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Abstract—We present RemixIT, a simple yet effective self-
supervised method for training speech enhancement without the
need of a single isolated in-domain speech nor a noise waveform.
Our approach overcomes limitations of previous methods which
make them dependent on clean in-domain target signals and thus,
sensitive to any domain mismatch between train and test samples.
RemixIT is based on a continuous self-training scheme in which a
pre-trained teacher model on out-of-domain data infers estimated
pseudo-target signals for in-domain mixtures. Then, by permuting
the estimated clean and noise signals and remixing them together,
we generate a new set of bootstrapped mixtures and correspond-
ing pseudo-targets which are used to train the student network.
Vice-versa, the teacher periodically refines its estimates using the
updated parameters of the latest student models. Experimental
results on multiple speech enhancement datasets and tasks not
only show the superiority of our method over prior approaches but
also showcase that RemixIT can be combined with any separation
model as well as be applied towards any semi-supervised and
unsupervised domain adaptation task. Our analysis, paired with
empirical evidence, sheds light on the inside functioning of our self-
training scheme wherein the student model keeps obtaining better
performance while observing severely degraded pseudo-targets.

Index Terms—Self-supervised learning, speech enhancement,
semi-supervised self-training, zero-shot domain adaptation.

I. INTRODUCTION

ONE of the most fundamental problems in audio processing
is speech enhancement, where the goal is to isolate and

reconstruct the clean speech component from a noisy input
recording [1]. Several studies have shown that employing such
denoising models as front-ends could be useful for building
robust automatic speech recognition (ASR) [2], [3] and speaker
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recognition [4] systems. The universal applicability of neural
networks has proven to be beneficial for a variety of signal
processing problems, including speech enhancement. Sophis-
ticated architectures such as convolutional networks [5], [6],
[7], [8], recurrent processing [9] self-attention [10], [11], [12],
generative adversarial networks [13], [14] as well as variational
auto-encoders [15], to name a few. Despite the effectiveness of
the aforementioned approaches in cases where large amounts of
in-domain training paired data are available, real-world appli-
cations necessitate the need for developing robust algorithms to
train these models with in-the-wild mixtures.

In the context of speech enhancement, self-supervised learn-
ing (SSL) or unsupervised methods differ from semi-supervised
ones [16] in the sense that the former do not have access to
clean target signals. Orthogonal to these concepts, self-training
refers to algorithms which are able to train a new model (student)
based on pseudo-targets provided by a previously fitted model
(teacher). Under this unified terminology, the proposed RemixIT
framework can also be viewed as an unsupervised self-training
algorithm when only unsupervised data are used to pre-train the
teacher model.

Recent studies have shown that speech representations could
be self-learned and be used later for other downstream audio
processing tasks [17], [18], [19]. However, in real-world settings,
the speech recordings are degraded with additive noise, thus,
self-learning robust embeddings becomes particularly challeng-
ing and demands the adaptation to the input noise distribu-
tion [20]. Several unsupervised speech denoising algorithms
have been proposed by identifying and training with relatively
clean segments of the noisy speech mixture [21], [22], using
ASR losses [23], [24] exploiting visual cues [25], and harnessing
the spatial separability of the sources using mic-arrays [26],
[27]. Mixture invariant training (MixIT) [28] enables unsuper-
vised training of separation models only with real-world single-
channel recordings by generating artificial mixtures of mix-
tures and estimating the independent sources. Although MixIT
has been proven successful for various speech enhancement
tasks [28], [29], [30], MixIT assumes access to in-domain noise
samples which restricts its universal applicability. Overcom-
ing the latter constraint by injecting additional out-of-domain
(OOD) noise sources to the input mixture of mixtures [31]
further alters the input signal-to-noise ratio (SNR) distribution
and its performance depends heavily on the distribution shift be-
tween the injected and real noise distributions. Thus, developing
a SSL algorithm which does not depend on external modality
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information nor assumptions about in-domain data remains a
challenging problem.

On the other hand, several self-training strategies have
emerged and showed promising results in classification tasks
using convex combinations of labeled and unlabeled data (e.g.
Mixup [32]) but have also been successfully applied to sev-
eral audio tasks [33], [34]. In [35], a student model with a
smaller number of estimated sources has been trained on a
subset of outputs of a pre-trained MixIT model to solve the
input SNR distribution mismatch. Furthermore, a student model
could also perform test-time adaptation by using the teacher’s
estimated waveforms as targets [36]. However, those approaches
enforce only the consistency of the student’s predictions over
a frozen teacher’s output pseudo-targets whereas other studies
have shown that one can obtain significant gains using unsuper-
vised data augmentation [37], averages of losses over multiple
predictions [38], or their combination [39].

The student-teacher framework for singing-voice separation
in [40] bears the closest similarity to our work. The proposed
setup assumes teacher pre-training on supervised OOD data,
performing inference on the in-domain noisy dataset and storing
the new pseudo-labeled dataset. At a second step, a student net-
work is trained on randomly mixed estimated sources that score
above a pre-defined confidence quality threshold. Unfortunately,
if the teacher’s estimates have low SNR and/or the threshold is
not picked wisely then the student model would also perform
poorly. In contrast, some of the most successful self-training
approaches propose to iteratively update the teacher’s weights
using an exponential moving average scheme [41], [42], [43] or
sequentially update the teacher with the weights from a more
expressive noisy student [44].

In this work, we propose RemixIT which is based on sev-
eral aforementioned state-of-the-art SSL strategies for pseudo-
labeling and continual training while also providing a novel
technique for training speech enhancement models with OOD
data. Our method trains a student model using self-augmented
mixtures generated by permuting and remixing the teacher’s
estimates and using them as pseudo-targets for regular regres-
sion. Moreover, RemixIT treats self-training as a lifelong process
while continually updating the teacher model using the student’s
weights that consequently leads to faster and more robust con-
vergence. RemixIT is the first method that:
� Performs self-supervised learning using only in-domain

mixture datasets and OOD noise sources (e.g. MixIT pre-
trained teacher with an OOD dataset).

