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Abstract—Federated learning (FL) has emerged as an instance
of distributed machine learning paradigm that avoids the trans-
mission of data generated on the users’ side. Although data are not
transmitted, edge devices have to deal with limited communication
bandwidths, data heterogeneity, and straggler effects due to the
limited computational resources of users’ devices. A prominent
approach to overcome such difficulties is FedADMM, which is
based on the classical two-operator consensus alternating direction
method of multipliers (ADMM). The common assumption of FL
algorithms, including FedADMM, is that they learn a global model
using data only on the users’ side and not on the edge server.
However, in edge learning, the server is expected to be near the base
station and has often direct access to rich datasets. In this paper,
we argue that it is much more beneficial to leverage the rich data
on the edge server then utilizing only user datasets. Specifically,
we show that the mere application of FL with an additional virtual
user node representing the data on the edge server is inefficient.
We propose FedTOP-ADMM, which generalizes FedADMM and
is based on a three-operator ADMM-type technique that exploits a
smooth cost function on the edge server to learn a global model in
parallel to the edge devices. Our numerical experiments indicate
that FedTOP-ADMM has substantial gain up to 33% in commu-
nication efficiency to reach a desired test accuracy with respect to
FedADMM, including a virtual user on the edge server.

Index Terms—Federated learning, three-operator ADMM,
distributed machine learning, communication efficiency.

I. INTRODUCTION

C ENTRALIZED training of machine learning models be-
comes prohibitive for a large number of users, particularly

if the users — also known as clients or agents or workers — have
to share a large dataset with the central server. Furthermore,
sharing a dataset with the central server may not be feasible
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Fig. 1. Illustration of FL architecture, with the new scenario investigated in
this paper of a dataset available on the edge server.

for some users due to privacy concerns. Therefore, training
algorithms using distributed and decentralized approaches are
preferred. This has led to the concept of federated learning (FL),
which results from the synergy between large-scale distributed
optimization techniques and machine learning. Consequently,
FL has received considerable attention in the last few years since
its introduction in [1], [2].

In the Federated learning (FL) framework — illustrated in
Fig. 1 — a distributed optimization problem, such as prob-
lem (1), is essentially solved considering a central server and
other devices by exchanging the parameters/weights of a consid-
ered model rather than sharing private data among themselves.
The devices desire to achieve a learning model using data from
all the other devices for the training. Instead of sending data from
the devices to the edge server that computes such a model, these
devices execute some local computations and periodically share
only their parameters. Specifically, the FL technique intends
to minimize a finite sum of (usually assumed) differentiable
functions that depend on the data distributions on the various
devices. The common solution to such a minimization involves
an iterative procedure, wherein at each global communication
iteration, the clients transmit their updated local parameters to a
central edge server — illustrated as Step 1© in Fig. 1. The edge
server then updates the global model parameters — shown as
Step 2© in Fig. 1. However, the processing Steps 2a and 2b are
specific to our proposed approach, and leverage the possibility
of using a dataset on the edge server to improve the learning
model. Thereafter, the server broadcasts the updated parameters
or weights to all or the selected nodes—see Step 3© in Fig. 1.
Lastly, the clients update their local parameters using their local
(private) dataset and the received global model parameters from
the central server—Step 4© in Fig. 1—to proceed to the next
iteration.
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Many state-of-the-art FL techniques, such as FedAvg [2]
and FedProx [3] can be seen as an instance of one-operator
proximal splitting techniques [4], i.e., described in (1) with func-
tion g = 0, which considers learning on the users’ side mainly.
Differently from these techniques, we propose to go beyond
and use a three-operator1 proximal splitting technique, such
as our recently proposed three-operator alternating direction
method of multipliers (TOP-ADMM) method [6], to leverage
the possibility of learning on the edge server together with the
traditional learning on the edge devices.

A. Motivation for Learning Model on the Edge Server

In future (6G) cellular networks, machine learning services
will be used both to design the networks and as a service provided
by the networks [7]. We expect to leverage the raw data generated
not only on the users’ side, but also on the edge server’s side
collocated at the base station or/and radio access networks. More
concretely, we foresee scenarios, in which the raw data is avail-
able at the base station because data is generated continuously
at the physical layer and radio in 5G NR and beyond. Thus,
data at the server side together with data on the users’ side,
enable many distributed signal processing applications such as
joint communication and sensing, or edge learning with the
Internet of Things (including edge devices). The optimization
problem for FL considering learning on the edge server and
on the edge devices is naturally described by a sum of three
functions or three operators—see (5). A three-operator problem
for FL can be solved via traditional block-wise two-operator
splitting techniques or treating the learning model on the edge
server as a virtual user, e.g., in an existing two-operator-based2

FedADMM [8]. However, we show numerically, see Fig. 5,
that such an approach is not necessarily more communication
efficient than tackling such a problem fundamentally from the
three-operator proximal splitting perspective.

To the best of our knowledge, FL using three-operator tech-
niques have not been addressed in the literature, which tackles
the learning on both the server and users independently. This
proposal is highly novel and benefits from the richly available
datasets on the edge server and edge devices from current fifth
generation (5G) and future 6G cellular networks. Hence, these
are key motivating reasons to consider a three-operator problem
being tackled in an FL fashion.

B. Contributions

We present a new communication-efficient and computation-
ally efficient FL framework, referred to as FedTOP-ADMM, us-
ing a three-operator alternating direction method of multipliers
(ADMM) method. Specifically, our key contributions are:
� We demonstrate the viability of a practical edge learning

scenario in which private datasets are available on the
devices, and another private dataset is available on the edge
server/base station. We model this edge learning scenario
using a novel three-operator splitting method that benefits
from the private datasets on both edge server and edge
devices.

� We propose the FedTOP-ADMM method by applying and
extending our recently proposed three-operator ADMM

1Notice that “operator” terminology is used in the dual of ADMM, i.e.,
Douglas-Rachford [5]. Therefore, we borrow this terminology in this work.

2Although FedADMM is built on two-operator ADMM, it actually solves one-
operator problem—see discussion in Section IV-B and Table I.

(TOP-ADMM) method [6] to tackle a composite optimiza-
tion problem (5) comprising a sum of three functions (or
three operators). More specifically, we propose two vari-
ants of FedTOP-ADMM, termed FedTOP-ADMM I and
FedTOP-ADMM II, where FedTOP-ADMM II does
not learn on the server side when aggregating the param-
eters from the users and the server itself to generate a
common model parameter. However, FedTOP-ADMM I
learns a model before aggregation of the parameters in
addition to learning in parallel with the users. Thus,
FedTOP-ADMM I has a slightly better performance com-
pared to FedTOP-ADMM II.

� We extend the results of [6] by establishing a new theo-
retical convergence proof of TOP-ADMM under general
convex settings. Additionally, extending the convergence
results of TOP-ADMM, we prove the optimality conditions
of FedTOP-ADMM.

� FedTOP-ADMM capitalizes on the possible data available
on the edge server collocated at the base station in addition
to the data available on the users’ side. Consequently,
our numerical experiments show noticeable communica-
tion efficiency gain over the existing state-of-the-art FL
schemes using real-world data.

� Our proposed FedTOP-ADMM is built on the existing
framework of communication- and computationally effi-
cient FedADMM [8]. Therefore, FedTOP-ADMM inherits
all the merits of FedADMM. Furthermore, we show that our
proposed FedTOP-ADMM is up to 33% more efficient in
terms of communication rounds to achieve the same target
test accuracy as the one achieved by FedADMM, where the
extra dataset on the edge server is modelled as an additional
virtual client collocated at the base station.

II. STATE OF THE ART

In this section, we briefly describe the related works on FL,
including two or three operators in proximal splitting techniques
useful for FL.

A. Related Works on Federated Learning

Starting from the seminal work [1], several extensions and
applications of FL have been proposed, e.g., FedAvg [2],
FedProx [3], FedADMM [8], and other variations, [9], [10],
[11]. A relatively recent overview can be found in [12].

FL may suffer from two drawbacks: privacy leakage and com-
munication inefficiency. Although FL keeps the data local on
the clients and thus inherently has privacy properties, it does not
guarantee complete privacy because significant information may
still leak through observing the gradients [13]. Moreover, the FL
algorithms may have an unsustainable communication cost: the
local parameters must be communicated via uplink from the
devices to the edge server, and via downlink from the server to
the local devices. The local parameters can be vectors of huge
sizes whose frequent transmissions and reception may deplete
the battery of the devices and consume precious communication
resources.

A number of works have addressed the problem of com-
munication efficiency in FL [11], [14], [15], [16], [17], [18],
[19]. We can roughly divide them into two classes: 1) data
compression in terms of quantization and sparsification of the
local parameters before every transmission [14], [15], [16], [17],
and 2) reduction of the communication iterations [11], [17],
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[18], [19]. The works in the second class attempt to reduce
some communication rounds between the devices and the edge
server, as for example proposed in lazily aggregated gradient
(LAG) approach [11], [18]. In LAG, each device transmits its
local parameter only if the variation from the last transmission
is large enough. However, both classes of approaches assume an
underlying iterative algorithm whose iterations are sometimes
eliminated or whose carried information (in bits) is processed
to consume fewer communication resources. The process of
making the underlying algorithm more communication efficient,
regardless of the improvements that can be done on top of it,
has been less investigated. The state of the art can be found in
FedADMM [8], which not only allows the averaging of users’
parameters periodically to reduce the communication rounds
but also aims to improve the communication efficiency by using
one-operator proximal splitting techniques in FL methods. Our
paper focuses on this line of research and extends it to three-
operator proximal splitting while proposing learning jointly on
the edge server and edge devices side.

