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Abstract—Reconfigurable intelligent surface (RIS) is a promis-
ing technological enabler for the 6th generation (6G) of wireless
systems with applications in localization and communication. In
this paper, we consider the problem of positioning a single-
antenna user in 3D space based on the received signal from
a single-antenna base station and reflected signal from an RIS
by taking into account the mobility of the user and spatial-
wideband (WB) effects. To do so, we first derive the spatial-WB
channel model under the far-field assumption, for orthogonal
frequency-division multiplexing signal transmission with the user
having a constant velocity. We derive the Cramér Rao bounds to
serve as a benchmark. Furthermore, we devise a low-complexity
estimator that attains the bounds in high signal-to-noise ratios.
Our estimator neglects the spatial-WB effects and deals with the
user mobility by estimating the radial velocities and compensating
for their effects in an iterative fashion. We show that the spatial-
WB effects can degrade the localization accuracy for large RIS
sizes and large signal bandwidths as the direction of arrival or
departure deviate from the RIS normal. In particular, for a 64
× 64 RIS, the proposed estimator is resilient against the spatial-
WB effects up to 140 MHz bandwidth. Regarding user mobility,
our results suggest that the velocity of the user influences neither
the bounds nor the accuracy of our estimator. Specifically, we
observe that the state of the user with a high speed (42 m/s) can
be estimated virtually with the same accuracy as a static user.

Index Terms—Reconfigurable intelligent surface, position error
bound, Cramér-Rao bound, radio localization, spatial-wideband.

I. INTRODUCTION

Estimation of user location has become increasingly cru-
cial in today’s networking technology with applications in
autonomous driving, navigation, data transmission, augmented
reality, etc. [2]. Satellite localization systems such as the global
positioning system (GPS) have the downside that they do
not function properly in indoor scenarios, urban canyons, or
tunnels. As a complementary approach, cellular localization
can be used, where the user state is estimated based on the
radio signals interchanged between the base station (BS) and
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the user. Provisioning of cellular localization was stirred by the
governmental authorities demanding that the operators should
provide the location of the user equipment (UE) upon receiving
emergency calls. In 4G wireless systems, the UE location
and clock bias are estimated by calculating time-difference-
of-arrival (TDoA) between the UE and four synchronized BSs
[3]. In 5G, the multi-antenna structure of BSs and UEs allowed
networks to also use the angles of arrival and departure for
localization, enabling positioning with one BS under rich
multipath conditions [4]. In this work, we show that the
next generation, 6G, can benefit from the new technological
enablers, such as reconfigurable intelligent surfaces (RISs), to
estimate the UE position, clock bias, and velocity, even for
single-input single-output (SISO) wireless links.

RISs are thin surfaces made of sub-wavelength unit cells,
whose response to the impinging electromagnetic wave can
be controlled [5]. Recently, a great deal of attention has been
drawn to RISs as one of the foremost technological enablers
of the next generation of wireless systems (see [6] for an
excellent literature review). RISs introduce a new paradigm
in wireless systems since they enable the optimization of the
channel to maximize the quality of service (QoS) [7]–[10].
In a communication system, where the RIS response can be
optimized to improve the signal-to-noise ratio (SNR) and the
spectral efficiency at the UE site, the main challenges pertain
to path loss modeling [11], estimation of the propagation
channels to/from the RIS elements [9], [12]–[15], as well as
the use of this estimate to employ optimized configuration of
the RIS elements [16], [17]. In radio localization, RISs can
provide a strong and controllable non-line-of-sight (NLOS)
signal path, as well as an extra location reference.

Many works have studied the benefits of RISs in ra-
dio localization through deriving Cramér-Rao lower bounds
(CRB) and/or by designing estimation algorithms that use
the reflected signal from the RIS to improve or enable UE
localization [18]–[31]. In [18], the CRB on the location and
orientation of the UE have been derived for a multiple-
input multiple-output (MIMO) system equipped with an RIS,
where considerable improvements in estimation accuracy have
been observed because of the RIS. It has been shown that
3D localization is possible in an RIS-equipped SISO system
[1], [20]. Furthermore, in [19], [30], SISO localization is
performed with the help of a stripe-like RIS with blocked
line-of-sight (LOS) path even when the path from RIS to
UE is obstructed severely. Localization in the near-field of
the RIS through analyzing the CRB has been studied in
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[24] for infinite phase resolution and in [26] for limited one.
Moreover, in [29], an uplink near-field localization algorithm
is proposed for RIS-aided scenarios with LOS blockage. To
estimate and counteract such blockages, a joint beam training
and positioning method is developed in [31] in multi-RIS
assisted mmWave communications.

Most of the aforementioned works consider quasi-static
channels, where the movement of the UE during pilot trans-
mission is negligible. While the effect of UE mobility has
been unexplored in RIS-based localization literature, a number
of works consider UE mobility for RIS-aided communication
systems [32]–[40]. A continuous-time model for RIS-aided
satellite communication has been derived in [32], where the
movement of the satellite has been taken into consideration in
optimization of the RIS phase shifts. Similarly, [39] investi-
gates RIS phase shift design to simultaneously minimize the
delay and Doppler spread and maximize the SNR in RIS-aided
high-mobility vehicular communications under predictable UE
mobility. In [33], it has been shown that the multipath fading
effect caused by UE movement can be mitigated in an RIS-
aided scenario. In [34], the authors presented a transmission
protocol for channel estimation in a high-mobility scenario,
where an intelligent refracting surface is mounted on the car.
Following a similar approach, the study in [40] proposes a two-
stage transmission protocol and channel/Doppler estimation
method in high-mobility RIS-aided scenarios, complemented
by the design of RIS phase shifts to mitigate the RIS-
induced Doppler effect. Two channel estimation schemes for
an RIS-aided communication system have been proposed in
[35], considering Doppler effects. Moreover, the study in
[36] models doubly-selective high-mobility Rician channels
in RIS-aided unmanned aerial vehicle (UAV) communications
by including the Doppler effect, and deals with minimum
mean squared error (MMSE) channel estimation and RIS
phase shift optimization. Furthermore, a deep reinforcement
learning-based method is proposed in [37] to jointly design BS
beamforming and RIS phase shifts for RIS-assisted mmWave
high-speed railway networks.

The spatial-wideband (WB) effect refers to the change of
an array’s response (spatial steering vector) due to the change
in frequency within the signal bandwidth [41], [42]. This can
cause the beam-squint effect in far-field [43], [44] and the
misfocus effect in near-field [45]. The spatial-WB effect has
been studied for the case of massive MIMO (see e.g. [41],
[43], [44]) and also recently for RISs [46]–[48]. In [41], the
authors develop a spatial-WB channel model, and tailored a
channel estimation algorithm based on it. In [43], the effects
of beam-squint have been analyzed and compensated for in
designing analog codebooks. A channel estimation algorithm
for a spatial-WB RIS-aided communication system has been
proposed in [47]. Several RIS phase shift designs have been
proposed in [48] to maximize information rate in the presence
of the beam-squint effect. To the best of our knowledge, the
combined contribution of UE mobility and spatial-WB effect
have not yet been studied in the context of RIS-localization.

This paper extends our conference contribution in [1], where
it was shown that in a SISO system equipped with a single
RIS, 3D UE localization and synchronization is possible. In

this paper, we define and study the problem of RIS-aided SISO
localization under spatial-WB effects and user mobility. The
main contributions of this paper can be summarized as follows.

• For the first time in the literature, we investigate the prob-
lem of single-snapshot RIS-aided SISO 3D localization
and synchronization under UE mobility and spatial-WB
effects.

• We develop a geometric channel model for orthogonal
frequency-division multiplexing (OFDM) signal propaga-
tion under the far-field assumption, by explicitly taking
into account UE mobility and spatial-WB effects. Un-
like the studies on RIS-aided communications with UE
mobility [32]–[40], the developed model formulates the
LOS (i.e., BS-to-UE) and NLOS (i.e., BS-to-RIS-to-UE)
channels as a function of individual geometric parame-
ters consisting of delays, Doppler shifts, and angle-of-
departures (AoDs) in azimuth and elevation. In addition,
unlike the existing literature on RIS-aided localization
[18]–[31], we incorporate Doppler shift into our model.

• We design a low-complexity algorithm for joint localiza-
tion and synchronization of UE, accompanied by time-
orthogonal RIS phase profile design to combat interpath
interference. First, we estimate the channel gain, delay
and Doppler of the LOS path, and subtract its effect
from the received signal. Based on the resulting LOS-
interference-eliminated signal, we then estimate the pa-
rameters of the NLOS path, involving the delay, Doppler
and AoD from the RIS to UE. In the final stage, 3D
position and clock bias of the UE are computed using the
estimated geometric channel parameters. The proposed
algorithm attains the theoretical bounds at high SNRs
when the spatial-WB effects are negligible.

