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Abstract—The explosive growth of dynamic and heterogeneous
data traffic brings great challenges for SG and beyond mobile
networks. To enhance the network capacity and reliability,
we propose a learning-based dynamic time-frequency division
duplexing (D-TFDD) scheme that adaptively allocates the uplink
and downlink time-frequency resources of base stations (BSs) to
meet the asymmetric and heterogeneous traffic demands while
alleviating the inter-cell interference. We formulate the problem
as a decentralized partially observable Markov decision process
(Dec-POMDP) that maximizes the long-term expected sum rate
under the users’ packet dropping ratio constraints. In order to
jointly optimize the global resources in a decentralized manner,
we propose a federated reinforcement learning (RL) algorithm
named federated Wolpertinger deep deterministic policy gradient
(FWDDPG) algorithm. The BSs decide their local time-frequency
configurations through RL algorithms and achieve global training
via exchanging local RL models with their neighbors under a
decentralized federated learning framework. Specifically, to deal
with the large-scale discrete action space of each BS, we adopt
a DDPG-based algorithm to generate actions in a continuous
space, and then utilize Wolpertinger policy to reduce the mapping
errors from continuous action space back to discrete action space.
Simulation results demonstrate the superiority of our proposed
algorithm to benchmark algorithms with respect to system sum
rate.

Index Terms—Dynamic TFDD, decentralized partially observ-
able Markov decision process, federated learning, multi-agent
reinforcement learning, resource allocation

I. INTRODUCTION

Driven by the burgeoning demands of various services com-
ing from smart cities and industries, 5th generation (5G) and
beyond wireless communication systems are facing the chal-
lenges of diverse quality-of-service (QoS) requirements [1—
3]. The conventional “one-size-fit-all” network infrastructure
may not be able to simultaneously meet the heterogeneous
service requirements. Network slicing has been proposed to
“slice” the mobile infrastructure into multiple logical net-
works, which provides flexible network services in a cost-
efficient way [4] [5]. The key problem for network slicing
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is to dynamically and efficiently allocate the computation
and communication resources, e.g., computing frequencies [4],
transmit power [6] [7], radio spectrum [8] and transmission
time [9], to meet various and even conflicting QoS demands.

Time division duplexing (TDD), as a typical application of
network slicing, is able to accommodate asymmetric traffic
demands in the uplink (UL) and downlink (DL) by allowing
the UL and DL traffic to operate in different subframes [10].
The TDD system can be mainly classified into two categories:
static TDD (S-TDD) and dynamic TDD (D-TDD). For S-
TDD [11-13], all base stations (BSs) adopt the same and
synchronized UL and DL subframe configurations, which
however may not be efficient if the traffic demands are
dynamic and asymmetric across the cells. To improve the
resource utilization efficiency, D-TDD is proposed, where
BSs can adopt different subframe configurations. However,
D-TDD suffers from additional inter-cell interference due to
the asynchronous transmissions, i.e., the UL/DL transmissions
in a cell may interfere with the DL/UL transmissions in its
neighboring cells [14]. To alleviate the inter-cell interference,
the BSs can be divided into different clusters [15], where the
BSs within each cluster adopt the same subframe configu-
ration. Another interference alleviation approach is to adjust
the wireless signal transmission strategies, i.e., interference
cancellation [12] [16], power control [17] [18] and beam-
forming [17,19,20], where the BSs cooperatively optimize
their signal transmission strategies via convex optimization or
heuristic algorithms. For this type of approach, the subframe
configuration is usually selected from pre-defined candidates,
e.g., the seven subframe configurations of 3GPP [21], without
adapting to the real-time traffic demands.

The network traffic demands and channel states are highly
dynamic and unpredicted in D-TDD systems, making it
costly to design the adaptive subframe configurations by the
conventional model-based optimization methods. Advanced
model-free methods such as single-agent reinforcement learn-
ing (RL) [22] [23] and multi-agent reinforcement learning
(MARL) [24-26] have been recently applied to solve the se-
quential resource allocation problems in complex and dynamic
wireless networks, where the agents can learn the policy in a
trial-and-error manner. There are two main types of MARL
approaches for designing the subframe configurations in the
D-TDD system: centralized MARL [24] and decentralized
MARL [25] [26]. The subframe configuration in [24] depends
on the coordination of a centralized controller. The BSs in
[25] [26] independently make local subframe configuration
decisions, while treating other BSs as part of the environment.
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Based on the aforementioned literature, there are two chal-
lenges left unsolved. The first challenge is to design the D-
TDD scheme to meet the heterogeneous QoS demands of
different user equipment (UE) types. In the existing literature,
most of the D-TDD subframe configurations are cell-centric,
where each BS allocates the number of UL/DL subframes
depending on the average UL/DL data traffic inside this cell
without further differentiating the resource demands of the
specific UEs. However, the data traffic patterns and the QoS
requirements may vary significantly for different UE types in
a heterogeneous network, which has been largely overlooked
in the existing literature. To satisfy the user-centric hetero-
geneous QoS demands, we propose a learning-based dynamic
time-frequency division duplexing (D-TFDD) framework. The
second challenge is to jointly optimize the resources for local
traffic adaptation and global interference alleviation without
collecting the private states from each BS. In the existing lit-
erature, the centralized MARL subframe configuration requires
the states of all BSs, which may not be easy to implement in
practice due to the curse of dimensionality and privacy issues.
Moreover, the decentralized MARL subframe configuration
may not efficiently avoid inter-cell interference if the BSs’
learning processes are independent. To tackle this challenge,
inspired by the advantages of federated learning (FL) [27]
[28], we propose a federated reinforcement learning algorithm
to design the dynamic resource allocation, aiming to meet
heterogeneous UE demands while coordinating the inter-cell
interference in a decentralized and privacy-preserving manner.