B. Related Works on Operator/Proximal Splitting

In recent decades, a plethora of proximal or operator splitting
techniques, see, e.g., [6], [20], [21], [22], [23], [24], [25], [26],
[27], [28], have been proposed in the literature. Although the
convergence of many proximal/operator splitting algorithms is
proven only for convex settings, these techniques can still be
employed to solve many nonconvex problems prevalent in ma-
chine learning problems (without convergence or performance
guarantees). In the past decade, ADMM-like methods, see,
e.g., [21], [28], have enjoyed a renaissance because of their wide
applicability in large-scale distributed machine learning prob-
lems by breaking down a large-scale problem into easy-to-solve
smaller problems. However, these proximal splitting techniques
are typically first-order methods, which can be very slow to
converge to solutions having high accuracy. Nonetheless, modest
accuracy can be sufficient for many practical FL applications.

Operator splitting for two operators, or loosely speaking,
optimization problems, in which the objective function is given
by the sum of two functions, have recently been employed for
FL [4], [8], [29], [30], [31]. However, some FL optimization
problems — see problem (5) — can be cast as a composite sum
of three functions comprising smooth and non-smooth functions.
Unfortunately, operator splitting with more than two composite
terms in the objective function are either not straightforward
or converges slowly [26], [27]. Recently, some authors have
extended the primal-type or dual-type, including ADMM-type
algorithms, as well as the primal-dual classes of splitting algo-
rithms from two operators to three operators [6], [26], [27], [28],
[32], [33], [34], [35], [36].

C. Notation and Paper Organization

Let the set of complex and real numbers be denoted by C and
R, respectively.�{x} denotes the real part of a complex number
x ∈ C. The i-th element of a vector a ∈ Cm×1 and j-th column
vector of a matrix A ∈ Cm×n are denoted by a[i] := (a)i ∈ C
and A[:, j] ∈ Cm×1, respectively. We form a matrix by stacking
the set of vectors {a[n] ∈ CM×1}Nn=1 and {b[m] ∈ C1×N}Mm=1
column-wise and row-wise as A = [a[1], . . . ,a[N ]] ∈ CM×N
and B = [b[1]; . . . ; b[M ]] ∈ CM×N , respectively. The trans-
pose and conjugate transpose of a vector or matrix are denoted

by (·)T and (·)H, respectively. The complex conjugate is repre-
sented by (·)∗. The K ×K identity matrix is written as IK . An
i-th iterative update reads (·)(i).

The remainder of the paper is organized as follows. In the next
section, we introduce the TOP-ADMM technique. In Section IV,
we establish our proposed FedTOP-ADMM algorithm. In
Section V, we present the numerical results, and in Section VI we
conclude with a summary and future work. Appendix A contains
some useful definitions and lemmas. Appendix B presents the
completely novel convergence proof of our recently proposed
TOP-ADMM [6] algorithm.

III. INTRODUCTION TO THE TOP-ADMM ALGORITHM

In this section, we firstly introduce the classical two-operator
consensus ADMM. Subsequently, we present our recently pro-
posed TOP-ADMM algorithm [6], [37].

A. Classical Consensus ADMM

The two-operator consensus ADMM [21], [22] is a popular
method in the optimization and machine learning communities
to solve problems of the form

minimize
{xm∈Cn},z∈Cn

M∑
m=1

fm (xm) + g (z)

subject to xm − z = 0, ∀m = 1, . . . ,M, (1)
where {fm} and g(·) are closed, convex, and proper functions.
The classical ADMM algorithm that solves problem (1) can be
summarized, following [21, Chapter 7], as follows

3x(i+1)
m := argmin

xm

fm (xm) + ρ

∥∥∥∥∥xm − z(i) +
y
(i)
m

ρ

∥∥∥∥∥
2

2

, ∀m,

(2a)

z(i+1) := argmin
z

g (z) +

M∑
m=1

ρ

∥∥∥∥∥x(i+1)
m − z +

y
(i)
m

ρ

∥∥∥∥∥
2

2

,

(2b)

y(i+1)
m := y(i)

m + ρ
(
x(i+1)
m − z(i+1)

)
, ∀m = 1, . . . ,M,

(2c)

where y
(i)
m ∈ Cn is the Lagrange multiplier and ρ ∈ R>0 is a

penalty parameter.
If the functions fm and g contain a computationally in-

convenient quadratic term, then one could employ proximal
linearized ADMM; see, e.g., [28] and references therein to
cancel out such a quadratic term. More specifically, in linearized
ADMM, one adds a so-called proximal term ‖xm − x

(i)
m ‖2Qx

and ‖z − z(i)‖2Qz
with positive definite matrices Qx and Qz

to (2a) and (2b), respectively.

B. Consensus TOP-ADMM

The recently proposed three-operator-based3 TOP-
ADMM [6] is one of the generalized algorithms for the classical

3As briefly mentioned in Section II-B, operator splitting with more than two
composite terms in the objective has been an open research problem without
resorting to problem reformulations or product space reformulations [38], [39].
The reason is that it has been found empirically that such product space formu-
lations and problem reformulations may not be straightforward and generally
may be slow to converge or not be feasible for some problems [26], [27], [40].
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consensus ADMM. The TOP-ADMM can be employed
to solve many centralized and distributed optimization
problems in signal processing, which are difficult to solve
by traditional ADMM methods. Specifically, the TOP-ADMM
algorithm has been used to solve spectrum shaping via spectral
precoding and peak-to-average power ratio reduction in multiple
carriers-based wireless communication systems, such as 5G
cellular networks [6], [37], which were difficult to solve with the
classical two-operator ADMM methods. More precisely, we can
refer to [6, Fig. 4 and Fig. 5] as a concrete and realistic example
within wireless communications that shows numerically that
two-operator ADMM-like algorithm solving three-operator
problem exhibit slow convergence compared to TOP-ADMM.

First, let us understand the shortcomings of classical (lin-
earized) ADMM and subsequently present TOP-ADMM to deal
with the demerits of ADMM. To this end, let us add a convex L-
smooth (L > 0) function h to the cost function of (1) with some
scaling β ∈ R>0 such that the problem formulation becomes

minimize
{xm∈Cn},z∈Cn

M∑
m=1

fm (xm) + g (z) + βh (z)

subject to xm − z = 0, ∀m = 1, . . . ,M. (3)

There are at least two possibilities to tackle problem (3) using
the classic two-operator ADMM: 1) product space or problem
reformulation [38], [39], and 2) consider g(z) := g(z) + βh(z)
or fm(xm) := fm(xm) + (β/M)h(xm). The first approach is
either not straightforward or the resulting algorithm converges
slowly [26], [27]. The second approach yields a subproblem,
i.e., z(i+1) or x

(i+1)
m update in (2), which may not have a

computationally efficient solution in general. Furthermore, the
classical two-operator ADMM does not exploit the smoothness
of h. Recall that if h is a quadratic function, then clubbing
it with either update (2a) or (2b) and employing linearized
ADMM can solve the respective subproblem. However, this
approach does not necessarily yield a better performance than
the TOP-ADMM.

In essence, the TOP-ADMM algorithm can also be classified
as a divide-and-conquer method, which decomposes a large op-
timization problem — difficult to solve in a composite form (3)
— into smaller subproblems that are easy to solve.

In the following, we lay out the general definition of our TOP-
ADMM method, which was introduced in [6]. For completeness,
we present the convergence proof of TOP-ADMM, which is
novel and was not present in [6].

Theorem 1 (TOP-ADMM): Consider a problem given in (3)
with at least one solution and a suitable step-size τ ∈ R≥0. As-
sume subproblems (4a) and (4b) have solutions, and consider a
relaxation/penalty parameter ρ ∈ R>0 and some arbitrary initial
values ({x(0)

m }, z(0), {y(0)
m }). Then, the generated sequences

({x(i)
m }, z(i), {y(i)

m }) by the following iterative scheme

x(i+1)
m = argmin

xm

fm (xm) + ρ

∥∥∥∥∥xm − z(i) +
y
(i)
m

ρ

∥∥∥∥∥
2

2

, ∀m,

(4a)

z(i+1) = argmin
z

g (z)

+

M∑
m=1

ρ

∥∥∥∥∥x(i+1)
m − z−τ∇h

(
z(i)
)
+

y
(i)
m

ρ

∥∥∥∥∥
2

2

,

(4b)

y(i+1)
m = y(i)

m + ρ
(
x(i+1)
m − z(i+1)

)
, ∀m = 1, . . . ,M,

(4c)

at any limit point, converges to a Karush-Kuhn-Tucker (KKT)
stationary point of (3).

Proof: See Appendix B.
Note that the classical consensus ADMM algorithm is a spe-

cial case of our proposed TOP-ADMM algorithm when h = 0
in (3) or ∇h = 0 in (4). Although classical consensus ADMM
can solve many problems in machine learning, it does not neces-
sarily yield an implementation-friendly algorithm, particularly,
if the proximal operator of theL-smooth function h is inefficient
to compute.

