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RIS-aided Joint Localization and Synchronization
with a Single-Antenna Receiver: Beamforming

Design and Low-Complexity Estimation
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Henk Wymeersch, Senior Member, IEEE, and Gonzalo Seco-Granados, Senior Member, IEEE

Abstract—Reconfigurable intelligent surfaces (RISs) have at-
tracted enormous interest thanks to their ability to overcome
line-of-sight blockages in mmWave systems, enabling in turn
accurate localization with minimal infrastructure. Less inves-
tigated are however the benefits of exploiting RIS with suit-
ably designed beamforming strategies for optimized localization
and synchronization performance. In this paper, a novel low-
complexity method for joint localization and synchronization
based on an optimized design of the base station (BS) active
precoding and RIS passive phase profiles is proposed, for the
challenging case of a single-antenna receiver. The theoretical
position error bound is first derived and used as metric to
jointly optimize the BS-RIS beamforming, assuming a priori
knowledge of the user position. By exploiting the low-dimensional
structure of the solution, a novel codebook-based robust design
strategy with optimized beam power allocation is then proposed,
which provides low-complexity while taking into account the
uncertainty on the user position. Finally, a reduced-complexity
maximum-likelihood based estimation procedure is devised to
jointly recover the user position and the synchronization offset.
Extensive numerical analysis shows that the proposed joint BS-
RIS beamforming scheme provides enhanced localization and
synchronization performance compared to existing solutions, with
the proposed estimator attaining the theoretical bounds even
at low signal-to-noise-ratio and in the presence of additional
uncontrollable multipath propagation.

Index Terms—Reconfigurable intelligent surface, mmWave,
localization, synchronization, beamforming, phase profile design,
convex optimization.

I. INTRODUCTION

With the introduction of 5G, radio localization has finally
been able to support industrial verticals and is no longer
limited to emergency call localization [2]–[6]. This ability
is enabled by a combination of wideband signals (up to 400
MHz in frequency range 2 (FR2)), higher carrier frequencies
(e.g., around 28 GHz), multiple antennas, and a low latency
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and flexible architecture [3], [7], [8]. Common localization
methods rely on time-difference-of-arrival (TDoA) or multi-
cell round trip time (multi-RTT) measurements, requiring at
least 4 or 3 base stations (BSs), respectively. In order to enable
accurate localization with minimal infrastructure, there have
been several studies to further reduce the number of BSs
needed for localization. These studies can be broadly grouped
in three categories: (i) data-driven, based on fingerprinting
and deep learning [9], [10]; (ii) geometry-driven, based on
exploiting passive multipath in the environment [11], [12]
(which is itself derived from the multipath-assisted localiza-
tion [13]); and, more recently, (iii) reconfigurable intelligent
surface (RIS)-aided approaches [14]–[20]. The latter category
extends the concept of multipath-aided localization to RIS,
which can actively control the multipath. RISs have attracted
enormous interest in the past few years, mainly for their
ability to overcome line-of-sight (LoS) blockages in mmWave
communications [14], [21], [22]. From the localization point
of view, RIS fundamentally offers two benefits: it introduces
an extra location reference and provides additional measure-
ments, independent of the passive, uncontrolled multipath
[16]. Hence, it avoids the reliance on strong reflectors in the
environment, needed by standard multipath-aided localization
[18], while also having the potential to low-complexity model
based solution, in contrast to deep learning methods.

The use of RIS for localization has only recently been
developed, and a number of papers have been dedicated to
RIS-aided localization [15]–[20], [23], [24]. Interestingly, RISs
allow us to solve very challenging localization problems, such
as single-antenna user equipment (UE) localization with a
single-antenna BS in LoS [19] and even non-line-of-sight
(NLoS) conditions (i.e., where the LoS path is blocked) [23].
While an RIS renders these problems solvable, high propaga-
tion losses (especially at mmWave bands) necessitates long
coherent processing intervals to obtain sufficient integrated
signal-to-noise ratio (SNR), thus limiting supported mobility.
Shorter integration times can be achieved with directional
beamforming at the BS side [25], provided it is equipped with
many antennas. Such beamforming becomes especially pow-
erful when there exists a priori UE location information [26].
Hence, with the goal of improving localization performance,
recent studies have focused on BS precoder optimization in
the case of passive multipath [27], [28], while optimization
in the presence of RIS involves joint design of BS precoder
and RIS phase profiles, and thus can provide further accuracy
enhancements via additional degrees of freedom. Nevertheless,
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such studies have been limited to SNR-maximizing heuristics
[18], leading to directional RIS phase profiles, which may
not necessarily lead to localization-optimal solutions [29],
[30]. Within the context of RIS-aided communications, several
works investigate joint design of active transmit precoding
at the BS and passive phase shifts at the RIS to optimize
various performance objectives, including sum-rate [31]–[34],
effective mutual information [35], outage probability [36]
and signal-to-interference-noise ratio (SINR) [37]. However,
to the best of authors’ knowledge, no studies have tackled
the problem of joint BS-RIS beamforming to maximize the
performance of RIS-aided localization and synchronization.

In this paper, we propose a novel joint BS-RIS beamform-
ing design and a low-complexity maximum likelihood (ML)
estimator for RIS-aided joint localization and synchronization
supported by a single BS, considering the challenging case of
a UE equipped with a single-antenna receiver. The optimized
design exploits a priori UE location information and considers
the BS precoders and RIS phase configurations jointly, in
order to minimize the position error bound (PEB). The main
contributions are as follows:

• We derive the Fisher Information Matrix (FIM) for lo-
calization and synchronization of a UE equipped with a
single-antenna receiver, and conduct a theoretical analysis
of the achievable performance.

• We formulate the joint design of BS precoder and RIS
phase profile as a bi-convex optimization problem for
the non-robust case, and propose a solution via alternat-
ing optimization. Interestingly, the solution reveals that
at both the BS and RIS sides, a certain sequence of
beams (namely, directional and derivative beams [29],
[30], [38]) is required to render the problem feasible, in
contrast to the corresponding communication problem.

• Based on the optimal solution under perfect knowledge
of UE location, we propose a codebook-based design in
the robust case, including a set of BS and RIS beams
determined by the uncertainty region of UE location,
where power optimization across BS beams is formulated
as a convex problem.

• Elaborating on the ideas preliminarily introduced in [1],
we devise a reduced-complexity estimation procedure
based on the ML criterion, which attains the CRLBs even
at low SNRs, and exhibits robustness against the presence
of uncontrollable multipath.

• We compare the proposed algorithms against different
approaches in literature, and show that the proposed
designs outperform these benchmarks, not only in terms
of PEB and clock error bound (CEB), but also localization
and synchronization root-mean-squared errors (RMSEs).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the RIS-aided mmWave down-
link (DL) localization scenario including a BS, an RIS and a
UE, derive the received signal expression at the UE, and for-
mulate the problem of joint localization and synchronization.

A. RIS-aided Localization Scenario
We consider a DL localization scenario, as shown in Fig. 1,

consisting of a single BS at known location q = [qx qy]
T

Base
Station RIS

User

Equipment

Joint BS-RIS Beamforming
Optimization

uncertainty region

Optimized BS Precoding

with power allocation


Optimized RIS Phase
Profiles


Fig. 1: Considered localization and synchronization scenario with optimized
BS active precoding and RIS phase profiles.

equipped with multiple antennas, a single-antenna UE at
unknown location p = [px py]

T, and an RIS at known location
r = [rx ry]

T. The UE has an unknown clock offset ∆ with
respect to the BS. We assume a two-dimensional (2D) scenario
with uniform linear arrays (ULAs) for both the BS and RIS
deployments1. The numbers of antenna elements at the BS
and RIS are NBS and NRIS, respectively. The goal of the UE is
to estimate its location and clock offset by exploiting the DL
signals it receives through the direct LoS path and through the
reflected (controllable) NLoS path generated by the RIS.

B. Signal Model

The BS communicates by transmitting single-stream or-
thogonal frequency division multiplexing (OFDM) pilots with
N subcarriers over G transmissions. Particularly, the g-th
transmission uses an OFDM symbol sg = [sg[0] · · · [sg[N −
1]]T ∈ CN×1 with 1

N ∥sg∥2 = 1 and is precoded by the
weight vector fg ∈ CNBS×1. To keep the transmit energy
constant over the entire transmission period, the precoding
matrix F = [f1 · · ·fG] ∈ CNBS×G is assumed to satisfy
tr
(
FFH

)
= 1. The BS can be equipped with an analog active

phased array [39] or a fully digital array.
The DL received signal at the UE associated to the g-th

transmission over subcarrier n is given by

yg[n] =
√
PhT[n]fgsg[n] + νg[n] (1)

for n = 0, . . . , N − 1 and g = 1, . . . , G, with P denoting
the transmit power and νg[n] circularly symmetric complex
Gaussian noise having zero mean and variance σ2. In (1),
h[n] ∈ CNBS×1 represents the entire channel, including both

1We address the joint localization and synchronization problem in 2D, a
common choice in the literature because it greatly simplifies the exposition.
Moreover, since in mmWave scenarios the distance between transmitter and
receiver is large compared to the height of the antennas, considering the pro-
jection onto the 2D horizontal plane provides a fairly realistic representation
of the dominant propagation phenomena. The proposed methodology can be
extended in principle to address the 3D localization setup; we will discuss this
possibility after the derivation of the proposed joint BS and RIS beamforming
design strategy in Sec. V and low-complexity estimation algorithm in Sec. VI,
so that the necessary modifications can be described.
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the LoS path and the NLoS path (i.e., the reflection path via
the RIS), between the BS and the UE for the n-th subcarrier:

hT[n] = hT
B,U[n] + hT

R,U[n]Ω
gHB,R[n] (2)

where hB,U[n] ∈ CNBS×1 is the direct (i.e., LoS) chan-
nel between the BS and the UE, HB,R[n] ∈ CNRIS×NBS

denotes the channel from the BS to the RIS, Ωg =
diag(ejω

g
1 , . . . , e

jωg
NRIS ) ∈ CNRIS×NRIS is the RIS phase control

matrix at transmission g, and hR,U[n] ∈ CNRIS×1 represents the
channel from the RIS to the UE2.