• We study the influence of UE mobility, spatial-WB ef-
fects, and the presence of scatterers on the estimation
error through extensive simulation of the estimator and
evaluation of the CRB, considering directional and ran-
dom RIS phase profiles.

Our results suggest that in terms of fundamental bounds,
neither UE mobility nor spatial-WB effects influence the
estimation accuracy. However, in terms of the accuracy of
the estimator (designed based on the spatial-narrowband (NB)
model), the spatial-WB effects reduce the position accuracy
for large sizes of the RIS and large bandwidths when the
angle between the direction of arrival or departure and the
RIS normal is large. The performance of our estimator is not
affected by the UE speed.

Organization: The remainder of the paper is organized
as follows. In Section II, we present the system setup and
derive the channel model in Section III. The RIS phase profile
design is presented in Section IV. The estimator is described
in Section V through a number of separate algorithms. In Sec-
tion VI, we calculate the estimation errors through simulation
and compare them with the CRB for an example of system
parameters. Finally, Section VII concludes the paper.
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Fig. 1: (a): System setup, (b): Elevation and azimuth angles of a generic
vector.

Notation: We represent vectors by bold-face lowercase
letters (e.g., x) and matrices by bold-face uppercase ones (e.g.,
X). The nth element of the vector x is shown by [x]n and
with [X]m,n we indicate the element on the mth row and
the nth column of matrix X . Furthermore, [X]:,n ([X]n,:)
denote the nth column (row) of matrix X . The subindex m :
n indicates all the elements between (and including) m and
n. The Kronecker product is shown by ⊗ and the Hadamard
product by �. The real and imaginary parts of the complex
number x are shown by <(x) and =(x), respectively. The
matrix vectorization operator is indicated by vec(·). The vector
1L indicates the vector of length L, all of whose elements are
one.

II. SYSTEM AND CHANNEL MODEL

A. System setup

We consider a wireless system with a single-antenna trans-
mitter, one RIS, and a single-antenna UE as shown in Fig. 1(a).
We indicate the position of the BS and the RIS center by
pb ∈ R3 and pr ∈ R3 according to some general coordinate
system. The values of pb and pr as well as the orientation of
the RIS are assumed to be known. Additionally, we assume
that the UE is not time-synchronized to the BS, leading to an
unknown clock bias ∆t ∈ R at the UE with respect to the BS.
In addition to the UE’s position (p ∈ R3) and clock bias ∆t,
its velocity (v ∈ R3) is unknown and to be estimated. The
RIS is a uniform planar array (UPA) with M = M1 ×M2

elements. The element in the rth row (r ∈ {0, . . . ,M1 − 1})
and sth column (s ∈ {0, . . . ,M2 − 1}) has the position
qr,s = [dr− d(M1 − 1)/2), 0, ds− d(M2 − 1)/2] in the local
coordinate system of RIS, with d being the spacing between
the elements. The phase profile matrix of the RIS at time `
is shown by Γ` ∈ CM1×M2 , where [Γ`]r,s indicates the phase
shift applied to the impinging signal via the RIS element in
the rth row and sth column.

B. Geometric relations

We introduce vb and vr as the UE’s radial velocity (Doppler)
along UE-BS and UE-RIS directions, respectively, and are
given by

vb = v>(pb − p)/‖pb − p‖ (1)

vr = v>(pr − p)/‖pr − p‖. (2)

In addition, τb and τr represent, respectively, the delays of the
direct and the reflected paths

τb =
‖pb − p‖

c
+ ∆t (3)

τr =
‖pb − pr‖+ ‖pr − p‖

c
+ ∆t, (4)

where ∆t is the clock bias and c is the light speed. The AoD
from the RIS to the UE is indicated by φ, which corresponds
to the direction of the vector s from the RIS to the UE in the
local coordinate system of the RIS, i.e., s = R(p−pr), where
R is a rotation matrix that maps the global frame of reference
to the RIS local coordinate system. More specifically, we have

[φ]az = atan2 ([s]2, [s]1) (5)

[φ]el = arccos

(
[s]3

‖p− pr‖

)
. (6)

C. Signal and baseline channel model

We consider the transmission of L OFDM symbols with
N subcarriers. Under the assumption of perfect frequency
synchronization between the UE and the BS, the received
signal after the fast Fourier transform (FFT) operation at the
UE in the frequency/slow-time domain can be represented by
the matrix Y ∈ CN×L as

Y = Yb + Yr +N , (7)

where the noise matrix is represented with N , whose ele-
ments are drawn independently from a circularly symmetric
Gaussian distribution with variance N0. The matrices Yb and
Yr describe the signal received through the direct and reflected
path, respectively. As a baseline, we consider a channel model
that ignores any spatial-WB effect and assumes a sufficiently
short observation time such that approximately v = 0. For
simplicity, we assume that all the transmitted symbols are
equal to one. Hence following [1]

Yb = gbD(τb) (8)
Yr = grD(τr)�A(φ), (9)

where the complex channel gain for the direct path is indicated
by gb and for the reflected one by gr. The matrix D ∈ CN×L
is the delay steering vector repeated across time and is defined
as

D(τ) = [1, e−2π∆fτ , . . . , e−2π(N−1)∆fτ ]>1>L , (10)

where ∆f is the subcarrier spacing. Let θ denote the known
angle-of-arrival (AoA) from the BS to the RIS. In (9), A(φ) ∈
CN×L captures the effects of RIS phase modulation, given by

[A(φ)]n,` = a(θ)>diag(γ`)a(φ), (11)

where all the rows of A(φ) are identical. The vector γ` ∈ CM

is defined as

γ` = vec(Γ`) (12)
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and it represents the RIS phase profile vector at time `. The
vector a(·) ∈ CM is the narrowband RIS response steering
vector and is defined as

[a(ψ)]m = exp
(
k(ψ)>[Q]:,m

)
, (13)

where the relative RIS element positions are contained in

Q = [q0,0, q1,0, . . . , qM1−1,M2−1]. (14)

The wavenumber vector is defined as

k(ψ) =
2π

λ
[sin([ψ]el) cos([ψ]az),

sin([ψ]el) sin([ψ]az), cos([ψ]el)]
>, (15)

where [ψ]az and [ψ]el represent the azimuth and elevation of
the generic direction described by angle ψ (see Fig. 1(b)), and
λ = c/fc is the wavelength at the carrier frequency.

III. EXTENDED CHANNEL MODELS FOR SPATIAL-WB AND
UE MOBILITY

While the channel model from Section II-C is common
in the RIS literature, it is limited in two ways. First of all,
when the RIS and the signal bandwidth are both large, the
model fails to capture the variation of the RIS steering vector
with the frequency, which is a consequence of the definition
of the structure of A(φ) with identical rows. Secondly, the
assumption of negligible velocity severely limits the duration
of the coherent processing interval L/∆f .

We now present two channel models that extend the model
from Section II-C in non-trivial ways: the first model captures
both the spatial-WB effects [46]–[48] and UE mobility [35],
and it is used for developing the CRB and simulating the
channel; the second model neglects the spatial-WB effects and
is employed in the estimator design. The original model (8)–
(9), which neglects both UE mobility and spatial-WB effects,
will be assumed for designing the RIS phase profiles.

A. Signal transmission: Dynamic spatial-wideband model

In the dynamic spatial-WB model, two fundamental changes
occur with respect to the static spatial-NB model in (8)–
(9). First, the RIS response matrix A(φ) in (11) becomes
frequency-dependent, leading to non-identical rows. Second,
we incorporate new steering matrices that capture fast-time
(sample-level) and slow-time (symbol-level) Doppler-induced
phase progressions. Accordingly, as shown in Appendix A,
(8)–(9) should be extended to1

Yb = gbFE(vb)F H (D(τb)�Cw(vb)) , (16)

Yr = grFE(vr)F
H [D(τr)�Aw(φ)�Cw(vr)] . (17)

Here, the matrix F ∈ CN×N is the unitary DFT matrix with
elements

[F ]n,` =
1√
N
e−2π

n`
N (18)

1We assume that the angular displacement caused by UE mobility is
negligible due to the far-field assumption.

for n, ` ∈ {0, . . . , N − 1}. In addition, Aw(φ) represents the
spatial-wideband version of A(φ) in (11); namely,

[Aw(φ)]n,` = an(θ)>diag(γ`)an(φ), (19)

where the RIS steering vector now depends on the subcarrier
index n:

[an(ψ)]m = exp
(
kn(ψ)>[Q]:,m

)
, (20)

with kn(ψ) being defined as in (15) by replacing λ with

λn =
c

fc + n∆f
. (21)

Moreover, the effects of UE mobility on the received signal is
captured by the inter-carrier interference (ICI) phase rotation
matrix E(v) ∈ CN×N , which models Doppler-induced fast-
time phase rotations within an OFDM symbol [49]–[51], and
the temporal steering matrixCw(v) ∈ CN×L, which quantifies
Doppler-induced slow-time phase progressions across consec-
utive OFDM symbols [52], [53]:

[Cw(v)]n,` , e2π`Tsymv/λn (22)

E(v) , diag
(

1, e2π
To
N v/λ, . . . , e2π

To(N−1)
N v/λ

)
(23)

for n ∈ {0, . . . , N − 1} and ` ∈ {0, . . . , L − 1}. Here, To =
1/∆f is the elementary symbol duration and Tsym = Tcp +To

is the total signal duration, with Tcp denoting the cyclic prefix
(CP) duration.

