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Camera Images for Automotive Target Tracking
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Abstract

Automotive targets undergoing turns in road junctions offer large synthetic apertures over short dwell

times to automotive radars that can be exploited for obtaining fine cross-range resolution. Likewise, the

wide bandwidths of the automotive radar signal yield high-range resolution profiles. Together, they

are exploited for generating inverse synthetic aperture radar (ISAR) images that offer rich information

regarding the target vehicle’s size, shape, and trajectory which is useful for object recognition and

classification. However, a key requirement for ISAR is translation motion compensation and estimation of

the turning velocity of the target. State-of-the-art algorithms for motion compensation trade-off between

computational complexity and accuracy. An alternative low complexity method is to use an additional

sensor for tracking the target motion. In this work, we propose to exploit computer vision algorithms to

identify the radar target object in the sensor field-of-view (FoV) with high accuracy. Further, we propose

to track the target vehicle’s motion through fusion of vision and radar data. Vision data facilitates the

accurate estimation of the lateral position of the target and its lateral velocity which complements

the radar’s capability of accurate estimation of range and radial velocity. Through simulations and

experimental evaluations with a monocular camera and Texas Instrument’s millimeter wave radar, we

demonstrate the effectiveness of sensor fusion for accurate target tracking for translational motion

compensation and generation of high quality ISAR images.

Index Terms

automotive radar, camera, inverse synthetic aperture radar, sensor fusion

I. INTRODUCTION

Millimeter wave automotive radars transmit wideband frequency modulated continuous wave-

forms that enable the generation of high range-resolution profiles [1]. When combined with
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wide radar antenna apertures, high resolution two-dimensional (2D) images along the top-view

(or bird’s eye view) of an object can be realized at short ranges. Large radar apertures can be

realized through the use of multiple antenna elements and corresponding receiver channels. These

electrically large antenna apertures can be fabricated with a small physical footprint at millimeter

wave frequencies. However, the cost and complexity of the multichannel system are significant.

Further, fully or even semi-autonomous vehicles are envisaged to have multiple radars mounted

all around the vehicle to provide 360◦ coverage which further scales the cost. Inverse synthetic

aperture radar (ISAR) imaging presents a low complexity alternative to large antenna arrays.

When a target rotates or turns while remaining in the radar beam, the aspect presented by the

target provides a large synthetic aperture which can be exploited for fine cross-range resolution

determined by the total aspect and the target dwell time [2]. Further, these turns are commonly

encountered at road junctions.

ISAR imaging has been researched for the detection and classification of several airborne

and waterborne bodies [3]–[6]. More recently SAR and ISAR imaging have been examined

for ground-based vehicles [7]–[13]. These works have demonstrated that wideband synthetic

aperture data result in images that provide rich information on the size, geometry, and trajectory

undertaken by the target vehicle along the top-view that can be exploited for object recognition.

Several methods have been explored for generating cross-range information along elevation.

One possibility is to exploit the target rotation about the horizontal axis (roll or pitch) along

with the yaw. This method, while suited for certain types of airborne targets, is not practical

for automotive targets where the only components that undergo roll motion are the wheels.

The second possibility is to perform beamforming along the elevation by incorporating multiple

receiver elements along the elevation dimension. However, this again increases the complexity of

the radar architecture. The simplest alternative, that is investigated in this work, is interferometric

ISAR where we estimate the height of target features using differential interferometry between

the ISAR images generated at two receiver elements spaced along the height dimension. The

results show that the target features are of very low (and similar) elevation angles even at short

ranges of the vehicle from the radar.

There are some key challenges associated with ISAR imaging. First, the fundamental principle

of ISAR imaging is that the Doppler frequency shift in the radar received signal should arise

from the rotational motion of the target instead of the translational motion. Therefore, the

translational motion of the target has to be accurately compensated to ensure that the images
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are focused. Second, the rotational velocity of the target has to be correctly estimated in order

to map the Doppler frequency axis to the cross-range axis. Several algorithms in radar literature

have been explored for blind motion compensation when the target trajectory is not known to

the radar. The traditional methods involved tracking the dominant scatterers in the radar data

either in the range domain [14], [15] or along the Doppler domain [16] and performing range

alignment or auto-focusing of the ISAR images. Later, Keystone transform was explored to

perform higher order motion compensation for ISAR images [17], [18]. More recently, particle

swarm optimization [19] and sparsity-based techniques [20] have been explored to perform

higher-order motion compensation. These algorithms have typically traded off between accuracy

in motion compensation and computational cost. Alternatively, the use of secondary radars that

provides ground truth target state information has also been suggested to reduce the computational

complexity [9]. Due to the ubiquity of cameras for assisted and autonomous driving applications,

the use of vision data for enhancing radar imaging forms a natural solution for automotive

applications that we explore in this work.

Concurrent with the research of automotive radar imaging of road users, computer vision

algorithms are being developed for road object recognition and classification [21]–[23]. A monoc-

ular camera offers frontal images as opposed to the top-view images obtained from radar.

These images are characterized by excellent lateral resolution and corresponding lateral velocity

resolution but require more complex processing for recovering depth information [24]. Even

stereo cameras can provide acceptable estimates of the depth/range only up to a distance of a

few meters [25]. On the other hand, while the range and radial velocity estimation by radar is

accurate, the lateral velocity estimation is very poor. Thus the radar and camera apertures yield

information that presents complementary features for object tracking. In this work, we propose

the fusion of monocular vision data with radar data to enable target state estimation - position,

velocity and turn rate. Then, we exploit the estimated target trajectory information for performing

motion compensation on radar data in order to realize high-resolution ISAR images.

Several works in the last few years have explored the fusion of data from two or more

sensors for supporting advanced driver assistance system functionalities. Sensor fusion offers

several advantages [26]. First, are the advantages of redundancy in the event of any single

sensor malfunction or breakdown. For example, camera images are affected by weather and light

conditions. Radars can work 24×7, in all weather conditions, and to a limited extent in non-line-

of-sight conditions as well due to the presence of multipath [27], [28]. Secondly, multiple sensors
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are useful for reducing the errors associated with the estimation of target parameters. Radars and

cameras, in particular, as mentioned earlier, offer complementary information that when fused

together increase the statistical information of a target. Cameras offer vital information on the

size, shape, color, and texture of various objects on the road and hence are extremely effective

for object detection and classification [23]. Radar signatures, on the other hand, are not always

intuitive and require a trained operator for interpretation. Further, the mitigation of clutter and

multipath in radar images can be challenging [29], [30].

Many works over the last two decades have explored the fusion of radar and vision data.