IV. FEDERATED LEARNING USING TOP-ADMM

FL can used to solve the distributed consensus problem (3).
Furthermore, we envision learning on the edge server, say with
a loss function h in (3) with some constraint or regularizer
expressed by g in (3). Therefore, we pose the generic distributed
problem (3) for FL using new variables as given below:

minimize
{wm∈Rn},w∈Rn

M∑
m=1

αmfm (wm;Dm) + g (w) + βh (w;D)

subject to wm −w = 0, ∀m = 1, . . . ,M, (5)

where the global weight vector of the considered learning model
is given byw ∈ Rn and the weight vector of userm corresponds
to wm ∈ Rn. Furthermore, the loss function at user m and the
server are denoted by fm and h with training dataset Dm and
D, respectively. The loss function fm of user m is weighted by
αm ≥ 0 satisfying

∑
m αm = 1, and the server’s loss function

h is weighted by some nonnegative β ≥ 0. The edge server
is expected to be collocated at the base station such that the
server learns the global model using the data D generated or
stored on the server side together with the learning from the
data generated/available on the users’ side. Observe that in many
existing federated learning frameworks, such as FedADMM [8],
g = 0 and h = 0 in (5).

We are now ready to apply the TOP-ADMM algorithm to (5)
for the FL purpose with some modifications. Firstly, we swap the
update order of TOP-ADMM, i.e., (4a) and (4b). As suggested
in [24, Chapter 5], the sequence updates of ADMM for z(i+1) in
(2b) and x

(i+1)
m in (2a) are performed in Gauss-Seidel fashion.

Specifically, one can interchange these updates without penal-
izing the convergence guarantee but the generated sequences
over iterations may be different in general. Since TOP-ADMM
generalizes ADMM, we can also interchange the updates. Sec-
ondly, we add a proximal term scaled by the parameter ζ(i) to the
subproblem in (2b). Lastly, we employ a so-called Glowinski’s
relaxation factor γ ∈ (0, 2) to the dual update, see, e.g., [28].
Hence, the TOP-ADMM algorithm tackling (5) can be summa-
rized as follows:

w(i+1) = argmin
w

g (w)

+

M∑
m=1

ρm
2

∥∥∥∥∥w(i)
m −w−τ (i)∇h

(
w(i)

)
+

λ
(i)
m

ρm

∥∥∥∥∥
2

2
(6a)

+
ζ(i)

2

∥∥∥w −w(i)
∥∥∥2
2
,
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w(i+1)
m = argmin

wm

αmfm(wm)+
ρm
2

∥∥∥∥∥wm−w(i)+
λ(i)
m

ρm

∥∥∥∥∥
2

2

,∀m,

(6b)

λ(i+1)
m = λ(i)

m

+ γρm

(
w(i+1)

m −w(i+1)
)
, ∀m = 1, . . . ,M,

(6c)

where step size τ (i) ∈ R≥0 and proximity parameter ζ(i) ∈ R≥0
are adaptive over iterations, i.e., more concretely, τ (i+1) ≤ τ (i),
and ζ(i+1) ≤ ζ(i) for all i = 0, 1, 2, . . ..

Unfortunately, a direct application of the enhanced TOP-
ADMM algorithm (6) in the FL context would incur high
communication costs due to the exchange of parameters among
the server and the selected clients in every global iteration.
Hence, TOP-ADMM may negatively affect the communication
efficiency. Additionally, at a given global iteration in the TOP-
ADMM algorithm (6), each client is expected to send and receive
the updates to the server synchronously. Unfortunately, not all
of the involved clients can transmit and receive the updated
parameters in FL due to the limited communication bandwidth
and their computational capabilities. Considering the aforemen-
tioned limitations of the direct application of TOP-ADMM for
the FL, we extend the TOP-ADMM algorithm using the FL
framework introduced in [8]. Therefore, we establish a novel
algorithm named FedTOP-ADMM described in the next section
catering to the FL purpose.

We would like to accentuate that it is unclear how to extend
the existing FedADMM [8] framework to support learning on the
server, i.e., described by a loss function h in (5) while supporting
a nonsmooth regularizer/function g for the distributed learning.
Ignoring g for the moment in (5), one could argue to artificially
add yet another parallel client on the server in the existing
FedADMM framework, i.e., h ≡ fM+1. However, the additional
virtual client does not necessarily yield better convergence per-
formance. Therefore, we evolve the FedADMM [8] framework
using our TOP-ADMM algorithm. Subsequently, we show in
the numerical Section V that FedTOP-ADMM renders superior
performance overFedADMMwith additional virtual client—see,
e.g., Fig. 5. Recall that the framework proposed in [8] is based
on the classical two-operator consensus ADMM—cf. (1) with
g = 0. Therefore, the proposed FL using TOP-ADMM, i.e.,
FedTOP-ADMM, not only inherits all the properties of classical
two-operator ADMM, i.e., FedADMM [8], but also additionally
exploits the L-smooth function on the server. In other words,
FedADMM is a special case of FedTOP-ADMM.

In the sequel, we establish the FedTOP-ADMM algorithm
that is built on the FedADMM [8] framework utilizing the TOP-
ADMM algorithm.

A. FedTOP-ADMM: Communication-Efficient Algorithm

We present in Algorithm 1 our novel FedTOP-ADMM us-
ing the TOP-ADMM (6) and FedADMM [8] framework for
communication-efficient FL. Specifically, we propose two vari-
ants of FedTOP-ADMM algorithms, which are referred to as
FedTOP-ADMM I and FedTOP-ADMM II. In FedTOP-
ADMM I, we learn the model on the server side continuously
in every global iteration. Conversely, in FedTOP-ADMM II
we learn the considered global model when the server is not

Algorithm 1: FedTOP-ADMM I/II.

1: Input and Initialization: Choose τ (0) ≥ 0, ζ(0) ≥ 0,
{τ (0)m }, {ζ(0)m }; U (0) := [M ]; w(0); {w(0)

m }, {λ(0)
m };

{Qm}; {ρm}; {αm}; and u
(0)
m := ρmw

(0)
m + λ

(0)
m ∀m;

ν(0) := 1/(
∑

m∈[M] ρm+ζ(0)); D, {Dm}; γ ∈ (0, 2)
2: for i = 0, . . . , I − I do
3: [Server weight updates]
4: if FedTOP-ADMM I OR (FedTOP-

ADMM II AND i /∈ P)
then

y(i+1) := −τ (i)∇h
(
w(i);D

)
+ ζ(i)w(i)

5: else y(i+1) ← y(i)

6: end if
Uplink communications and global parameter updates:

7: if i ∈ P then % Uplink communications with users’
selection

8: [Server receives updated weights]
{v(i+1)

m ← u
(i)
m }

9: [Client selection] U (i+1) ⊆ [M ] for downlink
communications

10: else
11: [Server utilizes previous weights]

{v(i+1)
m ← v

(i)
m }

12: end if
13: [Global parameter aggregation/update]

w(i+1) = proxν(i)g

(
1

ν(i)

[
M∑

m=1

v(i)
m + y(i)

])
Downlink communications and local parameter updates:

%Parallel
14: [Server multicasts]
15: for every m ∈ U (i) do % update sequences
16: if i ∈ P then %Selected users receive the updated

weights

v(i+1) := w(i+1)

17: else v(i+1) ← v(i)

18: end if
19: [User weight updates]

Δzm := ρm

(
w(i)

m − v(i+1)
)

+ αm∇fm
(
w(i)

m ;Dm

)
+ λ(i)

m

w(i+1)
m ≈ w(i)

m − (αmQm + ρmI)−1 Δzm

λ(i+1)
m = λ(i)

m + γρm

(
w(i+1)

m − v(i+1)
)

u(i+1)
m := ρmw(i+1)

m + λ(i+1)
m

21: end for
22: for every m /∈ U (i) do
23: u

(i+1)
m = u

(i)
m

24: end for
25: end for

communicating and aggregating the parameters of the model,
i.e., the server learns in parallel to the selected users. Notice that
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we refer to FedTOP-ADMM I and II as common FedTOP-
ADMM, where the performance difference between I and II
is non-noticeable. Hence, FedTOP-ADMM corresponds to both
FedTOP-ADMM I and FedTOP-ADMM II depending on the
context.

As our proposed FedTOP-ADMM generalizes the FedADMM
algorithm, it inherits all the properties of the FedADMM algo-
rithm, including its communication efficiency when using only
data available on the edge devices. In the FedTOP-ADMM, there
are three additional hyperparameters compared to FedADMM,
namely τ (i), ζ(i), and γ. Meanwhile, note that FedADMM re-
quires tuning of {ρm} parameters—see [8] and also discussion
in Section V.

Remark 1: Let g = 0, γ = 1, and τ (i) = 0 or equivalently
h = 0 and ζ(i) = 0 for all i = 0, 1, 2, . . .. Then, FedTOP-
ADMM I boils down to FedADMM and all the convergence
results of FedADMM [8, Section 4.3] hold for any J ≥ 1.

Remark 2: Suppose J = 1, τ (i) = τ ∈ R≥0 and ζ(i) = 0 for
all i, and ρm = ρ for allm. Then,FedTOP-ADMM II becomes
TOP-ADMM; and consequently, the global convergence Theo-
rem 1 holds for FedTOP-ADMM II.

To establish the convergence ofFedTOP-ADMMAlgorithm 1,
we extend the vanishing property of residual errors proved in
Theorem 1. Using this result, we establish the global conver-
gence of FedTOP-ADMM in the following theorem.