B. Signal transmission: Dynamic spatial-narrowband model

In order to reduce the complexity of our estimator, we
design it based on a simpler channel than (16)–(17) by
assuming a spatial-narrowband model. In this case, the channel
in (16)–(17) is constructed by reverting λn in (21) back to
λ = c/fc. This will simplify the structure of matrices Cw and
Aw by making their elements independent of the subcarrier
index n, i.e., all of their rows become identical. Specifically,
under the spatial-narrowband model, the received signal in
(16)–(17) specializes to

Yb = gbFE(vb)F H (D(τb)�C(vb)) (24)

Yr = grFE(vr)F
H [D(τr)�A(φ)�C(vr)] , (25)

where the subcarrier-dependent matrices Cw(v) and Aw(φ) in
(16)–(17) revert to their narrowband (subcarrier-independent)
counterparts C(v) and A(φ). Here, A(φ) is defined in (11)
and2

[C(v)]n,` , e2π`Tsymv/λ. (26)

For the spatial-narrowband approximation in (24) and (25)
to be valid, the following conditions must be satisfied (see
Appendix B for details):

max{vr, vb}LTsymB ≈ max{vr, vb}LN � c (27)
max(M1,M2)d sin(α)B � c , (28)

which ensure the validity of the approximations Cw(v) ≈
C(v) and Aw(φ) ≈ A(φ), respectively. Here, α =

2Note that the dynamic spatial-narrowband model (24)–(25) reverts to the
static spatial-narrowband model (8)–(9) when v = 0.
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max{αφ, αθ}, where αφ and αθ are the angles between the
RIS normal ([0, 1, 0]>) and the two vectors k(φ) and k(θ),
respectively, which are defined in (15). While the condition
in (27) almost always holds (corresponding to the assumption
of small time-bandwidth product [52]), the condition in (28)
does not hold for RISs with large dimension combined with
signals of large bandwidth [41]. We will study the effects of
this assumption in Section VI.

IV. RIS PHASE PROFILE DESIGN

In this section, we consider the design of the RIS phase
profile Γ` for ` = 0, . . . L − 1. In order to mitigate the
interference between the direct path and the reflected one,
we use the method described in [54]. The method deploys
temporal orthogonal RIS phase profiles and a post processing
at the receiver. This process resembles the code-division
multiplexing, which is a well-known method in wireless
communications (see e.g., [55]). It can remove the interpath
interference completely in the static scenario (v = 0). Next,
we use the static channel model in Section II-C to describe the
RIS phase profile design.

A. Orthogonal RIS phase profiles

We set L to be an even number and for each k =
0, 1, . . . , L/2 we select beamsBk ∈ CM1×M2 either randomly
or according to a directional codebook (we elaborate on
this in Section IV-C). Also, similarly as in (12), we define
bk = vec(Bk). Then we set γ2k = bk and γ2k+1 = −bk. By
doing so, from (11) we have that [A(φ)]:,2k+1 = −[A(φ)]:,2k.
Therefore, from (8) and (9), we have

[Yb]:,2k+1 = gb [D(τb)]:,2k+1 (29)

= [Yb]:,2k (30)
[Yr]:,2k+1 = gr [D(τr)]:,2k+1 � [A(φ)]:,2k+1 (31)

= −gr [D(τr)]:,2k � [A(φ)]:,2k (32)

= −[Yr]:,2k. (33)

The post-processing step at the receiver involves calculating
matrices Zb ∈ CN×L/2 and Zr ∈ CN×L/2 as

[Zb]:,k = [Y ]:,2k + [Y ]:,2k+1 (34)

= 2gb [D(τb)]:,2k + [N ]:,2k + [N ]:,2k+1 (35)

= 2[Yb]:,2k + [N ]:,2k + [N ]:,2k+1 (36)

[Zr]:,k = [Y ]:,2k − [Y ]:,2k+1 (37)

= 2gr [D(τr)]:,2k � [A(φ)]:,2k + [N ]:,2k − [N ]:,2k+1

= 2[Yr]:,2k + [N ]:,2k − [N ]:,2k+1 . (38)

It can be seen from (36) and (38) that the matrix Yb (Yr) de-
pends only on the parameters of the direct (reflected) channel.
Therefore, with the aforementioned RIS phase profile design
and post-processing, we can remove the interference between
the two paths, which facilitates the estimation of the channel
parameters. Furthermore, from (36) and (38) it can be seen the
signals Zb and Zr have higher SNRs compared to the signals
Yb and Yr, respectively. This indicates that the presented
orthogonal coding does not result in a waste of resources

by repeating the beams. For clarification, we consider a toy
example with L = 4 and M = 1 and [b0, b1] = [eθ0 , eθ1 ]
for some θ0, θ1 ∈ [0 2π). Then the set of RIS phase profiles
would be [γ0,γ1,γ2,γ3] = [eθ0 ,−eθ0 , eθ1 ,−eθ1 ]. Also
if the noise is neglected, we have [Zb]:,k = 2gbd(τb) and
[Zr]:,k = 2gre

θkd(τr) for k = 0, 1.
For future use, we refer to the post processing step in (36)

and (38) as matching the signal Y with vectors wb = [1, 1]>

and wr = [1,−1]>, respectively. We explain this step in
Algorithm 1 as follows.

Algorithm 1 match(Y ,w)
Inputs: Received signal (Y ∈ CN×L) and vector w ∈ C2.
Output: Z ∈ CN×L/2.

1: for k ∈ {0, . . . , L/2− 1} do
2: [Z]:,k = [w]1 [Y ]:,2k + [w]2 [Y ]:,2k+1

return Z

B. Loss of orthogonality due to UE mobility

For the dynamic case (v 6= 0), one can write (36)–(38) as

[Zb]:,k = (2− ε(vb))[Yb]:,2k + ε(vr)[Yr]:,2k

+ [N ]:,2k + [N ]:,2k+1 (39)

[Zr]:,k = (2− ε(vr))[Yr]:,2k + ε(vb)[Yb]:,2k

+ [N ]:,2k − [N ]:,2k+1 , (40)

where ε(v) = 1− exp(2πTsymv/λ). By comparing (39)–(40)
with (36)–(38), one can see that UE mobility introduces two
impairments to the proposed method:
• Energy loss: some of the signal energy of the desired path

is lost since |2− ε(v)| < 2
• Residual interference: the second term in (39)–(40) ex-

hibits the interference from the undesired path.
We design our estimator based on the approximation ε(v) = 0.
To counter the aforementioned impairments, we apply multiple
iterations and deploy successive cancellation.

C. RIS phase profile design

In this section, we discuss the selection of Bk or equiv-
alently bk. We consider two methods, namely random and
directional profiles. The latter can be used when a prior
information about the UE location is available and the former
when such information is lacking.

1) Random profile: With the random codebook, for m =
0, . . . ,M − 1 and k = 0, . . . , L/2− 1 we let

[bk]m = eθk,m , (41)

where θk,m are independent and identically distributed (iid) re-
alizations of the uniform distribution over the interval [0, 2π).

2) Directional profile: Here, we assume that we have a
prior knowledge of the UE position, ξ, which is distributed
uniformly throughout the sphere

|p− ξ| < σ. (42)
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Algorithm 5 Estimator of direct 
path gain, velocity, delay

Y , {bk}
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Algorithm 2 Estimator of direct 
path velocity

Refined estimator of direct path 
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Algorithm 3 Estimator of direct 
path delay

Refined estimator of direct path 
delay

Algorithm 6 Estimator of RIS path 
AoD, velocity, delay
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delay
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Algorithm 7 Position estimator

p̂
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Fig. 2: A flowchart of Algorithm 8, comprising three stages: estimation of
the parameters of the direct path (green), estimation of the parameters of the
reflected path (blue), and position estimation (orange).

