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Algorithm for Compressive Spectral Image Fusion
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Abstract—Compressive spectral imaging (CSI) has attracted
significant attention since it employs synthetic apertures to codify
spatial and spectral information, sensing only 2D projections of
the 3D spectral image. However, these optical architectures suffer
from a trade-off between the spatial and spectral resolution of the
reconstructed image due to technology limitations. To overcome
this issue, compressive spectral image fusion (CSIF) employs the
projected measurements of two CSI architectures with different
resolutions to estimate a high-spatial high-spectral resolution.
This work presents the fusion of the compressive measurements
of a low-spatial high-spectral resolution coded aperture snap-
shot spectral imager (CASSI) architecture and a high-spatial
low-spectral resolution multispectral color filter array (MCFA)
system. Unlike previous CSIF works, this paper proposes joint
optimization of the sensing architectures and a reconstruction
network in an end-to-end (E2E) manner. The trainable optical
parameters are the coded aperture (CA) in the CASSI and the
colored coded aperture in the MCFA system, employing a sigmoid
activation function and regularization function to encourage
binary values on the trainable variables for an implementation
purpose. Additionally, an unrolling-based network inspired by
the alternating direction method of multipliers (ADMM) opti-
mization is formulated to address the reconstruction step and
the acquisition systems design jointly. Finally, a spatial-spectral
inspired loss function is employed at the end of each unrolling
layer to increase the convergence of the unrolling network.
The proposed method outperforms previous CSIF methods, and
experimental results validate the method with real measurements.

Index Terms—End-to-End Optimization, Synthetic Apertures,
Compressive Spectral Image Fusion, Unrolling Algorithms.

I. INTRODUCTION

Compressive spectral imaging (CSI) allows the estimation
of the spatio-spectral information from coded and multiplexed
projections i.e, CSI does not directly sense the spectral infor-
mation [1]. CSI uses new optical systems that encode spatial
or spatial-spectral information using synthetic apertures (SA).
Then all the encoded spatial-spectral information is integrated
into a monochromatic or RGB sensor. After obtaining the
compressed measurements, a recovery algorithm is employed
to estimate the spectral image. SA plays an essential role in
CSI since it directly affects the structure of the measurements,
similar to phase imaging or computer tomography. [2]. Conse-
quently, the quality of the estimated spectral image primarily
depends on the sensing procedure and the recovery method.

In the sensing process, there is a trade-off between spatial
and spectral resolution due to technological limitations [3],

R. Jacome is with the Department of Physics, Universidad Industrial de
Santander, Colombia

J. Bacca and H. Arguello are with the Department of Computer Science,
Universidad Industrial de Santander, Colombia.

This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-21-1-0326.

[4]. For instance, a well-studied CSI architecture known as
the multispectral color filter array (MCFA) system employs
a SA called colored-coded aperture (CCA) to modulate the
spectral and spatial information of the scene through the
spectral responses of a set of filter spatially distributed [5].
Narrowband color filters increase the spectral resolution, but
compromise either the spatial resolution [6] or the acquisi-
tion rate, requiring a multi-shot sensing [7]. Another well-
known CSI architecture is the coded aperture snapshot spectral
imaging (CASSI) [8]. This acquisition system is based on
a SA known as coded aperture (CA), that modulates spatial
information by blocking or unblocking certain scene regions.
Then a prism decomposes the coded incident light into its
spectral components, and finally, a monochromatic sensor
integrates the coded and dispersed information. The use of
dispersive elements allows for the acquisition of richer spectral
information constraining the spatial resolution to FPA size [9].