The LoS channel in (2) can be expressed as hB,U[n] =

αB,Ue
−j2πn

τB,U
NT aBS(θB,U), where T = 1/B is the sampling

period with B the bandwidth, αB,U = ρB,Ue
jφB,U with ρB,U and

φB,U modulus and phase of the complex amplitude αB,U, θB,U

is the angle-of-departure (AoD) from the BS to the UE, and
τB,U is the delay between the BS and the UE up to a clock
offset ∆, as better specified later. As to aBS(·), it represents
the BS array steering vector whose expression is given by
aBS(θ) = [1 ej

2π
λc

d sin θ · · · ej(NBS−1) 2π
λc

d sin θ]T with λc = c/fc,
fc being the carrier frequency and c the speed of light, and
d = λc/2.

In (2), the first tandem channel (i.e., from the BS to the
RIS) in the NLoS path through the RIS is defined as

HB,R[n] = αB,Re
−j2πn

τB,R
NT aRIS(ϕB,R)a

T
BS(θB,R) (3)

where αB,R = ρB,Re
jφB,R is the complex gain over the BS-

RIS path, ϕB,R the angle-of-arrival (AoA) and θB,R the AoD
from the BS to the RIS, and τB,R the delay between the
BS and the RIS. In addition, aRIS(·) ∈ CNRIS×1 denotes
the array steering vector of the RIS, given by aRIS(θ) =

[1 ej
2π
λc

d sin θ · · · ej(NRIS−1) 2π
λc

d sin θ]T. Finally, the second tan-
dem channel in (2) is given by

hT
R,U[n] = αR,Ue

−j2πn
τR,U
NT aT

RIS(θR,U) (4)

with the notations αR,U = ρR,Ue
jφR,U , τR,U, and θR,U having the

same meaning as in the BS-to-UE channel model.
The geometric relationships among the BS, RIS, and UE

are as follows (assuming for simplicity that the BS is placed
at the origin of the reference system, i.e., q = [0 0]T):

τB,U = ∥p∥/c+∆

τR = τB,R + τR,U = (∥r∥+ ∥r − p∥)/c+∆

θB,U = atan2(py, px), θR,U = atan2(py − ry, px − rx)

θB,R = atan2(ry, rx), ϕB,R = −π + θB,R. (5)

Notice that τB,R, θB,R and ϕB,R are known quantities being the
BS and RIS placed at known positions.

C. Joint Localization and Synchronization Problem
From the DL received signal {yg[n]}∀n,g in (1) over N

subcarriers and G transmissions, the problems of interest are as
follows: i) design the BS precoder matrix F and the RIS phase
profiles {Ωg}∀g to maximize the accuracy of UE location and
clock offset estimation; ii) estimate the unknown location p

2For simplicity, the model in (2) does not involve uncontrolled multipath
components and will be used to derive bounds and algorithms from Sec. III
to Sec. VI, while the robustness of the algorithms against the presence of
uncontrolled NLoS paths will be evaluated through simulations in Sec. VII-C5.

and the unknown clock offset ∆ of the UE. To tackle these
problems, we first derive a performance metric to quantify the
accuracy of localization and synchronization in Sec. III. Based
on this metric, Secs. IV-V focus on the joint design of F and
{Ωg}∀g . Finally, Sec. VI develops an estimator for p and ∆.

III. FISHER INFORMATION ANALYSIS

In this section, we perform a Fisher information analysis to
obtain a performance measure for localization and synchro-
nization of the UE, which is needed for the design of F and
{Ωg}∀g in Sec. IV and Sec. V.

A. FIM in the Channel Domain

For the estimation problem in Sec. II-C, we compute
the FIM of the unknown channel parameter vector γ =
[τB,U θB,U ρB,U φB,U τR,U θR,U ρR φR]

T where ρR = ρB,RρR,U and
φR = φB,R+φR,U. The FIM Jγ ∈ R8×8 satisfies the information
inequality [40, Thm. (3.2)]

E
{
(γ̂ − γ)(γ̂ − γ)T

}
⪰ J−1

γ (6)

for any unbiased estimator γ̂ of γ, where A ⪰ B means
A − B is positive semi-definite. Since the observations in
(1) are complex Gaussian, the (h, k)-th FIM entry [Jγ ]h,k

def
=

Λ(γh, γk) can be expressed using the Slepian-Bangs formula
as [40, Eq. (15.52)]

Λ(γh, γk) =
2

σ2

G∑
g=1

N−1∑
n=0

ℜ
{(

∂mg[n]

∂γh

)∗
∂mg[n]

∂γk

}
(7)

where x∗ denotes the complex conjugate of x and mg[n] =√
PhT[n]fgsg[n] is the noise-free version of the received

signal in (1). Using (2)–(4), mg[n] can be re-written as
mg[n] = mg

B,U[n] +mg
R [n], where

mg
B,U[n]

def
=

√
PρB,Ue

jφB,U [c(τB,U)]n a
T
BS(θB,U)fgsg[n] (8)

mg
R [n]

def
=

√
PρRe

jφR [c(τR)]n b
T
RIS(θR,U)ω

gaT
BS(θB,R)fgsg[n] .

In (8), τR = τR,U + τB,R is the delay of the BS-RIS-UE path,

bRIS(θ)
def
= aRIS(θ)⊙ aRIS(ϕB,R) (9)

denotes the combined RIS steering vector including the effect
of both the AoD θ and the AoA ϕB,R as a function of θ,

c(τ)
def
=

[
1 e−jκ1τ · · · e−jκN−1τ

]T
(10)

represents the frequency-domain steering vector with κn =
2π n

NT , and ωg ∈ CNRIS×1 is the vector consisting of the
diagonal entries of Ωg , i.e., Ωg = diag (ωg). Here, ⊙ is the
Hadamard (element-wise) product. Hereafter, bRIS will be used
to denote bRIS(θR,U) for the sake of brevity. For the derivative
expressions in (7), we refer the reader to Sec. S-I-A in the
supplemental material.

We now express the FIM elements in (7) as a function of
the BS precoder F and the RIS phase profiles {ωg}Gg=1. To
that end, the FIM Jγ can be written as

Jγ =

[
JB,U Jcross
JT

cross JR

]
(11)
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where JB,U ∈ R4×4 and JR ∈ R4×4 are the FIM submatrices
corresponding to the LoS path and the NLoS (i.e., BS-RIS-UE)
path, respectively, and Jcross ∈ R4×4 represents the LoS-NLoS
path cross-correlation. In addition, let us define

Xg
def
= fgf

H
g ∈ CNBS×NBS (12)

Ψg
def
= ωg(ωg)H ∈ CNRIS×NRIS . (13)

The following remark reveals the dependency of the FIM
submatrices in (11) on BS precoder and RIS phase profiles
using Sec. S-I-B in the supplemental material.

Remark 1. The dependency of the FIM Jγ in (11) on F and
{ωg}Gg=1 can be specified as follows:

• JB,U is a linear function of {Xg}Gg=1.
• JR is a bi-linear function of {Xg}Gg=1 and {Ψg}Gg=1.
• Jcross is a bi-linear function of {Xg}Gg=1 and {ωg}Gg=1.

B. FIM in the Location Domain

To obtain the location-domain FIM from the channel-
domain FIM Jγ in (11), we apply a transformation of variables
from the vector of the unknown channel parameters γ to the
vector of location parameters3

η = [px py ρB,U φB,U ρR φR ∆]
T
. (14)

The FIM of η, denoted as Jη ∈ R7×7, is obtained by means
of the transformation matrix T

def
= ∂γT

∂η ∈ R7×8 as

Jη = TJγT
T , (15)

which preserves the linearity and bi-linearity properties of Jγ

in Remark 1. Please see Sec. S-II in the supplemental material
for the expressions of the elements of T .

IV. JOINT TRANSMIT PRECODING AND RIS PHASE
PROFILE DESIGN

In this section, assuming perfect knowledge of η in (14), we
tackle the problem of joint design of the transmit BS precoding
matrix F and the RIS phase profiles {ωg}Gg=1 to maximize
the performance of joint localization and synchronization of
the UE. First, we apply convex relaxation and alternating
optimization techniques to obtain two convex subproblems to
optimize BS precoders for a given RIS phase profile and vice
versa. Then, we demonstrate the low-dimensional structure of
the optimal BS precoders and RIS phase profiles, which will
be highly instrumental in Sec. V in designing codebooks under
imperfect knowledge of UE location.

3Note that the channel gains ρB,U, φB,U, ρR and φR are nuisance parameters
that need to be estimated for localization, but do not convey any geometric
information that can be useful for localization. Hence, they cannot be
expressed as a function of other unknown (geometric) parameters and thus
appear in both channel and location domain parameter vectors.

A. Problem Formulation for Joint Optimization
To formulate the joint BS precoding and RIS phase profile

optimization problem, we adopt the position error bound
(PEB) as metric4. From (14)-(15) and Remark 1, the PEB
can be obtained as a function of the BS beam covariance
matrices, the RIS phase profiles and their covariance matrices
{Xg,ω

g,Ψg}Gg=1, as follows:

E
{
∥p̂− p∥2

}
≥ tr

([
J−1
η

]
1:2,1:2

)
def
= PEB

(
{Xg,ω

g,Ψg}Gg=1;η
)
. (16)

We note that the PEB depends on the unknown parameters η
(see Sec. S-I-B in the supplemental material). In addition, the
dependency of the PEB on {Xg,ω

g,Ψg}Gg=1 can be observed
through (15), (16) and Remark 1. Under perfect knowledge of
η, the PEB minimization problem can be formulated as

min
{Xg,ωg,Ψg}G

g=1

PEB
(
{Xg,ω

g,Ψg}Gg=1;η
)

(17a)

s.t. tr
( G∑

g=1

Xg

)
= 1 , (17b)

Xg ⪰ 0 , rank(Xg) = 1 , (17c)

Ψg = ωg(ωg)H , |ωg[n]| = 1 , (17d)
g = 1, . . . , G ,

where the total power constraint in (17b) is due to Sec. II-B,
(17c) results from (12), and (17d) comes from the definition
in (13) and the unit-modulus constraints on the elements of
the RIS control matrix. We now provide the following lemma
on the structure of the objective function in (17a).