� Yields state-of-the-art results on several unsupervised and
semi-supervised denoising tasks without the need of clean
speech waveforms or ad-hoc filtering procedures.

� Has strong theoretical and empirical evidence of why it
works under various noise levels.

� Is able to leverage huge amounts of unsupervised data and
generalize in diverse training and adaptation scenarios.

II. REMIXIT METHOD

RemixIT trains a speech enhancement model to isolate the
clean speech signal from its noisy observation. In general, we

train a separation model f which outputs M source waveforms
for each input noisy speech recording with T time-domain
samples. Thus, given as input a batch of B input waveforms
x ∈ RB×T the network estimates all sound sources:

ŝ, n̂ = f(x;θ), x = s+
M−1∑
i=1

[n]i = ŝ+
M−1∑
i=1

[n̂]i, (1)

where ŝ, s ∈ RB×T , n̂, n ∈ R(M−1)×B×T , θ are: the estimated
speech signal, the clean speech target, the estimated noise signal,
the noise target and the parameters of the model, respectively. We
force the estimated sources ŝ and n̂ to add up to the initial input
mixtures x by using a mixture consistency projection layer [45].
We portray the inference and self-training aspects of RemixIT in
Fig. 1, summarize it in Algorithm 1 and analyze it in depth
in Section II-C. For completion, we highlight how RemixIT
differs from fully supervised training (assumes access to clean
in-domain speech) and previous state-of-the-art semi-supervised
training methods (MixIT assumes access to isolated in-domain
noise recordings) in Sections II-A and II-B, respectively.

A. Supervised Training

Supervised training is the straightforward way of training
speech enhancement models. It assumes access to both in-
domain clean speech recordings, s ∼ Ds, as well as noise
sources drawn from n ∼ Dn. Synthetic mixtures are generated
at each training step m = s+ n, by sampling a batch of clean
speech recordings s ∼ Ds and a batch of isolated noise samples
n ∼ Dn, which are then fed to the separation model f . For a
sampled batch of B input mixtures, the model predicts M = 2
sources for each input mixture (̂s, n̂ = f(x;θ)) and the follow-
ing targeted loss function is minimized:

LSupervised =
B∑

b=1

[L(ŝb, sb) + L(n̂b, nb)] , (2)

where L is any desired signal-level loss function used to pe-
nalize the reconstruction error between the estimates and their
corresponding targets. However, this training process is com-
pletely dependent on the availability of clean speech and noise
sources to capture the real-world mixture distribution, making
the model vulnerable to a performance decline under unseen



TZINIS et al.: REMIXIT: CONTINUAL SELF-TRAINING OF SPEECH ENHANCEMENT MODELS VIA BOOTSTRAPPED REMIXING 1331

Fig. 1. RemixIT self-training procedure with a batch size of 4 noisy mixtures. A teacher speech enhancement model fT is pre-trained in a supervised or
unsupervised way on out-of-domain (OOD) data and performs inference on a batch of noisy mixtures sampled from the in-domain noisy speech dataset m ∼ Dm.
The randomly permuted teacher’s noise estimates P̃n are added together with the teacher’s speech estimates̃ s to form the bootstrapped mixtures̃ m which are
fed to the student speech enhancement network fS . The student is trained by regressing over the teacher’s estimated sources which are now used as pseudo-targets
under a specified signal-level loss function. After repeating the overall process for K optimization steps, the teacher model may be updated using the student’s
weights in a continuous self-training scheme.

test conditions. This necessitates the development of SSL and
adaptation techniques for speech enhancement.

B. Mixture Invariant Training (MixIT)

MixIT [28] is a simple yet effective idea for training a sep-
aration model using artificial mixtures of mixtures (MoMs).
In essence, MixIT assumes availability of two sources of data
during training, Dm which consists of mixtures of speech
and a noise source and D′

n which contains noise recordings
from a single noise source. The training process boils down to
sampling a batch of noisy speech recordings m ∼ Dm (where
m = s+ n(1)), and mixing them with another batch of iso-
lated noise recordings n(2) ∼ D′

n. Note that the true noise
distribution of the real-world D∗

n (n(1) ∼ D∗
n) is unknown and

not necessarily same as the one available D′
n. The separa-

tion model fM is trained using the synthetic batch of input-
MoMsx = s+ n1 + n2 and tries to reconstructM = 3 sources
ŝ, n̂(1), n̂(2) = fM(x;θM), by minimizing the following per-
mutation invariant [46] loss function:

L(b)
MixIT = min

π∈P

[
L(ŝb + n̂

(π1)
b ,mb) + L(n̂(π2)

b , nb)
]
, (3)

where b is the batch’s index andP := {(1, 2), (2, 1)} is the set of
permutations between the model’s noise output slots. One could
also use a probabilistic assignment of the noise estimates n̂(π1)

b ,

n̂
(π2)
b to avoid emerging problems with the complex permutation

invariant landscapes [47].
If the noise sources are independent from each other and the

clean speech component, then the model can learn to minimize
this loss by reconstructing the mixture using its first estimated
slot and either one of the two noise slots available. Although
MixIT has been proven effective for various simulated speech
enhancement setups [29], [30], the assumption about having
access to a diverse set of in-domain noise recordings from

D′
n which aptly captures the true distribution of the present

background noises D∗
n make it impractical for many real-world

settings. To this end, other works [24], [31] have tried to deal
with the distribution shift between the on-hand noise dataset Dn

and the actual noise distribution D∗
n in order to avoid the need

of in-domain noise samples. Specifically, [31] proposes to use
extra noise injection from an OOD distribution and in [24] ASR
and disentanglement losses have been proposed. However, the
performance of the former method still depends heavily the level
of distribution shift between the actual noise distributionD∗

n and
Dn while the latter method is more restrictive since it requires
large pre-trained ASR models.