Theorem 2 (Global convergence of FedTOP-ADMM algo-
rithm): Consider a problem given in (5) under general convex
settings with at least one solution. Let {w(i)} be a sequence
generated by FedTOP-ADMM iterative scheme in Algorithm 1.
Assume all the subproblems of (6) or Algorithm 1 have solutions.
Also, in Algorithm 1, for each given period T , assume all
users should be active at least once within the users active
sets {U (i+1),U (i+2), . . . ,U (i+T )} for all i ≥ 0. Consider suit-
able non-increasing step-size {τ (i) ∈ R≥0} and {ζ(i) ∈ R≥0}
for i ≥ 0, and relaxation/penalty parameter {ρm ∈ R>0} with
some arbitrary initial {w(0),w

(0)
m ,λ(0)

m }. Assume that for any
J ≥ 1, the so-called dual residual limi→+∞(w(i+1) −w(i)) =

0 and primal residual limi→+∞(w
(i+1)
m −w(i+1)) = 0, ∀m =

1, . . . ,M . Then, the generated sequence {w(i)} globally con-
verges to a KKT point of (5) at any limit point.

Proof: See Appendix C. �
We describe the necessary processing steps of our proposed

Algorithm 1 as follows. In Algorithm 1, the total number of users
participating in the FL process is denoted by M . We specify the
maximum number of global iterations as I . However, note that
many heuristics-based early stopping techniques can potentially
be employed on the server, e.g., when reaching the required test
accuracy, but are not considered herein.

In Step-1 of Algorithm 1, we provide the required inputs
to the algorithm with appropriate initialization of vectors and
(iterative) parameters, including the set U (0) of selected users
for the communication with the server. We denote communi-
cation events with users by P := {0, J, 2 J, . . .}, which shows
periodic events4 at every J iterations. Therefore, J represents
the number of local iterations on the users’ side. Consequently,

4It is straightforward to consider aperiodic communication events P in the
same framework, which would resemble an asynchronous setup. However, study
of aperiodic communications is deferred to the future work.

the communication rounds in Algorithm 1 is given by [8]

Communication rounds := �i/J�, (7)

where �·� denotes flooring to the nearest integer.
The iterative FedTOP-ADMM algorithm starts at Step-2. Note

that FedTOP-ADMM stops when the total number of global
iterations I is exhausted, or one employs an early stopping
criteria within the loop, e.g., using test accuracy criteria as the
server is expected to have some test dataset.

If FedTOP-ADMM I is employed, then at Step-3 and Step-
4 for any global iteration i, the server performs some inter-
mediate processing reminiscent of gradient descent-like step.
Conversely, if FedTOP-ADMM II is employed, then when
there is no communication event between the server and any
users for a given iteration i, i.e., i /∈ P , the server performs the
same processing in Step-3 and Step-4 as FedTOP-ADMM I.
This intermediate step processing at server, i.e., Step-4, is part
of the global weight vector w update—cf. (8) and Step-4 of
Algorithm 1. More specifically, assuming g is closed, convex,
and proper function (possibly nonsmooth), the solution corre-
sponding to the subproblem (6a), i.e., the w update, reads

w(i+1)

= proxν(i)g

(
1

ν(i)

[
M∑

m=1

u(i)
m − τ (i)∇h

(
w(i)

)
+ ζ(i)w(i)

])
,

(8)

where the definition of proximal operator is given in Definition 3
of Appendix A, ν(i) := 1/(

∑
m∈[M ] ρm + ζ(i)), and u

(i+1)
m :=

ρmw
(i+1)
m + λ

(i+1)
m . In the FedTOP-ADMM algorithm, instead

of directly using {u(i)
m } in (8), the server utilizes v

(i)
m , which

is updated as described from Step-7 to Step-12 of Algorithm 1.
When communication events i ∈ P occur, the server receives
parameter vector u(i)

m from selected user m ∈ U (i) and conse-
quently updates v

(i)
m . Note the difference between the update

in (8) with the Step-13 of Algorithm 1, which aggregates all
the weights of users and server appropriately. Consequently, the
global updated weight vector w(i+1) is generated at Step-13.

The second subproblem of TOP-ADMM (6b), corresponding
to the primal update of weight vector w

(i+1)
m for each user

m, is equivalent to the subproblem in the classical ADMM
or FedADMM [8], [31]. We use the inexact solution to this
subproblem, i.e., a linear approximation of the function fm,
proposed in [8], [31], in which the recipe is given in Step-19
of Algorithm 1. We refer the interested readers to [8], [31] for
the detailed analysis of the inexact solution. Step-19 is repeated
J-times before the server receives the updated parameter u(i+1)

m

from the selected userm ∈ U (i). In Step-23, if the usermwas not
selected for the communication with the server, i.e., m /∈ U (i),
the server essentially utilizes the previously received parameter
from the nonselected user m.

B. Comparison Among ADMM, FedADMM, TOP-ADMM,
and FedTOP-ADMM

To this end, we would like to accentuate the prowess
of three-operator algorithms, such as our proposed TOP-
ADMM/FedTOP-ADMM, compared to existing two-operator
ADMM (2) or one-operator FedADMM [8]. There are many
problems of interest where one-operator such as existing
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TABLE I
DISTRIBUTED OPTIMIZATION PROBLEM FORMULATIONS

Fig. 2. Comparison of convergence behaviour between FedADMM and FedTOP-ADMM for the distributed sparse logistic regression problem (9).

FedADMM [8] is not capable to tackle the problem having
non-differentiable or non-smooth regularizer—see, e.g., sparse
logistic regression problem (9a) with non-differentiable 	1 norm.
More concretely, see Table I that compares which algorithm
can solve what form of distributed optimization problems.
Recall, FedTOP-ADMM is built on the extended version of
(three-operator) TOP-ADMM (6), where the extended TOP-
ADMM (6) include variable “proximity” convex regularizers to
the primalw-update and Glowinski’s relaxation parameter to the
dual λ-update in contrast to the vanilla TOP-ADMM (4). More-
over,FedTOP-ADMMgeneralizes (one-operator)FedADMM and
essentially two-operator ADMM. However, this existing one-
operator FedADMM utilizes (two-operator) ADMM. Nonethe-
less, clearly, the FedTOP-ADMM in Algorithm 1 becomes
FedADMMwhen τ (i) = 0 and ζ(i) = 0 for all i = 0, 1, . . . , I − 1
iterations.

C. Connections With Existing Works on FL

The other benchmarking algorithms besides FedADMM [8]
are FedProx [3] and FedAvg [2], which can easily coexist
with the Algorithm 1 framework as highlighted in [8]. Specifi-
cally, in Step-19 of Algorithm 1, the FedTOP-ADMM becomes
FedProx/FedAvg by setting the following TOP-ADMM pa-
rameters to zero, i.e., τ (i) = 0, ζ(i) = 0, andγ = 0 and replacing
the weight update for each user with

u(i+1)
m := w(i+1)

m ≈ w(i)
m

− η
[
∇fm

(
w(i)

m

)
+ μ

(
w(i)

m − v(i+1)
)]

,

where η is a step size and μ is a scaling parameter for the
proximal term, in which μ = 0 for FedAvg. Moreover, note
that FedADMM-VC represents FedADMM with a virtual client
collocated at the edge server.

V. NUMERICAL RESULTS

In this section, we conduct the experiments using the dis-
tributed (sparse) logistic regression to benchmark the per-
formance of these existing algorithms against our proposed

FedTOP-ADMM algorithms.

minimize
{wm∈Rn},w∈Rn

M∑
m=1

1

dm

dm∑
j=1[

log
(
1 + exp

{
(Am [:, j])T wm

})
−tm [j]

{
(Am [:, j])T wm

}
+

κ

2
‖wm‖22

]
(9a)

+ υ ‖w‖1 (9b)

subject to wm −w = 0, ∀m = 1, . . . ,M, (9c)
where the training dataset on the user m is Dm :=
{tm,Am}Mm=1, i.e., the binary output is tm ∈ {0,+1}dm , the
input feature matrix is Am ∈ Rn×dm , and the regression weight
vector is w ≡ wm ∈ Rn. The scaling factor to the regularizer is
κ = 0.001 in the experiments, unless otherwise mentioned. In
case of non-sparse logistic regression problem, one can ignore
the 	1-norm regularizer (9b) by setting zero to υ ∈ R≤0. Notice
that the non-sparse problem is also used in [8].

For all the considered methods including our proposed
method, the loss or objective function at each user m or at the
server for FedTOP-ADMM in (9) reads

h (w) ≡ fm (wm) :=
1

dm

dm∑
j=1

×
[
log
(
1 + exp

{
(Am [:, j])T wm

})
−tm [j]

{
(Am [:, j])T wm

}
+

κ

2
‖wm‖22

]
. (10)

A. Experimental Settings

In this section, we present numerical results to illustrate the
performance of our proposedFedTOP-ADMM I andFedTOP-
ADMM II algorithms compared to the state-of-the-art algo-
rithms FedADMM [8], FedProx [3], and FedAvg [2].

Before we proceed further with more realistic dataset and
comparison of our proposed FedTOP-ADMM with the above-
mentioned benchmarking methods, we want to highlight the
strength of our proposed FedTOP-ADMM in contrast to these
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Fig. 3. Examples of MNIST handwritten digits without scaling and with two different scaling approaches.

Fig. 4. Convergence analysis of existing,FedAvg,FedProx, andFedADMM,
and our proposedFedTOP-ADMMI/II algorithms for various hyperparameters
under J = 10 local iterations.

existing algorithms. In other words, we show the potency of
three-operator structure of FedTOP-ADMM in contrast to these
existing one-operator, i.e., corresponding to sum of separable fm
functions, FedAvg, FedProx, FedADMM. More concretely,
we show how easily our proposed three-operator FedTOP-
ADMM can exploit the non-differentiable regularizer (9b) that
can easily be handled by setting, say, function g as a scaled
	1-norm, whose proximal operator is well known in the lit-
erature, see, e.g., [25], [28]. Although it is unclear how to
employ 	1-norm regularizer with existing one-operator meth-
ods FedAvg and FedProx because of non-differentiablity of
	1-norm, we can only modify FedADMM to incorporate the
second operator corresponding to function g since FedADMM
is built on the classical consensus two-operator ADMM (1).
Thus, in the modified FedADMM, after the global aggregation
one can include the second operator, i.e., proximal operator
corresponding to the function g, without the third operator
corresponding to the gradient of h. More precisely, the Step-13
of Algorithm 1 for the modified FedADMM without the third
operator (corresponding to the gradient of function h) can be ex-
pressed as w(i+1) = proxν(i)g(

1
ν(i) [
∑M

m=1 v
(i)
m ]) with γ = 1.