One of the earliest works explored the use of depth estimates provided by radar data to enhance

the target segmentation in the camera image [31]. Later the authors in [32] combined radar

and vision data to detect guard rails in the ego vehicle’s environment. In [33], the fused vision

and radar data were used to estimate the position, velocity, and orientation of an oncoming

vehicle to enable collision avoidance. In all of these works, low-resolution radar detections - a

single detection per target - are obtained for automotive targets which are subsequently used for

localization. The key distinction of our work from the prior art in radar-vision fusion is that we

are proposing a method to fuse high resolution radar images with camera data.

The paper is organized in the following manner. In the following section, we present the

algorithms for processing radar data in order to obtain 3D ISAR images; algorithms for the

camera data processing for estimating the position of the target vehicle; and the radar-camera

fusion framework for estimating the target position and focusing the radar images. In Section

III, we present the simulation setup for generating radar and camera data from a cuboid model

of a target vehicle. The simulations model the sensors with a finite probability of detection,

occlusion effects and shadowing, and false alarms from clutter. The simulation results demon-

strate the effectiveness of focusing high-resolution radar images from monocular vision data

through comparison with ground truth radar images. The algorithms are further validated with

experimental data gathered from both the radar and the camera in Section IV. Finally, we conclude

the paper with a discussion of the key insights and scope for future work in Section V.

Notation: Lowercase Latin and Greek letters denote scalar variables while boldface lowercase

and uppercase letters represent vectors and matrices respectively. The homogeneous representa-

tion of a 2D or 3D point is x̄ = [x; 1].
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Fig. 1: System framework of radar and camera data processing and fusion for automotive target imaging

II. THEORY

In self-driving cars, multiple millimeter wave radars and cameras are mounted all around

the chassis of the ego vehicle for complete coverage of the road conditions. In this work, we

consider a single forward facing low complexity three element radar with a single transmitter

phase synchronized with two receivers; and a single monocular forward-facing camera in close

proximity to the radar so that there is a large overlap in their fields-of-view (FoV). We consider

two distinct coordinate frames corresponding to the radar/ego vehicle (R) and the camera (C)

with a shared common ground plane at z = 0. The misalignment between the X and Y axes

between the two frames is mapped through the Euler rotation matrix, denoted by RC R (from

C to R), and the translational matrix denoted by tC R. We consider a single automotive target

scenario where the target is detected jointly by the radar and camera. The detections from the

two sensors are time stamped to provide updates at a low frame rate (a few samples per second)

indexed by k. The dual sensor data are processed and subsequently fused to estimate the target as

described in the section below. Subsequently, the target yaw rate estimated by the sensor fusion

is used to generate the ISAR images. The entire data processing chain for camera and radar data

is presented in Fig.1. In this section, we first describe the radar processing steps followed by

the camera processing steps and finally the fusion.

A. Interferometric ISAR Imaging of Extended Targets

The automotive radar transmitter and the two receivers are assumed to be configured in an

L formation with the receivers displaced from each other by half-wavelength along the z axis.

The radar transmits linear frequency modulated waveforms modeled as
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Fig. 2: (a) Extended radar target model of a full-sized car; (b) ISAR image after perfect motion compensation and

turning velocity estimation; (c) Interferogram to estimate elevation angle of each point scatterer.

stx(τ) = rect
(

τ

TPRI

)
ej2πfcτejπβτ

2

, (1)

where τ denotes the fast time samples within a pulse repetition interval of TPRI . The carrier

frequency of the transmitted signal is fc and β is the chirp rate of the signal. At short ranges

(≤50m), the automotive radar target appears as an extended target with b = 1 : B point scatterers

distributed across several range and Doppler bins. The radar transmit signal is scattered by each

bth point scatterer and received by the ith, i = 1, 2 radar receiver element after a two-way round-

trip time delay, τbi , which we assume is within TPRI to avoid range ambiguity. If the point

scatterer is moving at a radial velocity vb from an initial position, rb0 , and if the transmitter

distance is rtx, then the time-delays at the first and second elements are

τb1
=
rtx + rb0 + 2vbt

c
≈ 2rb1 + 2vbt

c
(2)

τb2 ≈
2rb0 + d sin θb + 2vbt

c
, (3)

where c is the speed of light and θb is the elevation of the point target with respect to the

radar when far-field assumption has been invoked. Note that in the case of automotive targets,

the height of the point scatterer on the target is very low compared to the range and hence

θb is likely to be very low. Also, if the transmitter and receiver are placed very close together

(quasi-monostatic), then rtx ≈ rb0 . Hence, the received signal at the ith radar receiver after down-

conversion, is the superposition of returns from B individual scatterers, if we ignore multiple

bounces, as shown in

Srxi(t, τ) =

B∑
b=1

abrect
(
τ − τbi

TPRI

)
e−j2πfc τbi

ejπβ(τ−τbi
)2 + η. (4)

Here, η represents the noise and ab indicates the reflectivity of the bth scatterer as well as the two-

way propagation factor including the gains of the transmitting and receiving antenna elements
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and channel effects. The received signal is represented as a 2D signal as fast time samples (τ )

are gathered across multiple pulse intervals constituting the slow time axis t. The total duration

of the slow time interval is the coherent processing interval (CPI) and the CPI intervals are

indexed at k = 1 · · ·K.

Motion Compensation: In order to obtain ISAR images, we have to compensate for the trans-

lational motion of the target. Based on Fig.1, we obtain the position coordinate estimate of the

centroid of the target vehicle over the past k − 1 CPI intervals based on which we estimate

the starting range (r0k) and radial velocity, (vrk) for every kth CPI. Then assuming a first-order

kinematic motion model, rk(t) = r0k +vrkt where t spans from 0 to CPI. We use this to perform

the coarse translation motion compensation as shown in

Ŝrxi(t, τ) = Srxi(t, τ)ej2π
2rk(t)

λ . (5)

The complexity of this centroid tracking approach is quite low since it involves the multiplication

of each slow time column of the matrix with a one-dimensional vector. It is, therefore, preferred

to other techniques proposed in literature such as the cross-correlation method [34] which

involves performing a cross-correlation between each range profile with a reference range profile

(complexity O(n3)); and minimum entropy method which involves a 2D exhaustive search for

the range and velocity parameters for carrying out the operation in (5) [35].

Stretch Processing Next, we process the motion compensated received signal across the fast time

through stretch processing. We consider a reference signal across the fast time shown by

sref (τ) = rect
(

τ

Tref

)
ejπβ(τ−τref )

2

, τref =
2Rref
c

. (6)

Here τ0 is the time delay to a reference range position corresponding to the center of the range

axis, and Tref is a pulse duration that is greater than TPRI . An output 2D matrix Souti(t, τ) is

generated by element-wise multiplication of every tth row of Ŝrxi(t, τ) with the conjugate of the

reference signal as shown in

Souti(t, τ) = Ŝrxi(t, τ)s∗ref (τ) (7)

=

B∑
b=1

rect
(
τ − τbi

TPRI

)
abe

jπβτ2
ref e−jπβ τbi

2

e−j2π
2rbi
λ e−j2πfDb te−j2πβ(τref−τbi

)τ . (8)

Note that the operations in (5) and (7) can be combined into one without increase in complexity.