C. RemixIT: Self-Training With Bootstrapped Remixing

In contrast to the aforementioned two training procedures
which require in-domain ground truth signals (e.g. supervised
training requires clean speech samples from s ∼ Ds as well
as access to in-domain noise recordings sources drawn from
n ∼ Dn while MixIT requires only isolated in-domain noise
waveforms), RemixIT does not depend on any other in-domain
information besides the mixture dataset Dm. Specifically, our
method utilizes a student-teacher framework where the teacher’s
noise estimates are randomly permuted in a mini-batch sense
and remixed with the teacher’s speech estimates to create boot-
strapped mixtures. A student model is trained using as input
the bootstrapped mixtures and regressing over the teacher’s
pseudo-target signals using a regular supervised loss at every
optimization step (for a succinct description of the training
procedure please see Algorithm 1). RemixIT also enjoys a con-
tinual refinement of the noisy pseudo-target signals, after a few
optimization steps, where the student model weights are used to
update the teacher network as it is illustrated in Fig. 1.

1) RemixIT’s Teacher-Student Framework: For the initial
teacher model, RemixIT can use any speech enhancement model
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pre-trained on an OOD dataset D′ which outputs the speech
component and one or more noise estimated waveforms (see
specification in (1)). To this end, RemixIT materializes into
semi-supervised domain adaptation if the teacher was trained
using a supervised loss and into a SSL training scheme if the
teacher was trained using MixIT.

Formally, given an batch of in-domain noisy mixtures m =
s+ n ∈ RB×T , m ∼ Dm, the teacher model estimates the
speech and the noise components as follows:

s̃, ñ = fT (x;θ
(k)
T ), m = s̃+

M−1∑
i=1

[n′]i (4)

where θ
(k)
T denotes the parameters of the teacher model at the

k-th optimization step. The second equation holds because we
enforce mixture consistency. A MixIT pre-trained model would
estimate M = 3 sources and we can easily get a consolidated
noise estimate by summing the two latter noise estimated wave-
forms, namely, ñ =

∑M−1
i=1 [n′]i. Notice that the teacher model

fT does not need to be identical through the whole training
process and could be updated using any user-specified protocol
which results in a separation model that respects the constraints
defined in (4). The teacher’s estimates within a batch of size B
are used to generate the bootstrapped mixtures m̃ by remixing
the estimated speech and noise sources in a random order:

m̃ = s̃+ ñ(P) ∈ RB×T , ñ(P) = Pñ, P ∼ ΠB×B , (5)

where P is drawn uniformly from the set of all B ×B per-
mutation matrices and is used to produce the permuted noise
sources ñ(P). The original teacher’s speech estimates s̃ and
the permuted noise sources ñ(P) are now used as target pairs
to train the student model fS on the newly generated batch of
bootstrapped mixtures m̃ as shown below:

ŝ, n̂ = fS(m̃;θ
(k)
S ), ŝ, n̂ ∈ RB×T

L(b)
RemixIT = L(ŝb, s̃b) + L(n̂b,Pñb), b ∈ {1, . . . , B}.

LRemixIT =
B∑

b=1

[L(ŝb, s̃b) + L(n̂b,Pñb)] (6)

The loss function used is similar to a supervised setup (see (2))
but instead of ground-truth clean source waveforms, we use the
noisy estimates, s̃ and ñ(P), provided by the teacher network.
If the signal-level loss function L also minimizes the Euclidean
norm between the estimated signals and the target signals, the
proposed cost function LRemixIT enjoys several convergence
properties which enable our method to learn in a robust SSL
fashion even in cases where the teacher’s estimates are not close
to the ground-truth source waveforms (see Section II-C2).

Lastly, RemixIT refines the estimates of the teacher network
fT using the weights from the latest available student models.
The continual update protocols used in this study are the sequen-
tial and the running moving average update protocols which are
explained in detail in Section III-C.

2) Error Analysis Under the Euclidean Norm: In each opti-
mization step, RemixIT tries to minimize a signal-level loss func-
tion between the student’s estimates and the teacher’s pseudo-
targets. Since we are mostly interested in denoising, we focus
on the speech estimates of the teacher and the student networks
with initial mixtures M and the bootstrapped mixtures M̃ as
inputs, respectively. These estimates can also be expressed in
the following way as random variables:

S̃ = f
(s̃)
T (M = S+N; θ

(k)
T ), M ∼ Dm

Ŝ = f
(ŝ)
S (M̃ = S̃+ Ñ(P);θ

(k)
S ). (7)

Now, the teacher’s R̃T and student’s R̂S errors w.r.t. the initial
clean targets S are the following conditional probabilities:

R̃T = S̃− S, R̃S = Ŝ− S

R̃T ∼ P (R̃T |S,N), R̂S ∼ P (R̂S|S̃, Ñ,P). (8)

Using a signal-level loss L that minimizes the squared error
between the estimated and the target signals in (6) and assuming
unit-norm estimated and target signals ||s|| = ||s̃|| = ||ŝ|| = 1,
RemixIT loss function becomes equivalent to minimizing the
following expression:

LRemixIT ∝ E[||Ŝ− S̃||22] = E[||(Ŝ− S)− (S̃− S)||22]

= E
[
||R̂S||22

]
︸ ︷︷ ︸
Supervised Loss

+ E
[
||R̃T ||22

]
︸ ︷︷ ︸
Constant w.r.t. θS

−2E
[
〈R̂S , R̃T 〉

]
︸ ︷︷ ︸

Errors’ correlation

(9)

Ideally, this loss could lead to the same optimization objective
with a supervised setup if the last inner-product term was zero
since the middle term becomes zero when computing the gradi-
ent w.r.t. the student’s parameters θS . 〈R̂S , R̃T 〉 = 0 could be
achieved if the teacher produced outputs indistinguishable from
the clean target signals or the conditional error distributions in
(8) were independent. Intuitively, as we continually update the
teacher model and refine its estimates, we minimize the norm
of the teacher error which leads to higher fidelity reconstruction
from the student (for further analysis of how the student learns
to perform better than its teacher and for experimental validation
of this claim we refer the reader to Section IV-D).