The numerical convergence behaviour of FedTOP-ADMM and
modified FedADMM, in terms of objective, primal residual, and
dual residual against iterations are depicted in Fig. 2. In this
simple but illustrative example, the random test setup is similar
to [21, Section 11.2]. Additionally, in this toy example, we have

Fig. 5. Comparison of FedTOP-ADMM I/II with FedADMM and
FedADMM-VC under J = 10.

generated the synthetic sparse training dataset with a total of
20000 examples having a feature vector length n = 100. We
have employedM = 100users that are distributed, and each user
has dM = 200 training examples, where all the users are active
and J = 1. Clearly, FedTOP-ADMM shows faster convergence
than FedADMM, while delivering similar/better training error
(0.82%) than that of FedADMM (0.85%).

In our next set of experiments, we have ignored the sparse
parameter in the logistic regression such that we can compare
FedTOP-ADMM with not only (modified) FedADMM but also
FedAvg and FedProx. Additionally, in all the subsequent
considered simulations, the total number of users is fixed to
200, i.e., M = 200. However, 10 users are selected uniformly at
random during each communication event of the global iteration,
i.e., i ∈ P .

We have conducted experiments using one of the
most popular real-world datasets, namely MNIST [41].
Specifically, we have scaled/normalized the MNIST input data.
There are many ways to scale the input data matrix A ∈
Rn×d, where d =

∑M
m=1 dm and n represent the total number

of data samples for training and testing, and feature vector
length, respectively. Moreover, we have analyzed two scaling
approaches: 1) a ∈ Rn×1, a := mean(A, 2)� std(A, [ ], 2),
and 2) a :=mean(A, 2)� var(A, [ ], 2) ∈ Rn×1, where �
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Fig. 6. Performance comparison, in terms of objective against communication rounds, of proposed FedTOP-ADMM I/FedTOP-ADMM II with
FedADMM/FedADMM-VC, FedProx, and FedAvg, considering three cases of local iterations on the users’ side, i.e., J ∈ {1, 5, 10}.

corresponds to elementwise division5, andmean,std, andvar
represent the mean, standard deviation, and variance along the
second dimension of matrixA as used in MATLAB expressions.
Finally, the scaled version of the MNIST dataset is expressed
as A← A− 11×d ⊗ a, where 11×d denotes a row vector of
all ones with dimension 1× d, and ⊗ represents a Kronecker
product. Additionally, we use other popular datasets, such as
CIFAR-10 and CIFAR-100 [42].

We evaluate the performance using two data partitioning:
1) independent and identically distributed (i.i.d.), where the
data is randomly shuffled and the corresponding labels are
shuffled accordingly, and 2) non-i.i.d., where the training labels
are sorted in ascending order and the corresponding input data
is ordered accordingly. Thus, in case of MNIST dataset, this
non-i.i.d. data split is one of the pathological cases because each
user or base station would have at most two class labels. In
Fig. 3, we illustrate the examples of MNIST digits without, see
Fig. 3(a) and with these two aforementioned scaling approaches,
see Figs. 3(b)–3(c). Based on our exhaustive experiments, we
have found the second approach in Fig. 3(c) more challenging to
learn than the first scaling approach in Fig. 3(b) and the unscaled
original version in Fig. 3(a). Consequently, we have employed
the second scaling approach for our further numerical analysis.
The data distribution among the users and the server is i.i.d.
unless otherwise stated. Moreover, we have considered a binary
classifier by simply employing digit 1 as the true label and other
digits as false labels.

We perform grid search to tune the hyperparameters
of the benchmarking algorithms including our proposed
algorithms. The step size of the gradient descent
in FedAvg is chosen from the candidate set, i.e.,
η ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 5× 10−6, 10−6}. For
FedProx, in addition to the step size η, we need to tune the
hyperparameter μ for the proximal term, which is appropriately
selected from the set, i.e., μ ∈ {0.01, 0.1, 0.5, 500}. The
hyperparameters of FedADMM are chosen as suggested in [8],
[31]. More specifically, the inexact version of FedADMM
sets Qm = rmI with rm = eigmax(A

T
mAm)/(4 + κ) that

utilizes the maximum eigenvalue of AT
mAm Gram matrix

of input data, such that the hyperparameter ρm(a) =
[a log(Mdm)αmrm]/(log(2 + J)) with αm = 1/(Mdm)
and a user defined parameter a. We have considered the
following mean values of the hyperparameters mean({ρm}) ∈{

3.4035e-1, 3.4035e-2, 3.4035e-3, 3.4035e-4, 3.4035e-5,
3.4035e-6, 3.4035e-7

}
using appropriate values of a and the

5Because of numerical division, if any element is not a number, we replace
the element by zero.

maximum eigenvalues of the input data matrices. Subsequently,
the tunable parameters in FedTOP-ADMM are chosen in
common with FedADMM. Furthermore, the extra tunable
parameters of FedTOP-ADMM, particularly, the parameters on
the server side τ (i) and ζ(i), are selected to be monotonically
decreasing with increasing iterations. Specifically, we have
employed the following recipe for both τ (i) and ζ(i) to decrease
monotonically over iterations: β(i+1) = β(0)/(1 + [iμ′β(i)]),
where β := τ and β := ζ, appropriately, and μ′ = 10.
The candidate set of additional tunable parameters of
FedTOP-ADMM are τ (0) ∈ {10−1, 10−2, 10−3, . . . , 10−9},
ζ(0) ∈ {5, 2.5, 1, 0.5, 0.025, 0.005, 0.00025}, and γ ∈
{0.1, 0.5, 1, 1.5, 1.999}.

B. Experimental Results

Fig. 4 illustrates the convergence behaviour of FedAvg [2],
FedProx [3], FedADMM [8], and our proposed FedTOP-
ADMM for some chosen set of parameters from the can-
didate set. Based on these numerical results, we have se-
lected the following parameters of the respective methods: 1)
FedAvg :- η = 10−5, 2) FedProx:- η = 10−5;μ = 0.5, 3)
FedADMM/FedADMM-VC :- mean({ρm}) = 3.4035e− 3, and
4) FedTOP-ADMM I/FedTOP-ADMM II :- mean({ρm}) =
3.4035e− 3, τ (0) = 1e− 8, ζ(0) = 2.5, and γ = 1.999 unless
otherwise mentioned.

Fig. 5 compares the performance in terms of both loss func-
tion or objective (10) and test accuracy, among FedTOP-
ADMM I, FedTOP-ADMM II, FedADMM, and FedADMM-
VC with the aforementioned chosen parameters. Additionally,
Fig. 6 compares the performance for J ∈ {1, 5, 10}. Notice-
ably, these results substantiate our argument that exploiting
the data knowledge on the edge server using our proposed
FedTOP-ADMM schemes outperform FedADMM-VC, i.e., with
a virtual client. Moreover, these results indicate that FedTOP-
ADMM II has non-noticeable performance loss compared to
FedTOP-ADMM I when J > 1. For instance, with J = 10,
FedTOP-ADMM has a gain of up to 33% in the communication
efficiency with respect to FedADMM to reach a test accuracy of
98%. Furthermore, as mentioned before, FedTOP-ADMM II
boils down to FedADMM when J = 1.

In Fig. 7, we compare the performance of FedTOP-ADMM
with FedADMM and FedProx under non-i.i.d. distribution of
the MNIST dataset for J = 10. Recall that this non-i.i.d. data
split is one of the pathological cases because each user or
base station would have at most two class labels. Nevertheless,
FedProx performs slightly better than FedAvg. However,
bothFedTOP-ADMM andFedADMM outperformFedProx and
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Fig. 7. Performance comparison of proposed FedTOP-ADMMI/II with ex-
isting FedADMM(-VC), FedProx, and FedAvg under non-i.i.d. data without
scaling MNIST dataset and J = 10.

Fig. 8. Performance comparison among i.i.d. and non-i.i.d. (without scaling
of) MNIST dataset.

Fig. 9. Performance comparison of proposed FedTOP-ADMMI/II with
considered existing methods for CIFAR-100 i.i.d. dataset (coarse labels) and
J = 10.

FedAvg. Further, FedTOP-ADMM has a gain of up to 27% in
the communication efficiency with respect toFedADMM to reach
a test accuracy of 97% under non-i.i.d. distribution of MNIST
dataset. Observe that we have changed the tunable parameters
of all the methods compared to the previous results of MNIST.
In particular, we have chosen the following parameters of re-
spective methods: a) FedTOP-ADMMI/II (mean({ρm}) =
6.5731e− 6, τ (0) = 1e− 7, ζ(0) = 1.5), b) FedADMM(-VC)
(mean({ρm}) = 6.5731e− 6), c) FedProx (η = 1e− 3; μ =
0.5), and d) FedAvg (η = 0.5e− 3). For completeness, in
Fig. 8, we compare the performance of non-i.i.d. with i.i.d. data
considering the same tunable parameters used for Fig. 7, where
the performance under i.i.d. data is unsurprisingly slightly better
than the performance under non-i.i.d. data.