Most spectral imaging applications, such as classification or
anomaly detection [10]–[12] require high spatial and spectral
resolution. The fusion of two CSI with different resolutions has
been introduced to overcome the resolution issue [3]. Then, a
fusion-reconstruction algorithm is employed, which takes the
features of both compressive measurements to obtain a high-
spatial high-spectral resolution image, this methodology is
called compressive spectral image fusion (CSIF). For instance,
the authors of [13] employ the fusion of compressed data
from two CASSI architectures with different resolutions as
well as the fusion of two spatial-spectral encoded compressive
spectral imagers (SSCSI) [13], proposing an alternating direc-
tion of multipliers (ADMM) algorithm with sparsity and total
variation priors. The work in [14] proposes a non-local low-
rank abundance prior to using two colored CASSI as sensing
architecture also with ADMM algorithm. Also, the work in
[15] proposes an unrolled deep neural network inspired by
a linearized ADMM algorithm for the fusion of two MCFA
architectures, one with high-spectral but low-spatial-resolution
,and the other with low-spectral but high-spatial-resolution.
The authors of [16] presented the first testbed implementation
of a CSIF system that uses a digital micromirror device (DMD)
to codify and split the incident light into two CSI arms;
one senses high detailed spatial information, and the other
senses high spectral resolution data. Also, another method
for fusion that has been proposed involves employing a side
sensor such as an RGB camera and a CSI system [17], [18].
Additionally, the fusion of two CSI architectures has been used
for a more accurate spectral image classification [19], [20].
The aforementioned fusion systems use random codings and
do not exploit the optimal design of these optical elements.
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On the other hand, the quality of the spectral image depends
on the recovery algorithm. Namely, there are model-based
algorithms [21] based on convex optimization, deep-learning
methods [22]–[24] or model-inspired deep neural networks
[25]–[27], the latter being the state-of-the-art in CSI. In
addition to the networks, the loss function plays an important
role in the network performance for CSI. Until now, the `1 or
the `2 norm [28] are used directly or in adversarial manner [29]
for training the reconstruction networks. However, these loss
functions do not directly focus on highlighting the spectral
fidelity, which is the distinctive feature of spectral imaging.
Moreover, the hardware optical parameters, such as CA or
CCA, can also be optimized following some design criteria
to improve the condition of the sensing matrix and therefore
improve the reconstruction quality. Several design criteria and
methods have been proposed, [30], for instance, uses spatio-
temporal correlation, or [31] use concentration of measure to
satisfy the restricted isometry property (RIP), which defines
the number of projections required for correct reconstruction.
On the other hand, the End-to-End (E2E) optimization for
CA introduced in [32] leverages large datasets to jointly
optimize the CA and the decoder operator, which performs
a high-level task e.g. classification, segmentation, or recovery.
This coupled methodology models the sensing process as a
layer of a deep neural network (DNN) where its trainable
parameters are the CA, whose training is constrained to obtain
implementable values such as grayscale [33], or binary [1].
Particularly, the design of the coding elements in the MCFA
and the CASSI architectures has attracted significant attention.
The spatial distribution and spectral response of the CCA
in the MCFA architecture have been widely studied [5] for
efficient demosaicking. For the CASSI system, several design
criteria have been used based on compressed sensing theory,
such as RIP [1]. However, the joint design of the sensing
parameters and the reconstruction algorithm for CSIF have
not been exploited.

Thus, an unrolled network for compressive spectral image
fusion from CASSI and MCFA measurements and the joint
design of CA and the CCA using an E2E approach is proposed.
The learning of optical parameters (CA and CCA) constrains
the E2E training since it needs to converge to implementable
values. This paper addresses this issue by the inclusion of
a regularizer function [32] and a sigmoid activation function
to promote implementable binary values. Furthermore, since
the unrolling network can be seen as an iterative process,
we propose multiple losses for each unrolling iteration which
accelerates the convergence and gives a practical guide on
how many iterations are required for the fusion problem.
Extensive simulations highlight improvements with respect
previous CSIF works, and experimental results validate the
proposed coded aperture design compared with blue-noise
design [30] and random patterns for real data reconstruction.

II. RELATED WORK

A. Coded aperture design

Traditionally, CA designs are based on exploiting theoretical
properties of compressive sensing such as RIP [1], [30],

minimizing the zero singular values of the sensing matrices to
promote uniform sampling of the signal [34], optimizing the
concentration of measure to reduce the number of projection
required [35]. However, these methods are independent of
the reconstruction algorithm. Recently, the E2E approach is
a coupled methodology where the optical free-parameters are
learned together with the weights of a DNN to perform a
high-level task e.g. reconstruction or classification, among
others [36]. For instance, [37] proposes the joint learning
of the CA of the CASSI architecture with a reconstruction
network. To constrain the CA entries to binary values, the
authors employ a sign function that brings problems in the
back-propagation process because its derivative has an infinite
value at 0. In [38], the CA aperture is learned to improve
the quality of the classification in a single-pixel camera. Here
the binary constraint of the CA is imposed as a differentiable
regularization in the loss function. Similarly, [32] proposes a
family of regularizes to exploit other CA properties such as
temporal correlation, transmittance, and the number of shots,
among others, for reconstruction, classification, and semantic
segmentation tasks. Neither traditional CA design nor E2E
approach has been explored for CSIF.

B. Compressive spectral image reconstruction

With advances in deep learning approaches for inverse prob-
lems [39], several deep learning-based reconstruction methods
have been proposed for CSI. For instance, [22] uses a two-
stage DNN, a reconstruction stage that uses self-attention
mechanisms along with a discriminator, and a refinement
stage employing a U-net architecture. Another example is
[40], which proposes a deep convolutional neural network
(DCNN) to extract feature maps of the projection and a
residual operation of the reconstruction. In these approaches,
the reconstruction process lacks interpretability and flexibility,
since the DNN works as a black-box model, which causes
problems in generalization. To address this issue but also
exploit the use of a large dataset to improve the model, the
unrolling networks (UN) have been proposed [41]. In UN,
the layers of the DNN perform an iteration of an iterative
algorithm, allowing a model-based interpretation of the net-
work. In CSI, several UN have achieved remarkable results,
like that presented in [28], which proposes nonlocal-local
data-driven prior constructed with convolutional layers in half
quadratic splitting algorithm, or the method presented in [42],
which unrolls the iterations of an ADMM algorithm in DNN.
However, these methods use random CA, which suffers from
low-conditionality of the sensing matrix.