Lemma 1. PEB
(
{Xg,ω

g,Ψg}Gg=1;η
)

is a multi-convex
function of {Xg}Gg=1, {ωg}Gg=1 and {Ψg}Gg=1.

Proof. From Remark 1 and (15), we see that Jη is a multi-
linear function of {Xg}Gg=1, {ωg}Gg=1 and {Ψg}Gg=1. Based
on the composition rules [42, Ch. 3.2.4], tr(

[
J−1
η

]
1:2,1:2

) is a
multi-convex function of {Xg}Gg=1, {ωg}Gg=1 and {Ψg}Gg=1.

To clarify the use of {Xg,ω
g,Ψg}Gg=1 instead of

{fg,ω
g}Gg=1 in (17) as the optimization variables, the follow-

ing remark is provided.

Remark 2. While our goal is to optimize the BS precoders
fg and the RIS phase profiles ωg , we employ the covariances
Xg = fgf

H
g and Ψg = ωg(ωg)H as the optimization

variables in (17). The reason is that the FIM Jγ in (11) is
linear in Xg and Ψg , but quadratic in fg and ωg , as seen
from Sec. S-I-B in the supplemental material. In particular,

• all the submatrices in (11) are linear in Xg , but quadratic
in fg ,

• Jcross is linear in ωg , and JR is linear in Ψg , but
quadratic in ωg ,

4Since positioning and synchronization are tightly coupled [41], considering
PEB as the optimization metric would also improve the synchronization
performance, which will be verified through simulation results in Sec. VII. In
particular, please see Fig. 6 for an illustration of how PEB-based optimization
provides noticeable improvements in the RMSE of both the position and clock
offset over the benchmark schemes. For a more detailed comparison between
PEB- and CEB-based optimization, we refer the reader to Sec. S-III in the
supplemental material.
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as specified in Lemma 1. For PEB minimization, we wish to
keep the variables for which the dependencies are linear and
discard the remaining ones. This results from the fact that
the PEB minimization problem, when written in the epigraph
form as will be shown in (27), induces a matrix inequality (MI)
constraint that involves the FIM, such as in (27b), which is
convex only if the MI is linear [42, Ch. 4.6.2], [43]. Therefore,
to have a convex problem, the FIM needs to depend linearly
on the optimization variables. This implies that we should keep
Xg , Ψg and ωg as the variables in (17), where Jcross is defined
as a linear function of ωg , JR is defined as a linear function
of Ψg and the coupling between the two variables Ψg =
ωg(ωg)H is imposed as a constraint in (17d).

B. Relaxed Problem for PEB Minimization

To transform (17) into a tractable form, we will perform
two simplifications. First, we approximate the channel-domain
FIM in (11) as a block-diagonal matrix, i.e.,

Jγ ≈ Jbd
γ

def
=

[
JB,U 0
0 JR

]
, (18)

by assuming Jcross ≈ 0, which can be justified by the
assumption of non-interfering paths under the large bandwidth
and large array regime [44]–[46]. Based on Remark 1, this
enables removing the dependency of Jγ and, consequently,
the PEB in (16) on {ωg}Gg=1. In this case, the constraint in
(17d) should be replaced by

Ψg ⪰ 0 , rank(Ψg) = 1 , diag (Ψg) = 1 . (19)

Second, we drop non-convex rank constraints in (17c) and (19).
After these simplifications5, a relaxed version of the PEB

optimization problem in (17) can be cast as

min
{Xg,Ψg}G

g=1

PEBbd
(
{Xg,Ψg}Gg=1;η

)
(20a)

s.t. (17b) , Xg ⪰ 0 , (20b)
Ψg ⪰ 0 , diag (Ψg) = 1 , (20c)
g = 1, . . . , G ,

where PEBbd({Xg,Ψg}Gg=1;η)
def
= tr([(TJbd

γ T T)−1]1:2,1:2).
Using Lemma 1 and the linearity of the constraints in (20b)
and (20c), it is observed that the problem (20) is convex in
{Xg}Gg=1 for fixed {Ψg}Gg=1 and convex in {Ψg}Gg=1 for fixed
{Xg}Gg=1. This motivates alternating optimization to solve
(20), iterating BS precoders update for fixed RIS phase profiles
and RIS phase profiles update for fixed BS precoders.

5It should be emphasized that these two relaxations are performed only
to reveal the underlying low-dimensional structure of the optimal BS and
RIS transmission strategies in Sec. IV-C, which facilitates codebook design
in Sec. V-B. For power optimization in Algorithm 1 of Sec. V-B and for
simulation results in Sec. VII, we employ the true FIM Jγ instead of the
approximated FIM Jbd

γ .

C. Alternating Optimization to Solve Relaxed Problem

1) Optimize BS Precoders for Fixed RIS Phase Profiles: For
fixed {Ψg}Gg=1, the subproblem of (20) to optimize {Xg}Gg=1

can be expressed as

min
{Xg}G

g=1

PEBbd
(
{Xg,Ψg}Gg=1;η

)
(21)

s.t. (20b) ,

which is a convex problem and can be solved using off-the-
shelf solvers [47]. To achieve low-complexity optimization,
we can exploit the low-dimensional structure of the optimal
precoder covariance matrices, as shown in the following result.

Proposition 1. The optimal BS precoder covariance matrices
{Xg}Gg=1 in (21) can be written as Xg = ABSΥgA

H
BS where

ABS
def
= [aBS(θB,R) aBS(θB,U)

.
aBS(θB,U)]

∗
, (22)

.
aBS(θ)

def
= ∂aBS(θ)/∂θ and Υg ∈ C3×3 is a positive semidefi-

nite matrix.

Proof. Please see Appendix A.

2) Optimize RIS Phase Profiles for Fixed BS Precoders:
For fixed {Xg}Gg=1, we can formulate the subproblem of (20)
to optimize {Ψg}Gg=1 as follows:

min
{Ψg}G

g=1

PEBbd
(
{Xg,Ψg}Gg=1;η

)
(23)

s.t. (20c) ,

which is again a convex problem [42]. Similar to (21), the in-
herent low-dimensional structure of the optimal phase profiles
can be exploited to obtain fast solutions to (23), as indicated
in the following proposition.

Proposition 2. The optimal RIS phase profile covariance
matrices {Ψg}Gg=1 in (23) in the absence of the unit-modulus
constraints diag (Ψg) = 1 can be expressed as Ψg =
BRIS Ξg B

H
RIS, where

BRIS
def
=

[
bRIS

.
bRIS

]∗
, (24)

.
bRIS(θ)

def
= ∂bRIS(θ)/∂θ,

.
bRIS ≡

.
bRIS(θR,U) and Ξg ∈ C2×2 is a

positive semidefinite matrix.

Proof. Please see Appendix B.

Fig. 2 provides a graphical representation of the beams in
(22) and (24).

Remark 3. It is worth emphasizing that we never solve the
problem (20) to obtain Xg and Ψg . The sole purpose of the
alternating optimization is to formulate the subproblems (21)
and (23), and, based on that, to uncover the low-dimensional
structure of the optimal BS and RIS transmission strategies, as
shown in Prop. 1 and Prop. 2. The derived low-dimensional
structure will be exploited in Sec. V to design the codebooks
in (28) under imperfect knowledge of UE location. Hence,
the aim of Sec. IV is not to solve the PEB minimization
problem under perfect knowledge of UE location, but to extract
analytical insights from the structure of the solution that will
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be conducive to tackling the more practical problem of PEB
optimization under UE location uncertainty in Sec. V.

D. Interpretation of Proposition 1 and Proposition 2

By focusing on the optimal structure of the precoder co-
variance matrices obtained in Prop. 1, it emerges that the BS
should transmit different beams along the two main directions
of the AoDs θB,R and θB,U, i.e., the BS should serve both the
RIS and the UE. Interestingly, a sort of asymmetry exists in
(22): while for the AoD with respect to the RIS, the optimal
structure of the precoder includes only the directional beam
aBS(θB,R), for the AoD with respect to the UE, the BS employs
both a directional beam aBS(θB,U) and its derivative .

aBS(θB,U)
[29], [30], [38]. This can be explained by noting that, for
positioning purposes, the UE needs to estimate the AoD with
respect to the BS, and to do so a certain degree of diversity in
the received beams should exist [48], [49]. On the other hand,
in the first tandem channel between the BS and the RIS, there
is no need to estimate the AoD θB,R (its value is known a priori,
given the known positions of both BS and RIS), and from a
PEB perspective, the transmitted power should be concentrated
in a single directional beam towards the RIS, so as to maximize
the received SNR over the whole BS-RIS-UE channel.

Similar conclusions can be derived from Prop. 2. Namely,
RIS phase profiles should be steered towards the AoD θR,U

with respect to the UE. In addition, both the directional beam
bRIS(θR,U) and its derivative

.
bRIS(θR,U) should be employed to

maximize the performance of AoD estimation at the UE,
which corresponds to the same principle as used in sum and
difference beams of monopulse radar [50].

V. ROBUST JOINT DESIGN OF BS PRECODER AND RIS
PHASE PROFILES UNDER LOCATION UNCERTAINTY

In this section, inspired by Prop. 1 and Prop. 2 in Sec. IV,
we develop robust joint design strategies for BS precoder and
RIS phase profiles under imperfect knowledge of UE location
p in (14). To this end, we consider an optimal unconstrained
design (without any specific codebook), which turns out to be
intractable, and propose a novel codebook-based design with
optimized power allocation for joint BS-RIS beamforming.

A. Optimal Unconstrained Design

Solving the PEB minimization problem in (17) requires the
knowledge of precise UE location6 p which, however, may not
be available in practice due to measurement noise and tracking
errors. Hence, we assume an uncertainty region p ∈ P for

6From the viewpoint of joint BS-RIS beamforming, the most essential
information required to solve (17) is the UE location (i.e., where to steer
the BS and RIS beams). Regarding the other unknown parameters in η in
(14), we note from Sec. S-I-B in the supplemental material that the FIM
does not depend on a specific value of the clock offset ∆ (though the FIM
depends functionally on ∆, as seen from (15) and Sec. S-II in the supplemental
material). Hence, the PEB minimization problem in (17) can be solved without
the knowledge of ∆. On the other hand, we assume the channel gains in (14)
are perfectly known. As seen from Sec. S-I-B3 in the supplemental material,
the case of uncertain gains leads to intractable PEB expressions due to LoS-
NLoS correlations, is therefore left outside the scope of the current work and
will be investigated in a future study.
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(a) Beampatterns of the optimal BS beams ABS in (22).