We call σ the uncertainty radius. Given the prior position
knowledge ξ, the RIS phase profile is designed as follows. We
first select L/2 points ξ0, . . . , ξL/2−1 randomly (with uniform
distribution) from the sphere centered at ξ with radius σ.
Second, we set bk = f(ξk) where for m = 0, . . . ,M − 1:

[f(x)]m = exp

(
−
(
k(θ)> +

2π(x> − p>r )

λ‖x− pr‖

)
[Q]m

)
.

(43)

One can see that with the phase profile in (43) the reflected
signal energy from the RIS is concentrated towards the point
x.

V. ESTIMATION ALGORITHM

In this section, we propose an estimator to estimate first
the channel parameters and then the UE position and clock
bias based on them. The overall process is described in
the flowchart of Fig. 2 using multiple separate procedures
described in Algorithm 2–7 as building blocks. To estimate
the parameters, we first obtain a coarse estimation and then
use it as an initial point in a refinement process, which is a
standard approach in localization literature (see e.g., [4]). Next
we describe the Algorithms using a bottom-up approach.

A. Estimation of vb

For estimating the UE velocity, we first obtain a coarse
estimation using standard methods based on the discrete
Fourier transform (DFT) matrix and then provide a refined
estimation by using the coarse estimate as the initial point for
our optimization.

Algorithm 2 provides a coarse estimation of the velocity.
The input signal is an estimate of Zb = match(Y ,wb)
described in (39). One can see that for every n we have that

[Zb]n,: ≈ ξn[1, e2hvvb , e4hvvb , . . . , e(L−2)hvvb ] (44)

for some scalar ξn ∈ C, where hv = 2πTsym/λ. Then it can
be seen that the maximum of

f(v) = ‖Ẑb[1, e2hvv, . . . , e(L−2)hvv]H‖2 (45)

provides an estimate of vb. To find the maximum of f(v),
we note that the structure shown in (44) is similar to the rows
of the DFT matrix F in Line 1 of Algorithm 2, that is

[F ]n,: =

√
2√
L

[1, e−ωn, e−2ωn, . . . , e−(L/2−1)ωn] (46)

for all n = 0, . . . , Nv − 1. Here, ω = 2π/Nv and Nv is a
design parameter that determines the dimension of the DFT
matrix and accuracy of our coarse estimation. By comparing
(46) to (44), one can approximate the arg maxv f(v) via the
maximization in Line 3 and the assignment in Line 6. Finally,
the condition in Line 4 compensates for the wrap-around effect
in the complex-exponential function when vb < 0.

Refinement: Let the output of the Algorithm 2 be v0. To
refine this estimation, we perform the maximization v̂b =
maxv f(v) via a quasi-Newton algorithm initiated at v0.

Algorithm 2 Coarse Velocity Est(Ẑb)

Inputs: Signal (Ẑb ∈ CN×L/2)
Parameters: DFT dimension (Nv)
Output: v̂0

1: F ← Nv × L/2 DFT matrix
2: Zv ← FẐ>b
3: im ← argmaxi‖[Zv]i,:‖
4: if im > Nv/2 then
5: im ← im −Nv + 1

6: v̂0 ← imλ/(2TsymNv)
7: return v̂0

B. Estimation of ToA

Similar to Section V-A, the estimation of time-of-arrival
(ToA) comprises coarse and fine estimation steps.

Algorithm 3 describes the coarse estimation of the ToA
given the input signal Zτ 3. We assume that the columns of
the input signal have the structure

[Zτ ]:,t ≈ ξt[1, ehττx , . . . , e(N−1)hττx ]H (47)

for some ξt ∈ C, where τx represents either {τb or τr}.
Algorithm 3 can be explained similarly as in Section V-A using
(47).

Refinement: Based on (47) a fine estimation of τb or τr can
be found by calculating

τ̂ = arg max
τ
‖[1, ehττ , . . . , e(N−1)hττ ]Zτ‖2, (48)

where hτ ← 2π∆f . The optimization (48) can be solved via
a quasi-Newton algorithm that uses the coarse estimation as
the initial point of search.

3We use Algorithm 3 within Algorithm 5, where the input (Zτ ) is an
estimate of

∑
t[Zb]:,t with dimension N×1 and also in Algorithm 6, where

the input is an estimate of Zr with dimension N × L/2.



7

Algorithm 3 Coarse delay Est(Zτ )
Inputs: Signal (Zτ ∈ CN×T , where T ∈ {1, L/2})
Parameters: IDFT dimension (Nτ )
Output: τ̂

1: F ← Nτ ×N DFT matrix
2: Wτ ← F HZτ
3: im ← argmaxi‖[Wτ ]i,:‖
4: τ̂ ← im/(∆fNτ )
5: return τ̂

C. Joint estimation of velocity and AoD for the reflected path

In this section, we describe coarse and fine steps for joint
estimation of the angle and velocity.

Algorithm 4 describes the coarse estimation process of AoD
and velocity. We assume that the input signal zφ is propor-
tional to the rows of the matrix C(v) �A(φ) and therefore
has the structure

[zφ]k = ξe2khvva(θ)>diag(bk)a(φ) (49)

for some constant ξ ∈ C and velocity v, which is to be
estimated. Also, the constant hv is defined as hv = 2πTsym/λ.

To obtain a coarse estimation of v and φ based on the input
signal zφ described in (49), Algorithm 4 uses a set of candidate
AoDs. For the sth candidate, we calculate zs in Line 4 and then
normalize it in Line 5 to obtain ws. Assume that for some sm

we have φsm = φ, then we have that

zφ ∝ [1, e2hvv, . . . , e(L−2)hvv]> �wsm . (50)

Motivated by the structure in (50), we compute the correlation
of zφ with all ws and all of the rows of the DFT matrix
in Lines 6–7. Then, we search over different values of s and
i (which indicates the rows of the DFT matrix) to find the
one with the highest correlation in Line 8. We estimate vr

through Lines 10–12, which are the same steps as in Lines 4–6
of Algorithm 2. We explain in Appendix C how to choose the
candidate AoDs.

Refinement: According to the right hand side (RHS) of (49),
for k ∈ {0, . . . , L/2}, we define

[g(v,φ)]k = e2khvva(θ)>diag(bk)a(φ), (51)

which is a function of v and φ. Then one can estimate the
constant ξ as

ξ̂ = g(v,φ)Hzφ/g(v,φ)Hg(v,φ). (52)

Next, we can define the objective function

f(v,φ) = ‖zφ −
(
g(v,φ)Hzφ/g(v,φ)Hg(v,φ)

)
g(v,φ)‖.

(53)

To refine the estimation of v and φ, we conduct two consec-
utive minimization of f(v,φ) via a quasi-Newton algorithm
initiating at the coarse estimations.

Algorithm 4 Coarse Velocity Angle Est(zφ, {bk})
Inputs: Signal (zφ ∈ CL/2)
Parameters: DFT dimensions (Nν), set of candidate AoDs
{φs}Nφ−1

s=0

Output: φ̂ and v̂r

1: F ← Nν × L/2 DFT matrix
2: for s ∈ {0, . . . , Nφ − 1} do
3: for k ∈ {0, . . . , L/2} do
4: [zs]k = a(θ)>diag(bk)a(φs)

5: ws = zs/‖zs‖
6: gs = w∗s � zφ
7: hs = Fgs
8: [im, sm]← maxi,s |[hs]i|
9: φ̂← φsm

10: if im > Nν/2 then
11: im ← im −Nν + 1

12: v̂r ← imλ/(2TsymNν)
13: return φ̂ and v̂r

Algorithm 5 Direct Par Est(Y )
Inputs: Signal (Y ∈ CN×L)
Output: Estimation of parameters for the direct path: gain ĝb,
radial velocity v̂b, and delay τ̂b

1: wb ← [1, 1]>

2: Zb ← match(Y ,wb)
3: v̂b ← Coarse Velocity Est(Zb)
4: v̂b ← Fine Velocity Est(Zb, v̂b)
5: Tb ←

(
FE(v̂b)−1F HY

)
�C(v̂b)∗

6: Ẑb ← match(Tb,wb)
7: zτ ←

∑
t[Ẑb]:,t

8: τ̂b ← Coarse delay Est(zτ )
9: τ̂b ← Fine delay Est(zτ , τ̂b)

10: ĝb ← [D(τ̂b)]
H
:,1 zτ/(NL)