C. Compressive spectral image fusion methods

Several computational algorithms for CSIF have been pro-
posed. For instance, the works in [17] and [18] elaborate a non-
iterative approach to fuse compressive spectral measurements
with a RGB image. In [13], [14], [43] the fusion and recon-
struction process is performed with an ADMM algorithm using
prior information such as sparsity, total variation, non-local
low-rank abundance, or sparse representation of abundance
maps. The authors in [43] formulates a UN for a linearized
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Fig. 1: Proposed CSIF system based in the CASSI and MCFA
architectures. The input light source is divided in two by
a beam splitter. In the CASSI arm, a low-spatial resolution
CA modulates the spatial information, and afterwards a prism
disperses the coded information into a monochromatic sensor.
In the MCFA arm, a low-spectral resolution CCA codifies
the spatial-spectral information which is then integrated into
a monochromatic sensor.

ADMM algorithm for the fusion problem. Nevertheless, these
methods do not exploit the design of the CA to improve the
performance of the reconstruction algorithm.

D. Contributions of this work

The main contributions of the framework are summarized
in the following items:

1) An E2E optimization for CSIF: We propose an optimal
design of the CA in CASSI and the CCA in the MCFA
system based on E2E training of the optical parameters
and the reconstruction network.

2) CSIF unrolling network: An optimization-based DNN
is proposed for CSIF where every stage of the network
performs an ADMM iteration

3) Multiple-loss strategy: Towards an improvement in the
convergence of the reconstruction network along the
stages, we propose the use of the multiple-loss at the
end of each unrolling stage to avoid gradient vanishing
in the first stages, which allows one to experimentally
set the optimal number of stages in the unrolled network.

4) Loss function: We employed a loss function promoting
the visual enhancement of the reconstructed image and
an improvement of the spectral signature reconstruction.

III. CSI OBSERVATION MODEL

First, we derive the discretization of the desired high-spatial-
spectral resolution image in terms of the pitch size of each CSI
architecture. In this work, we consider the CASSI architecture
which provides high spectral resolution given by the spectral

response of the prism with a spectral pitch size given by ∆λ

and a low spatial resolution corresponding to a pitch size ∆S .
Also, we consider the MCFA with a high spatial resolution
∆s and a low spectral resolution due to spectral response of
the filter ∆Λ as is illustrated in Fig.1. These factors are related
as:

∆S = ds∆s, (1)
∆Λ = dλ∆λ, (2)

where the parameters ds, dλ are integer up-scaling factors.
The discretization of the target high spatial spectral resolution
image is formulated in terms of ∆s and ∆λ as follows

F(m,n,`) =

∫∫∫
f(x, y, λ)

× rect

(
x

∆s
−m, y

∆s
− n, λ

∆λ
− `

)
dxdydλ,

(3)

where f(x, y, λ) is the continuous representation of the target
scene, m = 1, . . . ,M , n = 1, . . . , N and ` = 1, . . . , L and
M,N and L are the spatial-spectral dimensions.

A. CASSI Forward Sensing Model
In the CASSI architecture, the input light source is first

focused by imaging lens to a CA, which codifies the spatial
information of the image. The CA can be implemented in
spatial light modulators (SLM) such as digital micromirror
devices (DMD) [44] which block/unblocks certain regions of
the scene. Then, the spectral information of the coded field
is dispersed through a prism. Finally, the coded and dispersed
information impinges a focal plane array, as shown in one arm
of the proposed system in Fig.1. Since this sensing architecture
is modeled as a low-spatial resolution system, a decimation
operation is present in the mathematical model. Therefore,
the discrete model of the CASSI measurements gc can be
formulated as:

gc(i,j) =

L∑
`=1

Hc(i,j)

ids∑
t=1+(i−1)ds

jds∑
q=1+(j−1)ds

F(i−t,j−q−`,`),

(4)

where the summations in t and q represent the spatial resolu-
tion difference between the target high-spatial-spectral image
F and the CASSI measurements, Hc represents the coded
aperture. Due to the dispersion response of the prism, a
dispersed voxel impinges more than one pixel on the sensor,
to model this effect, in [45] a high-order CASSI model is
proposed, which dictates that one sheared voxel affects up to
three neighboring pixels on the FPA. The energy distribution
due to this effect is modeled by the weights Q(i,j,`,u) where
u = 0, 1, 2 stands for the region of the model. This model can
be seen as a weighted average of the dispersed voxels in the
sensor. Then, the discrete high-order CASSI model is given
by

gc(i,j) =

L∑
`=1

2∑
u=0

Hc(i,j)

∑
t

∑
q

Q(i,j,`,u)F(i−t,j−q−`−u,`).

(5)
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The discrete model in (5) can be expressed in a matrix-vector
product in the following expression

gc = Φcf + nc, (6)

where gc ∈ RM̃(Ñ+L−1) are the compressed measurements,
with M̃ = M

ds
and Ñ = N

ds
, Φc ∈ RM̃(Ñ+L−1)×MNL the

CASSI sensing matrix, f ∈ RMNL is the vecotrization of the
high spatial-spectral resolution image, and nc ∈ RM̃(ÑL−1) is
an additive noise.

B. MCFA Forward Sensing Model

In the MCFA system, the input light source is focused into
a CCA, which jointly codifies the spatial and the spectral
information of the scene. The coded field is then integrated
into an FPA detector as shown in one of the arm in Fig. 1.
This system is modeled as a low spectral resolution given by
the resolution of the filter. Then, the discrete measurements
on the FPA detector are given by

gm(i,j)
=

L
dλ∑
`=1

Hm(i,j,`)

`dλ∑
p=1+(`−1)dλ

F(i,j,`−p), (7)

where Hm is the discretization of the CCA. The model can
be also expressed a matrix-vector product as

gm = Φmf + nm, (8)

where gm ∈ RMN is the compressive measurements, Φm ∈
RMN×MNL is the sensing matrix and nm ∈ RMN stands for
the noise.