-10 -5 0 5 10 15 20 25 30 35 40

-15

-10

-5

0

5

10

(b) Beampatterns of the optimal RIS beams BRIS in
(24).

Fig. 2: Beampatterns of the localization-optimal BS and RIS beams, including
both the directional and derivative beams, obtained for the setup in Sec. VII-A.
The directional beams maximize the SNR at the targeted UE location (θB,U

and θR,U), which serves to provide sufficient SNR for localization, while
the derivative beams enable the UE to detect small deviations around the
nominal direction, similar to monopulse track radars [50], [51], which can
be noticed through sharp bending of the beampattern around θB,U and θR,U.
This sharp curvature around the targeted location allows small deviations in
angle to induce large changes in amplitude, thereby facilitating highly accurate
mapping from complex amplitude measurements to angles.

the UE location and consider the robust design problem that
minimizes the worst-case PEB over P [48], [52]–[54]:

min
{Xg,ωg,Ψg}G

g=1

max
p∈P

PEB
(
{Xg,ω

g,Ψg}Gg=1;η(p)
)

(25)

s.t. (17b) − (17d) ,

where η is replaced by η(p) in the PEB to highlight its
dependency on p. The epigraph form of (25) can be expressed
as

min
{Xg,ωg,Ψg}G

g=1,t
t (26a)

s.t. PEB
(
{Xg,ω

g,Ψg}Gg=1;η(p)
)
≤ t, ∀p ∈ P

(26b)
(17b) − (17d) .

To tackle the semi-infinite optimization problem in (26), we
can discretize P into M grid points {pm}M−1

m=0 [48] and obtain
the following approximated version using (16):

min
{Xg,ω

g,Ψg}G
g=1

t,{um,k}

t (27a)

s.t.

[
Jη({Xg,ω

g,Ψg}Gg=1;η(pm)) ek
eTk um,k

]
⪰ 0

(27b)
um,0 + um,1 ≤ t , (27c)
k = 0, 1, m = 0, . . . ,M − 1 ,

(17b) − (17d),
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where ek is the k-th column of the identity matrix, and
the equivalence between (27b), (27c) and the discretized
version of (26b) stems from [42, Eq. (7.28)]. In (27b),
Jη({Xg,ω

g,Ψg}Gg=1;η(pm)) is the FIM in (15) evaluated
at the grid location pm.

Two issues arise that make the problem (27) intractable.
First, (17b)–(17d) involve non-convex rank and unit-modulus
constraints, which can only be handled via relaxations in
Sec. IV-B. Second, since Jη({Xg,ω

g,Ψg}Gg=1;η(pm)) is
not linear with respect to {Xg,ω

g,Ψg}Gg=1 according to
Remark 1, (27b) does not represent a linear matrix in-
equality (LMI) [43], implying that (27) is not convex [42,
Ex. (2.10)]. As a possible remedy, alternating optimization
(AO) of {Xg}Gg=1 and {Ψg}Gg=1 can be performed (after
eliminating the dependency of Jη on {ωg}Gg=1 using the ap-
proximation in (18)), where each subproblem becomes convex
as bi-linear matrix inequalities (BMIs) degenerate to LMIs
when one of the variables is fixed. However, this leads to
a high computational complexity roughly given by O(N6

BS)
and O(N6

RIS) [55, Ch. 11] for the BS and RIS subproblems,
respectively. To devise a practically implementable solution,
we propose a low-complexity codebook-based design strategy,
as detailed in Sec. V-B.

B. Low-Complexity Codebook-Based Design

Motivated by the optimal low-dimensional structure of the
BS precoder and the RIS phase profile covariance matrices,
derived in Prop. 1 and Prop. 2, we develop a codebook-based
low-complexity design approach as a practical alternative to
unconstrained design in Sec. V-A. To this end, let {θ(i)B,U }LBS

i=1

and {θ(i)R,U }LRIS
i=1 denote the uniformly spaced AoDs from the

BS to the UE and from the RIS to the UE, respectively, that
span the uncertainty region P of the UE location, where the
angular spacing is set to 3 dB (half-power) beamwidth of the
corresponding array [30], [56], [57, Ch. 22.10].

Relying on Prop. 1, Prop. 2 and their interpretation in
Sec. IV-D, we propose the following codebooks for the BS
precoder and the RIS phase profiles [30] consisting of both
directional and derivative beams (please refer to Sec. S-IV
in the supplemental material for additional details on how to
obtain these codebooks):

F BS = [aBS(θB,R) F
BS

.
F BS]∗ ∈ CNBS×(2LBS+1) , (28a)

F RIS = [F RIS
.
F RIS]∗ ∈ CNRIS×2LRIS , (28b)

where F BS def
= [aBS(θ

(1)
B,U ) · · · aBS(θ

(LBS)
B,U )],

.
F BS def

=

[
.
aBS(θ

(1)
B,U ) · · ·

.
aBS(θ

(LBS)
B,U )] and

F RIS def
= [bRIS(θ

(1)
R,U ) · · · bRIS(θ

(LRIS)
R,U )] , (29)

.
F RIS def

= [
.̃
bRIS(θ

(1)
R,U ) · · ·

.̃
bRIS(θ

(LRIS)
R,U )] . (30)

In (30), due to phase-only control of RIS profiles, we employ.̃
bRIS(θ), which is the best approximation with unit-modulus
entries to

.
bRIS(θ) in (24). To obtain

.̃
bRIS(θ) from

.
bRIS(θ), the

projected gradient descent algorithm in [58, Alg. 1] is used.
For each transmission, we choose a BS-RIS signal pair

{F BS
:,i,F

RIS
:,j }, corresponding to the ith beam in F BS and the

jth beam in F RIS, which leads to G = (2LBS + 1)2LRIS trans-
missions in total7. To minimize the worst-case PEB using this
codebook-based approach, we formulate a beam power alloca-
tion problem that finds the optimal power ϱ = [ϱ1 . . . ϱG]

T of
BS beams in each transmission under total power constraint8:

min
ϱ,t

{um,k}

t (31a)

s.t.

[
Jη({Xg,ω

g,Ψg}Gg=1;η(pm)) ek
eTk um,k

]
⪰ 0 ,

(31b)
um,0 + um,1 ≤ t, k = 0, 1, m = 0, . . . ,M − 1 ,

tr
( G∑

g=1

Xg

)
= 1 , ϱ ⪰ 0 , Xg = ϱgF

BS
:,i(F

BS
:,i)

H ,

ωg = F RIS
:,j , Ψg = ωg(ωg)H , g = 1, . . . , G ,

where the mapping between the transmission index g and
the BS-RIS beam index pair (i, j) is performed according
to g = i + (2LBS + 1)(j − 1) for i = 1, . . . , 2LBS + 1 and
j = 1, . . . , 2LRIS. As (31b) is LMI in ϱ and {um,k} (see
Remark 1), the problem (31) is convex. After obtaining the
optimal power allocation vector ϱ⋆ = [ϱ⋆1 . . . ϱ

⋆
G]

T as the
solution to (31), the optimized codebook is given by the
collection of the BS-RIS signal pairs

{√
ϱ⋆gF

BS
:,i,F

RIS
:,j

}
∀i,j

.

The overall BS-RIS signal design algorithm is summarized
in Algorithm 1. The computational complexity of (31) is
approximately given by O(M3) [55, Ch. 11], [30], under the
assumption that M is on the same order as G. Since M < N2

BS

and M < N2
RIS in practice (see Sec. VII-A), the proposed (non-

iterative) design strategy in Algorithm 1 is more efficient than
even the individual iterations of an AO approach in Sec. V-A.

As anticipated, the proposed robust joint design of BS
precoders and RIS phase profiles can be in principle extended
to the 3D case, using a 2D array (e.g., a URA) in place
of the ULA. In this case, three types of beams need to
be employed, namely, directional beams, azimuth derivative
beams and elevation derivative beams, in contrast to only
directional and derivative beams as in the 2D scenario.

VI. MAXIMUM LIKELIHOOD JOINT LOCALIZATION AND
SYNCHRONIZATION

In this section, we first derive the joint ML estimator of
the desired position p and clock offset ∆. To overcome the
need of an exhaustive 3D grid-based optimization of the re-
sulting compressed log-likelihood function, we then provide a
reduced-complexity estimator that leverage a suitable reparam-
eterization of the signal model to decouple the dependencies
on the delays and AoDs, enabling a separate though accurate
initial estimation of both p and ∆. Such estimated values

7Due to the dependence of LBS and LRIS on the 3 dB beamwidth of the
respective arrays at the BS and RIS, G is a function of the number of
elements at the BS and RIS as well as the size of the uncertainty region
P . In addition, depending on whether the SNR is sufficient using a single
slot of G transmissions, the slot can be repeated multiple times to reach the
desired level of SNR.

8Each beam in F BS and F RIS is normalized to have unit norm prior to
power optimization.
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Algorithm 1 Joint BS Precoder and RIS Phase Profile Design
with Power Optimized Codebooks

1: Input: Uncertainty region P of the UE location p in (14).
2: Output: Optimized BS-RIS signal pairs{√

ϱ⋆gF
BS
:,i,F

RIS
:,j

}
∀i,j with the optimal powers {ϱ⋆g}∀g .

(a) Determine the uniformly spaced AoDs from the BS to
the UE {θ(i)B,U }LBS

i=1 and those from the RIS to the UE
{θ(i)R,U }LRIS

i=1 based on P .
(b) Construct the BS and RIS codebooks in (28).
(c) Perform power allocation across G = (2LBS + 1)2LRIS

transmissions, each employing a different BS-RIS sig-
nal pair {F BS

:,i,F
RIS
:,j }, by solving the problem in (31).

are subsequently used as initialization for an iterative low-
complexity optimization of the joint ML cost function, which
provides the refined position and clock offset estimates.