11: return ĝb, v̂b, and τ̂b

D. Estimation of channel parameters for the direct path

Algorithm 5 presents the estimation of channel parameters
for the direct path based on some of the previous algorithms.
The input is the received OFDM signal Y . First wb is used
to extract the direct signal. Next, we estimate the value of vb,
which requires solving a non-convex optimization. We solve
this problem by first obtaining a coarse estimation in Line 3.
In Line 4, we use the refinement step described in Sec. V-A
using v̂b as the initial value. Then, the effects of UE mobility
on the direct signal are compensated for and once again the
direct signal is extracted via the vector wb in Line 6. By
compensating for the effects of UE mobility, we reduce the
residual interference and energy loss in the matching process
(see Section IV). One can see that the matrix Ẑb in Line 6 is
an estimate of Zb in (36). The matrix Ẑb is then summed
across time to establish zτ ∈ CN . One can see that zτ has the
structure Lgb [D(τb)]:,1. Therefore, we use zτ to estimate τb
and then we use τ̂b and zτ to estimate gb in Line 10.
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Algorithm 6 Reflected Par Est(Ŷr, {b0, . . . bL/2−1})
Inputs: Signal (Ŷr ∈ CN×L), beams {bk}
Parameters: Number of iterations Niter

Output: Estimation of parameters for the reflected path: AoD
φ̂, radial velocity v̂r, delay τ̂r

1: wr ← [1,−1]>

2: Ẑr ← match(Ŷr,wr)
3: τ̂r ← Coarse delay Est(Ẑr)
4: Tr ← Ẑr � [D(τ̂r)

∗]:,0:L/2−1

5: zφ ←
∑
n[Tr]

>
n,:

6: [φ̂, v̂r]← Coarse Velocity Angle Est(zφ, {bk})
7: for i ∈ {0, . . . , Niter} do
8: Ŷrs ←

(
FE(v̂r)

−1F HŶr

)
�C(v̂r)

∗

9: Ẑrs ← match(Ŷrs,wr)
10: τ̂r ← Fine delay Est(Ẑrs, τ̂r)
11: Trs ← Ẑrs � [D(τ̂r)

∗]:,0:L/2−1

12: zφ ←
∑
n[Trs]n,:

13: [∆v̂r, φ̂]← Fine Velocity Angle Est(zφ, 0, φ̂, {bk})
14: v̂r = v̂r + ∆v̂r

15: return φ̂, v̂r, and τ̂r

E. Estimation of channel parameters for the reflected path

In this section, we use some of the previous algorithms
to estimate the channel parameters for the reflected path.
The process is described in Algorithm 6. The input matrix
Ŷr is an estimate of Yr in (17). First, we match the signal
with the vector wr to reduce the temporal dimension of the
input signal from L to L/2, without loss of information
and also to remove any interference from the direct path (or
possible scatterers). Then, we estimate τr in Line 3 and then
compensate for its effects in Line 4. Next, we neglect the
spatial-WB effects and assume that the effects of vr, and φr

are constant across the subcarriers. Therefore, to estimate these
parameters we perform a summation across all subcarriers
to obtain zφ ∈ CL/2. Assuming the spatial-NB model (see
Section III-B), one can see that zφ has the structure at the RHS
of (49). Therefore, we use zφ to estimate vr and φr jointly in
Line 6. Next, we compensate for the effects of UE mobility via
v̂r in Line 8. This reduces the interpath interference and the
energy loss due to the UE mobility. The steps from Line 9 to
Line 13 refine the estimations obtained in Lines 2–6 (using the
corresponding refinement steps in Sec.V-A–V-C)4. However,
since the effects of velocity have been already compensated
for in Line 8, we estimate the residual velocity ∆v̂ (with zero
as the initial estimate) in Line 13, which is then added to
the coarse estimation. This process is repeated Niter times
to obtain an accurate estimation, where Niter is a design
parameter. Alternatively, one can also stop the iterations after
the difference between the estimated velocities becomes less
than a certain threshold.

4The extra inputs serve as initial values for the quasi-Newton algorithm.
Specifically Fine Velocity Angle Est(zφ, 0, φ̂, {bk}) uses the initial values
0 and φ̂ for searching along the velocity and AoD dimensions, respectively.

F. Estimation of UE position

Algorithm 7 explains how to estimate the position of the
UE via geometrical channel parameters. First, we calculate
the direction of the UE based on φ̂ in Line 2. Next, based on
(3) and (4), we can estimate the distance between the UE and
the RIS by minimizing the function f(d), defined in Line 3.

Algorithm 7 Position Est(τ̂b, τ̂r, φ̂)

Inputs: Estimation of the ToAs (τ̂b,τ̂r) and AoD (φ̂)
Output: p̂

1: ∆r ← c|τ̂r − τ̂b|

2: k←

sin([φ̂]el) cos([φ̂]az)

sin([φ̂]el) sin([φ̂]az)

cos([φ̂]el)


3: f(d)← (d+ ‖pb − pr‖ − ‖pb − pr − dk‖ −∆r)

2

4: dm ← mind f(d)
5: p̂← dmk
6: return p̂

G. Overall process

The overall estimation process is described in Algorithm 8.
First, the direct channel parameters are estimated in Line 1.
Next, we obtain an estimation of the direct signal and remove
it from the received signal to obtain an estimate of the reflected
one, which is used to obtain estimates of the reflected channel
parameters. Next, we use the estimate of the geometrical
channel parameters to find the UE position. Finally, in Line 5,
we use (3) to estimate the UE clock bias.

Complexity: Algorithm 8 has a low complexity compared
to a search over all the possible values of the channel param-
eters to maximize the likelihood function, which requires a
6-dimensional search (the optimal values of the gains can be
calculated in closed-form). Note that our estimator performs at
most a 3-dimensional search at each step. Specifically, Algo-
rithms 2 and 3 (and their corresponding refinement step) each
apply only one line search each to find an estimation of the ra-
dial velocity and delay, respectively. Algorithm 4 searches over
the possible radial velocities and also the AoDs (elevations and
azimuths), consequently, the search is performed over a 3D
space, while its corresponding refinement step applies a 1D
and a 2D search. Furthermore, we significantly reduced the
complexity of our 3D search by using FFT for searching over
velocities and 2D FFT method to search over possible AoDs
(see Appendix C). Therefore, the proposed algorithm requires
much less computational power compared to the maximum-
likelihood estimator.

VI. SIMULATION RESULTS

In this section, we assess the accuracy of our estimation
method and compare it to the CRB for a system example
with default parameters listed in Table I. The algorithm pa-
rameters are set to Nτ = 4096 (the IDFT dimension for
delay estimation in Algorithm 3) and Nv = Nν = 256 (the



9

Algorithm 8 Estimator(Y , {b0, . . . bL/2−1})
Inputs: Received signal (Y ∈ CN×L), beams {bk}
Output: Estimation of UE position (p̂), UE clock bias ∆̂t,
and radial velocities v̂b, v̂r

1: [ĝb, v̂b, τ̂b]←Direct Par Est(Y )
2: Ŷr ← Y − ĝbFE(v̂b)F H (D(τ̂b)�C(v̂b))
3: [φ̂, v̂r, τ̂r]←Reflected Par Est(Ŷr, {b0, . . . bL/2−1})
4: p̂← Position Est(τ̂b, τ̂r, φ̂)
5: ∆̂t ← τ̂b − ‖p̂− pb‖/c
6: return p̂, ∆̂t, v̂b, and v̂r

TABLE I: Parameters used in the simulation.

Parameter Symbol Value
RIS dimensions M1 ×M2 64× 64
Wavelength λ 1 cm
RIS element distance d 0.5 cm
Light speed c 3× 108 m/s
Number of subcarriers N 3 000
Subcarrier bandwidth ∆f 120 kHz
Symbol duration T 8.33 us
CP duration Tcp 0.58 us
Number of transmissions L 256
Transmission Power N∆FEs 20 dBm
Noise PSD N0 −174 dBm/Hz
UE’s Noise figure nf 8 dB
Noise variance σ2 = nfN0 −166 dBm/Hz
BS position pb [5, 5, 0]
RIS position pr [0, 0, 0]
Uncertainty radius σ 1m

DFT dimension for velocity estimation in Algorithms 3 and 4,
respectively). The number of candidate AoDs in Algorithm 4
is set to Nφ = 256 when using the directional profiles or
Nφ = 2562 for the random profiles, and the selection of
candidate AoDs are done according to Appendix C. Also, the
number of iterations in Algorithm 6 is set to5 Nitr = 3. The
RIS is located at the origin such that the local coordinates of
RIS matches the global coordinate system (R is the identity
matrix). Following the widely used assumption of quasi-static
channel over a coherence interval6 [16], [56]–[60] (consisting
of L OFDM symbols), the channel gains are assigned random
phases (fixed during L symbols) and the amplitudes are
calculated as [61, Eq. (21)–(23)]

|gb| =
λ
√
Es

4π‖pb − p‖
(54)

|gr| =
λ2 cosq(αθ) cosq(αφ)

√
Es

16π‖pb − pr‖‖pr − p‖
(55)

with q = 0.285 (see [61]), where Es indicates the pilot energy,
and αφ and αθ are defined below (28). Before presenting
the results, in Section VI-A, we present some preliminary
information about the calculation of the CRB based on Fisher
information matrix (FIM) analysis, which will be used as a
benchmark in this section. Then, we study the spatial-WB
effects in Section VI-B for different RIS sizes and signal

5Based on our simulation results (not provided in this paper), for the
considered parameters, the position error saturates after two iterations.