In this work, we propose a user-centric learning-based
resource allocation framework in a heterogeneous cellular
network consisting of multiple BSs, ground UEs (GUEs) and
unmanned aerial vehicles (UAVs), where the BSs adaptively
allocate time-frequency resources to satisfy the heterogeneous
QoS demands characterized by the packet dropping ratio
constraints. We summarize the main contributions as follows.

e We propose a learning-based D-TFDD scheme in a
heterogeneous cellular system with dynamic UL and DL
packet queuing processes. The proposed scheme exploits
the merits of both D-TDD and dynamic frequency divi-
sion duplexing (D-FDD) by jointly allocating the time-
frequency resources. We adopt D-TDD to adapt the BSs’
subframe allocation to the asymmetric UL/DL traffic
from a cell-centric perspective, and utilize D-FDD to
cater the subchannel allocation to the heterogeneous QoS
demands from a user-centric perspective.

o We formulate the dynamic resource allocation problem
under the proposed D-TFDD scheme as a decentralized
partially observable MDP (Dec-POMDP), where each BS
only has partial observation of the network environment.
The BSs adaptively decide the subframe and subchannel
allocations to maximize the long-term expected sum rate
of the network while satisfying the UEs’ packet dropping
ratio constraints.

o We propose a federated reinforcement learning algorithm
named federated Wolpertinger deep deterministic policy
gradient (FWDDPG) to solve the above optimization
problem. The dimensionality of action space for D-TFDD

control at each BS increases substantially as the number
of UEs, subframes and subchannels increases. To deal
with the large-scale discrete action space, we first adopt
a DDPG-based policy at each BS to generate actions in
a continuous space, and then discretize the actions based
on Wolpertinger policy to reduce the mapping errors. For
model aggregation across the BSs, we adopt a peer-to-
peer FL architecture without a centralized server, where
the BSs exchange their neural network parameters with
their one-hop neighbors to avoid privacy leakage and
single point failure.

o Simulation results show that our proposed D-TFDD
scheme outperforms other benchmark TDD schemes,
verifying the advantages of dynamically allocating multi-
domain resources in serving heterogeneous UEs. Further-
more, the proposed algorithm outperforms independent
DDPG (IDDPG) and it is even superior to the centralized
multi-agent DDPG (MADDPG) by properly adjusting
the Wolpertinger coefficient. The simulation reveals that,
with sufficient system resources, the BSs prefer allocating
more subchannels to the UEs with heavier traffic loads for
throughput enhancement, and adopting similar subframe
configurations across the cells for interference alleviation.
Furthermore, in a resource-constrained regime, the BSs
prioritize meeting local QoS constraints over avoiding
interference.

The rest of this paper is organized as follows. In Section
I, we present the system model of the proposed D-TFDD
network. In Section III, we formulate the dynamic resource
optimization problem as a Dec-POMDP. In Section IV, we pro-
pose the FWDDPG algorithm to obtain the optimal resource
allocation policies. Section V discusses the simulation results.
At last, Section VI concludes the paper.

II. SYSTEM MODEL

We consider a heterogeneous multi-cell network which
consists of a set B £ {1,2,...,B} of BSs serving a set
U = {Ugug,Uyav} of UEs, where Ugug and Uyay denote
the set of GUEs and UAVs, respectively. We denote U° as the
set of UEs served by BS b inside cell b.

A time-framed D-TFDD framework is shown in Fig. 1,
where the DL/UL subframe configurations are dynamic across
cells and time frames. Each time frame is made up of F
subframes, and the length of the subframe is 7. For cell b
in time frame 7, the first f*(7) € {0,1,..., F} number of
successive subframes are used for DL transmissions and the
rest of F' — f°(T) number of successive subframes are used
for UL transmissions.

We adopt orthogonal frequency division multiple access
(OFDMA) for multiple access inside each cell, where the set
of orthogonal subchannels is denoted by A" £ {1,2,... N}
with the bandwidth W for each subchannel. Assume that the
number of subchannels is not less than the number of UEs
served by any BS, i.e., N > |U°[,vb. Let ¢, (T) € {0,1}
denote whether or not subchannel n is allocated to UE w inside
cell b for DL transmissions, where ¢}, (T) = 1 denotes
the subchannel n is allocated to UE u for f*(7) number
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Fig. 1: An illustration of proposed D-TFDD framework in time
frame 7.

of successive DL subframes and ¢}, (') = 0 means not.
Similarly, for UL transmissions, the subchannel allocation is
defined as ¢y, (') € {0,1}. Assume each subchannel n can
serve at most one receiver within a cell at a time, which can be
represented as Y, 0 ¢, (T) < Tand > 0 o, (T) < 1.

We consider quasi-static fading, where the channel state
stays constant during each time frame for any given sub-
channel. Let gi} ., (T') denote the channel fading gain from
transmitter tx to receiver rx on subchannel n at time frame
T, where tx and rx can be any UE uw € U or any BS b € B.
The channel fading gain of gf ., (7') includes both large-scale
and small-scale fading [29]. To compute the large-scale fading,
the distance from transmitter tx to receiver rx is needed. We
assume each UAV follows a pre-defined trajectory inside its
associated cell (to fulfill specific tasks, e.g., surveillance), and
the GUEs’ and BSs’ locations are static. For the ease of
analysis, we discretize the flight trajectory of each UAV by
a series of discrete locations, where we assume its location is
static within a time frame 7" and can be different across time
frames [30] [31]. Here, we adopt three-dimensional Cartesian
coordinate and define the locations of transmitter tx and re-
ceiver rx at time frame T as (Xix (7)), Yix (T) , Hix (7)) and
(Xux (T),Yex (T) , Hix (T)), respectively. Then, the three-
dimensional distance between transmitter tx and receiver rx
is

B (T) = [|(Xex (T) , Yix (T) , Hix (T))) o
- (er (T) 7er (T) ,er (T))sz

where || - ||2 is Euclidean distance. We adopt a general path
loss model £ (Bix rx (T)) to consider both line-of-sight (LoS)
and none-line-of-sight (NLoS) links. According to the well
known International Telecommunication Union (ITU) model
[32] [33], the probability of having a LoS link between
transmitter tx and receiver rx is given by

PrloS (Bixex (T))

cq
= H l—exp| —
j=0

2

ca+1
(Vaea)” ’

. _ 2
|:Htx(T)_ (.7+0-5)(HtX(T) er(T)):|

where {cj, o, c3} are environment-dependent parameters and

% vz 1J. The probability of having a NLoS

link between transmitter tx and receiver rx is given by

PrYS (B (7)) = 1= Pr5 (B (7). ()

Then, the general path loss model & (Bix,,x (T')) is given by

-7

LoS
ALOSth,rX(T)a L
ANLOSﬁt . (T*)OéNLUS

with prob. (2),

4
with prob. (3). @

£(ﬂtX,rx (T)) = {
Let AYS and AN°S denote the reference path loss for LoS
and NLoS links, and o™ and aN°5 denote the path loss
exponent for LoS and NLoS links, respectively. Furthermore,
Nakagami-m small-scale fading is adopted in our model. Let

h{ +x (T') denote the small-scale fading gain on subchannel
n between transmitter tx and receiver rx at time frame 7T,
and the cumulative distribution function of hg, ,, (T') can be
obtained as
A
F(2) 2 Pr [ (T) < 2]
Mex,rx j
2 (M rx®)” &)
=1- Z % exp (7mtx,rxz) )
j=0

where My, 1S the fading parameter. Taking into account both
the large-scale and small-scale fading, the channel fading gain
is thus given by

gtn}l(,rx (T) = [g(ﬁtxmx (T))]_l h‘ggrx (T) . (6)