A scheme of the CSIF systems based on the CASSI and
MCFA optical architectures is shown in Fig. 1 where a beam-
splitter divides the incident light source to the MCFA and the
CASSI architectures.

IV. END-TO-END FORMULATION FOR COMPRESSIVE
SPECTRAL IMAGE FUSION

The E2E optimization requires an optical layer formulation
of the sensing system considering fully differentiable modeling
with respect to the optical parameters for an efficient update in
the backpropagation scheme. Consequently, the following two
sections present the forward and backward modeling of the
CASSI and MCFA layers. This E2E methodology is depicted
in Fig. 2(b)

A. Optical layer modeling of the sensing operators

1) CASSI: The sensing matrix of the CASSI architecture
Φc can be modeled as as:

Φc = PTcDs, (9)

where P ∈ RM̃(Ñ+L−1)×M̃ÑL is a fixed matrix that mod-
els the dispersion effect considering the high-order CASSI
modeling, Tc ∈ {0, 1}M̃ÑL×M̃ÑL is the diagonalized coded
aperture matrix Hc, and Ds ∈ RM̃ÑL×MNL is a fixed spatial
decimation operator that down-samples the measurements di-
mension by the factor ds. The custom element in this layer is
the CA. In our E2E approach, we propose to use a sigmoid

activation function of the CA weights to encourage binary
values on the resulting CA. Therefore, the Tc is formulated
as:

Tc = diag (σ(γcWc)) (10)

where Wc ∈ RM̃×M̃ are the trainable parameters of the layer,
σ(·) is the sigmoid, γc is a hyperparameter that controls the
smoothness of the sigmoid, the greater γ the functions tends
to a better binarization as shown in Fig. 3. Then the forward
model of the CASSI layer is given by

gc = P diag (σ(γcWc)) Dsf + ωc. (11)

Note that now we wish to learn the optimal values Wc since
these weights generate the binary CA.

2) MCFA: In this system the sensing process is described as

Φm = TmDλ, (12)

where Dλ ∈ RMNL̃×MNL is a fixed spectral decimation
operator which induces the up-scaling factor dλ in the spectral
dimension, L̃ = L

dλ
, Tm ∈ {0, 1}MN×MNL̃ is a trainable

matrix that contains the diagonalization of the CCA entries
Hm.

Similarly, we used the same sigmoid function to generate
the matrix Hm i.e. Hm = σ (γmWm) where Wm ∈
RMN×MNL̃. Therefore, the forward MCFA operator is given
by:

gm = diag (σ (γmWm)) Dλf + ωm. (13)

B. Derivative of the optical layers

An essential aspect of the sensing layer parameters training
are its derivatives such that the trainable parameters can be
optimized effectively. First, we can formulate the derivative
of the CASSI with the chain rule:

∂gc
∂Wc

=
∂gc
∂Hc

∂Hc

∂Wc
=
(
DT
s ⊗P

)
σ′(γcWc), (14)

here, a key aspect is the γc parameter since the greater γc,
the sharper the derivative becomes, and the weights Wc are
barely updated through gradient descent based algorithm. Fig.
3 shows the sigmoid function for different γ values where the
greater this value becomes, the more binary the function is,
but its derivative is sharper. A similar analysis is made for the
MCFA forward model, the derivative of which is described as:

∂gm
∂Wm

=
∂gm
∂Hm

∂Hm

∂Wm
=
(
DT
s

)
σ′(γmWm), (15)

which is also controlled by the value of the γm parameter.

C. E2E Optimization

Modeling the acquisition systems as optical layers, the E2E
optimization for CSIF with a training dataset of T spectral
images is formulated as

{θ̂, Φ̂m, Φ̂h} = arg min
θ,Φm,Φh

1

T

T∑
t=1

L(Mθ (Φmft,Φhft) , ft)+

µb(R(Wm) +R(Wh)), (16)
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(b) Trainable op�cal sensing 
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(c) Unrolling reconstruc�on
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Layer

Fig. 2: Proposed D2UF framework, with a spectral image dataset (a), the parameters of the optics systems are jointly optimized.
(b) The optical sensing systems are modeled as a layer where the CA and the CCA are the trainable parameters, and they
are coupled with a reconstruction network (c). The reconstruction network is an ADMM-based unrolling network, where each
layer of the network is interpreted as an ADMM step. Finally, the loss function is computed at the output of each unrolling
stage to increase the performance and convergence of the early stages.
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Fig. 3: Effect of the γ parameter in the sigmoid function
employed for the activation function of the trainable optical
parameters (left) and its derivative (right). Notice that the
greater the value of λ the sigmoid function tends to binarize
better its inputs, but its derivative becomes sharper, which
produces that the parameters are barely updated via a gradient
descent algorithm.

where Mθ is the reconstruction network with trainable pa-
rameters θ. The last term in the loss function is a regular-
ization function to encourage binary values on the CA and
CCA of the sensing layer. The main reason for employing
these regularization functions is to relax the sigmoid function
(i.e. decrease γ) to obtain a smoother derivative while still
obtaining binary values. The regularization function employed
is the one proposed in [32]:

R(W) =
∑
i,j

(σ
(
γW(i,j)

)
)2(σ

(
γW(i,j)

)
− 1)2, (17)

where this function is minimized at 0, and 1. Therefore, we
control the training of the CA and CCA by the sigmoid func-
tion and with the regularizer. For this purpose, a good choice
of the regularization parameter ρb and sigmoid parameters γc
and γm allows an optimal training of the sensing parameters.