A. Joint Position and Clock Offset Maximum Likelihood Esti-
mation

To formulate the joint ML estimation problem, let Θ =
[px py ∆]T denote the vector containing the desired UE
position and clock offset parameters. By parameterizing the
unknown AoDs (θB,U and θR,U) and delays (τB,U and τR) as a
function of the sought Θ through (5), and stacking all the N
signals received over each transmission g, we obtain the more
compact expression

yg =
√
PBgα+ νg (32)

with

yg = [yg[0] · · · yg[N − 1]]T

α = [αB,U αR]
T

Bg = [(S̃g
B,U)

TaBS(θB,U), (S̃g
R )

TAT(Ωg)TaRIS(θR,U)]

S̃g
B,U = [sg[0] · · · e−jκN−1τB,Usg[N − 1]]

where sg[n] = fgsg[n], S̃g
R is defined as S̃g

B,U but with τR

in place of τB,U, A = aRIS(ϕB,R)a
T
BS(θB,R), and αR = αB,RαR,U.

Without loss of generality, we assume that σ2 is already
known (its estimate can be straightforwardly obtained as σ̂2 =∑G

g=1 ∥yg −
√
PBgα∥2/(NG) once the rest of parameters

have been estimated), so leaving α as the sole vector of
unknown nuisance parameters. Following the ML criterion,
the estimation problem can be thus formulated as

Θ̂ML = argmin
Θ

[
min
α

L(Θ,α)
]

(33)

where

L(Θ,α) =

G∑
g=1

∥yg −
√
PBgα∥2 (34)

represents the likelihood function. It is not difficult to show
that the value of the complex vector α ∈ C2×1 minimiz-
ing (34) is given by α̂ML = 1√

P
B−1

∑G
g=1 B

H
g yg where

B =
∑G

g=1 B
H
g Bg . Substituting α̂ML back into the likelihood

function (34) leads to

L(Θ) =

G∑
g=1

∥yg −
√
PBg(Θ)α̂ML(Θ)∥2 (35)

where we explicitly highlighted the remaining dependency on
the sole desired parameter vector Θ. Accordingly, the final
joint ML (JML) estimator of UE position and clock offset is

Θ̂ML = argmin
Θ

L(Θ). (36)

Unfortunately, Θ̂ML cannot be effortlessly retrieved being
L(Θ) a highly non-linear function with multiple potential
local minima. A more practical solution consists in finding
a good initial estimate of Θ and use it to compute Θ̂ML by
means of a low-complexity iterative optimization. The latter
consists in adopting a numerical optimization approach such
as the Nelder-Mead algorithm to iteratively optimize the JML
cost function in (36) starting from a more accurate initial
estimate Θ̂. As well-known, the Nelder-Mead procedure does
not require any derivative information, which makes it suitable
for problems with non-smooth functions like (36), and is
recognized to be extremely fast to converge (in all our trials,
the number of required iterations was always less than 30).
A direct way to obtain such initialization is to perform an
exhaustive grid search over the 3D space of the unknown p and
∆. To overcome the burden of a full-dimensional optimization,
in the next section we present a relaxed ML estimator of
the position and the clock offset, able to provide a good
initialization for the iterative optimization of (36), but at a
considerably lower computational complexity.

B. Proposed Reduced-Complexity Estimator

1) Relaxed Maximum Likelihood Position Estimation: We
start by stacking all the observations collected over the G
transmissions and by further manipulating the resulting model,
obtaining the new expressiony1

...
yG


︸ ︷︷ ︸

y∈CGN×1

=

Φ
1
B,U(θB,U(p)) Φ1

R,U(θR,U(p))
...

...
ΦG

B,U(θB,U(p)) ΦG
R,U(θR,U(p))


︸ ︷︷ ︸
Φ(θB,U(p),θR,U(p))

def
=Φ(p)∈CGN×2N

[
eB,U

eR

]
︸ ︷︷ ︸

e∈C2N×1

+

ν1

...
νG


(37)

where Φg
B,U(θB,U(p)) = diag(aT

BS(θB,U(p))S
g), Φg

R,U(θR,U(p)) =
diag(aT

RIS(θR,U(p))Ω
gASg), Sg = [sg[0] · · · sg[N − 1]], g =

1, . . . , G, and

eB,U =
√
PαB,U


1

e−jκ1τB,U

...
e−jκN−1τB,U

 , eR =
√
PαR


1

e−jκ1τR

...
e−jκN−1τR

 .

(38)
We now observe that (37) allows us to decouple the depen-
dencies on the delays and AoDs in (32), with the new matrix
Φ that depends only on the desired p through the geometric
relationships with the corresponding AoDs θB,U(p) and θR,U(p).
By relaxing the dependency of e on the delays τB,U and τR,
and considering it as a generic unstructured 2N -dimensional
vector, a relaxed ML-based estimator (RML) of p can be
derived as

p̂RML = argmin
p

[
min
e

∥y −Φ(p)e∥2
]
. (39)
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The inner minimization of (39) can be more easily solved by
decomposing it over the different N subcarriers as

min
e

∥y −Φ(p)e∥2 = min
e0,...,eN−1

N−1∑
n=0

∥yn −Φnen∥2 (40)

where we exploited the peculiar structure of Φ(p), which
consists of blocks of N × N diagonal matrices, with yn =
[y1[n] · · · yG[n]]

T,

Φn(p) =

ϕ
1
B,U,n(p) ϕ1

R,U,n(p)
...

...
ϕG

B,U,n(p) ϕG
R,U,n(p)

 ∈ CG×2 (41)

en = [eB,U[n] eR[n]]
T ∈ C2×1, ϕg

B,U,n(p) = aT
BS(p)sg[n] and

ϕg
R,U,n(p) = aT

RIS(p)Ω
gAsg[n], for n = 0, . . . , N − 1, g =

1, . . . , G. Each unknown vector en minimizing (40) can be
separately obtained as

êRML
n (p) = (ΦH

n(p)Φn(p))
−1ΦH

n(p)yn (42)

that is, each en is estimated by pseudo-inverting the corre-
sponding matrix Φn(p). The inverse in (42) can be computed
in closed-form

(ΦH
nΦn)

−1 =
1

unzn − vnwn

[
zn −vn

−wn un

]
(43)

where un =
∑G

g=1 |ϕ
g
B,U,n|

2, vn =
∑G

g=1(ϕ
g
B,U,n)

∗ϕg
R,U,n,

wn =
∑G

g=1(ϕ
g
R,U,n)

∗ϕg
B,U,n, and zn =

∑G
g=1 |ϕ

g
R,U,n|

2, and we
omitted the dependency on p for brevity. Accordingly, the
RML estimator can be more conveniently obtained as

p̂RML = argmin
p

N−1∑
n=0

∥yn − ln(p)∥2 (44)

with the elements of the vector ln(p) given by

lg[n](p) =
1

unzn − vnwn

[
(ϕg

B,U,nzn − ϕg
R,U,nwn)

G∑
ℓ=1

(ϕℓ
B,U,n)

∗yℓ[n]

+ (ϕg
R,U,nun − ϕg

B,U,nvn)

G∑
ℓ=1

(ϕℓ
R,U,n)

∗yℓ[n]
]
. (45)

A 2D grid search is then performed on the RML cost function
provided in (44) to obtain the initial UE position estimate p̂RML,
which will be used together with the clock offset estimate
obtained in the next section as initial point to iteratively
optimize the 3D plain JML cost function given in (36).

2) FFT-based Clock Offset Estimation: As a byproduct of
the above estimation of p, it is possible to derive an efficient
estimator of the unknown delays τB,U and τR, which in turn
will be used to retrieve a closed-form estimate of the sought
∆. Specifically, we first plug p̂RML back in (42) to obtain an
estimate of the vectors en n = 0, . . . , N − 1. The elements
of the estimated vectors êRML

n can be then merged according
to (38) to obtain an estimate of the two vectors êB,U(p̂

RML)
and êR(p̂

RML), respectively. The key observation consists in
the fact that the elements of both êB,U(p̂

RML) and êR(p̂
RML) can

be interpreted as discrete samples of complex exponentials
having normalized frequencies νB,U = − τB,U

NTs
and νR = − τR

NTs
,

respectively. This allows to estimate the delays τB,U and τR

by searching for the dominant peaks in the FFT of the
corresponding vectors êB,U(p̂

RML) and êR(p̂
RML). By defining

fh(p̂
RML) = FFT(êh(p̂

RML)) as the FFT of the vector êh(p̂RML)
(with either h = B,U or h = R) computed on NF points, we
first seek for the index corresponding to the maximum element
in fh(p̂

RML)

k̂h(p̂
RML) = argmax

k
[|fh(p̂RML)[k]| : 0 ≤ k ≤ NF − 1] (46)

with |fh(p̂RML)[k]| denoting the absolute value of the k-th
element of fh(p̂

RML). Since the first NF /2 + 1 elements
correspond to positive values of the normalized frequency
νo ∈ [0, 1/2], while the remaining NF /2 − 1 are associated
to the negative part of the spectrum, i.e., νh ∈ (−1/2, 0),
the estimate of the delays can be obtained by mapping the
corresponding k̂h(p̂

RML) as

τ̂ FFT
h =

{
− k̂h

NF
NTS if 0 ≤ k̂h ≤ NF /2

(1/2− k̂h

NF
)NTS if NF /2 + 1 ≤ k̂h ≤ NF − 1

(47)
where we omitted the dependency on p̂RML for conciseness.
Once the two delays have been estimated, the sought clock
offset ∆ can be obtained in closed-form as

∆̂FFT =
1

2

[
τ̂ FFT

B,U −∥p̂RML∥/c+τ̂ FFT
R −(∥r∥+∥r−p̂RML∥)/c

]
. (48)

The obtained estimate θ̂RML = [p̂RML ∆̂FFT]T is then used to
initialize an iterative optimization procedure (e.g., Nelder-
Mead) to efficiently solve the JML estimation problem in (36).
The main steps of the proposed reduced-complexity estimation
algorithm are summarized in Algorithm 2.

It is worth noting that also the proposed joint localization
and estimation algorithm can be extended to the 3D case,
in which also elevation angles are considered. In fact, the
properties used to obtain the relaxation of the ML cost function
and to estimate the delays via FFT are fulfilled not only
by ULAs but also by uniform rectangular arrays (URAs).
The final position estimation in the RML approach would
be then performed on a 3D grid instead of a 2D one. The
computational complexity of the procedure, of course, would
be higher as in any higher-dimensional problem, but no
additional theoretical issues arise.