Consider that a typical UE w« is associated with a typical
BS b. Let P, and P, denote the transmit power of BS b and
UE u, respectively. Consider a DL receiver UE u is receiving
information from BS b on subchannel n. UE u may suffer
from the BS-to-UE interference from the set of DL cells
B™PL (#)\b and UE-to-UE interference from the set of UL
cells B™UL (¢) in subframe ¢, where the total interference
power received at UE u is given by

Z Z (blr)b’,u’ (T) Pb'gl?’,u (T)
b’ € B DL (£)\b v/ 4’

+ > Y Gy (T) Pugl  (T).

b’ eB™ UL (t) w eyt’

)

Note that, though we assume the channel fading gains remain
unchanged during a time frame 7', the set of interfering
cells can be different across different subframes ¢ due to the
dynamic time and frequency allocation. Therefore, the signal
to interference plus noise ratio (SINR) at the DL receiver UE
u in subframe ¢ on subchannel n is given by

Py, (T)

N ACERA ®)

SINRy ,, (t)
where N is the variance of white Gaussian noise. Consider
that data transmission between any pair of transmitter tx and
receiver rx is successful only if the received SINR is no less
than a pre-defined threshold .. The DL achievable rate at
UE wu is expressed as

Z)L,u (t) =1 (SINRg,u (t) > §u) TWIOgQ (1 + §u) ) (9)



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

where 1 (-) is the indicator function that takes the value of
1 if the event happens and the value of O if not. Here, the
achievable rate is measured in bits per subframe. As the UE
can operate on multiple subchannels, the total DL achievable
rate Ry, (t) for UE w is given by

Rb»“ (t) = Z d)gu (T) g,u (t)

neN

(10)

Next, we discuss the UL achievable rate at a typical BS b.
Consider a UL receiver BS b that is operating on subchannel
n may receive the co-channel interference from adjacent DL
and UL cells, i.e., the BS-to-BS interference from the set of
DL cells B™PL (¢) and UE-to-BS interference from the set of
UL cells BYL () \b in subframe ¢, which is expressed as

S 6 (1) Pugp, (D)

b’ €Bn,DL (t) w cud’

Iy () =

an
+ Z Z Gy (T) Pur gy g, (T).

b/eBn,UL(t)\b u/eub/

The SINR and achievable rate at the UL receiver BS b are
respectively given by

SINR™, (1) = — “Iur (D) (12)
WO () + NoW
and
vy (1) =1 (SINR] , (t) > ) TWlogy (1 + ). (13)

Therefore, for UE u, the total UL achievable rate R, ; () is
given by
Rup(t) =D dluy (T) Ry (1): (14)
neN

Each UE u maintains a local UL queue and a DL queue
at the BS side. At the beginning of time frame 7' (before
the data transmission), let QP*(T') and QU™(T') respectively
denote the DL and UL queue lengths of UE u, which are the
sizes of the remaining packets in the DL and UL buffers.

For UE wu in time frame 7', the amount of DL received
packets at UE v during f°(T) successive DL subframes is
defined as

TF+f°(T)

Z Rb,u (t)

t=TF+1

$PY(T) = min { QR* (7)),

u

15)

where 1D (T') cannot exceed the amount of packets in the
current DL queue QP (7). Similarly, the amount of UL
received packets at BS b from UE w during the remaining
F — f%(T) subframes is given by

(T+1)F

>

t=TF+1+f5(T)

YV (T) = min { QU (T), Ry (t) ¢, (16)

where UL (T') cannot exceed the amount of packets in the
current UL queue QU (7).

For any UE u, we consider that UL and DL packets arrive
at the end of each time frame 7'. Consider that the sizes of
UL packets DY (T') and DL packets D2 (T') follow Poisson
processes of P (AYY) and P (ADY), respectively, where A}™

and AP are the average UL and DL packet sizes of UE u,
respectively.

Therefore, we can deduce that the DL queue length for UE
u at the beginning of time frame 7"+ 1 evolves as

QYN (T +1) = QY% (T) — ¢R% (T) + DRV (T),  (17)

where DL buffer at the BS is assumed to be sufficiently large.
Similarly, the UL queue length for UE u evolves as

Qut (T +1)
= min {Qu, QU (T) — v (1) + DY (1)}

u Y u u

(18)

where Qﬁax is UL data buffer size at UE u. Once the UL
queue length exceeds the buffer size leaX, the newly arrived
packets will be dropped.

To characterize the reliability of UL transmission, we denote
d, (T') as the dropping ratio of UE u estimated at the end of
time frame 7', which is the ratio of total dropped data to total
arrived data over the most recent 7' — I time frames, i.e.,

S UL (1) 4 QUE (T 1) — QUE (D 1 1)
_I=Tt1

, (19)

d, (T)=1 -
> Dt ()

1=I'+1

where I' = max[0,7 — A], and A is the window size that

removes the effect of the earlier history.

We consider that each BS can offer E different types
of slices, where each slice provides a customized service
for the UEs with similar QoS requirements. Taking slice
e € {1,---, E} as an example, the set of UEs accessing slice
e is defined as /¢, and the maximum tolerable dropping ratio
for each UE in this slice is d2'®*. The packet dropping ratio
constraint is given by

dy (T) < ™. (20)

Our target is to joint optimize the subframe and subchannel
allocation for maximizing the long-term sum rate under the
UEs’ packet dropping ratio constraints, i.e.,

v U
S5 R+ @)

{85, (T),¢7 (), fo(T) W NT } 70 " =1
s.t. dy (T) < d™ Yu, VT,

where W is the total number of time frames.

III. DECENTRALIZED PARTIALLY OBSERVABLE MDP FOR
D-TFDD NETWORKS

All the BSs coordinate to control the inter-cell interference
and serve UEs in a decentralized way. Each BS independently
makes the resource allocation decisions based on its local ob-
servations, with the aim of maximizing the long-term expected
sum rate while satisfying the local QoS requirements of its
serving UEs. We model this cooperative multi-agent task as a
Dec-POMDP.

State: Denote the joint state space of all BSs by S = @S5?,
Vb € B, with ® as the Cartesian product, where Sb is the set
of states of BS b. Considering that each BS only has partial
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observations of the network due to privacy issues. We denote
the state of BS b by

S (1) = { QU (1), Q2 (1) [w e u'}.

which includes the current UL and DL queue lengths of all
UEs served by this BS. The joint state of the network is
denoted by s (T) = ®s’ (T) € S.