Additionally, the bootstrapped remixing process forces the
errors to be more uncorrelated since the student tries to recon-
struct the same clean speech signals s, similar to its teacher,
but under a different mixture distribution. Formally, the student
tries to reconstruct s when observing the bootstrapped mixtures
m̃ = s̃+ ñ(P) while the teacher tries to reconstruct s only
from the initial input mixtures m = s+ n. This phenomenon
becomes apparent if we focus on the reconstruction of a single
speech signal s∗ from the teacher and the student networks. In
essence, we use the teacher network to provide an estimated s̃∗

from the corresponding mixture m∗ and some perturbed noise
sources ñb,

′ ∀b ∈ {1, . . . , B} to create bootstrapped mixtures:

s̃∗, ñ∗ = fT (m
∗ = s∗ + n∗;θT )

s̃b,
′ ñ′

b = fT (m
′
b = s′b + n′

b;θT )

m̃′
b = s̃∗ + ñ′

b, ∀b ∈ {1, . . . , B}. (10)
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In the student-training phase, we perform inference using the
student network fS on the batch of the aforementioned boot-
strapped mixtures m̃′

b. Because RemixIT’s loss is computed
under expectation ( (9)), we can rearrange the order of batches
that the student network sees. Thus, we focus on the learning
aspect of the student network for the batch of bootstrapped
mixtures above (10) and rewrite the last error correlation term
as follows:

E
[
〈R̂S , R̃T 〉

]
≈ E

[
1

B

B∑
b=1

(ŝb − s∗)T (s̃∗ − s∗)

]

= E

⎡⎢⎢⎢⎢⎣(s̃∗ − s∗)T
1

B

B∑
b=1

(
f
(ŝ)
S (s̃∗ + ñ′

b;θS)− s∗
)

︸ ︷︷ ︸
Empirical mean student error

⎤⎥⎥⎥⎥⎦ (11)

The premise is that if the student sees a wide variety of boot-
strapped mixtures which have been generated using the same
teacher’s speech estimate s̃∗, then the mean interference error
produced by injecting noisy teacher’s estimates ñ′

b would go
to zero under expectation. We prove this claim under ideal
conditional independence of the student error vectors and infinite
bootstrapped mixtures in Theorem II.1. In practice, the student
could still minimize the errors’ correlation term and still be able
to learn from mixtures when the teacher performs poorly (please
see Section IV-E which gives an empirical analysis of our claim).

Theorem II.1: Assuming a differentiability of the loss func-
tions, access to infinite bootstrapped mixtures B → ∞ gen-
erated by the teacher network fT, and conditional indepen-
dence of the student errors given the same teacher speech
pseudo-target (f (ŝ)

S (s̃∗ + ñ′
i;θS)− s̃∗⊥f

(ŝ)
S (s̃∗ + ñ′

j ;θS)− s̃∗

with i �= j), then the gradients of RemixIT’s loss function w.r.t.
the student network weights θS) converge to the ones provided
by an oracle supervised loss ∇θSLRemixIT ≈ ∇θSLSupervised

Proof: Combining the definitions of the loss functions from
(2) and (6), their difference can be expressed as:

LRemixIT − LSupervised = E
[
||R̃T ||22 − 2〈R̂S , R̃T 〉

]
. (12)

Following the same analysis with Section II-C2, for each target
speaker waveform s∗, we use the estimates of the teacher model
for the target speech waveform s̃∗ in an input mixture m∗

and for randomly sampled noise sources ñ′
b in the correspond-

ing mixtures m′
b as in (5) to produce bootstrapped mixtures

m̃′
b = s̃∗ + ñb,

′ ∀b. Thus, the student estimates some speech
waveform ŝb for each input bootstrapped mixture m̃′

b and the
latter term of the error correlation can be written as follows:

E
[
〈R̂S , R̃T 〉

]
= E

[
(s̃∗ − s∗)T

1

B

B∑
b=1

(ŝb − s∗)

]

= E

[
(s̃∗ − s∗)T

1

B

B∑
b=1

[(ŝb − s̃∗) + (s̃∗ − s∗)]

]

= E
[
||R̃T ||22

]
+ E

[
(s̃∗ − s∗)T

1

B

B∑
b=1

(ŝb − s̃∗)

]
. (13)

However, the error between each pseudo-target provided by the
teacher student s̃∗ = f

(s̃)
T (m∗ = s∗ + n∗;θT ) and the estimated

speech signal by the student ŝ′b = f
(ŝ)
S (s̃∗ + ñ′

b;θS) is bounded
for any masked-based network operating on some linear bases
(we use a linear encoder/decoder as specified in Section III-
B) [48]. Formally, assuming that an the encoded representation
of the input bootstrapped mixture m′ is v′ = P ·m′, then the
latent representation of a signal estimate is v̂ = M̂� (P ·m′).
Thus, the l2 error is bounded by:

‖ŝ′b − s̃∗‖ = ‖(M̂′
b − M̃∗)� (P · m̃′

b)‖

≤ max
s̃∗,ŝb,′ñ′

b

[
σmax{(M̂′

b − M̃∗)� P} · ‖s̃∗ + ñ′
b‖
]
= Ĉ,

(14)

where σmax{(M̂′
b − M̃∗)� P} < ∞ denotes the maximum

singular value of the masked unrolled synthesis-basis matrix
P and ‖s̃∗ + ñ′

b‖ < ∞ is the energy of the bounded-norm boot-
strapped mixtures. Similarly, the teacher error is also bounded
by some real value ‖s̃∗ − s∗‖ ≤ C̃ < ∞, ∀s∗.