C. Complexity Analysis
In this section, we analyze the computational complexity of

the joint localization and synchronization algorithm proposed
in Sec. VI-B, also in comparison to the plain 3D JML
estimator derived in Sec. VI-A. Asymptotically speaking, we
observe that the complexity in performing the 3D optimization
required by the plain JML estimator in (36) is on the order
of O(Q3GNNE), where Q denotes the number of evaluation
points per dimension (either px coordinate, py coordinate of
the UE position, or clock offset ∆), assumed to be the same
for all the three dimensions for the sake of exposition, and
NE = NBS + NBSNRIS + N2

RIS a term related to the number of
elements at both BS and RIS. On the other hand, by analyzing
the different steps involved in the proposed joint localization
and synchronization algorithm (Algorithm 2), it emerges that
the overall complexity is given by the sum of three terms

O(Q2GNNE) +O(NF logNF ) +O(NIGNNE). (49)
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Algorithm 2 Low-Complexity Joint Localization and Syn-
chronization Algorithm

1: Input: Received signals {yg[n]}∀n,g , optimized BS-RIS
precoders

{√
ϱ⋆gF

BS
:,i,F

RIS
:,j

}
∀i,j .

2: Output: UE position p̂ML and clock offset ∆̂ML.
(a) Perform a coarse 2D search to obtain an initial estimate

p̂RML via RML in (44).
(b) Use p̂RML to reconstruct the two vectors êB,U(p̂

RML) and
êR(p̂

RML) based on (42) and (38).
(c) Search for the dominant peaks in the FFT-transformed

vectors (fB,U(p̂
RML),fR(p̂

RML)) and compute the corre-
sponding delays estimates (τ̂ FFT

B,U , τ̂
FFT
R ).

(d) Compute the initial estimate ∆̂FFT using (48).
(e) Use θ̂RML = [p̂RML ∆̂FFT]T as initialization to iteratively

solve the JML in (36) and obtain the final estimates p̂ML

and ∆̂ML.

The first term O(Q2GNNE) corresponds to the two-
dimensional optimization required to obtain the initial UE
position estimate p̂RML according to (44). The second term
O(NF logNF ) denotes the complexity required to compute
the FFT of the two vectors êB,U(p̂

RML) and êR(p̂
RML) and

to search for the dominant peaks yielding the clock offset
estimate ∆̂FFT in (48). The third and last term represents
instead the complexity required by the Nelder-Mead procedure
to iteratively optimize the JML cost function starting from
the initial point Θ̂RML, with NI denoting the number of total
iterations. This contribution is practically negligible compared
to the first term in (49) being the Nelder-Mead procedure
extremely fast and typically converging in a few iterations (in
all our trials, the number of iterations was always NI < 30).

Considering that the minimum number of points required
to compute the FFT is equal to the length of the involved
vectors, i.e. NF ≥ N (in our simulations we set NF = 512)
and that the FFT step is performed just once, it is apparent
that the overall complexity is practically dominated by the first
term O(Q2GNNE), namely by the two-dimensional search
required to obtain an initial estimate of p. In this respect,
the proposed joint localization and synchronization algorithm
is able to reduce the complexity required by the plain JML
estimator, which is cubic in Q, to a quadratic cost in Q
plus two very low-cost subsequent estimation steps (FFT and
iterative optimization).

VII. SIMULATION ANALYSIS AND RESULTS

In this section, we conduct a numerical analysis to assess
the performance of the low-complexity localization and syn-
chronization algorithm presented in Sec. VI, when fed with
the robust strategy for joint design of BS precoding and RIS
phase profiles proposed in Sec. V. The performance of the
proposed approach is compared with the theoretical lower
bounds derived in Sec. III, as well as against other state-of-the-
art strategies for the design of BS and RIS precoding matrices,
under different values of the main system parameters. We
consider the root mean squared error (RMSE) as performance
metric, estimated on 1000 independent Monte Carlo trials.

A. Simulation Setup

The analyzed scenario consists of a single BS placed at
known position q = [0 0]T m, a RIS placed at r = [12 7]T

m, and a UE with unknown location p = [5 5]T m. The
numerical evaluations are conducted assuming the transmis-
sion of G = (2LBS + 1)2LRIS OFDM pilot signals in DL
over a typical mmWave carrier frequency fc = 28 GHz with
bandwidth B = 100 MHz, along N subcarriers equally spaced
in frequency by ∆f = 240 kHz. The BS is equipped with
NBS = 16 antennas, while the RIS has NR = 32 elements. The
channel amplitudes are generated according to the common
path loss model in free space, i.e., ρB,R = λc/(4π∥r∥), ρB,U =
λc/(4π∥p∥), and ρR,U = λc/(4π∥p − r∥), respectively, while
the phases φB,U and φR are assumed to be uniformly distributed
over [−π, π]. We set the clock offset to ∆ = 1

8 ·NTs, while
the transmitted power P is varied in order to obtain different
ranges of the received SNR over the LoS path, defined as
SNR = 10 log10(Pρ2B,U/(N0B)), where N0 is the noise power
spectral density and σ2 = N0B. In the following, we consider
an uncertainty region P for the UE position having an extent
of 3 m along both x and y directions. For this setup, using the
typical 3 dB beamwidth angular spacing of an ULA (about
1.8/NBS) leads to LBS = 7 and LRIS = 6, which in turn
correspond to G = 180 OFDM symbols. In the supplemental
material, we report additional performance analyses also for
the case in which the uncertainty is increased to 5 m. The
number of discrete UE positions {pm}Mm=1 used to solve (31)
is set to M = 9. For more details on the setting of M , we
refer the reader to Sec. S-VI in the supplemental material.

B. Benchmark Precoding Schemes

To benchmark the proposed joint BS-RIS signal design
algorithm proposed in Algorithm 1, we consider the following
state-of-the-art schemes.

Directional Codebook (Uniform): This scheme considers
only directional beams in the codebook and uses uniform
(equal) power allocation among them, i.e, the BS does not
implement the optimal power allocation provided in (31). To
guarantee a fair comparison, we double the angular sampling
rate of the uncertainty region of the UE, so obtaining the same
number of transmissions G used by proposed codebooks in
(28). This leads to a set of AoDs from the BS to the UE
{θ̃(i)B,U }2LBS

i=1 and of AoDs from the RIS to the UE {θ̃(i)R,U }2LRIS
i=1 .

Accordingly, we consider the following directional codebooks
for the BS and RIS transmissions:

F BS = [aBS(θB,R) F̃
BS]∗ ∈ CNBS×(2LBS+1) , (50a)

F RIS = [bRIS(θ̃
(1)
R,U ) . . . bRIS(θ̃

(2LRIS)
R,U )]∗ ∈ CNRIS×2LRIS , (50b)

where F̃ BS def
= [aBS(θ̃

(1)
B,U ) . . . aBS(θ̃

(2LBS)
B,U )].

Directional Codebook (Optimized): This scheme uses the
same directional codebook in (50) and performs the optimal
power allocation for the BS beams in (50a) according to (31).

DFT Codebook (Optimized): Let GN ∈ CN×N denote a
DFT matrix. In addition, denote by θcB,U and θcR,U, respectively,
the AoD from BS to UE and the AoD from RIS to UE,
corresponding to the center of the two AoDs uncertainty
regions computed from P . This scheme selects the columns
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Directional Codebook (Uniform Power Allocation) Directional Codebook (Optimal Power Allocation)

DFT Codebook (Optimal Power Allocation) Proposed Codebook (Optimal Power Allocation)

(b)(a)

(c) (d)

Fig. 3: RMSEs on the estimation of p as a function of the SNR for the
directional codebook, DFT codebook, and proposed codebook.

Directional Codebook (Uniform Power Allocation) Directional Codebook (Optimal Power Allocation)

DFT Codebook (Optimal Power Allocation) Proposed Codebook (Optimal Power Allocation)

(a)

(c)

(b)

(d)

Fig. 4: RMSE on the estimation of ∆ as a function of the SNR for the
directional codebook, DFT codebook, and proposed codebook.

from the corresponding DFT matrices that are closest to the
center AoDs as:

F BS,DFT = GNBS
:,(ℓB,U−LBS+1):(ℓB,U+LBS)

∈ CNBS×2LBS , (51a)

F RIS,DFT = GNRIS
:,(ℓR,U−LRIS+1):(ℓR,U+LRIS)

∈ CNRIS×2LRIS , (51b)

where ℓB,U
def
= argminℓ ∥GNBS

:,ℓ − a∗
BS(θ

c
B,U)∥ and ℓR,U

def
=

argminℓ ∥GNRIS
:,ℓ − b∗RIS(θ

c
R,U)∥. Based on (51), the DFT code-

books [28], [59], [60] for the BS and RIS transmission can be
expressed as follows:

F BS = [a∗
BS(θB,R) F

BS,DFT] ∈ CNBS×(2LBS+1) , (52a)

F RIS = F RIS,DFT ∈ CNRIS×2LRIS . (52b)

Also for this scheme, we perform power allocation for the
BS-RIS beams in (52) using (31).

C. Results and Discussion
1) Comparison Between Uniform and Proposed Beam

Power Allocation: We start the numerical analysis by as-
sessing the validity of the beam power allocation strategy
proposed in Sec. V. In this respect, we select as a precoding
scheme the directional codebook given by (50) and perform a

direct comparison between the case in which all the G beams
share the total transmitted power uniformly, i.e., each beam is
transmitted with a power equal to P/G, with the case in which
at the g-th beam is allocated a fraction of the total power given
by the corresponding g-th element of the allocation vector ϱ∗,
the latter obtained as a solution of the optimal power allocation
problem in (31). Figs. 3a-3b and Figs. 4a-4b show the RMSEs
on the estimation of the UE position p and clock offset ∆,
respectively, as a function of the SNR, for the directional
codebook with uniform and optimal power allocation, also in
comparison to the theoretical lower bounds (PEB and CEB9)
derived in Sec. III. The proposed low-complexity estimation
algorithm is denoted as “JML” and it is implemented as
described in Algorithm 2, using the power allocation strategy
proposed in Algorithm 1. For completeness, we also report the
performance of the RML estimator which is used to obtain an
initial estimate of the vector Θ. By comparing the RMSEs
in the Fig. 3a and Fig. 3b (analogously Fig. 4a and Fig. 4b),
it clearly emerges that the proposed power allocation strategy
yields more accurate estimates of the UE parameters compared
to the uniform power allocation, as also confirmed by the
gap between the corresponding lower bounds. Such results
demonstrate that adopting a simple uncontrolled (uniform)
power allocation scheme at the BS side likely leads to a
waste of energy towards directions that do not provide useful
contributions for the estimation process. The inefficient use of
the transmitted power becomes even more critical in an RIS-
assisted localization scenario, being the NLoS channel linking
the BS and the UE through the RIS subject to a more severe
path loss resulting from the product of two separated tandem
channels (ref. (3) and (4)). In light of these considerations, the
subsequent comparisons will be conducted assuming optimal
power allocation.