Action: Denote the action space of BS b by .A® and the joint
action space of all BSs by A = @A°, Vb € B. Let a® (T) €
A® represent the action of BS b in time frame 7. Each BS’s
action is to decide the number of DL subframes f° (T'), the DL
subchannel allocation ¢, (7') and UL subchannel allocation

o7, (1), ie.,
a (1) = { (/" (1), {61 (1)},
{on, (T)}nEN) ‘ u € Z/{b} :

Remark 1: We derive the size of action space for BS b as
follows. Take the UL subchannel allocation for BS b as an
example. Let J denote the number of UEs that are allocated
with at least one UL subchannels in this cell and 7; denote
the non-zero number of UL subchannels allocated to the j-th
UE in this UE set. For each time frame, the UL subchannel
allocation action has Num""™ number of possible choices, i.e.,

(22)

(23)

[UP| N—J+1 N—J+2—m

Num"" = NumPt = Z Z Z

J=0 m=1 n2=1
i 24)
N=32520m
CJ . ooz e B
ns=1 ’

which is related to the total number of subchannels N and UEs
U®| served by BS b. First, BS b selects J € {0,---,|U°|}
out of [U°| UEs for subchannel assignment, which has C’l‘Z’/{b|
number of choices. Then, BS b sequentially assigns the sub-
channels to these J UEs, where the j-th UE can select from the
remaining N — Z;;ll 7+ subchannels and has C]Ty_zj,l -
number of choices. We further denote the number of pg)gslibie
choices of DL subchannel allocation action by Num"" and
can easily deduce that NumPY = Num"Y. Moreover, for each
time frame, since the BS allocates the first f° (T') successive
subframes for DL transmission, the subframe configuration
action has F' + 1 number of possible choices. Therefore, the
size of the action space |Ab’ is given by

|A®] = Num"" x Num®" x (F +1), (25)

which increases rapidly with the number of subchannel NV, the
number of UE || and the number of subframe F.!

Define policy of BS b as a function mapping from the state
space to action space, which is expressed as a conditional
probability density function of

b (ab (T) !sb (T))

=Pr (A" (T) =a"(T)|S"(T) =s"(T)), (26)

'For example, when N = 5, [U’| = 3 and F = 10, we have ‘.Ab| =
11534336.

where S° (T') and A’ (T') denote the state and action of BS b
in time frame 7' that have not yet been observed or taken, and
s®(T) and a® (T') represent the observed state and executed
action, respectively. We denote the policy profile of the BSs
by ™= [’/Tl,...,’/TB}.

Transition probability: The joint action a (T') = ®a® (T) €
A causes the state transition of all BSs in time frame 7". The
transition probability p of the entire network environment that
moves from state s (7") to state s(7 + 1) after taking joint
action a (7) is assumed to be unknown by the BSs.

Reward: Bach BS receives an immediate reward r°(T') when
action a®(T') is executed in state s*(7), i.e.,

ATy = 30 [P () + e (T) 1 (T) > ™) ], (27
ueU®
where 1P (T') is the DL rate given in (15), ¥U% (T') is the UL
rate given in (16), and w is a positive constant that penalizes
the violation of the QoS requirements. We assume that each
BS can only observe its own reward as the reward is private
information.

Due to the correlated queue dynamics and inter-cell inter-
ference, action a’ (T) affects not only the achievable rate and
dropping ratio of BS b, but also that of other BSs in the
subsequent time frames. We characterize the long-term sum-
reward of all BSs in the cooperative system by V (T), i.e.,

v B
VD) =303 AT,

=T b=1

(28)

where «y € [0,1] is the discount factor that reflects the effect
of future rewards.

Based on the above discussions, we define Dec-POMDP as
a five-tuple of ({Sb}bes, {A"} i 0 {r Y ens 'y). However,
it is difficult to know the exact value of V (T'), due to the
randomness of future states and actions. More specifically, the
future states depend on the transition probability p, and the
future actions depend on the joint policy 7. Given joint action
A (T) =a(T) is taken at joint state S (T') = s (T'), we define
the conditional expectation of the long-term sum-reward of all
BSs under joint policy 7 as

Q" (s(T),a(l)) = (29)
Esry1),ar+1),.. [V (T)IS(T) =s(T),A(T) =a(T)],

which is also defined as the state-action value function. The
objective of the BSs is to find the optimal joint policy 7* =
[771*, ...,7mB *] that maximizes the state-action value function
in (29), i.e.,

7" =argmax Q™ (s(T),a(T)),vs(T),va(T). (30)
IV. FEDERATED REINFORCEMENT LEARNING BASED
RESOURCE ALLOCATION ALGORITHM

To solve the above resource allocation problem, there are
two challenges to be addressed. The first challenge is to
handle the large-scale discrete action space. As shown in
Remark 1, the dimensionality of action space for BS b is
high when the numbers of subchannels, subframes and UEs
are large. The conventional value-based reinforcement learning
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algorithms, e.g., deep Q network, may suffer from a long
training convergence time and is even not tractable due to
the curse of dimensionality. The policy-based algorithms, e.g.,
DDPG, can deal with continuous action space and achieve
good convergence [34] [35]. To deal with the dimensionality
of the large-scale discrete action space, we first adopt a
DDPG-based algorithm to generate actions for each BS in the
continuous action space, and then discretize the actions based
on Wolpertinger policy [36] to reduce the action mapping
errors. Moreover, the second challenge is to jointly optimize
the sum-reward in a decentralized manner. The conventional
MARL algorithms with centralized training, i.e., MADDPG
[37], suffer from the threats of privacy leakage since each BS
is required to upload its local private information (e.g., states,
actions and rewards) to the centralized controller for joint
model training. To jointly optimize training among BSs, we
propose a federated reinforcement learning algorithm named
FWDDPG, where each BS performs local model training in
a decentralized manner and updates the local model param-
eters by aggregating the parameters received from its one-
hop neighbors. The architecture of our proposed algorithm
is shown in Fig. 2 and the details will be described in the
following subsections.

= model u- model :
Sagremtion’ eighory = smgremation:cighbors
model model
agrizefstedlj local model aglir:f:ltedl T local model

Fig. 2: The architecture of the proposed FWDDPG algorithm.

A. Action Generation Based on Wolpertinger Policy

We adopt an actor-critic based algorithm with a determinis-
tic policy, i.e., DDPG, to deal with the high dimensional action
space, where the policy maps from state to a deterministic
action instead of a probability distribution over the actions.
However, the actions generated by the deterministic policy
are continuous and may not be within the action space of A°.
To solve this problem, we further discretize the output of the
actor network and adopt the Wolpertinger policy for mapping
error reduction, which can be divided into two phases: action
generation and action refinement.

Action generation: Given state s’ (T), the actor network of
BS b generates a proto-action a’(T") based on deterministic

policy fi, i.e.,

a’(T) = p (s (T);6"(T)),
where 0 (T') is the neural network parameter to approximate
policy i of BS b. However, a° (T') is continuous and may not

be a valid action in the discrete action set A°. Therefore, we
map a° (T') to the elements of Ab e,

&1V

=4p (&% (1)) = argkmin |a® (1) — &° (T
ab(T)eAb

Ay (T) My 32)
where 67 (a” (T')) is the k-nearest-neighbor (k-NN) mapping
function to return the k actions in A® that are closest to a° (T')
by Euclidean distance.