D. Proposed CSI Loss Function

For CSI recovery, the use of the mean squared error (MSE)
as a loss function is widespread [22], [27], [28]. However,
these approaches do not exploit the data cube’s spatial and
spectral structural information. To address this issue, we
propose a loss function composed of two parts, spatial (Ls)
and spectral (Lλ) losses, L = µsLs + µλLλ, where µs and
µλ are weighting hyperparameters. The spatial loss function

Ls is inspired in the one proposed in [46] and it is defined,
for the t-th training image, as:

Ls =
1

T

T∑
t=1

1

MNL

(
1−MS-SSIM(ft, f̂t) + ||ft − f̂t||1

)
, (18)

the mixture of the `1-norm allows color preservation and
illuminance fidelity, and the multiscale structural similarity
(MS-SSIM) addresses the high-frequency contrast. The spec-
tral loss minimizes the angle between the reconstructed and
ground-truth spectral signatures, a valued parameter for SI
applications. To derive the final expression of the spectral loss
function, first define the angle β of the estimated i-th spectral
signature of the t−th ground truth image ft(i) and its estimated
signature f̂t(i) as

β = cos−1

(
fTt(i) f̂t(i)

‖ft(i)‖2‖f̂t(i)‖2

)
, (19)

the angle β is minimized when the argument of the cos−1

tends to 1 i.e.,

fTt(i) f̂t(i) = ‖ft(i)‖2‖f̂t(i)‖2, (20)

We formulate the spectral loss function as follows:

Lλ =
1

T

T∑
t=1

1

MN

MN∑
i

(
fTt(i) f̂t(i) − ‖ft(i)‖2 · ‖f̂t(i)‖2

)2

,

(21)
In this sense, our loss function promotes the direct enhance-
ment of the visual perception of the reconstructed image
jointly with the spectral fidelity of the reconstructed spectral
image.

V. UNROLLED RECONSTRUCTION NETWORK

This paper proposes to adapt a traditional optimization ap-
proach to a data-driven scheme, where the DNN is interpreted
as an iterative optimization algorithm. To give optimization-
based interpretability to the reconstruction network, referred
to as Mθ(·), first formulate the CSIF reconstruction process
as the following optimization problem

f̂ = arg min
f

1

2
||Φcf−yc||22 +

1

2
||Φmf−ym||22 +τR(f), (22)
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where R(f) is the regularization function that promotes prior
information of the spectral image such as sparsity [1], low-
rank [21] or total variation [13]. The problem in (22) can be
solved using ADMM. First, introducing an auxiliary variable
h ∈ RMNL we have:

{f̂ , ĥ} = arg min
f ,h

1

2
||Φcf − yc||22 +

1

2
||Φmf − ym||22 + τR(h)

subject to f = h, (23)

then ADMM aims to minimize the augmented Langrangian of
the constrained optimization problem:

L(f ,h,u) =
1

2
‖Φcf − yc‖22 +

1

2
‖Φmf − ym‖22

+ τR(h) +
ρ

2
‖f − h + u‖22, (24)

where u ∈ RMNL is the Lagrange multiplier. The solution of
(24) is found solving the following sub-problems

hk+1 = argmin
h

τR(h) +
ρ

2
‖fk − h + uk‖22 (25)

fk+1 = argmin
f

1

2
‖Φcf − yc‖22 +

1

2
‖Φmf − ym‖22

+
ρ

2
‖f − hk+1 + uk‖22 (26)

uk+1 = uk + αk(fk+1 − hk+1). (27)

The sub-problem (25) can be solved using a proximal oper-
ator of the image prior. For instance, if the prior is the sparsity,
the proximal operator can be a hard-thresholding operator [47],
or a soft-thresholding opertator [48]. Here, a deep prior is
employed, which only requires learning a proximal solver
through a subnetwork in the unrolling network instead of
learning the prior explicitly. Therefore, denote Dθk(·) the deep
proximal operator where θk are parameters of the CNN in the
iteration k. Consequently, the iterations of h are:

hk+1 = Dθk+1(fk + uk). (28)

Several networks have been proposed for this proximal step.
For instance, [25] proposed a deep prior network composed
of a spatial network and a spectral network, [28] designed a
network based on local and non-local relations of the image,
and [49] exploits low-rank representation of the image. Then,
the problem (26) is solved using a gradient descent method in
which each step is given by:

fk+1 = fk−λk+1
[
ΦT
c

(
Φcf

k − yc
)

+ ΦT
m

(
Φmfk − ym

)
+ρk+1

(
fk − hk+1 + uk

)]
. (29)

We can represent each ADMM step as a layer of the recon-
struction network such that

{fk+1,uk+1} =Mk+1
θ (fk,uk), (30)

with trainable parameters λk+1, αk+1, ρk+1 and the param-
eters of the prior network Dk+1

θ (·). Then K iteration layers
are unfolded in a DNN denoted as Mθ(·). Figure 4 shows
the structure of the interpretable layer Mk

θ(·) in the unrolled
network, where the proximal operator is learned during the
training stage. In our approach, f0 = 1

2

(
ΦT
c yc + ΦT

mym

)
and u0 = 0 are used as initialization.

