], [77]. One typical
and simple estimator is Straight-Through Estimator (STE),
which was first proposed by Hinton [78] to train networks
with binary activations (i.e., binary neuron). In STE, the values
are passed through a binarization layer that evaluates the
sign in the forward pass and performs the identity function
during the backward pass. Adopting STE as an ablation study,
we replace the dynamic gradient estimation function g(x)
in Eq. (7) simply by the identity function h(x) = x and
conduct an experiment. Besides, we also consider an STE
variant proposed in [79], which uses the sigmoid function
σ(x) = 1

1+e−x as a replacement of the identity function.

Fig. 9. The progression curves of test PSNR results for ablation study on
DGE when ratio is 10% under the 2D setting on Brain dataset.

Table III reports the PSNR comparisons for 1) STE, 2)
Sigmoid, and 3) our DGE, when ratio is 5% and 10% under
1D and 2D settings on Brain dataset, which shows that DGE
outperforms the other two methods across all situations. Fig. 9
further provides the progression curves of test PSNR results
for the above three methods, when ratio is 10% under the
2D setting. One can intuitively observe that, STE converges
faster than Sigmoid during the earlier training process, whereas
lacks the ability to stably and consistently improve the re-
construction accuracy (resembling Sigmoid) during the later
training period. Such different performances are the result of
their different focuses. Concretely, STE directly passes the
gradients through the binarization operator so as to guarantee
the updating speed, while Sigmoid estimates the gradients with
high similarity to the binarization operator to ensure estimation
accuracy. As a combination of the above two focuses, our
proposed two-step DGE is able to dynamically estimate the
gradients and emphasize different priorities at the right time,
thus implementing both fast convergence speed and high
reconstruction accuracy, as can be appreciated from Fig. 9.

E. Discussions on the Importance of DUN

In the previous statements, we have emphasized to adopt
Deep Unfolding Networks (DUNs) for our PUERT in order
to fully utilize the knowledge on the learned sampling mask.
In this section, two experiments are further conducted to
investigate the contribution of adopting DUN in our PUERT.

Firstly, considering a DUN and a non-DUN with similar
performances, we respectively equip them with our sampling
subnet (SampNet), so as to compare the different performance
gains brought by SampNet. Concretely, we select U-Net [72]
as an instance of non-DUNs, and choose our RecNet with 4
stages, named RecNets4, to represent DUNs. Table V provides
the PSNR results of U-Net with and without SampNet, as well
as RecNets4 with and without SampNet, when ratio is 5% and
10% under 1D and 2D settings on Brain dataset. It can be
observed that, without SampNet, U-Net and RecNets4 achieve
similar PSNR results on average. However, when equipped
with SampNet, RecNets4 realizes remarkably higher PSNR
increase than U-Net (1.46 dB v.s. 1.03 dB on average). This
result confirms the superiority of DUNs against non-DUNs on
fully exploiting the knowledge on the learned mask.
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TABLE V
AVERAGE PSNR RESULTS FOR DISCUSSIONS ON DUN WHEN RATIO IS 5%

AND 10% UNDER 1D AND 2D SETTINGS ON BRAIN DATASET.

Methods 1D setting 2D setting Average5% 10% 5% 10%
U-Net w/o. SampNet 30.03 33.32 34.66 37.31 33.83
U-Net w. SampNet 32.09 33.68 35.65 38.03 34.86

PSNR Increase 2.06 0.36 0.99 0.72 1.03
RecNets4 w/o. SampNet 28.76 33.36 34.58 37.50 33.55
RecNets4 w. SampNet 30.62 34.52 36.22 38.67 35.01

PSNR Increase 1.86 1.16 1.64 1.17 1.46
PUERT 32.26 35.51 36.74 39.13 35.91

PUERT+ 32.30 35.58 36.89 39.44 36.05
PSNR Increase 0.04 0.07 0.15 0.31 0.14

Secondly, in order to validate the promising superiority
of DUNs on further exploiting the information in SampNet
and improving the performance, we propose an advanced
version of PUERT, dubbed PUERT+, which integrates the
probabilistic sampling pattern P in each stage of RecNet.
Specifically, for each stage, we add a module called GDMP,
which is the same as GDM in Eq. (11) except for replacing
M with P, formulated as:

rPk = x̂k−1 − ρkFH (P� Fx̂k−1 − y) . (14)

The input of each PMM is correspondingly modified to the
concatenation of rPk and rk, formulated as:

x̂k = rk +Hreck (HRB,2k (HRB,1k (Hextk ([rk, r
P
k ])))), (15)

where [·] is the concatenation operator. In this way, each stage
can fully use the information of not only the sampling mask M
but also the probabilistic sampling pattern P from SampNet.
Compared to the hard-sampling GDM with the binary mask
M, the newly added module GDMP with the non-binary P
can be regarded as a soft-sampling version. Table V provides
the PSNR comparisons between PUERT and PUERT+, when
ratio is 5% and 10% under 1D and 2D on Brain dataset.
One can clearly see that PUERT+ obtains consistently higher
scores than PUERT across all situations, with average PSNR
increased from 35.91 dB to 36.05 dB. The 2D version achieves
higher PSNR improvements than 1D, due to the utilization
of more information. Note that, taking the 2D version as
an example, PUERT+ only adds 2K learnable parameters,
compared to PUERT with 404K parameters. Above results
verify the promising superiority of DUNs on further exploiting
the information in SampNet and improving the performance.
More elaborate and efficient designs on further exploitation of
SampNet are considered as our important future direction.