Lastly, in Fig. 9 and Fig. 10, we present the perfor-
mance for CIFAR-100 and CIFAR-10 dataset, respectively.
We can construe the similar performance trend as observed in
MNIST.

VI. CONCLUSION

In this paper, we proposed a novel FedTOP-ADMM algo-
rithmic framework for communication-efficient FL utilizing our

Fig. 10. Objective vs. iterations for J = 10 and CIFAR-10 i.i.d. dataset.

recently proposed consensus TOP-ADMM algorithm, which can
tackle the sum of three composite functions in a distributed man-
ner. Specifically, we developed two variants of FedTOP-ADMM,
namely FedTOP-ADMM I and FedTOP-ADMM II that learn
a considered global machine learning model using data on both
the edge server and the users. Our experiments showed that
FedTOP-ADMM has a significant gain of up to 33% in the
communication efficiency with respect to FedADMM to reach
a desired test accuracy of 98% using the proposed scaling of the
MNIST dataset. For future works, we intend to establish the con-
vergence analysis of FedTOP-ADMM for J > 1 and enhanced
TOP-ADMM. Moreover, we intend to investigate the scheduling
of edge devices to participate in the FL using FedTOP-ADMM,
as well as the power allocation of the selected devices.

APPENDIX A
SOME USEFUL LEMMAS AND DEFINITIONS

We present herein some useful definitions, propositions and
lemmas that are important to ADMM methods.

Definition 1 (L-smooth function [5], [25]): A differentiable
function f : Cn → R is L-smooth, i.e., has L-Lipschitz contin-
uous gradient (for L > 0) if ‖∇f(z1)−∇f(z2)‖ ≤ L‖z1 −
z2‖ , ∀z1, z2 ∈ Cn.

Definition 2 (Subgradient [5, Definition 16.1]): Given a
proper function f : Cn → R, a vector g ∈ Cn is denoted as
a subgradient of f(z) at some point x if

f (z) ≥ f (x) + 2�{gH (z − x)
}
, ∀z ∈ Cn. (11)

Definition 3 (Proximal mapping [22] [25]): Let us consider a
proper closed convex function f : domf �→ (−∞,+∞], where
domf corresponds to the domain of a function f . Then, the
proximal mapping of f is the operator given by:

proxλf (x) := (I + λ∂f)−1 (x) ,

= arg min
z∈domf

{
f (z) +

1

βλ
‖x− z‖22

}
,

for any x ∈ domf , where ∂f is a subdifferential of f [5], [43],
and λ > 0. If z is complex-valued or real-valued, β = 1 or β =
2, respectively. Note that the proximal operator to an indicator
function becomes an orthogonal projection, i.e., proxλδC (z) =
projC(z).

APPENDIX B
CONVERGENCE ANALYSIS OF TOP-ADMM

To establish the convergence of TOP-ADMM algorithm 4,
we first present two standard assumptions from ADMM proofs
in the literature followed by five lemmas in the sequel. Sub-
sequently, these assumptions and five lemmas are required to
prove Proposition 1, which guarantees that the primal and dual
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residual errors vanish asymptotically. Finally, we establish the
global convergence of TOP-ADMM, i.e., proof of Theorem 1.
Although the proof structure is inspired by the convergence
results from the classic ADMM [21], our convergence analysis
results are new from the sum of three functions with consensus
constraints perspective, i.e., for TOP-ADMM.

Towards the convergence analysis goal, we define the aug-
mented Lagrangian to problem (3) as

Lρ

(
{xm}Mm=1 , z, {ym}Mm=1

)
:=

M∑
m=1

fm (xm) + g (z) + βh (z)

+
M∑

m=1

2�{yH
m (xm − z)

}
+

M∑
m=1

ρ ‖xm − z‖22 , (12)

and, for brevity, we define the objective value at iteration i as

p(i) :=

M∑
m=1

fm

(
x(i)
m

)
+ g
(
z(i)
)
+ βh

(
z(i)
)
. (13)

Then, let us consider two assumptions that are standard in
ADMM literature [21], [24].

Assumption 1: Let ({x�
m}Mm=1, z

�, {y�
m}Mm=1) be a saddle

point for the (unaugmented) LagrangianL0 in (12). Specifically,
the following holds for all {xm}Mm=1, z, {ym}Mm=1:

L0

(
{x�

m}Mm=1 , z
�, {ym}Mm=1

)
≤ L0

(
{x�

m}Mm=1 , z
�, {y�

m}Mm=1

)
,

≤ L0

(
{xm}Mm=1 , z, {y�

m}Mm=1

)
.

Assumption 2: Consider subproblems (4a) and (4b). We as-
sume that each subproblem has at least one solution.

Note that Assumption 2 does not require the uniqueness of
the solution.

Lemma 1: Consider the optimal objective, p�, and the objec-
tive at iteration i+ 1, p(i+1) defined in (13). Then, the difference
between the optimal objective and the objective at iteration i+ 1
is as follows:

p� − p(i+1) ≤
M∑

m=1

2�
{
(y�

m)H Δr(i+1)
m

}
.

Proof: Using the primal feasibility x�
m − z� = 0 ∀m =

1, . . . ,M , and Assumption 1 (or duality theory [43]), let us write

p� := L0

(
{x�

m}Mm=1 , z
�, {y�

m}Mm=1

)
such that

p� ≤ L0

({
x(i+1)
m

}M

m=1
, z(i+1), {y�

m}Mm=1

)
.

Then, we can write

p� ≤
M∑

m=1

[
fm

(
x(i+1)
m

)
+ g
(
z(i+1)

)
+ βh

(
z(i+1)

)]

+

M∑
m=1

2�
{
(y�

m)H
(
x(i+1)
m − z(i+1)

)}
,

which can be rewritten as p� ≤ p(i+1) +∑M
m=1 2�{(y�

m)HΔr
(i+1)
m }, where Δr

(i+1)
m = (x

(i+1)
m −

z(i+1)), as in Proposition 1. �

The following lemma will be useful in Lemma 3.
Lemma 2 (Three-point inequality): Let the convex and

differentiable6 function h : Cn → R have L-Lipschitz continu-
ous gradient (for L ≥ 0), where z ∈ Cn, then ∀z(i+1), z(i), the
following inequality holds:

2�
{
∇h
(
z(i)
)H (

z(i+1) − z
)}
≥ h

(
z(i+1)

)
− h (z)

− L
∥∥∥z(i+1) − z(i)

∥∥∥2 . (14)

Proof: It follows by applying the descent lemma in [5], and
the convexity of h. �

In the subsequent lemma, we will use the dual residual error
definition: Δx

(i+1)
m := (x

(i+1)
m − x

(i)
m ). Observe that we will

use Lemma 1 and the following Lemma 3 in Lemma 4.
Lemma 3: The difference between the achieved objective at

iteration i+ 1, i.e., p(i+1), and the optimal objective, p�, is

p(i+1) − p� ≤ −
M∑

m=1

2�
{(

y(i+1)
m

)H
Δr(i+1)

m

+ρ
(
z(i+1) − z(i)

)H (
x(i+1)
m − x�

m

)}

+ ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
. (15)

Proof: We know that x(i+1)
m minimizes the sequence update

defined in (4a) such that

0 ∈ ∂fm

(
x(i+1)
m

)
+ ρ

(
x(i+1)
m − z(i) +

y
(i)
m

ρ

)
,

⇐⇒ ∂fm

(
x(i+1)
m

)
� −y(i+1)

m − ρ
(
z(i+1) − z(i)

)
, (16)

where we use dual update (4c), the notation ∂ denotes subdiffer-
ential [5], [43], and⇐⇒means if and only if and also overloaded
as an equivalent operator.

Using the subgradient Definition 2, we then have

fm (xm) ≥ fm

(
x(i+1)
m

)

+ 2�
⎧⎨
⎩
(
−y(i+1)

m − ρ
(
z(i+1) − z(i)

))H (
xm − x(i+1)

m

)⎫⎬
⎭ ,

such that

fm (xm) + 2�
{(

y(i+1)
m + ρ

(
z(i+1) − z(i)

))H
xm

}

≥ fm

(
x(i+1)
m

)
+ 2�

{(
y(i+1)
m + ρ

(
z(i+1) − z(i)

))H
x(i+1)
m

}
. (17)

Similarly, we also know that z(i+1) minimizes (4b). Then, let
us consider β := ρMτ such that

0 ∈ ∂g
(
z(i+1)

)
+ ρMτ︸ ︷︷ ︸

:=β

∇h
(
z(i)
)

6By differentiability, we mean Wirtinger complex gradient exist for functions
f : Cn → R, see, e.g., [44].
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−
M∑

m=1

⎛
⎜⎜⎜⎝ρ
(
x(i+1)
m − z(i+1)

)
+ y(i)

m︸ ︷︷ ︸
=y

(i+1)
m

⎞
⎟⎟⎟⎠ ,

⇐⇒ ∂g
(
z(i+1)

)
� −β∇h

(
z(i)
)
+

M∑
m=1

y(i+1)
m . (18)

Hence, using (18) and the subgradient Definition 2,
note that g(z�) ≥ g(z(i+1)) + 2�{(−β∇h(z(i)) +∑M

m=1 y
(i+1)
m )H(z� − z(i+1))}. Thus, the following

inequalities hold:

g (z�)−
M∑

m=1

2�
{(

y(i+1)
m

)H
z�

}

≥ g
(
z(i+1)

)
−

M∑
m=1

2�
{(

y(i+1)
m

)H
z(i+1)