In the resulting expression in (7), the first term within the exponent is constant with respect to
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τ, t and the receiver channel i and absorbed into ab. The second term has a phase term that is

independent of τ and t and changes very slightly with respect to i due to the square of c in the

denominator. Hence, this term is ignored without loss of accuracy. The remaining three terms

are linear functions of i, τ and t. After motion compensation, the Doppler frequency shift in

(5) arises entirely from the rotational motion of the target, and (2ω/λ)ρb = fDb
where ρb is the

cross-range position of the bth point scatterer. Then,

Souti(t, τ) =

B∑
b=1

rect
(
τ − τb
TPRI

)
abe
−j2π

2rbi
λ

e−j2π(2ω/λ)ρbte−j2π(2β/c)r
′
bi
τ , (9)

where 2r′bi/c = τref − τbi . By performing discrete Fourier transform (DFT) across the fast and

slow time data, we obtain the range-crossrange plot χ for each kth CPI of the moving target as

shown in

χi(ρ, r) = DFT {Souti(t, τ)}

= TPRITCPI

B∑
b=1

abe
−j2π

2rbi
λ

sinc (π(2ω/λ)(ρ− ρb)TCPI) sinc
(
π(2β/c)(r − r′bi)TPRI

)
, (10)

Each point scatterer b is convolved with a double-sided sinc function and centered at the

corresponding range and crossrange of the point scatterer in the two-dimensional plane. The

duration of the fast and slow time axes are factored into the amplitude of the two-dimensional

response. Note that, in the absence of motion compensation, the range-Doppler images provide

us measurement estimates of the target centroid’s range and Doppler at every CPI, which are

subsequently fused with camera data and used for target state estimation. Second, we have

considered a small angle approximation while carrying out the ISAR imaging because the vehicle

undergoes small angular rotation (below 1◦) during the short CPI that allow us to directly process

the raw data with 2D DFT (of O(N2) complexity). Alternatively, when the vehicles undergo

large turns resulting in wide-angle synthetic apertures, direct two-dimensional integration through

numerical techniques (of complexity O(N4)) may be considered. Or through nearest neighbors,

the backscattered field data that correspond to polar data in spatial frequency may be reformatted

onto a rectangular grid so that the DFT can be applied for the fast formation of the ISAR image.

This introduces additional complexity of O(N2) [36].
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In order to estimate the elevation of each point scatterer, we perform the very low complexity

differential interferometry between the range-crossrange plots from the two channels. Specifically,

we compute the phase difference of each point in the range-crossrange bin as shown in

Θ(ρ, r) = asin
(
λ (∠χ2(ρ, r)− ∠χ1(ρ, r))

2πd

)
, (11)

to compute the interferogram Θ(ρ, r). Note that for accurate interferometry operation, the phase

in each interferogram must be carefully unwrapped. This method of computing the elevation of

radar point targets is effective when the point scatterers are well resolved in the range-crossrange

space. In other words, there exists only a single point scatterer at any range-crossrange bin of

χi. However, note that the received signal in (4) will also consist of noise. Hence, the range-

crossrange image and the corresponding interferogram will show noise artifacts. Additionally,

in real-world scenarios, reflections from clutter and multipath are also observed in the radar

signatures.

To explain the radar signal processing, we provide an illustrative example of a simulated

ISAR image of a car in Fig.2. Here, we consider a sedan of size [5.7m× 2.7m× 2m] composed

of over 6000 point scatterers corresponding to the centroids of the facets of the body of the

car. The target undertakes a left turn before the radar with a dual channel receiver. In [13], a

detailed description and open source model of the wideband electromagnetic target scattering

was provided. We augment the single channel data to two receiver channels and process the radar

data to obtain the ISAR image for a single frame in Fig.2b and the corresponding interferogram

in Fig.2c. Since this is a simulation model, the trajectory followed by the target is known and

hence we implement perfect translational motion compensation. The figure clearly shows the

dimensions of the target along the range and cross-range dimensions. In this synthetic data, the

shadowing of parts of the car by other parts is not considered. Hence, we are able to see the

entire top-view cross-section of the vehicular target and estimate the size of the car (length and

width). The wheels of the car undergo rotational motion and cause Doppler spread resulting in

cross-range spread in the image. Note that due to the nature of the automotive vehicle target,

the elevation angles are very low but sufficient to estimate the height of the car (based on the

product of the largest elevation angle and range). However the interferogram image is particularly

sensitive to noise compared to the ISAR image. This implies that the noise variance for the

elevation estimate is greater than that of the range and crossrange.

Radar Detections: We apply the ordered-statistic constant false alarm rate detector on the range-

September 28, 2022 DRAFT



10

Doppler signature to dynamically identify the threshold based on the noise floor and identify

radar detections in the image [37]. The computational complexity of this detector is based on the

sorting algorithm and is higher than alternatives such as the cell-averaging CFAR (CA-CFAR)

[38]. However, the OS-CFAR is widely used by radar practitioners due to its performance in

dynamic noise and clutter conditions. The high-range resolution imaging described in this section

results in multiple detections for each target. The detections that belong to a single target are

clustered together from which the range, Doppler frequency and elevation of the target’s centroid

is identified.

B. Camera Data Processing

The main objective of the camera data processing is to detect a known camera target vehicle

in the image and convert its centroid position in the camera’s image to 3D radar coordinate

frame.

Camera Calibration: Consider a monocular digital camera image where each pixel is indexed by

u = [pu, pv]
T , pu = 1 · · ·U, pv = 1 · · ·V . Here pu indicates the vertical or longitudinal position

aligned to zC axis and pv indicates the lateral or horizontal position aligned to the yC axis while

the xC axis is the optical axis. Camera calibration is the process of learning two sets of parameters

using a linear camera pinhole model. They are the extrinsic camera parameters that facilitate

the transformation of a 3D point, x in R, to a 3D point, xC , in C and intrinsic parameters that

enable perspective projection of xC to a 2D point u in the camera’s image plane. The intrinsic

parameters include the focal length of the camera lens (f ), the pixel densities along the two

image dimensions (mu,mv), and the position of the principal point (pu0 , pv0) through which the

optical axis emanates. Any point xC is projected to

pu = muf
yc

xc
+ pu0 (12)

pv = mvf
zc

xc
+ pv0 . (13)

The basis of intrinsic camera calibration is that the homogeneous representation of the image

projected point [u, 1]T is equivalent to the 3D point ū = [xc xcpu x
cpv]