V. DISCUSSIONS AND LIMITATIONS

One weakness of PUERT is the assumption of the sam-
pling model, in which all k-space locations are independent.
Although, due to the control of sampling ratio, our network
would learn the relative importance among k-space locations
and obtain the dependency implicitly, we must admit that our
PUERT is incapable of directly and explicitly learning the
dependency among k-space locations. Since such dependency

is useful [5] and promising to further improve the optimised
sampling mask, we leave it as an important future direction.

Note that our SampNet can also be trivially generalized to
other neural networks, and we consider the exploration of other
elaborate architectural designs for PUERT as an important
future direction. However, PUERT does not support sampling
pattern learning for traditional model-based reconstruction
methods, since we need to optimize the learnable probabilistic
sampling pattern P in an end-to-end manner. Considering
that traditional methods still enjoy great advantages (e.g., fast
adaptation to multiple masks and ratios, strong interpretability,
and no training requirements), we consider the exploration of
extending our sampling pattern learning method to traditional
reconstruction methods as a future research direction.

In addition, there is still a certain distance from practical
application. In actual scanning, one should also consider how
to implement a specific under-sampling pattern in an MR pulse
sequence, e.g., the constraints of hardware requirements [57]
and the design of viable trajectories. And we leave the analysis
on extending our PUERT to be totally applicable as an impor-
tant direction for future research. Besides, our experiment does
not consider the simulation of noise. However, in practical
applications, noise is inevitable in the measurement process
[80], and we consider the extension of PUERT to handling
noisy k-space data as an important future direction.

Also note that our current PUERT is restricted to the single
coil CS-MRI reconstruction. However, accelerated parallel
imaging [62], [81], [82] is remarkably promising to achieve
higher degrees of acceleration. And we consider the combina-
tion of PUERT with multi-coil imaging as an important area
of research. There exists some literature to explore data-driven
learning of sampling patterns in accelerated parallel MRI.
[83] employs a combinatorial method that lets the data decide
sampling masks matched to specific parallel MRI decoders
in use. [84] proposes a learning approach that alternates be-
tween improving the sampling pattern, using bias-accelerated
subset selection, and improving parameters of the variational
networks. Insights from these studies are promising to help
inspire our relevant future research on parallel imaging.

VI. CONCLUSIONS

In this paper, we simultaneously deal with two problems in
CS-MRI, i.e., under-sampling and reconstruction, and propose
a novel end-to-end Probabilistic Under-sampling and Expli-
cable Reconstruction neTwork, dubbed PUERT, to achieve an
efficient combination of sub-sampling learning and reconstruc-
tion network training. Based on extensive experiments on two
widely used MRI datasets, we have validated that our proposed
PUERT performs favorably against state-of-the-art methods
in terms of both quantitative metrics and visual quality, and
achieves remarkable results even under challenging low sam-
pling ratios. Besides, our detailed ablation studies confirm the
importance of three components in our proposed PUERT, i.e.,
Probabilistic Under-sampling (PU), Dynamic Gradient Esti-
mation (DGE) and Deep Unfolding Network (DUN), where
we highly emphasize to adopt the DUN in PUERT so as
to fully explore the information from SampNet. In addition,
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an enhanced version of PUERT, dubbed PUERT+, is also
developed as an attempt to implement further exploitation of
SampNet and obtain performance improvements.
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[23] Y. Chen, C.-B. Schönlieb, P. Liò, T. Leiner, P. L. Dragotti, G. Wang,
D. Rueckert, D. Firmin, and G. Yang, “AI-based reconstruction for fast
MRI—a systematic review and meta-analysis,” Proceedings of the IEEE,
vol. 110, no. 2, pp. 224–245, 2022.

[24] J. Zhang and B. Ghanem, “ISTA-Net: interpretable optimization-inspired
deep network for image compressive sensing,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[25] Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep ADMM-Net for compressive
sensing MRI,” in Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 2016.

[26] H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: model-based
deep learning architecture for inverse problems,” IEEE Transactions on
Medical Imaging, vol. 38, no. 2, pp. 394–405, 2018.

[27] R. Liu, Y. Zhang, S. Cheng, Z. Luo, and X. Fan, “A deep frame-
work assembling principled modules for CS-MRI: unrolling perspective,
convergence behaviors, and practical modeling,” IEEE Transactions on
Medical Imaging, vol. 39, no. 12, pp. 4150–4163, 2020.

[28] C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal, and
D. Rueckert, “Convolutional recurrent neural networks for dynamic MR
image reconstruction,” IEEE Transactions on Medical Imaging, vol. 38,
no. 1, pp. 280–290, 2018.

[29] S. A. H. Hosseini, B. Yaman, S. Moeller, M. Hong, and M. Akçakaya,
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