Action refinement: We select the best action out of k£ candi-
date actions generated by (32). The parameterized state-action
value function of BS b is defined as Q (s* (T),a" (T); w® (T)),
where w’ (T') is the critic neural network parameter. To avoid
picking an action with a low Q-value, we adopt Wolpertinger
policy, i.e.,

u (s (1) 6" (T) " (1)
= argmax Q (s"(7),a" (T);w’ (1))
ab(T)e A (T)

=a’(T) (33)

to refine the output of the critic network by selecting the
action with the highest Q-value among the k-NN actions. The
Wolpertinger policy’s algorithm is given in Algorithm 1.

Algorithm 1 Wolpertinger Policy for BS b

1: Observe state s’ (T') from environment.

2: Receive proto-action within continuous action space based
on the actor network: a (T) = i (s (T) ;6° (T')).

3: Retrieve a set of k approximately closest actions to a° (7'):
AL(T) = o (3 (T)).

4: Compute the action with the highest Q-value: a® (T) =
(" (T) ;6" (T) ,wb ().

Remark 2: Note that the size k of the generated action set
is task specific. There is a tradeoff between policy quality and
computational cost. The policy quality can be evaluated by
the difference between the highest Q-value achieved over all
possible actions and the expected highest Q-value achieved by
these k closest actions [36]. It can be deduced that the policy
quality increases with k. Moreover, the additional computa-
tional complexity for Wolpertinger policy grows linearly with
k, where the details will be discussed in Remark 3 in the next
subsection.

B. The Local WDDPG Policy Training

In this subsection, we will discuss the training process
of the actor and critic networks for WDDPG algorithm. We
consider the model-free scenario with no prior distribution of
the network environment, and adopt the conventional random
strategies for initialization, i.e., randomly initialize critic and
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actor networks with parameters w® (0) and 6° (0), Vb € B,
respectively.

In our proposed algorithm, we adopt off-policy, which in-
volves two different policies of behavioral and target policies.
We adopt Wolpertinger policy with Ornstein Uhlenbeck (OU)
noise as the behavioral policy to encourage exploration, and
use Wolpertinger policy without noise as the target policy. The
learning data generated by behavioral policy is defined as a 4-
element tuple (s’ (T'),a’ (T),r* (T),s® (T + 1)) and is stored
in the replay buffer (RB). The target policy uses the samples
stored in the RB to update itself. With the experience replay
and target networks, we next introduce the actor and critic
network training processes.

Actor network training: We define the target function
of the actor network as the expectation of the param-
eterized state-action value function, ie., J g)&b (T)) =
Esviry [Q (S ()t (S* (T): 6 (T),w? (T)) 5 (T)) |. The
expectation is taken over all possible values of unobserved
state S® (T') in time frame 7' to remove the state randomness.
To approximate the expectation over S’ (T'), we take a mini-
batch of [ transitions from RB, where the i-th transition is
denoted by (s (i),a’ (i),7" (i),s" (i + 1)). We aim to find
the optimal ¢°(T') that maximizes J (° (7)) by adopting
a deterministic policy gradient method, where the gradient
Vo J (0° (T)) can be derived in (34) at the bottom of this
page. However, as the action a® (i) = p (s® (¢) ; 6 (i), w® (T'))
executed by BS b is discrete, the parameter 6° (T) of the
actor network can not be directly updated via deterministic
policy gradient method. Therefore, we use the continuous
proto-action a° (i) = f (s”(i); 6" (T)) instead to derive the
gradient of Vg J (8° (T)) as given by (35). Accordingly, the
parameter #° (T + 1) is updated by

0" (T +1) « 6°(T) + BV J (6" (T)), (36)

where (Y is the learning rate of actor network.

Critic network training: We adopt temporal-difference
(TD) learning to update w®(T). With the transition
(s’ (i),ab(i),r" (i),s* (i +1)) sampled from RB, the
estimated value called TD target is given by r°(i) +
YQ (s (i + 1), pu(s® (i +1);0°(T),w’ (T));w®(T)) and
the output of the current critic network can be given by

Q (s’ (i) ,a’ (i) ;w” (T)). Note that bootstrapping occurs
if we use the current critic network parameter w®(T") for
both the TD calculation and updating, which may cause
a non-uniform overestimation of the optimal state-action
value function. To avoid the bootstrapping and reduce the
overestimation, we introduce the target actor and critic
networks that are copied from the original actor and critic
networks. Accordingly, the parameterized state-action value
function of the target critic network of BS b is denoted by
8, (sb (i+1), (sb (i+1);6°(T), @b (T)) e (T)), where
i (s (i+1)50" (1), (1))
policy, and 6°(T) and &°(T) respectively denote the
parameters of the target actor and critic networks. The TD
target with respect to the target networks is given by r° (i) +
e, (sb (i+1),ji (sb (i+1);6°(T), @b (T)) Lo (T)). The
loss function and its gradient are given by (37) and (38),
respectively. The parameter w® (T + 1) can be updated by

is the target Wolpertinger

W (T + 1) W (T) + BV, Loss (w* (1)),  (39)

where Bb is the learning rate of the critic network. Moreover,
the target critic and actor networks are updated every step with
a small step size to confirm soft updating, i.e.,

(T +1) s (T+1)+(1—r)&(T)  (40)

and

O (T +1) « w0 (T+1)+(1—r)0°(T), (41)

where « is the update step size.

Remark 3: The computational complexity of WDDPG
primarily depends on the actor and critic network architectures.
Let H, and H. denote the total numbers of hidden layers
of actor and critic networks. The h-th hidden layer for actor
network and critic network involves (,; and (; numbers
of neurons, respectively. Recall that |I/°| denotes the number
of UEs served by BS 0. For the actor network, the number
of neurons in the input layer depends on the dimension of
the state, and the number of neurons in the output layer
depends on the dimension of the action. Since the state of BS
b is defined as the current UL and DL queue lengths of its
serving UEs, there are 2|U/°| neurons in the input layer. And

Vend (0°(T)) = %Z Ve Q (s (i)

Vord (6°(1) ~ 73 (Vorit (s 2):6° (T) Var@ (s (1), & (i) 5" (T)

(2

Loss (" (T)) = iz [Q (s* (i), a® (i) ;" (T)) = * (i) — 7 Q (sb (i+1), i (sb (i +1):0°(T),&" (T)) i (T))} .