6The UE mobility affects the time-varying phase of the received signal
through Doppler-induced phase progressions in fast-time and slow-time do-
mains, modeled by (23) and (22), respectively.

bandwidths. Next in Section VI-C the mobility effects are
considered and the influence of the uncertainty radius as well
as scatterers are shown in Section VI-D.

A. FIM analysis

FIM analysis can be used to develop theoretical lower
bounds on the estimation error of any unbiased estimator. We
do so by calculating the FIM first for the channel parameters
and then for the positional parameters. We define the set of
channel parameters as

ζch = [τb, τr, [φ]az, [φ]el, vb, vr,<(gb),=(gb),<(gr),=(gr)]
>.

(56)

The FIM can be calculated as follows [62]

F ch =
2

σ2

L−1∑
t=0

N−1∑
n=0

Re

{
∂[M ]n,t
∂ζch

(
∂[M ]n,t
∂ζch

)H
}
, (57)

where M is the noiseless part of the received signal. In
this paper, we use the dynamic spatial-wideband model in
(16)–(17) to compute (57) unless stated otherwise. Next, we
calculate the FIM for positional parameters, that is

ζpo = [p>,∆t, vb, vr,<(gb),=(gb),<(gr),=(gr)]
>. (58)

We do so, by calculating F po = J>F chJ , where the Jacobian
matrix J ∈ R10×10 is defined as

J `,s =
∂[ζch]`
∂[ζpo]s

. (59)

By obtaining F ch the estimation error of the mth channel
parameter is lower bounded as

E(|[ζch]m − [̂ζch]m|2) ≥ [F−1
ch ]m,m, (60)

where [̂ζch]m indicates the estimate of the parameter [ζch]m.
Similarly the estimation of the positional parameters can be
bounded using F po. Furthermore, we use the position error
bound (PEB) as a lower bound on the position estimation error,
that is √[

E(‖p− p̂‖2)
]
≥
√

trace([F−1
po ]1:3,1:3). (61)

The derivatives required for calculating F ch and J can be
calculated based on the relations described in Section II.

We note that for the directional codebook, the prior infor-
mation of the UE position affects the FIM only through the
beamforming, and we do not take into account the effects
of the fusion of the estimated position and the prior infor-
mation. Since the proposed estimator also does not perform
information fusion, the presented PEB correctly lower-bounds
the position error of our estimator.

B. Wideband effects

In this section, we study the accuracy of our estimator
in presence of spatial-WB effects using numerical results.
To do so, we calculate the PEB and evaluate the UE posi-
tion estimation error considering the random and directional
RIS profiles described in Section IV-C. We place the UE at
[−r/

√
2, r/
√

2,−10] for r ∈ [2, 100] (in meters). Figure 3
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Fig. 3: Placement of the RIS, BS, and UE in the 3D space.

demonstrates the placement of BS, RIS, and UE in the 3D
space. Furthermore, in Fig. 4 we consider the data transmission
through the spatial-WB channel in (16)–(17) and also the
spatial-NB one in (24)–(25). For each point, we average the
results over 20 sets of RIS phase profiles, for each of which
we consider 20 noise realizations.

Fig. 4 (a) presents the results for M = 642 and N = 3000.
It can be seen that with the NB channel, the estimator attains
the PEB at every point. With the WB channel, the estimator
has a noticeably larger error compared to the PEB for low
values of r. The reason is that for low values of r the angle α
in (28) becomes large and the assumption (28) does not hold.
Therefore, the mismatch between the WB and the NB channels
becomes considerable, and the accuracy of the estimator
(which is designed based on the NB channel) deteriorates.
Furthermore, one can observe that the PEBs for the WB and
NB channel models are almost equal, which shows that the
performance degradation can be compensated by adopting a
better (and more complex) estimator. Future research can aim
to prove mathematically (via FIM analysis) that the changes
of PEB due to user mobility and spatial WB effects are indeed
negligible.

In Fig. 4 (a), it can be seen that the estimation error due
to spatial-WB effects has a more pronounced effect for di-
rectional beamforming than the random one, which is mainly
due to higher SNRs in the directional case which makes the
influence of the distortion caused by the spatial-WB effects
more pronounced. Fig. 4 (b) and Fig. 4 (c), present the same
results for a system with half of the RIS size and half of the
bandwidth of the system considered in Fig. 4 (a). Apart from a
natural degradation in localization accuracy, it can be seen that
the WB effects diminish. This can be justified by (28). Also,
we note that for large values of r and random beamforming
the estimation error in Fig. 4 (b) cannot follow the PEB due to
low values of SNR.

In Fig. 5, we demonstrate the position error for the UE
location at [−5/

√
2,−5/

√
2,−10] for a large range of the

received SNR of the direct path. It can be seen that for SNRs
lower than 0 dBm, the estimator fails to estimate the UE
location for random RIS profiles. Also, it can be seen that at
high SNRs the estimation error saturates for both directional
and random phase profiles due to the spatial WB effects. Based
on our simulation results (not included in this paper), similar
behavior can also be observed for the estimation error of the
AOD.

To study the WB effects more closely in Fig. 6, we present
the PEB and the estimation errors at r = 5 for a large
range of signal bandwidth (B = N∆f ). As can be seen, the
PEBs decrease with B, which shows that a better localization
performance can be attained with higher bandwidths. However,
our estimator, which is designed based on the NB model,
does not show such behavior. Specifically with the directional
beamforming, after B = 140 MHz the distortion caused by
the WB effects causes a higher positioning error.

C. Mobility effects
Fig. 7 presents the cumulative distribution functions (CDFs)

of the estimation error and the CRB for 100 different real-
izations of random and directional RIS phase profiles. For
each RIS phase profile we generated 1000 noise realizations
to accurately calculate the estimation error. We consider two
UE velocities: One where UE is static and one where the UE
velocity vector is set to v = [−30, 30, 0] m/s. We consider the
estimation of the UE position in Fig. 7 (a), UE clock bias in
Fig. 7 (b), and UE radial velocity vector vr in Fig. 7 (c). The
velocity vector is estimated based on the radial velocities and
the relations (1) and (2) and by assuming that the estimator
has the prior knowledge that [v]3 = 0.

It can be seen from Fig. 7 that in addition to the UE
position, the UE velocity vector and also the UE clock bias
can be estimated. Therefore, the UE can be synchronized to
the BS. There is a small reduction in the accuracy of velocity
estimation for the high-mobility user compared to the static
one. This is due to the error in position estimation which
causes error in the estimation of v from the estimated radial
velocities, v̂b and v̂r. Apart from this, it is apparent that the
UE velocity does not affect the estimation accuracy, both in
terms of analytical bounds and also estimation error. This can
be explained based on the fact that the UE radial velocities
can be estimated with the accuracy of up to 0.1 m/s and then
their effects can be removed from the received signal.

D. Uncertainty radius and scatterers
Fig. 8 demonstrates the CDF of the position error for 100

realizations of the directional RIS beams for different values
of σ. It can be seen that the optimal performance among
the considered values of σ is obtained by σ = 0.5 m. For
very small values of σ (like σ = 0.1 m), all the transmitted
beams become almost similar to each other and therefore
accurate AoD estimation cannot be performed due to lack
of beam diversity. Furthermore, with larger values of σ there
is a probability that none of the transmitted beams hits the
UE, which results in low SNR and high estimation error.
This is the reason why the CDF of the estimation error
becomes saturated around 0.95 for σ = 3m. Furthermore, we
examine the performance of our estimator in presence of 10
scatterers, whose radio cross sections are equal to 0.1 m2 and
are distributed randomly on a disc placed on the z = −11
plane, centered at [0, 0,−11] with 5 meters radius. The channel
gains for scatterers are calculated based on the radar range
equation (see e.g., [61, Eq. (23)]). It can be seen that although
the presence of the scatterers can degrade the localization
accuracy, it is still possible to perform cm-level positioning.
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Fig. 4: Estimation error and the CRB bounds for UE position along the path [−r/
√

2, r/
√

2,−10], where r varies between 2m to 100m considering NB
and WB models, and directional and random RIS phase profiles. Results are presented for different combinations of the number of RIS elements (M ) and
subcarriers (N ): a) M = 642, N = 3000, b) M = 322, N = 3000, c) M = 642, N = 1500.
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Fig. 5: Position error for the UE position [−5/
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2,−10] for direc-
tional and random RIS phase profiles vs the received SNR (of the direct path).