Thus, by combining the above inequalities with (12) and (13),
we conclude that at the limit, the difference of the loss functions
converges to a value which is constant with respect to the student
network’s parameters θS as shown next:

lim
B→∞

[LRemixIT − LSupervised] = −E
[
||R̃T ||22

]
+ lim

B→∞
E

[
(s̃∗ − s∗)T

1

B

B∑
b=1

(ŝb − s̃∗)

]

= −E
[
||R̃T ||22

]
+ lim

B→∞
E
s̃∗

[
(s̃∗ − s∗)T μ(s̃∗)

]
. (15)

where the last step comes from the application of the central
limit theorem since by assumption the student estimates’ errors
are i.i.d. and bounded, thus, the sample mean converges in
distribution to a normal distribution with mean equal to the
mean student error μ(s̃∗) given the corresponding teacher’s
speech estimate s̃∗. All parts of the right hand-side of the above
equation are constant w.r.t. the student network parameters θS
which we try to optimize and thus by applying the gradient
operator we can conclude that∇θSLRemixIT ≈ ∇θSLSupervised.
One could make this theorem even more applicable to real-
world settings where the student errors given different boot-
strapped mixtures from the initial teacher estimate s̃∗ are
weakly dependent [49] but we defer this derivation to future
work. �

III. EXPERIMENTAL FRAMEWORK

A. Datasets

DNS-Challenge (DNS): The DNSChallenge 2020 benchmark
dataset [50] consists of a large collection of clean speech record-
ings which are mixed with a wide variety of noisy speech
samples with 64,649 and 150 pairs of clean speech and noise
recordings for training and testing, respectively. DNS is used for
showing the effectiveness of the proposed self-training scheme
where large amounts of unsupervised training data is available
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TABLE I
EVALUATION RESULTS FOR THE SPEECH ENHANCEMENT TASK ON THE DNS TEST SET USING THE PROPOSED REMIXIT METHOD, MIXIT APPROACHES [28], [31]
AND SUPERVISED IN-DOMAIN TRAINING WITH THE SUDO RM -RF MODEL [60] AS WELL AS THE PREVIOUS STATE-OF-THE-ART FULLSUBNET [8] SUPERVISED

MODEL (∗AS IT WAS PRESENTED IN THE PAPER). ALL TEACHER AND STUDENT NETWORKS FOLLOW THE SAME SUDO RM -RF MODEL [60] ARCHITECTURE WITH

THE SPECIFIED NUMBER OF U-CONVBLOCKS (U = 8 OR U = 32)

and one needs to improve the performance of a model trained
only on limited OOD supervised data.

LibriFSD50 K (LFSD): This data collection includes 45,602
and 3,081 mixtures for training and testing, correspondingly.
The clean speech samples are drawn from the LibriSpeech [51]
corpus and the noise recordings are taken from FSD50K [52]
representing a set of almost 200 classes of background noises
after excluding all the human-made sounds from the AudioSet
ontology [53]. A detailed recipe of the dataset generation process
is presented in [30]. LFSD becomes an ideal candidate for
semi-supervised/SSL teacher pre-training on OOD data given
its mixture diversity.

WHAM!: The generation process for this dataset produces
20,000 training noisy-speech pairs and 3,000 test mixtures
from the initial WHAM! [54] dataset and has been identical
to the procedure followed in [30] with active noise sources
mixed at an average of −1.3dB input SNR. The set of back-
ground noises in WHAM! is limited to 10 classes of urban
sounds.

VCTK: The VCTK dataset proposed in [55] includes
586 synthetically generated noisy test mixtures, where a
speech sample from the VCTK speech corpus [56] is mixed
with an isolated noise recording from the DEMAND [57].
The VCTK and DNS test partitions are used to illustrate
the effectiveness of RemixIT under a restrictive scenario
zero-shot domain adaptation with limited data to perform
self-training.

B. Speech Enhancement Model

In the supervised and RemixIT training recipes, the student has
M = 2 output slots and always estimates the speech component
and the noise source. For the models which are trained with
MixIT, we increase the number of output slots to M = 3 to es-
timate the additional noise component. RemixIT is independent
of the choice of the speech-enhancement model architecture as

long as the latter estimates both speech and noise components
of the input mixture.

Our model’s choice was based on obtaining adequate quality
of speech reconstruction with low computational and memory
requirements (see Table I for a head-to-head comparison in a su-
pervised in-domain training setup with the previous state-of-the-
art model). To this end, we used the Sudo rm -rf [58] architecture
with the more sparse computation blocks using shared sub-band
processing via group communication [59]. The selected network
has shown to provide high-quality source estimates under speech
enhancement [30] as well as sound separation [60] tasks while
significantly reducing the model’s size. We consider the selected
architecture with a default encoder/decoder with 512 basis 41
filter taps and a hop-size of 20 time-samples, a depth of U = 8
U-ConvBlocks and the same parameter configurations as used
in [30]. In the sequential update protocol we increase the depth
of the new student networks every 20 epochs from 8 to 16 and
finally 32.

C. RemixIT’s Teacher Update Protocols Configurations

RemixIT refines the estimates of the student network based
on unsupervised and semi-supervised teachers pre-trained on
an OOD dataset but also has the capability of repeatedly up-
dating the teacher network to learn from higher-quality source
estimates. In our experiments, we evaluate the proposed method
under various online teacher updating protocols after k training
epochs. Specifically, we consider the following:

Static teacher: The teacher is frozen throughout the training
process, for all optimization steps θ(k)

T = θ
(0)
T , ∀k.

Sequentially updated teacher: Every 20 epochs or equiva-
lently K = 20×|Dm|/B optimization steps, where |Dm|/B is the
number of batches per-training epoch, we replace the teacher

with the latest student, namely, θ̊
(kmodK)

T := θ
(kmodK)
S .

Exponentially moving average teacher: The teacher is grad-
ually updated after every epoch using an exponential moving
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average scheme θ̄
(j+1)
T := γθ

(j)
S + (1− γ)θ̄

(j)
T , ∀k with γ =

0.01, where j is a multiple of |Dm|/B.

D. Training and Evaluation Details

For the semi-supervised and unsupervised RemixIT’s teachers
we pre-train the corresponding models following the supervised
training process (Section II-A) and MixIT (Section II-B), re-
spectively. Although RemixIT can theoretically work with any
valid signal-level loss functions (3) and (6), we choose the
negative scale-invariant signal to distortion ratio (SI-SDR) [61]
for training all models:

L(ŷ, y) = −SI-SDR(ŷ, y) = −20 log10(‖αy‖/‖αy−ŷ‖). (16)

α = ŷ�y/‖y‖2 makes the loss invariant to the scale of the
estimated source ŷ and the target signal y. By setting α = 1,
SI-SDR becomes equivalent with SNR. We train all models
using the Adam optimizer [62] with a batch size ofB = 2 and an
initial learning rate of 10−3 which is divided by 2 every 6 epochs.
We fix those hyper-parameters after some early experimentation
with the validation set of LFSD. For all experiments, during
training we assume that we do not have access to the input
SNR distribution and thus, we mix a clean and a noise source
without altering their corresponding power ratio. However, for
the in-domain supervised training setup with DNS we randomly
mix clean speech and noise recordings with SNR from a uniform
distribution of [−2, 20]dB, which has been shown to be effective
for multiple sound separation setups [48], [63], [64]. Finally, we
normalize all input mixture waveforms by subtracting their mean
and dividing by their standard deviation before feeding them to
each model. We train and test models which operate at a 16 kHz
sampling rate.