2) Comparison Between State-of-the-art and Proposed
Joint BS-RIS Signal Design: The set of figures reported in
Fig. 3 and Fig. 4 show a detailed performance comparison
between the proposed joint BS-RIS precoding scheme and
the state-of-the-art approaches listed in Sec. VII-B, when
used within the proposed low-complexity localization and
synchronization algorithm. On the one hand, the obtained
results demonstrate the effectiveness of the proposed esti-
mation approaches: despite its intrinsic suboptimality, the
RML algorithm (dash-dot curves) provides satisfactory initial
estimates of both p and ∆ parameters for all the considered
precoding schemes, with an accuracy that tend to increase with
the SNR and with a complexity reduced to a 2D search in the
estimation process. Accordingly, the RMSEs of the RML and
JML estimators are close when the SNR is small because in
that regime the initial estimates Θ̂RML = [p̂RML ∆̂FFT]T provided
by the RML estimator are quite inaccurate. As a result, the
iterative optimization procedure gets trapped into local wrong
minima and leads to solutions (in terms of position and clock
offset estimates) for the JML that are very close to that of the
RML estimator. Remarkably, the RMSEs of the JML estimator
(solid curves) immediately attain the corresponding lower
bounds as soon as the initialization provided by the RML
becomes sufficiently accurate, providing excellent localization

9The CEB is given by
[
J−1
η

]
7,7

, where Jη is the FIM in (15).
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Fig. 5: Comparison between the JML initialized with the estimates Θ̂RML

provided by the proposed RML estimator and with random values ΘRND.

and synchronization performance already at SNR = −5 dB
for all the considered precoding schemes. To better highlight
the necessity of adopting the more accurate initialization Θ̂RML

obtained via the proposed RML estimator, we also evaluate the
performance of the JML estimator initialized with a random
realization of the vector Θ. More specifically, we conduct
an additional simulation analysis to directly compare the
two versions of the JML estimator, using for the randomly-
initialized JML an initial point ΘRND = [pRND ∆RND]T obtained
by selecting pRND as a random position within the assumed
uncertainty region P and by generating ∆RND ∼ U(0, 2∆). To
make the comparison fair, we re-generated the value of ΘRND

for each independent Monte Carlo trial. The results in terms of
RMSEs reported in Fig. 5 demonstrate that the performance of
the JML estimator significantly worsen when ΘRND is used as
initial point. This behavior is due to the fact that the iterative
minimization of a highly non-linear cost function such as that
of the JML estimator gets trapped into local erroneous minima
when a random initialization is used, and in turn produces
wrong position and clock offset estimates. This confirms the
need to seek for a more accurate initialization as the one
proposed in Sec. VI-B, which allows the JML estimator to
attain the theoretical lower bounds.

On the other hand, a direct comparison among the PEBs
and CEBs in Figs. 3-4 (dashed curves) reveals that the pro-
posed robust joint BS-RIS precoding strategy offers the best
localization and synchronization performance among all the
considered schemes. To better highlight the advantages of the
proposed approach, in Fig. 6 we report an explicit comparison
among the RMSEs on the estimation of p and ∆ for the
JML estimator fed with different precoding schemes. As it
can be noticed, the proposed robust joint BS-RIS precoding
scheme significantly outperforms both the directional and
DFT codebooks. Interestingly, the values assumed by the
corresponding RMSEs in Figs. 6a-6b (solid curves with □
marker) demonstrate that the UE can be localized with an error
lower than 10 cm and, at the same time, synchronization can
be recovered with a sub-nanosecond precision, for SNR ≥ −5

(a) RMSE on the estimation of p.

(b) RMSE on the estimation of ∆.

Fig. 6: Comparison between the RMSEs of (a) p and (b) ∆ using the proposed
JML estimator for different precoding schemes, as a function of the SNR.

dB. From this analysis, we can conclude that combining the
proposed codebooks in (28a)-(28b) with a power allocation
strategy that aims at minimizing the worst-case PEB allows
us to achieve a better coverage of the uncertainty region P ,
while properly taking into account the different directional and
derivative beams transmitted towards the UE and the RIS.

3) Robustness Analysis: We now conduct an analysis aimed
at assessing the effective robustness of the proposed joint
BS and RIS beamforming design strategy to different UE
positions falling within the assumed uncertainty region P .
More specifically, we test the values assumed by the PEB
when the UE spans different locations around the nominal
one p, considering both the proposed robust design approach
and its corresponding non-robust version, the latter obtained
by simply shrinking the extent of the uncertainty region to a
very small area of 0.1 m around the nominal UE position. The
results reported in Fig. 7a, obtained for SNR = 0 dB, show
that the PEB exhibits quite similar values within the whole
uncertainty region, confirming the robustness of the proposed
joint active BS and passive RIS beamforming design strategy.
Interestingly, the PEB keeps reasonable values even when the
UE falls slightly outside the considered region P . Conversely,
the values assumed by the PEB in Fig. 7b clearly indicate
an evident position accuracy degradation for UE locations
different from the nominal one, leading to errors that are
almost three times those experienced in Fig. 7a with the
proposed robust joint design strategy.

4) Performance Assessment for Reduced Number of Trans-
mitted Beams: To corroborate the above results, we investigate
the possibility to adopt an ad-hoc heuristic that allows to
reduce the total number of transmitted beams G. The main idea
originates from observing that, when the BS is transmitting a
beam towards the UE, all the different configurations of the
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(a) PEB evaluation for the proposed robust joint BS-RIS
design strategy.

(b) PEB evaluation for non-robust joint BS-RIS design
strategy.

Fig. 7: Comparison between the PEBs with robust and non-robust joint BS-
RIS beamforming design strategies.

RIS phase profiles should not have a significant impact onto
the ultimate localization and synchronization performance,
being the BS-RIS path likely illuminated with a negligible
amount of transmitted power. In other words, when F BS

:,i =

a∗
BS(θ

(i)
B,U ) or F BS

:,i =
.
a∗

BS(θ
(i)
B,U ), we propose to neglect the

transmission of the 2LRIS different RIS beams F RIS
:,j = b∗RIS(θ

(j)
R,U )

and F RIS
:,j =

.̃
b
∗

RIS(θ
(j)
R,U ), for j = 1, . . . , LRIS, and use for the

corresponding pairs {F BS
:,i,F

RIS
:,j } a single configuration of the

RIS phase profile given by F RIS
:,j = bRIS(θ

c
R,U). Conversely, when

the BS is transmitting the beam towards the RIS, that is, the
precoding vector is set to F BS

:,i = a∗
BS(θB,R), we consider for F RIS

:,j

all the 2LRIS possible configurations of the RIS phase profile.
In doing so, the signal received by the UE in (8) will be
always observed for different RIS phase profiles, providing the
necessary information to estimate the AoD θR,U. This procedure
allows us to reduce the total number of transmitted beams to
G = 2LBS + 2LRIS + 1.

To validate such an intuition, in Fig. 8 we compare the
RMSEs on the estimation of p and the related PEBs as a
function of the SNR, for both cases of full and reduced number
of transmissions G. By comparing the PEBs in Fig. 8, we
appreciate a slight degradation of the theoretical accuracy
achievable in case of reduced G (analogous behavior is
obtained for ∆). Interestingly, despite the more challenging
scenario, the JML estimator combined with the proposed
power allocation strategy (solid curves with ⋄ marker) is still
able to provide very accurate localization performance, though
attaining the bounds at higher SNR of 0 dB. In this respect,
an important trade-off between the estimation accuracy and
the total number of transmission tends to emerge: for this

Fig. 8: Performance comparison between the case of full number of trans-
mitted beams G = (2LBS + 1)2LRIS and proposed heuristic using a reduced
G = 2LBS + 2LRIS + 1.

specific case, the proposed heuristic leads to a 85% reduction
in the number of involved transmissions (and, consequently,
in the time needed to localize and synchronize the UE),
but at the price of slightly increased values of RMSEs and
related bounds. In Sec. S-VII of the supplemental material,
we have conducted a similar analysis for the case in which
the uncertainty region P has been increased to 5 m along each
direction. The obtained results reveal that the gaps between the
estimation performance in cases of full and reduced G tend
to increase as the uncertainty increases. This behavior can be
explained by noting that the proposed heuristic is based on the
underling assumption that almost no power is received by the
RIS when the BS is transmitting a beam in the directions of
the UE. However, when the uncertainty region P grows, the
corresponding set of AoDs from the BS to the UE {θ̃(i)B,U }2LBS

i=1

progressively spans an increased area and, consequently, some
of the beams directed towards the UE could likely illuminate
the RIS path with a non-negligible amount of power. In these
cases, the different configurations of the RIS phase profiles
start to have a noticeable effect on the resulting estimation
accuracy, thus preventing the possibility to reduce G without
experiencing evident performance losses. Overall, an interest-
ing insight can be derived from this analysis: the smaller the
initial uncertainty about the UE position, the shorter the time
required to localize and synchronize it accurately.