T . Thus,

u

1

 ≡ ū =


1 0 0 0

pu0 muf 0 0

pv0 0 mvf 0


xC

1

 = Mint
3×4 x̄C , (14)
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Fig. 3: Results from object (auto-rickshaw) detection based on [23] (a) without false alarm, (b) with false alarm.

where Mint
3×4 is the intrinsic calibration matrix that must be estimated and x̄C is the homogeneous

representation of xC . The extrinsic parameters enable the alignment of C with R through the

extrinsic matrix Mext
4×4. This comprises the Euler rotation matrix RC R that aligns the axes

between the two coordinate frames; and the translation vector tC R between the origins of the

two coordinate frames. Thus,

x̄C =

RC R3×3 tC R

03×1 1

 x̄ = Mext
4×4 x̄ . (15)

The intrinsic and extrinsic matrices are combined to form the projection matrix Pcal
4×4 which

converts a 3D point x to 2D u throughu

1

 ≡ ū = Mint
3×4M

ext
4×4 x̄ = Pcal

4×4 x̄ . (16)

In this work, both the intrinsic and extrinsic parameters are estimated using the popular open

source calibration algorithm involving a checkerboard patterned target that is viewed from

the camera from two different orientations [39]. We have restricted the above discussion to

conventional cameras. If wide-angle fish-eye cameras are to be used instead of the conventional

cameras, additional calibration steps are required to resolve radial distortion errors [40].

Object Detection Detection of an object (vehicle or pedestrian) within a camera’s image has been

tackled using both traditional machine learning [21] and deep learning techniques using convolu-

tional neural networks and their variants [41]–[43]. The main challenge in these algorithms is to

handle the multiple resolutions and orientations of an object in the image plane. Hence the object

detection methods essentially trade-off between detection accuracy specified through the number

of false positives per image and the computational cost for capturing the multi-resolution image

features. For example, in Fig.3, the objective is to detect and segment the vehicle (auto-rickshaw)

in the images as the vehicle moves and turns. In Fig.3a, the object was correctly detected and

segmented. However, in Fig.3b an additional object was also detected which corresponds to a
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false positive. We use open source machine learning-based object detection code provided with

[23]. The key insight of this algorithm is that it exploits the fractal statistics in natural images,

termed internal channel features, to reliably predict image structures across multiple resolution

scales which are termed aggregate channel features. Since the image features are obtained through

extrapolation rather than explicit prediction, the overall computational complexity is considerably

reduced. The performance of the algorithm has been shown to be very effective for automotive

target detection (pedestrians and vehicles).

C. Fusion of Camera and Radar Data

Once the camera projection matrix is learned it will be possible to estimate yk, zk for a center

point of a target t in the image plane. However, since the transformation operation is inherently

lossy, we cannot recover the depth xk (depth) from the image point uk at every k. In other

words, any number of 3D scenes can result in the same 2D image. Depth estimation from a

single camera image is considerably more challenging than stereo camera images and several

approaches have been proposed in literature including the use of machine learning algorithms

[24], [44], [45]. In this work, we supplement the camera data with radar data to track the object.

We model the automotive target motion using the curvilinear state model based on constant

turn rate and velocity (CTRV) as described by [46], [47]. Here, the state vector of the vehicle

at any time instant k is given by xk = [xk; yk; vxk ; vyk ;ωk]
T where (vxk , vyk) describe the 2D

velocity in Cartesian coordinates. Note that we also obtain the zk from the longitudinal position

estimates from the camera image and the elevation estimates from radar interferometry. However,

we do not use those measurements since they do not have a bearing on the computation of the

turning velocity and very weakly impact the translation motion compensation. They are useful,

however, for correct data association from the two sensors in scenarios where there are multiple

targets. The state at k + 1 time step is predicted based on

xk+1 = f (xk) + G (xk) wk, (17)

where f(·) is a vector-valued function that models the state transition and is given by

f(xk) =



xk +
vxk
ωk

sin(ωkT )− vyk
ωk

(1− cos(ωkT ))

yk +
vxk
ωk

(1− cos(ωkT )) +
vyk
ωk

sin(ωkT )

vxk cos(ωkT )− vyk sin(ωkT )

vxk sin(ωkT ) + vyk cos(ωkT )

ωk


, (18)
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and T is the time interval between updates (CPI). G(xk)wk in (17) is the process noise matrix

with Q process noise covariance matrix. In a CTRV model, the speed and the turn rate are

assumed to be nearly constant and we model the acceleration and rate of change of yaw rate

(which form vector wk) as noise processes with zero mean and σa and σα standard deviations

respectively. G models the relationship between the target state and wk and is given by

G =



T 2

2 cos(ωkT ) 0

T 2

2 sin(ωkT ) 0

T cos(ωkT ) 0

T sin(ωkT ) 0

0 T


. (19)

The target space is updated based on measurements vector, zk = [rk fDk
pvk ]T , provided by the

automotive radar and the camera. The measurements are mapped to the state space through

zk = h(xk) + νk, (20)

where h(·) is the function between the measurements and state space and νk is the observation

noise vector with R measurement noise covariance matrix. The radar provides range and Doppler

frequency measurements, [rk, fDk
] which are non-linear functions of the position and velocity

of the target as shown in

rk =
√
x2k + y2k (21)

fDk =
2fc
c

(
2xkvxk
rk

+
2ykvyk
rk

)
. (22)

The corresponding observation noise for the radar range and Doppler frequency estimates are

governed by the radar bandwidth and CPI respectively. They are modeled, therefore, as uncorre-

lated random variables with zero mean and standard deviations which are directly proportional

to the corresponding resolutions. The camera coordinate, pvk , depends on the focal length and

the pixel resolution of the camera as described in Section III.b (equations (14) to (16)) while

the standard deviation assumed for the process noise is assumed to be half the width of the

smallest bounding box required for object detection. Due to the non-linear state space prediction

equations and their measurement equations, we used the extended Kalman filter framework to

estimate the state space [48]. The EKF is a nonlinear estimation algorithm based on consecutive

linearization of the equations carried out via first-order Taylor series expansions. The EKF is

preferred to other non-linear estimation methods such as the second order extended Kalman

filter [49], unscented Kalman filter [50], and particle filter [51] due to its low computational
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complexity (O(n3) versus O(n4)). Due to the approximations in the system equations, the EKF

is known to generate error and instability conditions for more complex target motions. However,

within the limited scope of our problem - a single vehicle undergoing turns - the EKF performs

satisfactorily. We summarize the EKF algorithm below.