ADMM Unrolling 

Layer

Fig. 4: Operations of the Mk
θ layer where the trainable

parameters are the optimization parameters λk, ρk and αk

as well as deep prior network which performs a proximal
mapping.

A. Multiple Loss Strategy

The unrolling networks are typically very deep, which
causes the vanishing of the gradient in the first layers, yielding
a poor estimation of the spectral images at these stages [25].
For this reason, we propose to compute the loss function at
the end of each unrolling stage, such that the loss is backprop-
agated more uniformly in the entire network, improving the
reconstruction quality of the first stages. Therefore, the loss
function at the end of each stage is described as

Lk = µsLs(f̂ks , fs) + µsLλ(f̂ks , fs), (31)

where f̂ks =Mθ (Φmfs,Φhfs) , fs) is the spectral image esti-
mated at the k−th stage. The total loss function is denoted as

L =

K∑
k=0

Lk(f̂ks , fs). (32)

Additionally, the loss function is computed in the initialization
stage M0

θ = 1
2

(
ΦT
c yc + ΦT

mym

)
, allowing for a better

update of sensing layers parameter to obtain a better initial
estimation with only the transpose operation of the sensing
layers. This allows data-driven regularization on both optical
trainable parameters which directly improves the conditioning
of the sensing matrix [32].

VI. SIMULATION RESULTS

To validate the proposed method, numerical simulations
were conducted using two well-known spectral image datasets;
the ICVL dataset [50] which has 180 spectral images, split
into 140 for training, 20 for validation, and 20 for testing,
and the ARAD dataset [51] with 460 spectral images divided
into 400 for training, 30 for validation, and 30 for testing.
The results shown for the proposed method in each section
were obtained using the ADAM optimizer [52] for 300 epochs,
reducing the learning rate every 50 epochs to a half. The peak
signal-to-noise ratio (PSNR) [53], structural similarity index
(SSIM) [54], and the SAM [55] metrics were used to evaluate
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the recovery performance. All simulations were performed in
a GPU NVIDIA RTX 3090.

A. Ablation study of the loss function

We compare the performance of the proposed loss function
with the mean square error (MSE) and using only the spatial
loss function Ls. For this simulation, 10 unrolling stages
were employed using a CA and CCA fixed randomly with
a transmittance of 0.5. Furthermore, the ICVL dataset and
ds = dλ = 2 were used as dataset and decimator factors,
respectively. For the proposed loss function, the weighting
coefficients were set as ρs = ρλ = 1.

First, the performance of the network was analyzed for
the mentioned loss function during training. Figure 5 shows
the performance at the end of the unrolling network for the
validation dataset. The obtained results show that the proposed
loss function, which combines both spatial and spectral in-
formation, gives a better performance than the MSE and the
spatial loss function in all the training processes.

Then, we analyze the effect of evaluating the loss function
at the end of each unrolling stage ( referred to as multiple
loss) compared with evaluating the loss function at the end of
the network, as in state-of-the-art unrolling networks (single
loss). For this, we fixed the number of unrolling stages as 10,
and we compared the validation performance in every stage
for the models trained with respect to those with multiple and
single loss functions. The results are summarized in Fig 6.
There, it can be seen that the multiple loss strategy allows the

Proposed MSESpatial

Fig. 5: Validation performance during training for the ICVL
dataset with different loss functions for 10 unrolling stages.

Optical layer optimization Sigmoid
activation

Dynamic
parameters

Performance
MCFA CASSI PSNR [dB]↑ SSIM ↑ SAM[rad]↓

X X X 36.12 0.9609 0.1423
X X 37.8 0.9651 0.1125

X X 37.2 0.9590 0.1423
X X 39.45 0.9792 0.1224

X 40.17 0.9812 0.0952
41.86 0.9852 0.0794

TABLE I: Ablation study of the E2E optimization of the
CASSI and MCFA optical layers and the effect of using
the sigmoid activation function to binarize the trained CA
and CCA. Also the importance of dynamically update of the
binarization parameters µb and γ. The highlighted green values
are the best performance and the blue ones are the second best.

Single

Proposed

P
S
N

R
 [

d
B

]

Stages
1                3               5               7               9 

35

25

15

Spatial MSE

Multiple

Fig. 6: Validation performance of the network computing the
loss function at the end of each stage and only at the end of
the network, for the proposed, spatial, and MSE loss function.

early stages to have almost twice the performance of the single
loss models, thus requiring fewer stages to reach the optimal
performance. Nevertheless, the performance at the end of the
network is similar to both modalities, with the multiple loss
methodology performing slightly better. The number of states
in the unrolled network is a costly hyperparameter since it is
a trade-off between quality and time processing. The state-of-
the-art methods set this parameter training the network several
times for different stages using the single loss at the end of the
state. Therefore, multiple-loss training gives a practical guide
on how many iterations are required for the fusion problem
with a single training trial. For the rest of the paper, the
proposed method was trained using ten stages and the multiple
loss functions scheme.