To further corroborate these insights, we consider a second
different scenario in which the UE position is moved to
p = [3 − 1]T m, so that the angular separation |θB,U − θR,U|
between the UE and the RIS increases from 14.7◦ to 48.7◦

in this new configuration, while the rest of the parameters are
kept the same as for Fig. 8. The effect of this change on the
gap between the estimation performances of the full-G and
reduced-G cases can be observed in Fig. 9. More specifically,
the gap between the RMSEs on the estimation of p of the full-
G and reduced-G cases is significantly reduced by moving
the UE to a location where the AoD difference becomes
much larger (analogous behavior is obtained for ∆). This
behavior is perfectly in line with our previous findings and
can be explained by noting that the RIS practically receives
a negligible amount of power when the BS is illuminating
the UE, being the extent of the uncertainty region P not
sufficiently large to include beams that illuminate the RIS.
Hence, it can be concluded that, for scenarios with widely
separated AoDs and sufficiently small uncertainty regions, it
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Fig. 9: Performance comparison between the case of full number of trans-
mitted beams G = (2LBS + 1)2LRIS and proposed heuristic using a reduced
G = 2LBS + 2LRIS + 1 for increased AoD separation between UE and RIS.

Fig. 10: Performance comparison between the matched scenario with a single
controllable NLoS path through RIS and the mismatched scenario with two
additional uncontrollable NLoS paths.

is reasonable to employ the codebook with reduced G since
it provides almost the same performance as in the case of full
G using smaller number of transmissions. In this respect, it is
worth noting that the gap between the two cases will similarly
reduce also in the cases in which the AoDs from BS to RIS
and UE are close, but the uncertainty region is small enough
to guarantee that the beams do not illuminate the RIS path.
Overall, we can conclude that the performances in cases of
full and reduced G are mainly related to both the UE location
and the extent of the uncertainty region P .

5) Performance Assessment in Presence of Uncontrollable
Multipath: To further challenge the proposed approach, we
also investigate a scenario accounting for the simultaneous
presence of the controllable NLoS path through the RIS, as
well as of two additional uncontrollable NLoS paths generated
by two local scatterers in the surrounding environment, located
at unknown positions m1 = [2 7]T m and m2 = [6 2]T,
respectively. In doing so, we can test the robustness of the al-
gorithms in a propagation environment that is mismatched with
respect to the model considered at design stage. Assuming that
each uncontrollable NLoS path is characterized by a single
dominant ray, we generate the absolute value of the complex
amplitudes as |αNLOS,i| = Γλc/(4π[∥mi∥+ ∥mi − p∥)]), with
Γ = 0.7 reflection coefficient [45]. To analyze the robustness
under different multipath conditions, we keep fixed the power
of the uncontrollable NLoS paths (denoted by P i

NLoS, i = 1, 2)
and increase only the power along the LoS path (denoted by
PLoS) and the controllable RIS path, using the LoS-to-multipath
ratio (LMR) defined as LMR = PLOS/

∑2
i=1 P

i
NLoS. For the

considered setup, varying the SNR in the range from −15 dB
up to 10 dB corresponds to a LMR varying from 0 dB up to 25
dB, with 5 dB steps. In Fig. 10, we show the evolution of the
RMSEs on the estimation of p as a function of the SNR, for
both cases with and without uncontrollable NLoS paths. The
obtained results reveal that the proposed approach is effective
also in this more challenging scenario, with both the RML
and JML algorithms that exhibit a slight degradation of the
achieved localization performance only for small values of the
SNR (similar considerations hold true for the clock offset ∆),
that is, when the multipath in terms of LMR is more severe.

VIII. CONCLUSION

In this paper, we have considered the problem of joint
localization and synchronization of a single-antenna UE served
by a single BS in the presence of a RIS, assuming the existence
of a LoS path and a controllable NLoS path through the RIS.
To maximize the performance of localization and synchro-
nization under UE location uncertainty, a novel codebook-
based low-complexity design strategy for joint optimization
of active BS precoding and passive RIS phase shifts has been
proposed, based on the derived low-dimensional structure of
precoders and phase profiles. In addition, we have developed a
reduced-complexity ML-based estimator by exploiting the spe-
cial signal structure that enables decoupled estimation of UE
location and clock offset. Extensive simulations showed that
the proposed joint BS-RIS beamforming approach provides
significant improvements in both localization and synchroniza-
tion performance (on the order of meters and nanoseconds,
respectively, at SNR = −10 dB) over the state-of-the-art
benchmarks. Moreover, the proposed estimator is able to attain
the corresponding theoretical limits at a relatively low SNR
(around −5 dB) and found to be resilient against uncontrolled
multipath. As a future direction, we plan to evaluate the impact
of discrete RIS phase shifts on the estimation performance.

APPENDIX A
PROOF OF PROPOSITION 1

Following similar arguments as in [38, App. C], we represent
the covariance matrix in (21) for the g-th transmission as

Xg = ΓgΓ
H
g , (53)

where Γg admits a decomposition

Γg = ΠABSΓg +Π⊥
ABS

Γg , (54)

with ΠX
def
= X(XHX)−1XH denoting the orthogonal pro-

jector onto the columns of X and Π⊥
X

def
= I−ΠX . Then, Xg

in (53) can be re-written using (54) as

Xg = Xg + X̃g , (55)

where

Xg
def
= ΠABSΓgΓ

H
gΠABS (56)

X̃g
def
= ΠABSΓgΓ

H
gΠ

⊥
ABS

+Π⊥
ABS

ΓgΓ
H
gΠABS (57)

+Π⊥
ABS

ΓgΓ
H
gΠ

⊥
ABS

.
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Since Π⊥
ABS

ABS = 0 by definition, we have

AH
BSX̃gABS = 0 . (58)

We now provide three lemmas to facilitate the proof of Prop. 1.

Lemma 2. The FIM Jγ in (7) does not depend on the
component X̃g of Xg in (55).

Proof. Based on the definition of ABS in (22) and the FIM
elements in Sec. S-I-B in the supplemental material, we
observe that the dependence of the FIM Jγ on Xg is only
through the elements of AH

BSXgABS ∈ C3×3. Then, it follows
from (55) and (58) that the FIM does not depend on X̃g , i.e.,
the dependence of the FIM on Xg is only through Xg in (55).

Remark 4. The component X̃g of Xg in (55) contributes non-
negatively to the total power consumption, i.e., tr(̃Xg)≥0.

Proof. Opening up the terms in X̃g in (57), we have

tr(X̃g) = tr
(
ΠABSΓgΓ

H
gΠ

⊥
ABS

)
+ tr

(
Π⊥

ABS
ΓgΓ

H
gΠABS

)
+ tr

(
Π⊥

ABS
ΓgΓ

H
gΠ

⊥
ABS

)
= tr

(
ΓgΓ

H
gΠ

⊥
ABS

ΠABS

)
+ tr

(
ΓgΓ

H
gΠABSΠ

⊥
ABS

)
+
∥∥ΓH

gΠ
⊥
ABS

∥∥2
F

=
∥∥ΓH

gΠ
⊥
ABS

∥∥2
F
≥ 0 , (59)

where ∥·∥F represents the matrix Frobenius norm.

Lemma 3. The component X̃⋆
g in (55) of an optimal X⋆

g

obtained as the solution to (21) satisfies tr(X̃⋆
g ) = 0.

Proof. To prove the lemma, we resort to proof by contradic-
tion. For a given optimal solution

X⋆
g = X⋆

g + X̃⋆
g , g = 1, . . . , G (60)

with tr(X̃⋆
g ) > 0 for some g, consider an alternative solution

X⋆⋆
g = X⋆⋆

g + X̃⋆⋆
g , g = 1, . . . , G (61)

where

X⋆⋆
g

def
= X⋆

g

1 +
tr
(∑G

g=1 X̃
⋆
g

)
tr
(∑G

g=1 X
⋆
g

)
 (62)

X̃⋆⋆
g

def
= 0 . (63)

It can be readily verified from (60)–(63) that

tr
( G∑

g=1

X⋆⋆
g

)
= tr

( G∑
g=1

X⋆
g

)
. (64)

In addition, from Lemma 2, we note that the FIM obtained for
X⋆

g in (60) and X⋆⋆
g in (61) depend only on AH

BSX
⋆
gABS and

AH
BSX

⋆⋆
g ABS, respectively. Since AH

BSX
⋆⋆
g ABS = ζAH

BSX
⋆
gABS

for some ζ > 1 according to (62), the alternative solution X⋆⋆
g

in (61) would achieve smaller PEB than the optimal solution
X⋆

g in (60) (due to scaling of the FIM by ζ > 1). Combining
this with (64) shows that X⋆

g cannot be an optimal solution
of (21), which completes the proof.

Based on (59) in Remark 4, it can be observed that
tr(X̃g) = 0 implies ΓH

gΠ
⊥
ABS

= 0, which in turn yields
X̃g = 0 using (57). Hence, from Remark 4 and Lemma 3,
we infer that X̃⋆

g of an optimal X⋆
g should satisfy X̃⋆

g = 0.
Finally, from (55) and (56), an optimal X⋆

g obtained as the
solution to (21) can be expressed as

X⋆
g = ΠABSΓgΓ

H
gΠABS (65)

= ABSΥgA
H
BS ,

where Υg
def
= (AH

BSABS)
−1AH

BSΓgΓ
H
gABS(A

H
BSABS)

−1, which
completes the proof of Proposition 1.

We note that there exists an equivalent orthogonal solution
Υg (corresponding to the full-rank version of ABS) in (65),
leading to the same covariance Xg , as shown in Sec. S-V in
the supplemental material. Moreover, it is worth highlighting
that Xg and Υg are two identical solutions (having different
dimensions) of the problem (21), and thus one can always be
obtained from the other using (65) and

Υg = (AH
BSABS)

−1AH
BSXgABS(A

H
BSABS)

−1 . (66)

In other words, (i) one can either solve (21) directly with
respect to Xg ∈ CNBS×NBS , or, (ii) one can solve (21) with re-
spect to Υg ∈ C3×3 by inserting the relation Xg = ABSΥgA

H
BS

into both the objective (21) and the constraint (20b), and find
the corresponding Xg through Xg = ABSΥgA

H
BS.

APPENDIX B
PROOF OF PROPOSITION 2

From Sec. S-I-B2 in the supplemental material, we observe
that the FIM Jbd

γ in (18) depends on Ψg only through the
elements of the matrix BH

RISΨgBRIS ∈ C2×2. Then, the claim
in the proposition can easily be proved by employing similar
arguments to those in Appendix A.
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