VII. CONCLUSION

We analyzed the influence of UE mobility and spatial-WB
effects on the accuracy of an RIS-enabled SISO system by
deriving CRB and also devising an estimator. Based on our
numerical results, it was shown that the UE mobility does not
have any notable effects on the estimation accuracy of the UE
state. This was shown in Fig. 7, where both the bounds and the
estimation errors are virtually equal for a static UE and a UE
with a very high speed. Our proposed estimator dealt with the
UE mobility by successively estimating the radial velocities
and compensating for their effects. Our results suggest that
the studies that assume static users can be potentially ex-
tended to account for the UE mobility without any significant
performance degradation. With regard to spatial-WB effects
it was shown that these effects do not change the analytical
bounds and therefore the performance of the optimal estimator.
However, for a low-complexity estimator that ignores the
spatial-WB effects (such as the one presented in this work),
they can degrade the localization accuracy, especially for large
signal bandwidth and RIS sizes. Specifically, it was shown

100 200 300 400
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E
rr
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(m

)

PEB
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Fig. 6: Estimation error and CRB bounds for the UE position at
[−5/

√
2, 5/
√

2,−10] as a function of signal bandwidth (B). Directional
and random phase profiles were considered.

in Fig.6 that for some typical system values increasing the
number of subcarriers can decrease the estimation accuracy
indicating the existence of an optimal signal bandwidth. This
result shows the importance of devising a low-complexity
estimator that can cope with the spatial-WB effects in dynamic
systems, which is an interesting topic for future research.

APPENDIX A
SPATIAL-WIDEBAND MODEL UNDER UE MOBILITY

In this appendix, we derive the received signal coming
through the reflected path (Yr) by taking into account spatial-
WB effects [41], [46]–[48] and UE mobility [32], [33], [35],
[63]. The received signal from the direct path (Yb) in (16)
can be derived in the same fashion. We use the same notation
as in Section II. In addition, for the derivations, we adopt
an approach similar to those in [41], [47], [64], where we
compute the total path delay between the BS and the UE,
including the BS-to-RIS delay, the (adjustable) delay at the
RIS and the RIS-to-UE delay, along with the Doppler effects
due to UE mobility.
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Fig. 7: CDF of estimation error and CRB bounds for 100 realizations of directional and random RIS phase profiles for a) UE position, b) UE clock bias, and
c) UE velocity v. The UE has the position [−10, 10,−10] and velocity [−v, v, 0], where v ∈ {0, 30}m/s.
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Fig. 8: CDF of estimation error (dashed lines) and CRB bounds (solid lines)
for 100 realizations of directional RIS phase profiles constructed based on
different uncertainty radii (σ). The estimation error for σ = 1m in presence
of 10 scatterers is also shown (the dotted line). The UE has the position
[−10, 10,−10].

A. Transmit signal model

The transmitted OFDM baseband signal can be expressed
as

s(t) =

L−1∑
`=0

s`(t), (62)

where

s`(t) =
1√
N

N−1∑
n=0

xn,` e
2πn∆f trect

(
t− `Tsym

Tsym

)
(63)

denotes the OFDM signal for the `th symbol, xn,` is the
complex pilot symbol on the nth subcarrier for the `th symbol,
and rect (t) is a rectangular function that takes the value 1 for
t ∈ [0, 1) and 0 otherwise. Then, the upconverted transmit
signal can be written as

su(t) = <
{
s(t)ej2πfct

}
. (64)

B. Receive signal model

Based on the transmit signal model in (64), the passband
received signal at the UE due to the reflected path through the
RIS is given by [47]

yur(t) = <
{
g̃r

M−1∑
m=0

s(t− [τ (t)]m)e2πfc(t−[τ (t)]m)

}
, (65)

where g̃r is the complex path gain and the vector τ (t) ∈ RM
contains the delays between the BS and the UE through the
different elements of the RIS. It can be computed as

τ (t) = τbr + τr(t) + τru(t) + ∆t, (66)

where the vector τbr contains the delays between the BS and
the elements of the RIS

[τbr]m =
‖pb − pr,m‖

c
(67)

with pr,m denoting the location of the mth RIS element,
[τr(t)]m denotes the delay incurred by the mth element of
the RIS at time t [64], [τru(t)]m = [τru]m − νrt represents
the time-varying delay [33] from the mth element to the UE
with νr = vr/c and vr denoting the radial velocity along the
RIS-UE direction in (2) and

[τru]m =
‖pr,m − p‖

c
(68)

is the initial delay (at t = 0). The complex baseband received
signal after downconversion of (65) can be written as [47]

yr(t) = g̃r

M−1∑
m=0

s(t− [τ (t)]m)e−2πfc[τ (t)]m . (69)

Plugging (62) and (63) into (69), we have

yr(t) = g̃r

M−1∑
m=0

L−1∑
`=0

1√
N

N−1∑
n=0

xn,` e
2πn∆f (t−[τ (t)]m) (70)

× e−2πfc[τ (t)]mrect

(
t− [τ (t)]m − `Tsym

Tsym

)
.

For the `th symbol, we sample yr(t) in (70) at t = `Tsym +
Tcp +τmin +kTo/N for k = 0, . . . , N−1 (i.e., we remove the
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CP and sample the interval corresponding to the elementary
OFDM signal), where

τmin = min
m

[τ (0)]m (71)

is the arrival time of the reflected path with respect to the
receiver’s clock (which can be detected7, e.g., via downlink
synchronization signals [65]). Substituting (66) into (70), the
discrete-time signal for the kth sample of the `th symbol at
the receiver becomes

[Ỹr]k,` = g̃r

M−1∑
m=0

1√
N

N−1∑
n=0

[
xn,` e

2πn∆f (`Tsym+Tcp+τmin+kTo/N)

× e−2πn∆f ([τbr]m+[τr,`]m+[τru]m+∆t)

× e2πn∆fνr(`Tsym+Tcp+τmin+kTo/N) (72)

× e−2πfc([τbr]m+[τr,`]m+[τru]m+∆t)

× e2πfcνr(`Tsym+Tcp+τmin+kTo/N)
]

under the assumption that [τ (0)]m − τmin ≤ Tcp, which
holds in practice since the UE is in the far-field of RIS
and the RIS delays τr are very small compared to propa-
gation delays [τbr]m and [τru]m [64]. In (72), it is assumed
that the RIS profile can change across OFDM symbols and
[τr,`]m = [τr(`Tsym + Tcp)]m represents the delay of the mth
element corresponding to the RIS configuration applied for the
`th symbol.

Since the receiver’s clock reference can be set to an arbitrary
known epoch, we can set τmin = 0. The received signal in (72)
can be written as

[Ỹr]k,` =
g̃r√
N
e2πfcνr(Tcp+kTo/N)

N−1∑
n=0

x̃n,`e
2πnk/N

× e2π(fc+n∆f )νr`Tsyme2πn∆fνr(Tcp+kTo/N) (73)

×
M−1∑
m=0

e−2π(fc+n∆f )([τbr]m+[τr,`]m+[τru]m+∆t),

where

x̃n,` = xn,`e
2πn∆f (`Tsym+Tcp). (74)

We define the phase shift induced by the delay [τr,`]m at the
center frequency as ψ`,m = 2πfc[τr,`]m, which we assume to
be less than 2π (note that the choice of the RIS configuration
[τr,`]m is under the designer’s control [64] and [τr,`]m ∈
[0, 1/fc) will cover all possible phase shifts).

To make (73) more compact, we will now rely on the
following approximations/simplifications:

1) frequency-narrowband approximation:

fc + n∆f

fc
ψ`,m ≈ ψ`,m, (75)

which holds as long as B/fc � 1 (which is satisfied in
our simulations according to Table I with B = 360 MHz
and fc = 30 GHz).

7Since the variation of the delays τ (t) across the RIS elements could be
much smaller than the delay resolution, the UE can possibly identify a single
correlation peak contributed by all the RIS elements, in which case τmin is
set as the location of that peak.