1) Initialize target state x0/0 and error covariance P0/0

2) For k < K, predict the current state, error covariance, P, and Kalman gain, K, from

previous time estimates

xk/k−1 = f(xk−1/k−1) (23)

Pk/k−1 = Fk−1Pk−1/k−1F
T
k−1 + Qk−1 (24)

Kk = Pk/k−1H
T
k (HPk/k−1H

T
k + Rk)−1, (25)

where F and H are the Jacobian matrices for the vector-valued functions f and h respec-

tively with respect to the state.

3) Update the current state using current measurements using the Jacobian computed from

the non-linear equation and update the corresponding error covariance

xk/k = Kk(zk − h(xk/k−1)) (26)

Pk/k = (1−KkHk)Pk/k−1 (27)

4) Repeat step 2 through 4 till the target trajectory is completed.

The Kalman gain, K, is a [3×5] matrix that controls the impact of the three sensor measurements

(range, Doppler velocity from radar, and lateral position from camera) on the five-state target

estimation (two-dimensional position, two-dimensional velocity, and yaw rate) at each time step.

When the Kalman gain value Km,n is high (close to 1), this implies that the nth state variable

is strongly correlated to the mth measurement and that the measurement is reliable (compared

to the predictions). On the other hand, when Km,n is low (close to zero), this implies that the

nth state variable is not correlated to the mth measurement and should be updated based on

predictions from its prior state or from one of the other measurements. Usually, when there are

no instances of sensor failure, the Kalman gain values start from a high value, when predictions

are unreliable, and then converge to a lower value (say around 0.5) when the estimates are based

on prior state predictions and current measurements. In the event, that one of the two sensors

fails to provide a detection due to malfunction or because the target is outside its FoV, then the

corresponding Km,n is set as 0 and the measurements from the other sensor are used to correct
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the state predictions. For example, if the camera fails, then K3,n = 0 for n = 1 : 5 and z only

consists of range and Doppler velocity measurements. In the case both sensors fail to produce

measurements at any particular time step, then the states are updated based on prior predictions

and not further corrected. Subsequently, the corrected target state is used for translation motion

compensation of the range-Doppler ambiguity plot and for mapping the range-crossrange ISAR

image at k+1. Note that in this work we have confined the problem to a single target in the FoV

of the sensors. Hence, target detections (from either of the sensor) at timestamp k+1 that do not

fall within a predefined neighborhood of the estimated position of the target are discarded. In this

manner, false alarms of both radar and camera are reduced. In scenarios with multiple targets,

joint probabilistic data association and multiple hypothesis testing will have to be incorporated

within the Kalman framework. The discussion on multiple target tracking is outside the scope

of this paper.

III. SIMULATION MODEL AND RESULTS

In this section, we present the simulation model of a camera and radar tracking a dynamic

target undertaking turns. The data from the two sensors are fused and the target state is estimated

which is subsequently used to generate the corresponding ISAR images. The entire simulation

is carried out in MATLAB using the automated driving toolbox.

A. Experimental Set Up

Road Geometry: We consider a four way flat road junction geometry as shown in Fig.4i.a-d.

The north-south road, aligned along the X axis of R is perpendicular to the east-west road which

is aligned to the Y axis. The height axis above the road thus corresponds to the Z axis. The

origin is assumed at the lower south-west corner of the figure. Each road is a 78m long dual

carriageway that allows traffic in both directions. The solid yellow lines in the figure indicate

the road divider separating the bi-directional traffic flow in each road segment while the dashed

yellow lines demarcate the lanes within each section. Each lane is 3.6m wide as per common

road design standards. An additional lane is provided for onward traffic in order to facilitate

right turns (south to east, east to north, and so forth). For example, the left section of the south

road segment consists of three lanes while the right section consists of two lanes. So a vehicle

that turns from south to east will move from the right-most lane of the left section of the south
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road to the lowest lane of the upper section of the east road. We assume line-of-sight conditions

with no building or other forms of occlusions in the road layout.

Sensor Specifications: We assume that the ego vehicle upon which the radar and camera

sensors are mounted is not moving. We assume that the ego vehicle is a simple cuboid of

[4.7× 1.8× 1.4]m dimensions with its length oriented along the direction of the lane. Thus the

yaw (angle of the vehicle with respect to the positive X axis) is zero. The center point of the

ego vehicle is located in the south road segment at [10, 42.6, 0.7]m. Forward-looking radar and

camera are mounted on the ego vehicle as indicated in Fig.4i.a-d. The camera is assumed to be

located 0.1m below the top of the ego vehicle and at 0.7m of the wheelbase of the vehicle. The

camera’s intrinsic parameters are the following- the focal lengths along pu and pv are [800, 800],

the image sizes are ([480, 640]) and the principal point is located at ([320, 240]). The camera’s

yaw, pitch, and roll are all 0◦. The toolbox’s vision sensor is configured to detect targets up to a

range of 100m with a detection probability of 90% and a statistical probability of false positives

per image of 10%. The minimum object size in the image plane that can be detected is [15×15]

pixels.

Next, we discuss the radar model. We assume that the radar is transmitting a linear frequency

modulated wave as discussed in Section II. The carrier frequency is 77GHz and the chirp rate is

60× 1012Hz/sec. The pulse repetition frequency of the radar is 40kHz resulting in a maximum

unambiguous range of 40m and the range resolution is 0.1m. We assume that the CPI for the

radar is 0.1s which also corresponds to the frame rate of the camera. In other words, the camera

and radar data are time stamped every 0.1s. The radar is located 0.1m above the ground at the

front overhang of the ego vehicle. The yaw, roll, and pitch of the radar are all zero. Therefore,

in this simulation set up the axes of C and R are perfectly aligned though they have different

origins. The radar is characterized by a false alarm rate of 1×10−6 and a detection probability of

90%. The FoV of the radar is 120◦ along the azimuth and 90◦ along the elevation. Figure.4i.a-d

shows the coverage area of the camera and the radar. Note that this figure is not drawn perfectly

to scale and is provided to give a general notion of the coverage of the sensors.

Target Details: We model the vehicle as a cuboid of dimensions [4.7m× 1.8m× 1.4m] which

is the size of a typical mid-size car. The wheelbase for this car is 2.8m with a rear overhang

of 1m and the front overhang of 0.9m. The target is modeled as an extended target with 12

triangular faces/mesh (2 per side). The radar cross-section (RCS) of each mesh is calculated

based on the analytical expression for RCS of metal triangle [12]. We consider four possible
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turn trajectories for the target as indicated in Fig.4a-d. In the first trajectory, the target starts in

the south lane at [20m, 39.5m, 0m], moves forward and performs a U-turn, and then returns to

the south lane at [20m, 35.4m, 0m]. Thus the target is mostly within the FoV of both sensors.