}

+ β2�
{(
∇h
(
z(i)
))H (

−z� + z(i+1)
)}

,

(b)

≥ g
(
z(i+1)

)
−

M∑
m=1

2�
{(

y(i+1)
m

)H
z(i+1)

}

+ βh
(
z(i+1)

)
− βh (z�)− ρMτL

∥∥∥∥∥∥z(i+1) − z(i)︸ ︷︷ ︸
=Δz(i+1)

∥∥∥∥∥∥
2

2

,

(19)

where in (b) we used inequality (14). Then, inequality (19) can
be rearranged as

g
(
z(i+1)

)
+ βh

(
z(i+1)

)
−

M∑
m=1

2�
{(

y(i+1)
m

)H
z(i+1)

}

≤ g (z�) + βh (z�)−
M∑

m=1

2�
{(

y(i+1)
m

)H
z�

}

+ ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
. (20)

Now, we add (17) for all m = 1, . . . ,M into (20) such that

M∑
m=1

fm

(
x(i+1)
m

)

+ 2�
{(

y(i+1)
m + ρ

(
z(i+1) − z(i)

))H
x(i+1)
m

}

+ g
(
z(i+1)

)
+ βh

(
z(i+1)

)

−
M∑

m=1

2�
{(

y(i+1)
m

)H
z(i+1)

}
,

≤
M∑

m=1

fm (x�
m)

+ 2�
{(

y(i+1)
m + ρ

(
z(i+1) − z(i)

))H
x�
m

}

+ g (z�) + βh (z�)−
M∑

m=1

2�
{(

y(i+1)
m

)H
z�

}

+ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
,

⇐⇒ p(i+1) +
M∑

m=1

2�
{(

y(i+1)
m

)H (
x(i+1)
m − z(i+1)

)

+ ρ
(
z(i+1) − z(i)

)H
x(i+1)
m

}
,

≤ p� +
M∑

m=1

2�
{(

y(i+1)
m

)H
(x�

m − z�)

+ ρ
(
z(i+1) − z(i)

)H
x�
m

}
+ ρMτL

∥∥∥Δz(i+1)
∥∥∥2
2
.

(21)

Considering the primal feasibility result, x�
m − z� = 0, and the

primal residual error definition, Δr(i+1)
m = x

(i+1)
m − z(i+1), in

the above inequality results in

p(i+1) − p� ≤ −
M∑

m=1

2�
{(

y(i+1)
m

)H
Δr(i+1)

m

+ ρ
(
z(i+1) − z(i)

)H (
x(i+1)
m − x�

m

)}

+ ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
.

We define the following function for the subsequent lemma.
Definition 4: Let a Lyapunov candidate function for the TOP-

ADMM algorithm at given iteration i be defined as

V (i) :=

M∑
m=1

1

ρ

∥∥∥y(i)
m − y�

m

∥∥∥2
2
+ ρ
∥∥∥z(i) − z�

∥∥∥2
2
. (22)

�
Lemma 4: The difference between the Lyapunov function

(22) at every iteration i+ 1 and the previous iteration i fulfils
the following inequality:

V (i+1) − V (i)

≤
M∑

m=1

−ρ
[∥∥∥Δr(i+1)

m

∥∥∥2
2
+
∥∥∥Δz(i+1)

∥∥∥2
2
+ τL

∥∥∥Δz(i)
∥∥∥2
2

]
.

(23)

Proof: We add the inequalities of Lemma 1 and Lemma 3,
and then rearrange the terms such that(

p(i+1) − p�
)
+
(
p� − p(i+1)

)
︸ ︷︷ ︸

=0

≤ −
M∑

m=1

2�
{(

y(i+1)
m

)H
Δr(i+1)

m

}

−
M∑

m=1

2�
{
ρ
(
z(i+1) − z(i)

)H (
x(i+1)
m − x�

m

)
︸ ︷︷ ︸

=Δr
(i+1)
m +z(i+1)−z�

}
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+

M∑
m=1

2�
{
(y�

m)H Δr(i+1)
m

}
+ ρMτL

∥∥∥Δz(i+1)
∥∥∥2
2
,

⇐⇒ 0 ≥
M∑

m=1

[
�
{
2
(
y(i+1)
m − y�

m

)H
Δr(i+1)

m

}
︸ ︷︷ ︸

(a)

+ 2�
{
ρ
(
z(i+1) − z(i)

)H
Δr(i+1)

m

}

+ 2�
{
ρ
(
z(i+1) − z(i)

)H (
z(i+1) − z�

)}]

− ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
. (24)

We rewrite part (a) of (24) using the dual update (4c), y(i+1)
m =

y
(i)
m + ρΔr

(i+1)
m , as follows:

�
{
2
(
y(i+1)
m − y�

m

)H
Δr(i+1)

m

}

= �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
2
(
y(i)
m − y�

m

)H
Δr(i+1)

m︸ ︷︷ ︸
=1/ρ

(
y
(i+1)
m −y(i)

m

)
+ ρ

∥∥∥Δr(i+1)
m

∥∥∥2
2︸ ︷︷ ︸

=1/ρ
∥∥∥y(i+1)

m −y(i)
m

∥∥∥
2

2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ �
{
ρ
∥∥∥Δr(i+1)

m

∥∥∥2
2

}
,

=
1

ρ

(
2�
{(

y(i)
m − y�

m

)H (
y(i+1)
m − y(i)

m

)}

+
∥∥∥y(i+1)

m − y(i)
m

∥∥∥2
2

)

+ ρ
∥∥∥Δr(i+1)

m

∥∥∥2
2
,

=
1

ρ

(∥∥∥y(i+1)
m − y�

m

∥∥∥2
2
−
∥∥∥y(i)

m − y�
m

∥∥∥2
2

)
+ ρ
∥∥∥Δr(i+1)

m

∥∥∥2
2
.

(25)

Now, replace part (a) of (24) with (25) such that (24) becomes

0 ≥
M∑

m=1

⎡
⎢⎢⎢⎣1ρ
(∥∥∥y(i+1)

m − y�
m

∥∥∥2
2
−
∥∥∥y(i)

m − y�
m

∥∥∥2
2

)
︸ ︷︷ ︸

(a)

+ ρ
∥∥∥Δr(i+1)

m

∥∥∥2
2︸ ︷︷ ︸

(b)

+2�
{
ρ
(
z(i+1) − z(i)

)H
Δr(i+1)

m

}
︸ ︷︷ ︸

(c)

+2�
{
ρ
(
z(i+1) − z(i)

)H (
z(i+1) − z�

)}
︸ ︷︷ ︸

(d)

⎤
⎥⎥⎥⎦

− ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
. (26)

We rewrite the sum of parts (b)–(d) of (26) such that

ρ
∥∥∥Δr(i+1)

m

∥∥∥2
2
+ �

{
2ρ
(
z(i+1) − z(i)

)H
Δr(i+1)

m

}

+ �

⎧⎪⎨
⎪⎩2ρ

(
z(i+1) − z(i)

)H⎛⎜⎝ z(i+1) − z�︸ ︷︷ ︸
=(z(i+1)−z(i))+(z(i)−z�)

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

= ρ
∥∥∥Δr(i+1)

m

∥∥∥2
2
+ �

{
2ρ
(
z(i+1) − z(i)

)H
Δr(i+1)

m

}
︸ ︷︷ ︸

(a)

+ ρ
∥∥∥z(i+1) − z(i)

∥∥∥2
2︸ ︷︷ ︸

(b)

+ρ
∥∥∥z(i+1) − z(i)

∥∥∥2
2

+ �
{
2ρ
(
z(i+1) − z(i)

)H (
z(i) − z�

)}
. (27)

Note that the sum of part (a) and (b) of (27) equals ρ‖Δr
(i+1)
m +

(z(i+1) − z(i))‖22. Thus, (27) can be expressed as follows:

ρ
∥∥∥Δr(i+1)

m +
(
z(i+1) − z(i)

)∥∥∥2
2

+ ρ

∥∥∥∥∥∥∥ z(i+1) − z(i)︸ ︷︷ ︸
=(z(i+1)−z�)−(z(i)−z�)

∥∥∥∥∥∥∥
2

2

+ �

⎧⎪⎨
⎪⎩2ρ

⎛
⎜⎝ z(i+1) − z(i)︸ ︷︷ ︸

=(z(i+1)−z�)−(z(i)−z�)

⎞
⎟⎠

H (
z(i) − z�

)⎫⎪⎬
⎪⎭ ,

= ρ
∥∥∥Δr(i+1)

m +
(
z(i+1) − z(i)

)∥∥∥2
2
+ ρ
∥∥∥z(i+1) − z�

∥∥∥2
2

− ρ
∥∥∥z(i) − z�

∥∥∥2
2
. (28)

Now, we substitute the sum of parts (b)–(d) of (26) with (28)
such that (26) becomes

0 ≥
M∑

m=1

[(
1

ρ

(∥∥∥y(i+1)
m − y�

m

∥∥∥2
2

)
+ ρ
∥∥∥z(i+1) − z�

∥∥∥2
2

)

−
(
1

ρ

(∥∥∥y(i)
m − y�

m

∥∥∥2
2

)
+ ρ
∥∥∥z(i) − z�

∥∥∥2
2

)]

+

M∑
m=1

ρ
∥∥∥Δr(i+1)

m +
(
z(i+1) − z(i)

)∥∥∥2
2

− ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
. (29)

Using the Lyapunov definition—see (22)—in (29), the in-
equality can be rearranged as

V (i+1) − V (i)