21

(87 (0) 56" (T), 0" (T)) ;" (T)). (34)
& (i) =p(s"(8);0°(1)))). (39
e
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there are 3 neurons in the output layer corresponding to the
three types of actions i.e., the number of DL subframe, DL
and UL subchannel allocations. Accordingly, the number of
weights in the input layer, the h-th (2 < h < H, — 1) hidden
layer and the last hidden layer can be computed as 2|U4°|(, 1,
Ca,h—1Ca,n and 3, H,, respectively. For the critic network,
the number of neurons in the input layer is the dimension of
the state and action, i.e., 2|4®| + 3, and there is 1 neuron in
the output layer. Then the numbers of weights in the input
layer, the h-th (2 < h < H. — 1) hidden layer and the last
hidden layer can be computed as (2U°| 4 3) Co.15 Con—1Con
and (¢ g, respectively. The computational complexity
of BS b in backward propagation training is given by

O (LBP [2|ub‘Ca,1 + Zfi Ca,h—lCa,h + 3<a,Ha + (2|ub| + 3)

XCe,1 + Zf“ Ceh—1Ce,n + CC,HC} ), where (B denotes the
computational complexity for training a single weight in
backward propagation. The computational complexity for
training a single weight in forward propagation is similar to
that in backward propagation. Here, we focus on the additional
computational complexity caused by the Wolpertinger
policy in forward propagation training, which is given
by O (APk [(2U]+3) G + S5 GonrGen + o] ),

where (*F is the computational complexity of training a

single weight in forward propagation.

C. Global Policy Training with Federated Learning

Our objective is to find the optimal joint policy 7* that
maximizes the global state-action value function in (30). The
challenge is to maximize social welfare in a decentralized
manner with local observations. If each BS independently
adopts WDDPG algorithm, there is no communication over-
head, but it suffers from low cooperation efficiency and can
only adapt its resource allocation to the local traffic instead
of the network. Due to the lack of global state information,
it is difficult for the BSs to mitigate inter-cell interference

—'I Replay Buffer I

among themselves. In order to alleviate inter-cell interference,
it is necessary for the BSs to share local information with
each other for joint model training. Although some conven-
tional algorithms, e.g., MADDPG, can jointly train the critic
networks at the centralized controller, each BS is required to
upload its local states, actions, and rewards to the controller,
which may cause privacy leakage issues and introduce high
communication overhead. To protect privacy of the agents, we
adopt a decentralized FL framework for joint model training
among the BSs [38] [39], where each BS exchanges the local
critic network parameters with its one-hop neighbors every
¢ time frame. This enables the decentralized BSs to update
their local critic network parameters to improve the global
resource allocation efficiency with relatively low communica-
tion overhead. Note that our proposed scheme can indirectly
exchange parameter information with multi-hop neighbors due
to the propagation effect across multiple rounds of parameter
update.

We consider the D-TFDD network topology as a undirected
graph model G = (B, ), where B is the set of BS nodes
and o represents the set of edges. An edge (b,b’) € o means
that BS &' is the one-hop neighbor of BS b. Let YT
{be B: (bV) € p} be the set of one-hop neighbors of BS b,
where | Y?| and | T? | are the numbers of neighbors of BS b and
b, respectively. Due to the differences in training capabilities
and network connections of each neighboring BS ¥/, it is wise
for BS b to weight the model parameters received from its
one-hop neighbors differently according to their influences. We
denote the weighting matrix by Z = [z ] 5, . Where 2
weights the parameter sent from BS b’ to BS b. By adopting
Metropolis weights [40] in our model, we have

1 /
| T VG 0
b = — Sz, b=V, VbeB “)
b”ETb(T)

For every ¢ time frames, each BS exchanges parameter

L]

Loss Function

v ;
(T'+1

. eIty Target Network

Main Network [ . -

s l ...................... Target Actor| update @ | 6° (T + 1) «+
= E ; . . | Network b b
= Actor LML poiicy Gradien| | et b |0 D+ -ni D)
+ Network b : : ~ :
= : (e m)
Qm ¢ : ~b
) P(T+1

s » Target Critic e update “ b( +1) « »
< Network b kw’ (T+1) + (1 = k)@’ (T)
=
&
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&
)

Environment
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Fig. 3: The framework of the proposed FWDDPG algorithm.
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Algorithm 2 FWDDPG Based Resource Allocation Algorithm

1: Randomly initialize critic and actor networks with param-
eters w” (0) and 6° (0), Vb € B.

2: Initialize target critic and actor networks @’ (0) +— w® (0),
6° (0) < 6°(0), Vb € B.

3: Initialize the k-NN mapping function 5,2 using elements
of A*, Vb € B.

4: Initialize RB.

5. Initialize the number of subchannels N, the number of
subframes F', the number of BSs B and the number of
UEs || served by BS b.

6: for Epoch =1,2,... do

7. Initialize the global state s (0).

8

9

for T=0,1,2,... do
for b=1to B do
10: Observe local state s (7).
11: Generate local action based on the Wolpertinger
policy: a’ (T') = pu (s (T) ;6 (T) ,w® (T)).
12: end for

13: Execute joint action a (T) = (a' (T),...,a" (T)).

14: for b=1to B do

15: Observe reward r? (T') and new state s® (T + 1).

16: Store transition (s® (T') ,a® (T),r* (T),s* (T + 1))
in RB.

17: Randomly sample a minibatch of [ transitions
from RB.

18: Update the critic by minimizing the loss in (37),
then update &° (T') + w’ (7).

19: Update the actor using the sampled gradient ac-
cording to (35), then update 6° (T + 1) < 6° (T).

20: Update critic network according to (44).

21: Update the target networks:

W (T +1) + kb (T +1) + (1 — x) @ (T),
0" (T + 1) « w0° (T + 1) + (1 — k) 6° (T).
22: end for
23:  end for
24: end for

@b (T) with its one-hop neighbors for global model training,
where & (T) = w®(T) + BV Loss (w® (T)). And then,
each BS b aggregates the received parameters i (T) from
its one-hop neighbors based on the Metropolis weights and
updates the parameter of the critic network in time frame 7+1.
For the rest of the time frames, BS b directly uses its local
parameter & (T') to update its critic network. Therefore, the
parameter update of the critic network can be expressed as

B /
w? (T + 1) — Z Zb7b/(.:)b (T), if T%¢ = 0,
/=1

b (44)
W (T + 1) « & (T),

otherwise.

We summarize the proposed FWDDPG algorithm in Algo-
rithm 2 and Fig. 3.

Remark 4: The computational complexity of the peer-to-
peer FL architecture depends on the aggregation of critic net-
work parameters from one-hop neighbors. For BS b, the critic
network parameters of itself and its one-hop neighbors need to
be multiplied by their respective weights and then added as the

new critic network parameters for global training. We therefore
can deduce that the computational complexity of the peer-
to-peer FL architecture is O (h Zle (2] (T)| + 1)]),
where h is the number of rounds for global training, and
the number of additions and multiplications are |Y® (7")| and
| TP (T')| + 1 for BS b, respectively.