B. Ablation study of the end-to-end network
This section evaluated the proposal to learn jointly the CAs

and CCAs and the unrolling reconstruction network weights.
To this end, three aspects were studied:

Optical layer optimization: Here, the effect of the E2E
methodology to train the optical parameters for each system
in the fusion problem was evaluated. The results for this
experiment are shown in the first rows of Table I, where
the best reconstruction performance is given when the CASSI
and MCFA optical layers are joint optimized. Additionally,
the training of only the sensing layer of the CASSI system
performs better than the training only on the MCFA archi-
tecture, implying that this system has a greater effect in the
reconstruction process.

Sigmoid activation: This experiment evaluated the bina-
rization methodology using the sigmoid activation over the
weights and the binary regularization, compared with the
methodology present in [32], which only uses binary regular-
ization. The parameters of the sigmoid and the regularization
parameters were set γc = γm = 35 and µb = 0.005 respec-
tively. The fourth and fifth rows of Table I show these simula-
tions in which both optical layers are optimized, highlighting
that the proposed sigmoid activation and regularization leads
to better reconstruction performance.
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Dataset Method SNR = 20 [dB] SNR = 25 [dB] SNR = 30 [dB] SNR = 35 [dB] None
PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

ICVL

SIFCM 23.51 0.504 0.407 27.02 0.682 0.2885 30.12 0.842 0.185 32.57 0.886 0.1183 34.21 0.928 0.077
SIFCM-D 22.99 0.414 0.3700 27.92 0.624 0.223 30.05 0.757 0.1637 33.05 0.867 0.109 35.16 0.94 0.082

LADMM-Net 27.95 0.911 0.139 29.83 0.931 0.128 33.90 0.944 0.114 34.58 0.967 0.097 36.64 0.968 0.080
LADMM-Net-D 28.53 0.918 0.132 29.82 0.929 0.129 34.21 0.956 0.105 35.48 0.972 0.091 38.92 0.981 0.071

D2UF 33.91 0.8106 0.212 39.24 0.9547 0.1078 41.11 0.955 0.077 41.85 0.984 0.069 42.28 0.983 0.067

ARAD

SIFCM 21.74 0.355 0.370 25.66 0.557 0.252 28.83 0.7316 0.1746 31.19 0.844 0.124 34.45 0.926 0.112
SIFCM-D 22.31 0.329 0.363 26.45 0.535 0.242 30.13 0.727 0.156 33.26 0.862 0.101 35.75 0.943 0.058

LADMM-Net 24.41 0.811 0.219 27.06 0.821 0.149 28.74 0.882 0.124 30.42 0.892 0.115 31.54 0.901 0.101
LADMM-Net-D 22.41 0.801 0.223 25.26 0.812 0.182 29.11 0.891 0.106 31.42 0.912 0.125 32.21 0.922 0.098

D2UF 37.28 0.936 0.074 40.26 0.969 0.051 41.97 0.980 0.434 43.05 0.984 0.04 43.79 0.987 0.0383

TABLE II: Comparison of the recovery spectral image for the ICVL and the ARAD datasets with compressed measurements
corrupted by different levels of AWGN. The highlighted green values are the best performance and the blue ones are the
second best.

Dynamic parameters: As suggested in [32], the reg-
ularization value needs to be updated dynamically during
training. Specifically, this value starts with a low value so
that, in the early epochs, it guides the training and then
increases the parameter to obtain binary values on the CA
and CCA. We proposed to update the smoothing parameters
γc, γm and the regularization parameter ρb following the
function for r = 1, . . . , R epochs γr = γR tanh(κγb rβγ c)
, µr = µR tanh(κµb rβµ c) where γR, µR are the maximum
value of the parameters, κγ and κµ are a delay factors which
controls how fast the function achieves its maximum value
and βγ , βµ defines the frequency of the update. The tanh
function and the suitable delay parameter allow better control
of the increasing dynamic parameter [32]. Here, it was set the
parameters µR = 35 , βγ = βµ = 5, κγ = κµ = 0.01.
The results of this training methodology are shown in the
last row of Table I exhibiting a significant improvement of
up to 1 dB in PSNR metric compared with a fixed parameter,
i.e., without updating them. Therefore, for the next section,
the best configuration that includes the E2E design of both
systems using the dynamic parameters and sigmoid activation
was used, and it is referred to as D2UF.