Next, we will consider the trajectory shown in Fig.4i.b. Here, the target starts in the north lane

at [58m, 39m, 0m] and then comes south-wards and performs a U-turn, and then returns to the

north lane at [58m, 42.6m, 0m]. The target lies within the camera’s FoV for almost the entire

duration and is within the radar’s FoV while it is performing the turn. The next trajectory that we

consider is the target turning right from east to north as shown in Fig.4i.c from [39m, 20m, 0m]

to [58m, 42.6m, 0m]. Again, the target is initially outside the FoV of the camera but eventually

enters it. The opposite is true with respect to the radar. The last trajectory is when the target

turns right from the west ([39m, 58m, 0m]) to the south ([20m, 35.4m, 0m]). The target is mostly

within the FoV of both the sensors for the most part. We will refer to these four trajectories as

SSUT, NNUT, ENRT, and WSRT henceforth. The duration of motion for each case is 6 seconds

and the speed of the vehicle is 6m/s.

B. Simulation Results

In this section, we discuss the effectiveness of sensor fusion for target tracking and ISAR

imaging. We present the estimated position (xk, yk) and yaw rate (ωk) of the target based on

the camera-radar detections for the four trajectories in the second row of Fig.4. The third row

shows the Kalman gain over the duration of the trajectory. From the results in the third row,

it is evident that K1,1 shows a strong correlation between the radar range measurement and xk

while K3,2 shows the strong correlation between the horizontal/lateral position of the target in

the camera’s image to yk. Both of these measurements are not directly correlated to the Doppler

velocity and hence K2,1 and K2,2 are zero throughout the duration of the trajectory.

SSUT: Since the target falls within the FoV of both the sensors for most of the duration of

the trajectory the Kalman gain plot is fairly stable in Fig.4iii.a. The target is also close to the

sensors. This results in strong SNR in the case of radar and a large object for detection by the

camera. Due to all of these factors, the estimation of the target state is fairly accurate in this

trajectory.

NNUT: Here, the target object is farther from both the sensors. First, it is outside the FoV of

the radar, which is reflected in the zero values of K1,1 and K1,2 and results in large errors in

the early estimates of xk. Later, even when it is within the radar FoV, there is a discrepancy of
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Fig. 4: Top row shows the simulation setup for radar-camera sensor fusion and target trajectories along (a) south

lane to south lane U-turn (SSUT), (b) north lane to north lane U-turn (NNUT), (c) east lane to north lane right

turn (ENRT), and (d) west lane to south lane right turn (WSRT). The second row shows the corresponding target

trajectory estimates from sensor fusion for (e) SSUT, (f) NNUT, (g) ENRT, and (h) WSRT. The third row shows the

Kalman gain for position estimates based on sensor measurements (radar range, Doppler velocity, and camera-based

lateral position of object).

approximately 2m between xk and the ground truth. This is because the camera image and radar

locate the centroid of the vehicle at the midpoint of its front end/rear end (whichever is facing

the sensors) rather than the center of the vehicle. There are also instants when the camera does

not detect the object due to smaller perspective spans in the image. This effect is noticeable

in the pattern of K3,2. However, it does not cause a large drop in the accuracy of the camera

estimates.

ENRT: Here, both xk and yk are inaccurately estimated at the beginning when the vehicle is

outside of the FoV of both sensors. This is also reflected in the Kalman gain plot in Fig.4iii.c.

Later, the results improve while the target remains in the FoV of both sensors. Towards the

end of the trajectory, the vehicle is outside the radar FoV which causes a deterioration in the

September 28, 2022 DRAFT



19

Fig. 5: ISAR images from simulated data with motion compensation based on: (i-iv) target state estimation from

camera-radar fusion; and (v-vi) ground truth target state. Rows correspond to (a) south to south U turn (SSUT),

(b) north to north U-turn (NNUT), (c) east to north right turn (ENRT) and (d) west to south right turn (WSRT).

estimate of xk. Similar observations can be made for the last case corresponding to WSRT. In

all four cases, we observe that the yaw rate estimate is reasonably accurate when the target

is within the FoV of both sensors. In the above discussion, we have assumed that both the

sensors are performing with high detection metrics (above 90%). In the appendix, we discuss

the sensor fusion performance when the detection metrics of both sensors are poor due to either

environmental conditions or instrument defects.

Next, we discuss the results obtained for ISAR imaging of the vehicle. The results for all four

trajectories are presented in Fig.5. The ISAR images are generated after motion compensation

using turning velocity estimates obtained from the radar-camera fused data. These are presented

in the first four columns (left four) corresponding to Fig.5a-d. These images are then compared

with those obtained from ground truth information of the target trajectory. These are presented

in the last four columns of each row (right four) corresponding to Fig.5e-h. All the figures

span 40m along range and 20m along crossrange and are mirrored along the crossrange to keep

positive sense of the Y axis. Note that we may not be able to generate images even with the

perfect knowledge of the ground truth target information. If the vehicle undergoes very little
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Trajectory GT images (#) Fused images (#) SSIM (%)

South to South

U Turn(SSUT)

56 40 97.4

North to North

U Turn(NNUT)

6 15 85.7

West to

South Right

Turn(WSRT)

54 46 97.5

East to

North Right

Turn(ENRT)

52 40 97.5

TABLE I: Comparison of fused ISAR images with ground truth (GT) images.

yaw with respect to the ego vehicle upon which the sensor is mounted, then the turning velocity

is very low resulting in extremely high cross-range resolutions. For example, in our problem, if

the turning velocity is below 0.01rad/s, then the resulting crossrange resolution is 1.98m which

is greater than the width of the vehicle and hence not useful for imaging. Hence, we do not

generate images for very low values of turning velocity. The images obtained from the sensor

fused data are compared with the ground truth data through the popular image comparison metric

called the structural similarity index (SSIM) [52]. The summary of the ISAR image results is

presented in Table.I.

We first consider the results from SSUT trajectory along the first row. Here, due to the

orientation of the vehicle with respect to the ego vehicle as shown in Fig.4a, we see only one

long side and the rear end of the vehicle at different time instants of the target trajectory. The

other two sides of the vehicle are occluded from the sensors. As the target moves along a straight

line to the right of the vehicle, it still presents a variation in the target aspect resulting in a change

in the yaw. Hence, we are able to generate 56 ISAR images out of the total 60 possible intervals

in the duration of the vehicular motion. For higher turning velocity, the crossrange resolution is

finer and that is reflected in the thickness of the pixels across the different time instants. With

the sensor fused data, we are able to generate 40 ISAR images because there are some time

instants where the predicted turning velocity becomes very low. However, these images are very

similar for the most part to the ground truth images as evidenced by the high SSIM score.