V. SIMULATION RESULTS AND DISCUSSIONS

For simulations, we consider a D-TFDD network covers a
square area of 3 km x3 km. Without loss of generality, we
consider ten BSs with the height of 10 m serves 30 active
UEs (including GUEs and UAVs), where each BS serves three
UE:s in its serving area with 5 subchannels and 10 subframes.
The transmit power of BSs and UEs are 24 dBm and 23
dBm, respectively. The noise power at BSs, GUEs and UAVs
are —91 dBm, —95 dBm and —99 dBm, respectively [21]
[41]. As for the channel modeling, we set the ITU model
factors {c1, c2,c3} as {0.3,500,20} and the fading parameter
Mix,x = 1 according to [32]. The parameters of the path
loss model are listed in Table I according to [21] and [32].
The SINR threshold of UEs and BSs are set as 0 dB and
—3 dB, respectively, and the bandwidth of each subchannel
is 10 MHz. The duration of each subframe is 1 ms. In the
following discussions, we assume GUEs and UAVs are with
slice types 1 and 2, respectively. Unless otherwise specified,
the slice model parameters are given as follows. The maximum
dropping ratio for GUEs and UAVs are set as d"** = 0.3 and
d5'®* = 0.1, respectively. The average UL and DL packet sizes
for GUEs are A\J" = 150 KB and A\P™ = 200 KB, and those
for UAVs are AY = 50 KB and AP = 80 KB, respectively.
The buffer sizes for GUEs and UAVs are ernax = 250 KB
and Qrznax = 150 KB, respectively.

TABLE I: The parameters of path loss model

Parameters Values
BS-to-GUE AT =34.02 dB, ol = 2.2,
path loss factor ANL = 19,56 dB, oML = 3.9.
BS-to-UAV Al =34.02 dB, ANT = 20.96 dB,
path loss factor | o = 2.2, oNI = 4.6 — 0.7log; o Hy, (T).
BS-to-BS Al =38.4 dB, ol = 2,
path loss factor ANL — 49 36 dB, oNV = 4.
UAV-to-UAV AL =34.02 dB, ANT = 20.96 dB,
path loss factor | o = 2.2, oNl = 4.6 — 0.7logy o Hy, (T).
GUE-to-GUE Al =384 dB, oF =2,
path loss factor ANL — 49 36 dB, oNV = 4.

The total number of training epochs is 1000 and the number
of steps for each epoch is 300. We adopt two hidden layers for
both actor and critic networks, where the first hidden layer has
60 neurons and the second hidden layer has 50 neurons. We
train the neural networks by Adam optimizer, where we set
the learning rates for the actor and critic networks as 0.0001
and 0.001, respectively. For each time frame, a mini-batch of
300 experiences are randomly sampled every time from RB
that is capable of storing 1000000 past experiences. We update
the target critic or actor network by step size 7 = 0.001. We
set the discount factor v = 0.99. Unless otherwise specified,
we adopt k£ = 120 as the default size of the actions generated
by Wolpertinger policy.
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Fig. 4: Long-term expected sum-reward of all BSs for different
types of TDD schemes.

In Fig. 4, we plot the long-term expected sum-reward of
the BSs over 1000 training epochs. By adopting the proposed
FWDDPG algorithm, we compare our D-TFDD scheme with
other benchmark TDD schemes, i.e., S-TFDD, myopic D-
TFDD and D-TDD. For our proposed D-TFDD scheme, both
the subframe and subchannel allocations are adaptive to the
UEs’ dynamic traffic demands, aiming to maximize the long-
term expected sum-reward of all BSs. For static-TFDD (S-
TFDD) scheme, all the BSs adopt the same subframe and
subchannel configurations, which are pre-defined and non-
adaptive throughout time. For myopic D-TFDD scheme, the
subframe and subchannel configurations are adaptive to the
UEs’ dynamic demands in the current time frame only without
considering the future rewards. For D-TDD scheme, only
the subframe configuration is adaptive to the dynamic traffic
demands, aiming at maximizing the long-term expected sum-
reward of all BSs, while the subchannel allocation is pre-
determined and does not change across time. In Fig. 4, the
performance of S-TFDD scheme does not change much over
time and is worse than the dynamic schemes since it is not
adaptive to the dynamic UE demands. We notice that there are
slight jitters along the curve, which is due to the randomness of
the channel gains and packet arrivals, although these effects are
almost averaged out over the long-term accumulation. We also
see that our proposed D-TFDD scheme outperforms all other
benchmark schemes. It has better performance than myopic
D-TFDD scheme since it considers not only the short-term
but also the long-term sum-reward. Furthermore, it takes into
account both the dynamic subframe and subchannel allocations
and is therefore better than D-TDD scheme.

Fig. 5 depicts the long-term expected sum-reward of the
proposed FWDDPG algorithm and compares it with two
benchmark algorithms, i.e., MADDPG [37] and IDDPG. For
MADDPG algorithm, the centralized training and decentral-
ized execution framework is adopted, where the BSs upload
the local states, actions and rewards to the centralized con-
troller to jointly train the critic network to maximize the
long-term expected sum-reward of all BSs in the network.
For IDDPG algorithm, each BS trains its DDPG algorithm

1e6

S
= W

—k— FWDDPG, k=120

rm expected sum-reward
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Fig. 5: Long-term expected sum-reward of all BSs for D-
TFDD scheme under different MARL algorithms.

with local states in a non-cooperative manner, aiming to
maximize its local long-term expected reward [25] [26]. In
Fig. 5, we see that the sum-reward increases with the num-
ber of training epochs, which means all the algorithms can
learn from interacting with the environment. Moreover, we
see that IDDPG algorithm performs the worst among the
three algorithms since the BSs are not cooperative. Next, we
compare the performance of the proposed FWDDPG algorithm
with MADDPG algorithm. First, we observe that MADDPG
algorithm outperforms FWDDPG algorithm with & = 1.
This is because MADDPG jointly trains the critic networks
with the centralized controller, which is more efficient than
the decentralized approaches. For £k = 1, only the discrete
action that is closest to the continuous action is selected for
execution, where the proposed algorithm is equivalent to that
without Wolpertinger policy. However, this disadvantage can
be compensated by adjusting the coefficient £ in the proposed
FWDDPG algorithm. For example, for £ = 120, we see
that the performance of FWDDPG algorithm exceeds that of
MADDPG algorithm. Intuitively, this is because a larger k can
help include more candidates of valid actions, which increases
the chance of selecting a better policy with a higher Q-value,
though it may be at the cost of slower convergence speed.