2) far-field approximation8:

2π(fc + n∆f )(τbr − τbr) ≈ −k>(θ)Q (76)

2π(fc + n∆f )(τru − τru) ≈ −k>(φ)Q, (77)

where τbr = ‖pb−pr‖/c, τru = ‖pr−p‖/c, and k and
Q are defined in (15) and (14), respectively.

3) negligible phase term under practical velocity values9:

e2πn∆fνr(Tcp+kTo/N) ≈ 1. (78)

In addition, we define [γ`]m = e−ψ`,m to indicate the RIS
phase profile, and a constant phase reference ψr,2πfcτr.
Using (75)–(77), the last summation in (73) can be written
as
M−1∑
m=0

e−2π(fc+n∆f )([τbr]m+[τr,`]m+[τru]m+∆t) (79)

=

M−1∑
m=0

e−2π(fc+n∆f )([τbr]m−τbr)e−2π(fc+n∆f )([τru]m−τru)

×e−2π(fc+n∆f )(τbr+τru+∆t)e−2π(fc+n∆f )[τr,`]m

≈ e−2πn∆fτre−jψr
M−1∑
m=0

ejk(θ)>[Q]:,mejk(φ)>[Q]:,m [γ`]m

= e−2πn∆fτre−jψr
M−1∑
m=0

[a(θ)]m[γ`]m[a(φ)]m

= e−2πn∆fτre−jψr [A(φ)]n,` , (80)

where the matrix A(φ) is defined in (11) and τr in (4).
By substituting (80) and (78) into (73), we obtain

[Ỹr]k,` =
gr√
N
e2πvrkTo/(λN)

N−1∑
n=0

x̃n,`e
2πnk/N

× e2πvr`Tsym/λne−2πn∆fτr [A(φ)]n,`. (81)

Here, we used (fc + n∆f )νr = vr(fc + n∆f )/c = vr/λn,
where λn is defined in (21). Also, we have

gr = g̃re
2πfcνrTcpe−ψr . (82)

Assuming x̃n,` = 1 for all10 n and `, the summation in (81)
can be written via the DFT matrix F in (18) as

Ỹr = grE(vr)F
H (D(τr)�A(φ)�Cw(vr)) , (83)

where D(τ), Cw(v) and E(v) are defined, respectively, in
(10), (22) and (23). Finally, we define

Yr = F Ỹr (84)

to obtain (17).

8The far-field approximation in (76) (and, similarly, the one in (77)) can
be readily derived by observing that, in the far-field regime, the difference
between the BS-to-RIS center distance and the BS-to-m-th RIS element
distance can be written as a function of θ, the AoA from the BS to RIS,
and [Q]:,m, the position of the m-th RIS element relative to the RIS center.

9The phase of the left hand side (LHS) of (78) can be upper bounded with
2πBTsymvr/c, which for the values in Table I and vr = 30 m/s is about
2 · 10−3.

10According to (74), the pilot symbols xn,` can be chosen such that
x̃n,` = 1 for the sake of simplicity of analysis. The signal model can be
straightforwardly extended to the case of arbitrary pilot symbols. In addition,
the effects of transmit power can be modeled by adjusting the noise variance
in (7).
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APPENDIX B
CONDITIONS OF VALIDITY FOR SPATIAL-NARROWBAND

APPROXIMATION IN (24)–(25)
In this part, we derive the conditions under which the

spatial-narrowband approximation in (24)–(25) is valid. To
this end, we explore when Cw(v) and Aw(φ) in the spatial-
wideband model (16)–(17) can be approximated as C(v) and
A(φ) in the spatial-narrowband model (24)–(25), respectively.

A. Condition of Validity for Approximation of (22)
For the transition from [Cw(v)]n,` in (22) to [C(v)]n,` in

(26) to be valid, the following approximation must hold ∀`, n:

e2π`Tsymv/λn ≈ e2π`Tsymv/λ , (85)

which requires

e2π`Tsymv(fc+n∆f )/c ≈ e2π`Tsymvfc/c (86a)

e2π`Tsymvn∆f/c ≈ 1 (86b)
LTsymBv � c (86c)

LNv � c (86d)
LN max{vr, vb} � c , (86e)

where (86c) is obtained by plugging the worst-case conditions
` = L− 1 and n = N − 1 (in terms of approximation quality)
into (86b) and recalling that B = N∆f , (86d) results from
BTsym ≈ BT = B/∆f = N (assuming Tcp/T is small),
and (86e) follows by considering the maximum of direct and
reflected path velocities.

B. Condition of Validity for Approximation of (19)
Similarly, for the transition from [Aw(φ)]n,` in (19) to

[A(φ)]n,` in (11) to be valid, we need

ekn(ψ)>[Q]:,m ≈ ek(ψ)>[Q]:,m (87)

for any n and the angles ψ ∈ {θ,φ}, which represent,
respectively, the AoA and AoD for the RIS in (19). From
(15) and the definition of qr,s in Sec. II-A, this requires

emax(M1,M2)d sin(α)2π/λn ≈ emax(M1,M2)d sin(α)2π/λ (88a)

emax(M1,M2)d sin(α)2π(fc+n∆f )/c

≈ emax(M1,M2)d sin(α)2πfc/c (88b)

emax(M1,M2)d sin(α)2πn∆f/c ≈ 1 (88c)
max(M1,M2)d sin(α)B � c , (88d)

where α denotes the angle between the RIS normal ([0, 1, 0]>)
and the vector k(ψ)11, and (88d) follows by considering the
worst-case scenario (in terms of approximation quality) n =
N − 1.

APPENDIX C
CHOOSING THE CANDIDATE AODS

In this section, we explain how we select the AoDs φ.
For the case with existing prior location information ξ (see

11Note that [Q]:,m is orthogonal to the RIS normal; therefore, only the
component of k(ψ) that is orthogonal to the RIS normal contributes to the
value of k(ψ)>[Q]:,m. This component has the norm sin(α).

Section IV-C2), we choose Nφ points within the sphere
centered at ξ with radius σ (similarly as in Section IV-C2).
Then the set {φs}Nφ−1

s=0 is calculated as the angles from the
RIS towards these points. Furthermore, with directional beams
in (43) the calculation of zs in Line 4 of Algorithm 4 can be
performed in closed-form (the RHS of Line 4 reduces to a
geometric sum), which reduces the complexity of Algorithm 4.

In the absence of any prior information about the user,
the values of zs can be calculated offline since the beams
can be set prior to the localization procedure. Furthermore, to
reduce the complexity of calculating zs, we use 2D inverse
fast Fourier transform (IFFT), which is explained as follows.
We re-write the vector a(ψ) in (13) as

a(ψ) = a1(ψ)⊗ a2(ψ), (89)

where

a1(ψ) = eβ1 [1, e[k(ψ)]1d, . . . , , e[k(ψ)]1(M1−1)d] (90)

a2(ψ) = eβ2 [1, e[k(ψ)]3d, . . . , , e[k(ψ)]3(M2−1)d], (91)

where β1 = [k(ψ)]1(M1 − 1)d/2 and β2 = [k(ψ)]3(M2 −
1)d/2. Next, from Line 4 we have that

[zs]k = a(θ)>diag(bk)a(φs) (92)

= a(φs)
> (a(θ)� bk) (93)

= e(β1+β2)a1(φs)
>Cka2(φs), (94)

where

Ck =
(
a1(θ)a2(θ)>

)
�Bk (95)

and (94) follows from (89) and the properties of the Kronecker
product (see [66, Eq. (520)]). Motivated by (89), we set zs to
be the sth row of matrix Zf = [zf,0, . . . ,zf,L/2−1], where

zf,k = vec
(
F>φ,1CkFφ,2

)
. (96)

Here, Fφ,1 ∈ CM1×Nφ,1 and Fφ,2 ∈ CM2×Nφ,1 are
IDFT matrices, where Nφ,1 and Nφ,2 are design pa-
rameters. Furthermore, the RHS of (96) can be calcu-
lated using 2D IFFT. The set {φs} can be calculated as
{φ0,0,φ1,0, . . . ,φNφ,1−1,Nφ,2−1}, where

[φn1,n2
]az = atan2 (k2(n1, n2), k1(n1, n2)) (97)

[φn1,n2
]el = acos (k3(n1, n2)) . (98)

Here,

k1(n1, n2) = fr

(
λn1

dNφ,1

)
(99)

k3(n1, n2) = fr

(
λn2

dNφ,2

)
(100)

k2(n1, n2) =
√

1− k2
1 − k2

3, (101)

where the function fr = x − 2bx/2c compensates for the
wrap-around effects. Furthermore, for the values of n1 and
n2 if k2(n1, n2) becomes imaginary φn1,n2 is undefined and
the estimator can remove these values from the sets {zs} and
{φs}.
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