Next we discuss the results from NNUT trajectory. In this trajectory, the target object is
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directly before the ego vehicle. Hence, for most of its trajectory, the yaw with respect to the

sensors is zero. Hence, the turning velocity is infinite and we cannot generate ISAR images. Out

of the 60 time intervals, it is possible to generate images for only 6 intervals when the vehicle is

actually undergoing the turn. The number of ISAR images generated from the sensor fused data

are higher in this case because of higher (incorrectly) estimated values of the turning velocity.

Secondly, as mentioned earlier, there is some error in both sensor estimates since we do not

correctly estimate the position of the center of the vehicle and instead track the center of the front

side of the vehicle. Due to these reasons, we observe that some of the ISAR images generated

from the sensor fused data show wide spread across the crossrange, especially in comparison to

the ground truth. This is reflected in the lower mean SSIM score reported in Table.I. However,

we are still able to observe (for the most part) the size and shape of the vehicle.

Next we consider the two right turn trajectories - ENRT and WSRT. In both cases, the turning

velocity from ground truth and the estimate are fairly high for most of the duration of the vehicle

and we are able to generate a large number of ISAR images. Interestingly, the number of images

from ground truth and sensor fusion are exactly equal in both cases because the estimation of the

target state along these two trajectories is fairly accurate as shown in Fig.4. Due to occlusion,

different sides of the target cuboid are visible to the sensors for each case. Based on how the

orientation of these images change, we can make inferences regarding the trajectory of the target.

Due to the close agreement between the sensor fused images and ground truth images, we obtain

high mean SSIM scores as reported in Table.I

IV. MEASUREMENT SETUP AND RESULTS

In this section, we present the measurement setup to collect experimental data from Texas In-

struments AWR-1843 77GHz millimeter wave radar and a smartphone camera of a target vehicle

as described in [13]. The radar parameters are configured as per Table.II. In the measurement

setup, the radar is mounted on a static platform which is assumed to be located at the origin

of R frames. The radar images are generated for every CPI interval of 0.1 seconds. Here, the

radar consists of only a single channel and hence we do not obtain estimates of the height of the

vehicle. A smartphone camera of 1920× 1080 pixel size is mounted at [2m,−2m, 0.5m] and is

oriented with yaw of −45◦ with respect to the radar axis to ensure that the target object remains

within the camera FoV during the entire duration. The camera frame rate is 30 frames per second

and is time stamped. We select the images corresponding to the 0.1 second interval. Hence, unlike
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TABLE II: Automotive radar parameters for generating ISAR images

Parameters Values

Carrier frequency (fc) 77GHz

Range resolution 0.075m

Maximum unambiguous range 100m

Radar bandwidth 2GHz

Chirp duration (TPRI ) 400µs

Coherent processing interval (TCPI ) 0.1s

Doppler resolution 10 Hz

Minimum cross-range resolution 0.19 m

Transmitted power (Pt) 25dBm

Fig. 6: Measurement setup of camera radar data collection of a small size car executing a left turn

the simulation data, the measurement data from the two sensors are not perfectly synchronized.

The camera is calibrated to the radar’s coordinate frame based on the methods discussed earlier.

We consider a Honda Brio car which is a small size car of [3.6m× 1.68m× 1.5m] dimensions.

The car undertakes a left turn from the north to the east in front of the radar as shown in Fig.6.

We present the measurement results for six frames in Fig.7. The top row shows the camera

images with the object within the bounding box. Due to the darker background, we applied

lightening filters to improve the effectiveness of object detection. Based on the camera estimates

and the radar estimates, we track the trajectory of the centroid of the target. The second row

of Fig.7(b)i-vi shows the range-Doppler plots obtained from the radar without any type of

motion compensation. In order to improve the clarity of the images, we have cropped the range-

Doppler plot to show the region within ±6m and ±300Hz of the range and Doppler, respectively,

corresponding to the peak scatterer on the vehicle. The axes of these images change based on

the range and radial velocity of the vehicle with respect to the radar. Using the translational
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Fig. 7: (a)i-vi: Camera images of a small size car executing a left turn from north to the east before a radar. (b)i-vi:

Range-Doppler plots generated from two-dimensional Fourier transform of slow-time fast-time radar measured data

from TI AWR-1843. (c) ISAR images were obtained after target state estimation from camera-radar fused data.

motion compensation steps outlined earlier, we generate the corresponding ISAR images shown

in the third row. Additionally, CFAR algorithm is also implemented on the raw data to improve

the noise performance. The crossrange axis is obtained from the estimate of the turning velocity.

From the ISAR images, we are clearly able to observe the orientation of the vehicle change from

width-wise (when it is approaching the radar) in (c)i-iii to length-wise (when it is parallel to the

radar Y axis) in (c)iv-vi. One or more side edges of the vehicle can be observed in each of the

images while the remaining edges are occluded. With these images, we able to obtain a fairly

good estimate of the top-view (bird’s eye view) dimensions of the car. Unlike the simulation

results presented in Fig.2, all four edges are not visible. Also, the micro-Dopplers from the

wheels are very weak in this car.

We observe that the ISAR images are more focused compared to the range-Doppler plots due

to the motion compensation. Specifically, compare the regions red circled in (c)i-iii with the

corresponding regions in (b)i-iii. The point scatterers are better defined in the ISAR images than
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in the range-Doppler plots. Across the ISAR images, the crossrange resolution changes with

the turning velocity. This is reflected in the slight change in the cell sizes in the images. Even

when the car is parallel to the radar Y axis, we observe some features from the back of the

car possibly due to the transparent windows. The figures demonstrate the effectiveness of sensor

fusion for estimating the turning velocity and translation motion compensation of the vehicle for

generating high-resolution ISAR images.

V. CONCLUSION

At short ranges, wideband radars capture multiple detections from a spatially large extended

radar target. When these targets undergo rotation within the FoV of the radar, large synthetic aper-

tures are generated for a single radar channel. The wideband long-duration data can subsequently

be processed to form ISAR images that provide a top-view or bird’s eye view of the vehicle. In

conjunction with the front view of camera images, these images can potentially facilitate complete

3D visualizations of an object. However, translation motion compensation must be performed

and the Doppler to crossrange axis mapping must be carried out in order to generate meaningful

ISAR images. While prior works have focused on blind motion compensation techniques, here,

we leverage the availability of vision data in conjunction with radar data for estimating the target

state. Specifically, vision data facilitate accurate object detection of the vehicles in the sensor FoV

which is useful for eliminating clutter and multipath. Second, they facilitate accurate predictions

of the lateral position of the target while radar data enable range estimates. Our work has assumed

a constant turn rate model of the target which is typical in road turns. If on the other hand, the

target undergoes constant acceleration, then the constant turn rate and acceleration model can be

utilized in the extended Kalman framework. Once, the acceleration is computed, then using the

centroid tracking method, motion compensation can be carried out by incorporating higher-order

components for range alignment. The performance of the sensor fusion for ISAR imaging is

evaluated with simulation data generated from a cuboid model of a moving vehicle and from

measurements carried out with a millimeter wave radar and a smartphone camera. The main

challenges in the proposed approach lie in handling scenarios where the target moves outside

the FoV of either one of the sensors. With suitable upgrades to the sensor tracking model to

handle missing data, we believe that complete 3D imaging can be carried out even when the

target disappears temporarily from the FoV of any one of the sensors. This will form the focus

of our future work.