The robustness of all speech enhancement models is measured
using the SI-SDR [61], the short-time objective intelligibility
(STOI) [65] and the perceptual evaluation of speech quality
(PESQ) [66]. We evaluate the model checkpoints after 100
epochs for the pre-trained teachers and the supervised models
and after 60 epochs for all the other configurations.

IV. RESULTS AND DISCUSSION

A. The Need for Continual Refinement of Teacher’s Estimates

In Fig. 2, we show the speech enhancement performance of the
student models produced by a static or a sequentially updated
teacher every 20 epochs. Unsurprisingly, all protocols behave
similarly until the 20th epoch since they use the same initial
teacher. In contrast to the frozen teacher protocols, after the 20th
epoch, the old teacher is replaced with the newly trained student
with U=8 and a new student, with twice as much depth (8 →
16) is initialized. Surprisingly, the sequentially updated teacher
protocol keeps teaching a better student separation model, even
after the 40th epoch, compared to both models produced by the
static teachers which saturate for the same number of training
steps. Comparing between the students with U=8 and U=16
produced by static teacher models, it is evident that the more
expressive student performs better but not on par with the same
depth student produced by the sequentially updated teacher

Fig. 2. SI-SDR (dB) performance on DNS test as training progresses using
different teacher update protocols. The initial teacher network is shared across
the various protocols (a Sudo rm -rf model with U = 8 Conv-blocks) and was
pre-trained in a supervised way on the WHAM! dataset. The orange solid line
denotes the performance of the student model with increasing depth every 20
training epochs U : 8 → 16 → 32 where we initialize a new student model
and replace the teacher model with the latest available student. The sequential
protocol shows significant gains over the static teacher protocols where the
student network has a static architecture throughout training and the initial
teacher is not updated (U = 8 with gray and U = 16 with black dashed lines).

protocol. Specifically, both orange-solid and black-dashed lines
at the 40-th epoch represent the performance of a student model
with the same depth (U = 16) but the sequential update proto-
col clearly outperforms the frozen-teacher protocol. Thus, the
combination of the bootstrapped remixing and the continual
refinement of the teacher’s estimates is key for the significant
improvement that RemixIT yields. As a result, we have chosen
the sequentially updated teacher protocol as the default strategy
for RemixIT, except for the zero-shot adaptation where we use
the exponential average teacher updating scheme because the
number of available training mixtures could make the student
prone to overfitting if trained from scratch.

B. Self-Supervised and Semi-Supervised Speech Enhancement

Table I summarizes the mean speech enhancement perfor-
mance of RemixIT against in-domain and cross-domain super-
vised and SSL baselines with the same architecture on the DNS
test set. Notice that in both semi-supervised and unsupervised
cases, the learned RemixIT’s student does not assume access
to in-domain clean speech nor to noise samples like the pre-
vious state-of-the-art SSL speech enhancement algorithms. For
instance, SSL RemixIT’s teacher pre-training is performed with
OOD MixIT by using 80% of the LFSD noisy recordingsD′

m and
rest 20% to simulate the isolated noise recordings D′

n, whereas
the student is trained solely on the vast amount of training
mixtures in the DNS dataset.

Despite the fact that RemixIT makes no assumptions about
the in-domain distribution of mixtures nor it assumes access
to in-domain ground truth source waveforms, it significantly
outperforms all the previous state-of-the-art MixIT-like ap-
proaches. The unsupervised student learned using the proposed
method yields an improvement over the second-best unsuper-
vised method of more than (14.5 dB → 16.0dB in terms of
SI-SDR and 0.02 in terms of STOI) compared against in-domain
MixIT and the recently proposed extra noise augmentation
where an extra noise source is injected [31]. In the semi-
supervised domain adaptation setup, we show that RemixIT’s
student still provides noticeable improvement over its initial
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Fig. 3. SI-SDR (dB) performance improvement on the training portion of the DNS dataset that a RemixIT’s student with a sequentially updated teacher every 20
epochs yields as the training progresses over the initial teacher’s estimates. We show that similar learning patterns emerge for different initial teachers pre-trained
in a semi-supervised way (top) and an unsupervised way (bottom). The median and the mean ΔSI-SDR are denoted with a solid green line and an orange star,
respectively.

teacher pre-trained in a supervised way assuming access to a
smaller but diverse dataset like LFSD. Although we have used
the same separation model architecture across our experiments,
our method is independent of the model’s choice and could
be used with models that produce higher quality estimates.
However, the bottom three rows in Table I show that the model
used in this study achieves state-of-the-art speech enhancement
results when trained with in-domain ground-truth sources.