In Fig. 6, we plot the QoS satisfaction probability (the prob-
ability that the packet dropping ratio constraint is satisfied)
in the D-TFDD network against the Wolpertinger coefficient
k. On the one hand, we can see that the QoS satisfaction
probability increases with k. This is because the policy quality
improves as k increases, which is consistent with Remark 2.
On the other hand, the computational complexity of WDDPG
algorithm increases linearly with k according to Remark 3. We
therefore can deduce that there exists an optimal value of &
that balances the policy quality and computational complexity.
Furthermore, we observe that the QoS satisfaction probability
is increased by introducing the sliding window in (19). If no
sliding window is adopted, the premature experiences from the
very first time frame will be included in the dropping ratio,
which therefore reduces the QoS satisfaction probability. By
using the sliding window, we can remove the effects of earlier
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Fig. 6: QoS satisfaction probability in the D-TFDD network
versus various Wolpertinger coefficients k.

history and thus improve the system performance.
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Fig. 7: QoS satisfaction probability versus various window
sizes A.

Furthermore, Fig. 7 shows the influence of window size
A on the QoS satisfaction probability. We can see that the
QoS satisfaction probability first increases and then decreases
with the window size. When the window size is small, it
means that only the latest samples are taken into the estimation
of dropping ratio. The small number of samples leads to
inaccurate representation of rewards, resulting in a low QoS
satisfaction probability. When the window size increases,
the increasing number of samples enhances the estimation
accuracy of the dropping ratio and thus improves the QoS
satisfaction probability. As window size further increases,
more samples from the early history are included, which
reduces QoS satisfaction probability.

Fig. 8 plots the influence of the average packet size and
QoS constraint (i.e., maximum tolerable dropping ratio) on
the long-term expected sum-reward of all BSs in the D-
TFDD network. When the QoS constraint is not tight (e.g.,
dra* = {0.30,0.35}, d3** = {0.10,0.12}), the sum-reward
first increases and then decreases with the average packet
size. As the average packet size increases, the sum-reward
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Fig. 8: Long-term expected sum-reward of all BSs versus
various average UL packet sizes (\PY = AYY + 50 KB,
ADL = A\VL — 70 KB, AYL = AVL — 100 KB).

first increases owning to the improvement in the sum rate.
However, with the further increase of the average packet size,
the sum-reward decreases due to the violation of the QoS
constraints. Furthermore, when the QoS constraint is tight,
the sum-reward decreases directly with the average packet size
because the QoS requirement is not met.
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Fig. 9: The ratio of average subchannels allocated to GUEs
and UAVs (A\YL = 50 KB, d3*®* = 0.1).

In Fig. 9 and Fig. 10, we discuss the optimal policy for
subchannel and subframe allocations. Without loss of general-
ity, we consider a network composed of two BSs as a special
case, where each BS allocates 5 subframes and 4 subchannels
between two UEs. In Fig. 9, we study the effect of maximum
tolerable dropping ratio and average packet arrival rate on
the UL subchannel allocation policy, where the results can
be extended to DL subchannel allocation. Next, we increase
d2* and AT to see the impact on the subchannel allocation
ratio. On the one hand, when the average packet arrival rate
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AVL s relatively small (e.g., AYY < 150 KB), the number
of subchannels allocated to GUE increases with AYL. In this
case, the QoS constraint of GUE is easily satisfied and thus
the BS allocates more bandwidth resources to GUE to increase
its rate. On the other hand, when d*®* is relatively tight and
AVl is relatively large (e.g., d® = {0.1,0.2}, A\J* > 150
KB; d"®* = 0.4, A" > 200 KB), the number of subchannels
allocated to GUE decreases with AU In this case, it is difficult
to satisfy the QoS constraint of GUE with heavy traffic load,
thus the BS allocates more subchannels to UAV that has
lighter data traffic. From the above discussions, we can see
that the subchannel allocation needs to balance throughput and
QoS constraints. When the bandwidth resources are sufficient,
the BS prefers to allocate more sunchannels to the UEs
with heavier data traffic loads for throughput enhancement.
Otherwise, it allocates fewer subchannels to those UEs whose
QoS constraints are difficult to satisfy.
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Fig. 10: The ratio of average UL subframes allocated to BS
1 and BS 2 (APY = 200 KB, AV = 50 KB, AP* = 80 KB,
dy'®* =0.1).

In Fig. 10, we further study the impact of the maximum
tolerable dropping ratio and average packet arrival rate on
the subframe allocation policy. To illustrate the asymmetric
data traffic across the cells, we consider BS 1 serves two
GUESs and BS 2 serves two UAVs, respectively. When the QoS
constraint of d{*®* is relatively tight (e.g., di*** = {0.1,0.2}),
the number of UL subframes for BS 1 rapidly increases with
the average UL packet size AY". For a large value of AL, we
can see that the subframe allocation is unbalanced between
the two BSs in order to meet the heavier UL data traffic
demands for GUEs. Moreover, when dj*®* is relatively large
(e.g., d®™ = {0.4,0.5}), two BSs have similar subframe
configurations, which is to reduce inter-cell interference by
controlling the number of unaligned subframes. From the
above discussions, we can see that the subframe configuration
needs to balance local traffic adaptation and inter-cell inter-
ference control. When the resources are sufficient, the BSs
prefer to reduce the number of unaligned subframes for inter-

cell interference control. In a resource-limited regime, each
BS gives more priority to satisfying the local QoS constraints
rather than interference avoidance.

VI. CONCLUSION

In this paper, we proposed a user-centric D-TFDD scheme
that fully utilizes both the time-domain and frequency-domain
resources to meet the heterogeneous UEs’ dynamic traffic
demands while alleviating inter-cell interference. Due to the
limited observation space of the BSs, we formulated the D-
TFDD control problem as a Dec-POMDP that maximizes the
long-term expected sum rate of the network subject to the UEs’
packet dropping ratio constraints. We proposed a federated
reinforcement learning algorithm to solve this problem, where
the BSs decide their local time-frequency configurations based
on WDDPG algorithm and jointly update the global policy by
exchanging the critic network parameters through FL archi-
tecture. Simulation results show that the proposed learning-
based D-TFDD scheme is superior to other benchmark TDD
schemes, and the proposed FWDDPG algorithm outperforms
IDDPG and MADDPG algorithms by choosing the proper
Wolpertinger coefficient. Our simulation results also reveal
that, when the time-frequency resources are sufficient, the BS
allocates more subchannels to the UEs with heavier traffic
demands to improve the local data rate and adopts similar
subframe configurations across the cells to mitigate inter-cell
interference. In addition, in the resource-limited regime, the
BS gives more priority to meeting local QoS constraints than
to avoiding inter-cell interference.
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