September 28, 2022 DRAFT



25

REFERENCES

[1] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, “Millimeter-wave technology for automotive

radar sensors in the 77 ghz frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp.

845–860, 2012.

[2] V. C. Chen, Inverse Synthetic Aperture Radar Imaging; Principles. Institution of Engineering and Technology, 2014.

[3] M. Martorella, E. Giusti, A. Capria, F. Berizzi, and B. Bates, “Automatic target recognition by means of polarimetric isar

images and neural networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 11, pp. 3786–3794,

2009.

[4] M. Vespe, C. Baker, and H. Griffiths, “Automatic target recognition using multi-diversity radar,” IET Radar, Sonar &

Navigation, vol. 1, no. 6, pp. 470–478, 2007.

[5] S.-H. Park, M.-G. Joo, and K.-T. Kim, “Construction of isar training database for automatic target recognition,” Journal

of Electromagnetic Waves and Applications, vol. 25, no. 11-12, pp. 1493–1503, 2011.

[6] Y. Wang and B. Zhao, “Inverse synthetic aperture radar imaging of nonuniformly rotating target based on the parameters

estimation of multicomponent quadratic frequency-modulated signals,” IEEE Sensors Journal, vol. 15, no. 7, pp. 4053–

4061, 2015.

[7] Y. Sun, Z. Liu, S. Todorovic, and J. Li, “Adaptive boosting for sar automatic target recognition,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 43, no. 1, pp. 112–125, 2007.
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APPENDIX

A. Performance Analysis of Fusion Algorithm in Complex Environments

Even when the target is within the FoV of a sensor, the target may not be detected due

to environmental conditions (poor light, fog, rain, presence of high clutter) and instrumental

defects. In this section, we analyze how the detection performances of the sensors impact the

state estimation of the fusion algorithm. We consider the SSUT trajectory of the target vehicle

since the vehicle lies within the FoV of both the sensors for almost the entire duration of its

trajectory.
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Fig. 8: Left figures show the Kalman gain for position estimates based on sensor measurements while the right

figures show the position and yaw rate state estimation. The top, middle, and bottom rows correspond to results

obtained with 50%, 75%, and 99% detection performance of the camera. Radar is assumed to have a high probability

of detection (above 90%) and a low false alarm rate (below 10−7).

Camera: First we consider the scenario when the radar is properly functioning throughout the

duration of the trajectory while the camera failure is random. In other words, even when the

target vehicle is within the camera’s FoV, it will be detected only in some of the time frames.

The results for Kalman gain and the state estimation for Pd = 50%, 75% and 99% are shown

in Fig.8. The top row shows the Kalman gain for position estimates and yaw as a function

of the three sensor measurements (range, Doppler and camera-based lateral position of object).

We observe that K1,1 is higher than K1,2 indicating that along this particular trajectory, the

range is more strongly correlated to xk of the target vehicle than yk. The values never quite

fall to zero since the radar measurements are continuously obtained. On the other hand, K2,1

and K2,2 are very low (close to zero) throughout the duration of the trajectory indicating that

the position of the target is not strongly correlated to the Doppler velocity measurements. K3,1

is also zero throughout the duration of the motion since the camera does not directly provide
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depth information. However, K3,2 is high because the lateral position estimated by the camera is

directly used to estimate yk. When the camera detection fails, K3,2 falls to zero. The frequency

with which it falls to zero is greatest in Fig.8i.a when Pd = 50% and lower for Figs.8i.b and i.c.

The corresponding state estimation results are presented in the second row. The results show that

Fig. 9: Top row shows radar detections (red circles) within the radar coverage area (red region), camera detections

(blue plus) within the camera coverage area (blue region), and estimated target centroid (green square). The second

row shows the Kalman gain for position estimates based on sensor measurements. The third row shows the position

and yaw rate estimation. The columns a, b and c corresponds to radar detection metrics of (a) PD = 50%, Pfa =

10−5, (b) PD = 75%, Pfa = 10−6 and (c) PD = 90%, Pfa = 10−7.

despite the camera’s missed detections, the state estimations (positions, yaw) are fairly accurate

due to the reliance on predictions from the prior state in the Kalman model.

Radar: We incorporate discrete clutter scatterers in the radar FoV which are assumed to be

uniformly spatially distributed while the number of scatterers follows the binomial distribution.

Further, the detection of each clutter scatterer in each resolution cell is assumed to be independent

across time. Since the radar performs high resolution ranging, we model its performance through

the probability of detection (Pd) of each point scatterer on the target and the probability of false
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alarms (Pfa), which together are a function of the SNR and clutter. The results are presented in

Fig.9. The top row of the figure shows the visualization of the radar and camera coverage areas

in red and blue respectively for a single time frame 0.05s for different radar detection metrics.

The radar provides multiple detections shown as red circles while the camera provides a single

detection shown as a blue plus. The Kalman filtered two-dimensional position estimate of the

target vehicle is shown as a green square.

First, we consider the scenario where Pd = 50% and the false alarm rate is Pfa = 10−5

which corresponds to very low SNR resulting in lots of radar detections as seen in Fig.9i-a.

Th resulting Kalman gain plot in Fig.9i-b shows that the radar-based range gain value (K1,1)

is fairly stable and not zero. Likewise for camera-based K3,2. The remaining values are low.

However, the state estimations in Fig.9i-c show high error in xk due to poor SNR. The yk is

still fairly accurate due to the reliable measurements from the camera. This results in overall

deterioration in the yaw estimation. In Fig.9ii.a-c, the radar detection metrics correspond to

Pd = 75% and Pfa = 10−6. This results in fewer radar detections. The Kalman gain plot in

Fig.9ii.b remains largely unchanged but there is still a significant error in xk as seen in Fig.9ii.c.

When the detection metrics further improve (Pd = 90% and Pfa = 10−7), then the number

of radar detections outside of the target are very few as observed in Fig.9iii.a and the state

estimation in Fig.9iii.c is very accurate. To summarize, xk is sensitive to the errors due to false

alarms in the case of radar while yk is sensitive to missed detection of the object by the camera.

Thus both the sensors are indirectly required for the accurate estimation of the yaw rate which

is subsequently used for generating the ISAR images.
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