C. Zero-Shot Domain Adaptation

In low-resource training scenarios, the training mixtures in-
hand might not be sufficient to train a model from scratch,
thus, we show how RemixIT can be used as a zero-shot un-
supervised domain adaptation algorithm. We perform teacher
pre-training on larger OOD datasets and fine-tune a student
model using limited in-domain mixtures. At the start of the
adaptation process, the student is initialized using the pre-trained
teacher’s weights θ

(0)
S := θ

(0)
T and we perform RemixIT while

periodically updating the teacher using the moving average
protocol (see Section III-C). The cross-dataset adaptation results
are illustrated in Fig. 4. The proposed method delivers consistent
improvements across datasets and pre-training techniques, up
to 0.8 dB in terms of SI-SDR over the non-calibrated models.
Unsurprisingly, one can notice that the level of improvement
is directly impacted by the amount of available noisy mixtures.
We postulate that this is the main reason that our method obtains
larger (smaller) gains for the adaptation on WHAM! (DNS) test
partition which has 3,000 (only 150) mixtures, respectively.
However, RemixIT performs adequately even in cases where

Fig. 4. SI-SDR performance improvement that RemixIT’s student yields over
its initial OOD pre-trained teacher model for various low-resource adaptation
datasets (e.g. DNS, LFSD and WHAM!, from left to right). Both teacher
and student models have the exact same Sudo rm -rf architecture (U = 8
ConvBlocks) and we use the running mean teacher update protocol. RemixIT
shows significant improvements against all teacher models used in this study,
namely, MixIT pre-training on LFSD (blue/leftmost) and supervised training on
LFSD (yellow/middle) and as well as on WHAM! (green/rightmost).

there is a large distribution shift between the training and the
adaptation-test sets (e.g. WHAM! contains only 10 classes of
urban background noises while the DNS dataset is very diverse).
Specifically, the significant improvement after adapting a super-
vised pre-trained model on WHAM! to the 150 mixtures of the
very diverse DNS set, indicates the effectiveness of RemixIT
under really challenging zero-shot learning conditions.

D. Student Learning Progression

We analyze how a student speech enhancement model trained
with RemixIT on the DNS train set refines its estimates as
the training progresses and how it compares against its initial
teacher. In Fig. 3, we showcase the improvement obtained in
terms of SI-SDR for various teachers and their performance
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Fig. 5. Distribution of SNR improvement (dB) on the DNS training set that the empirical mean RemixIT’s student after 10 training epochs (11) yields over its
initial teacher in regions where the latter performs poorly. The solid orange line denotes the mean SNR improvement for each number of bootstrapped mixtures

which are considered under expectation 1
B

∑B

b=1
f
(̂s)
S (s̃+ ñ′

b;θS). We show that as a fixed student network sees more input bootstrapped mixtures, the mean
student performance becomes better on average than its teacher even early in training and in regions where the teacher performs poorly.

brackets under a sequentially updated teacher every 20 epochs
using the parameters from the student network. Note that the
student is gradually learning to perform better than the initial
teacher network in the regions where the latter performs better
(rightmost plots row-wise) even if producing improvement over
really good estimates (e.g. higher than 15 dB) becomes harder.
Thus, it becomes evident that the continual self-training scheme
of RemixIT where the teacher network is updated using the latest
student’s weights is key to a larger performance boost. The result
holds for both OOD supervised and MixIT teachers and is on
par-with our theoretical analysis in Section II-C2 where we show
how a better teacher helps the error correlation term of RemixIT’s
loss function to diminish and resemble supervised training. In
contrast, for the low performing brackets ([−30,−10]dB in
terms of teacher SI-SDR (dB)), the student does not learn how
to further increase its performance, even if it regresses over the
estimated waveforms of updated teachers. The emergence of
this learning pattern necessitates the discovery of more robust
self-training algorithms which can recover from cases where the
teacher network provides extremely noisy estimates.

E. Robust Learning With Very Noisy Teacher’s Estimates

We investigate the robustness of RemixIT in cases where the
teacher model outputs a low quality speech estimate s̃. Building
upon the analysis performed in Section II-C2, we reiterate on
how important is for the student to be trained on multiple boot-
strapped mixtures m̃′

b = s̃+ ñb,
′ ∀b ∈ {1, . . . , B} produced

using the same teacher’s speech estimate s̃ and independent

teacher’s noise estimates ñ′
b (see (10), (11)). The distribution

of the SNR performance improvement that the empirical mean
student yields over the initial teacher after 10 training epochs
is displayed in Fig. 5 while sweeping the number of input
bootstrapped mixtures. For both cases of supervised and MixIT
teachers we see that the mean SNR improvement is around 2 dB
when increasing the number of bootstrapped mixtures B from 1
to 64. Notably, this result holds for really bad teacher estimates,
namely, less than 5 dB and is obtained by simply perform-
ing inference over more augmentations of s̃ without refining
the student parameters. Assuming that all speech estimates
and the ground-truth signals have unit-norm ‖s‖ = ‖s̃‖ =
‖ŝb‖ = 1, the maximization of SNR becomes equivalent to
minimizing the l2 norm SNR(ŷ, y) ∝ −‖ŷ − y‖. As a result,
the mean SNR improvement of the empirical mean student leads
the term E[〈R̂S , R̃T 〉] closer to zero (11) and consequently, the
student to learn in a more robust way, even in cases where the
teacher’s error term ‖R̃T ‖ is far from zero.

F. Cross-Domain Generalization

A comparison for cross-domain generalization in self-
supervised and semi-supervised domain adaptation speech en-
hancement tasks is displayed in Tables II and III, respectively.

In Table II, we notice that MixIT and its variants fail to
generalize in cases where the noise distribution Dn does not
closely resemble the true in-domain distribution D∗

n. Notably,
RemixIT outperforms all MixIT methods without having access
to in-domain datasets. For instance, in the case where one only
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TABLE II
SELF-SUPERVISED TRAINING MEAN SI-SDR IMPROVEMENT (DB) OVER THE

INPUT MIXTURE PERFORMANCE FOR MIXIT BASELINES AND REMIXIT

TABLE III
REMIXIT MEAN SI-SDR IMPROVEMENT (DB) OVER THE INPUT MIXTURE FOR

SEMI-SUPERVISED DOMAIN ADAPTATION

has access to mixtures from the WHAM! (W!) dataset and noise
sources from LFSD (L), the best noise augmented MixIT model
obtains only 1.6 dB of SI-SDR improvement on the adaptation
WHAM! dataset. In stark contrast, RemixIT with a pre-trained
MixIT teacher on LFSD yields an improvement of 5.3 dB
(1.6 → 6.9) over the best cross-dataset trained MixIT model
and 0.7 dB (6.2 → 6.9) over the teacher model.