C. State-of-the-art Comparison

In this section, the performance of D2UF was compared
with state-of-the-art CSIF methods. A convex-optimization-
based spectral image fusion from compressive measurements
(SIFCM) [13], that is a method based on an ADMM formu-
lation with sparsity and total variation priors, and a deep-
learning approach (LADMM-Net) [15] where an ADMM-
inspired unrolled reconstruction network. Both methods were
modified for the sensing systems CASSI and MCFA. The
hyperparameter for both methods were chosen following the
suggestion of the own authors. Furthermore, it is important
to note that, in these methods, the sensing matrices are not

D2UF LADMM-NetSIFCM

P
S
N

R
 [

d
B

] a b c

Fig. 7: Performance of LADMM-Net, SIFCM and proposed
method varying the spatial compression rs = 2, 4, 8 for rλ = 2
(a), rλ = 4 (b) and rλ = 8(c) for the ICVL dataset.

optimized. Therefore, we also compared the SIFCM and
LADMM-Net methods using the optimized sensing matrices
obtained with our E2E method, denoted as SIFCM-D and
LADMMM-Net-D.

Spatial and spectral decimation factors: The performance
of the D2UF network was compared with LADMM-Net and
SIFCM methods, varying the decimation factors rs and rλ
with values 2, 4, 8. For that, we used the ICVL dataset.
Figure 7 shows the results of this experiment showing an
improvement of the proposed method compared with the other
methods for each decimation factor, obtaining an improvement
of up to 4 dB.

Performance with noise: In this experiment, we want to
compare the performance of the proposed method with its
counterparts in the presence of noise in compressed mea-
surements. To this end, additive Gaussian noise was applied
to vary the signal-to-noise-ratio (SNR) with 20, 25, 30, 35
[dB] and without noise. Here, the ARAD and the ICVL
dataset were used. The results are shown in Table II where
it can be observed that the proposed method outperforms the
LADMM-Net and SCIFM algorithms. Remarkably, employing
the designed CA and CCA in the LADMM-Net-D and SIFCM-
D methods outperform the fusion quality regarding the random
configuration, thus improving the conditionality of the fusion
problem.

Finally, we present the visual results of the reconstructed
spectral images. To this end, an RGB representation of a
reconstructed testing spectral image of the ICVL and the
ARAD dataset employing the spec2rgb repository1is shown
in Fig 8. Remarkably, the proposed method preserves more
highly detailed image features than its counterparts. Also,
the reconstruction of two representative spectral signatures is
shown in which depicts the fact that the proposed method
recovers high-fidelity spectral features.

VII. EXPERIMENTAL RESULTS

This section evaluates the proposed method with experimen-
tal data obtained with an optical testbed implementation shown
in Fig. 9. The optical setup uses a Canon Macro 0.25m/0.8ft
as an objective lens, two Achromatic Lens LSB08 Series
Thorlabs of 100mm as relay lenses, and a non-polarizing
Beam splitter CCM1-BS013 Thorlabs, an AMICI prism, a
Texas Instruments DLP4130 DMD and two F-145 Stingray

1https://github.com/hdspgroup/spec2rgb.git

https://github.com/hdspgroup/spec2rgb.git
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Fig. 8: RGB representation of the reconstructed spectral images and the recovery of two representative spectral signature for
a test image of the ICVL and ARAD dataset.

grayscale sensor. Here, the spatial resolution of the image was
set to 512 × 512 × 31 from the spectral range of 450 nm to
650 nm. The DMD was used for both the CASSI CA and
the MCFA CCA. The CA resolution was set to 256 × 256
and the CCA of 512 × 512 × 15. For comparison purposes,
compressive measurements were acquired using blue noise
[30] design for the CA and a random CCA which are non-
data dependent coding. Figure 10 shows the calibrated CA
and CCA obtained with the E2E design and blue-noise and
random distribution. Our designed CA in CASSI exploits the
shared patterns due to the prism dispersion and, in CCA,
reduces the transmittance (more zero values), which helps to
decrease information redundancy. Figure 11 shows an RGB
mapping and 6/31 spectral bands of two reconstructed scenes
acquired with the experimental optical setup. Furthermore, the
mean of the spectral signature in a region of 10×10 pixels is
illustrated in Figure 11. There it can be concluded that the
proposed design’s reconstruction is better than the blue noise
and random sensing matrices even in real setups.

VIII. CONCLUSION

We present D2UF, a synergistic coded aperture optimization
and recovery method for compressive spectral image fusion.
The coded apertures design is done by modeling the fused

Objective lens

Relay lens

DMD

Relay lens CASSI sensor

Prism

Beam splitter

MCFA sensor

Fig. 9: Experimental optical setup for real data validation.

Calibrated designed
CA

Calibrated designed
CCA

Calibrated Random 
CCA

Calibrated Blue-noise
CA

Fig. 10: Calibrated sensing matrices for the blue noise CA,
random CCA and the designed sensing matrices with the
proposed method.

systems as optical layers where the optical weights use the
sigmoid activation function and binary regularization to con-
strain their values to implementable values. The optical layers
are coupled with a proposed ADMM-based unrolling network
that obtains the fused image. The coupled network is trained
E2E via a multiple-loss strategy that efficiently determines the
number of stages at the inference step since this methodology
significantly improves the early and mid-stages of the network.
The multiple-loss is based on the proposed loss function,
promoting high spectral fidelity and a visual enhancement
in the recovered image. Simulation results employing the
proposed design with state-of-the-art fusion methods improve
their performances compared with random distributions. Com-
parison with state-of-the-art compressive spectral fusion work
shows that our methodology significantly outperforms these
methods. Moreover, reconstructions with experimental data
show that the design-coded apertures perform better than the
blue-noise and random patterns.
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