In very harsh mismatched cases, such as when using noise
samples from LFSD and mixture samples from LFSD and

WHAM!, RemixIT shows strong results for all datasets (4.9 dB
for DNS, 7.2 dB for LFSD and 6.9 dB for WHAM!) while
even the best MixIT configuration fails to produce significant
improvements over the input mixture (1.7 dB for DNS, −1.7 dB
for LFSD and 1.6 dB for WHAM!). Moreover, RemixIT can also
improve the performance of a teacher model in the source dataset
test-set by leveraging other target mixture datasets. Notice that
RemixIT yields an improvement of 1.4 dB (8.5 → 9.9) on the
LFSD test-set over the pre-trained teacher model on LFSD by
using self-training over the diverse unsupervised DNS mixture
dataset. Surprisingly, RemixIT also outperforms its teacher by
a large margin (6.2 → 8.2 dB) on the WHAM! test set even
though it has not seen any data from this dataset which shows
how RemixIT can provide a seamless solution to generalizing
denoising models to unseen data.

Although RemixIT shows a small performance degradation
in the adaptation L → W! set compared to the adaptation with
cleaner datasets, such as: L → D (7.5 → 6.8 for the shallow
student and 8.2 → 6.9 for theU = 32 student on W!), notice that
the same MixIT configuration suffers a major hit in denoising
performance (5.3 → 1.2 dB on W!) which makes it almost
similar to a no-processing model. In essence, the input SNR
of WHAM! (−1.3dB) prevents self-supervised algorithms from
learning effectively and training on OOD but higher input-SNR
datasets (e.g. DNS) leads to better results.

In Table III, we show that RemixIT aptly performs semi-
supervised domain adaptation even for severely mismatched
cases such as transferring knowledge from DNS to the much
less diverse and lower input-SNR WHAM!. RemixIT yields the
best performing model without clean in-domain source signals
on the DNS test set (7.3 dB) when only starting from the
OOD semi-supervised teacher on WHAM! with a much inferior
performance of 6.1 dB.

G. RemixIT With in-Domain Noise Recordings

Finally, we also propose an extension to our proposed self-
training method to adopt readily available isolated in-domain
noise recordings n ∼ Dn which can further enhance RemixIT’s
performance. To do so, we alter the bootstrapped remixing
process presented in (5) using a portion of the in-domain noise
recordings n ∼ Dn instead of the teacher’s noise estimates
ñ ∼ f ñ

T (m;θ
(k)
T ) as shown below:

m̃b = s̃b + ζnb + (1− ζ)ñ
(P)
b , ζ ∼ Bernoulli(pn), (17)

where b indicates the batch-index and pn is the Bernoulli pa-
rameter of sampling an in-domain noise recording instead of a
teacher’s estimate for the corresponding batch-index.

In Fig. 6 we show how our method performs against a stronger
fine-tuned MixIT baseline using the same Sudo rm -rf architec-
ture with U = 8 U-ConvBlocks on various splits of the DNS
training data. The pre-trained model on LFSD data is used as an
initialization checkpoint for MixIT fine-tuning and as the teacher
network for performing RemixIT with bootstrapped mixtures
from teacher’s estimates and in-domain noise recordings. We set
the probability of synthesizing a bootstrapped mixture with an
isolated in-domain noise recording instead of a teacher’s noise
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Fig. 6. SI-SDR (dB) performance improvement of a sudo rm -rf (U = 8) model fine-tuned using MixIT (blue-dashed line) and trained using RemixIT with
in-domain noise recordings recordings remixing (solid orange line) on different test sets with different DNS training set splits. For each plot the x-axis denote
the split between the DNS-training partition between in-domain noise recordings Dn and mixture available data Dm. Both self-supervised speech enhancement
methods start using the same pre-trained MixIT sudo rm -rf (U = 8) model with 20% in-domain isolated noise data and 80% mixture recordings from the LFSD
dataset. For each method we evaluate the corresponding checkpoints that lead to the best performance on the LFSD test set after 20 full training epochs.

estimate equal to the ratio of the in-domain noise recordings
compared to the mixture data pn = |Dn|/(|Dn|+|Dm|). We notice
that RemixIT performs consistently better than the fine-tuned
MixIT for the same ratio of in-domain noise recordings except of
the rightmost point where the bootstrapped mixtures contain less
diverse mixtures leading the student model to overfit to only a
small amount of human utterances. Notably, RemixIT trains a full
student model from scratch compared to the fine-tuned MixIT
which has more trainable parameters (0.97 millions vs 0.56) and
also enjoys the warm-start from a LFSD MixIT checkpoint. It
is also evident that our proposed RemixIT extension becomes
better with more supervised data for the generalization datasets
(see Fig. 6(a) for DNS and Fig. 6(c) for WHAM!). This is also
reflected on a small ablation study that we performed to set the
in-domain noise sampling prior parameter pn in which we kept
the amount of in-domain noise recordings and mixture data equal
|Dn| = |Dm| and gradually increased the Bernoulli parameter
pn : 0.01 → 0.5. As a result, we noticed a performance increase
in terms of SI-SDRi of 6.1 → 6.4 (dB) for the DNS test-set
and 8.6 → 9.0 (dB) for the WHAM! dataset which enhances
our claim that cleaner noise estimates can lead to stronger
gains through synthesizing bootstrapped mixtures with less
interference.

V. CONCLUSION

We have presented a self-training scheme for speech en-
hancement models which is based on a lifelong bi-directional
parameter update between a teacher and a student network.
The proposed framework aptly transfers the knowledge of a
pre-trained model on out-of-domain data using bootstrapped
remixing and through the continual refinement of the teacher’s
outputs. We have experimentally shown that our method signif-
icantly outperforms all previous state-of-the-art self-supervised
methods while being more general and without the dependence
on in-domain data. Moreover, our results illustrated that RemixIT
can also perform semi-supervised and zero-shot domain adap-
tation setups with limited in-domain mixtures. Furthermore,
our theoretical analysis is backed by empirical results and in-
strumental to the understanding of the teacher-student learning
dynamics, especially in where our method can still learn with
extremely noisy pseudo-target signals. In the future, we aim
to strengthen the robustness of our algorithm by estimating a
confidence-based proxy for the quality of the pseudo-targets [39]

as well as widen the applicability of our method by applying it
to different domains.
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