≤
M∑

m=1

−ρ
∥∥∥Δr(i+1)

m +
(
z(i+1) − z(i)

)∥∥∥2
2
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+ ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
,

=
M∑

m=1

−ρ
(∥∥∥Δr(i+1)

m

∥∥∥2
2
+
∥∥∥Δz(i+1)

∥∥∥2
2
− τL

∥∥∥Δz(i+1)
∥∥∥2
2

)

−
M∑

m=1

ρ2�
{(

Δr(i+1)
m

)H (
z(i+1) − z(i)

)}
. (30)

We will now bound the last component in (30). Utilizing the
result in (20) by recalling that z(i+1) minimizes (4b), subse-
quently applying the result of three-point inequality Lemma 2,
and replacing z� with z(i), the following inequality holds at
iteration i+ 1 with y

(i+1)
m at hand:

g
(
z(i+1)

)
+ βh

(
z(i+1)

)
−

M∑
m=1

2�
{(

y(i+1)
m

)
Hz(i+1)

}

≤ g
(
z(i)
)
+ βh

(
z(i)
)
−

M∑
m=1

2�
{(

y(i+1)
m

)
Hz(i)

}

+ ρMτL
∥∥∥Δz(i+1)

∥∥∥2
2
. (31)

Similarly, recalling that z(i) minimizes (4b), subsequently ap-
plying the result of the three-point inequality in Lemma 2, and
replacing z� with z(i) at the i-th iteration with y

(i)
m at hand, the

following inequality holds:

g
(
z(i)
)
+ βh

(
z(i)
)
−

M∑
m=1

2�
{(

y(i)
m

)H
z(i)

}

≤ g
(
z(i+1)

)
+ βh

(
z(i+1)

)
−

M∑
m=1

2�
{(

y(i)
m

)
Hz(i+1)

}

+ ρMτL
∥∥∥Δz(i)

∥∥∥2
2
. (32)

Now, we add (31) and (32), and rearrange such that

−
M∑

m=1

2�

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎜⎝ y(i+1)

m − y(i)
m︸ ︷︷ ︸

=ρΔr
(i+1)
m using (4c)

⎞
⎟⎟⎠

H (
z(i+1) − z(i)

)⎫⎪⎪⎬
⎪⎪⎭ ,

≤ ρMτL

(∥∥∥Δz(i+1)
∥∥∥2
2
+
∥∥∥Δz(i)

∥∥∥2
2

)

⇐⇒ −
M∑

m=1

ρ2�
{(

Δr(i+1)
m

)H (
z(i+1) − z(i)

)}

≤ ρMτL

(∥∥∥Δz(i+1)
∥∥∥2
2
+
∥∥∥Δz(i)

∥∥∥2
2

)
. (33)

We use (33) in (30), which finally yields (23). �
In the subsequent lemma, we show that the Lyapunov function

is non-increasing for τ ≥ 0.
Lemma 5: Consider the Lyapunov function V (i) from Defi-

nition 4. Then, V (i) is non-increasing over the iterations when
τ ≥ 0.

Proof: The proof follows when τ ≥ 0 is considered
in the right hand side of (23) (with ρ > 0), i.e.,
−ρ[‖Δr

(i+1)
m ‖2 + ‖Δz(i+1)‖2 + τL‖Δz(i)‖22] ≤ 0 ∀i.

We are now prepared to present and prove Proposition 1,
which establishes the convergence to zero of the residual error,
the objective residual error, and the primal residual error.

Proposition 1: The TOP-ADMM iterative scheme in (4) en-
sures that the residual error, the objective residual error, and the
primal residual error converge to zero, asymptotically:

lim
i→+∞

Δz(i+1) = 0, (34)

lim
i→+∞

(
p(i+1) − p�

)
= 0, (35)

lim
i→+∞

Δr(i+1)
m = 0, ∀m = 1, . . . ,M. (36)

Proof: Using the result of Lemma 4 and Lemma 5,
i.e., (23), and V (i) ≥ 0 for every iteration i, we conclude
V 0 ≥∑∞i=1(V

(i) − V (i+1)) ≥∑∞i=1

∑M
m=1 ρ[‖Δr

(i+1)
m ‖22 +

‖Δz(i+1)‖22 + τL‖Δz(i)‖22] where the left hand series is
absolutely convergent as V 0 <∞. This absolute convergence
implies that limi→+∞Δz(i+1) := limi→+∞(z(i+1) − z(i)) =

0 and for all m = 1, . . . ,M , limi→+∞Δr
(i+1)
m :=

limi→+∞(x
(i+1)
m − z(i+1)) = 0. Furthermore, Lemma 1 results

in limi→+∞ p(i+1) − p� = 0, since limi→+∞Δr
(i+1)
m = 0 for

all m = 1, . . . ,M . Therefore, the proof is completed. �
Corollary 1: For every m limi→+∞Δx

(i+1)
m :=

limi→+∞(x
(i+1)
m − x

(i)
m ) = 0.

Proof: This is a direct consequence of Proposition 1, specif-
ically on the results on the asymptotic dual and primal residual
error. �

In addition to Proposition 1 and Corollary 1, the following
lemma is used for the convergence proof of Theorem 1 of TOP-
ADMM.

Lemma 6: Given the results from Proposition 1 and Corol-
lary 1, and applying Definition 1, we have

lim
i→+∞

(
∇h
(
z(i+1)

)
−∇h

(
z(i)
))

= 0; (37a)

lim
i→+∞

(
∇h
(
x(i+1)
m

)
−∇h

(
x(i)
m

))
= 0, ∀m. (37b)

To this end, we are now ready to establish the convergence of
TOP-ADMM.

Global convergence proof of Theorem 1: According to the
KKT optimality conditions—see, e.g., [43], the necessary and
sufficient optimality conditions for the considered general prob-
lem (3) are the dual feasibility, i.e.,

0 ∈ ∂

∂(x�
m)∗
L0

(
{x�

m}Mm=1 , z
�, {y�

m}Mm=1

)
,

⇐⇒ 0 ∈ ∂fm (x�
m) + y�

m ∀m = 1, . . . ,M, (38)

0 ∈ ∂

∂(z�)∗
L0

(
{x�

m}Mm=1 , z
�, {y�

m}Mm=1

)
,

⇐⇒ 0 ∈ ∂g (z�) + β∇h (z�)−
M∑

m=1

y�
m, (39)

and the primal feasibility, i.e.,

x�
m − z� = 0 ∀m = 1, . . . ,M. (40)

Our goal is to show that (39)–(40) are satisfied. To do so, we
now analyze the iterative TOP-ADMM updates (4). In the first
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step (4a), each x
(i+1)
m minimizes the update over xm, i.e.,

0 ∈ ∂fm

(
x(i+1)
m

)
+ ρ

(
x(i+1)
m − z(i+1) +

y
(i)
m

ρ

)
.

When i→∞, we apply the results from Proposition 1 such that

0 ∈ ∂fm

(
x(i+1)
m

)
+ y(i+1)

m ,

which clearly satisfies the stationarity condition (38).
Similarly, in the second step (4b), z(i+1) minimizes that

update over z, i.e.,

0 ∈ ∂g
(
z(i+1)

)
−

M∑
m=1

ρ

(
x(i)
m − z(i+1) − τ∇h

(
z(i)
)
+

y
(i)
m

ρ

)
, (41)

which can be rewritten as

0 ∈ ∂g
(
z(i+1)

)
+ ρMτ

(
∇h
(
z(i)
)
+∇h

(
z(i+1)

)
−∇h

(
z(i+1)

))
−

M∑
m=1

(
ρ
(
x(i+1)
m − z(i+1)

)
+y(i)

m

)
+

M∑
m=1

ρ
(
x(i+1)
m − x(i)

m

)
.

Plugging in the dual variable update (4c) into the above expres-
sion and then rearranging terms yield

0 ∈ ∂g
(
z(i+1)

)
+ ρMτ

[
∇h
(
z(i+1)

)
−
(
∇h
(
z(i+1)

)
−∇h

(
z(i)
))]

−
M∑

m=1

y(i+1)
m +

M∑
m=1

ρΔx(i+1)
m .

Considering that TOP-ADMM generates sequences as i→∞,
together with the results from Corollary 1 and Lemma 6, we have
that 0 ∈ ∂g(z(i+1)) + β∇h(z(i+1))−∑M

m=1 y
(i+1)
m satisfies

the stationarity condition (39).
Finally, primal feasibility (40) is directly satisfied by Propo-

sition 1 when i→∞. �
Therefore, the above result ensures the convergence of TOP-

ADMM to a KKT stationary point for a suitable choice of step-
size τ . Clearly, given the convexity assumptions, this implies that
such a stationary point is also the optimal solution to problem (3).

APPENDIX C
PROOF OF THEOREM 2

We present the basic convergence result of proposed
FedTOP-ADMM algorithm by extending the vanishing residual
error property results of Theorem 1.

Recall FedTOP-ADMM algorithm solves exactly the same
problem as TOP-ADMM—see Table I. Therefore, the aug-
mented Lagrangian is same as (12), i.e.,

L({ρm})
(
{wm}Mm=1 ,w, {λm}Mm=1

)
:=

M∑
m=1

fm (wm) + g (w) + βh (w)

+

M∑
m=1

{
λT
m (wm −w)

}
+

M∑
m=1

ρm
2
‖wm −w‖22 .

Similarly, the necessary and sufficient optimality conditions
for (5) consist of 1) dual feasibility, i.e.,

0 ∈ ∂g (w�) + β∇h (w�)−
M∑

m=1

λ�
m, (42)

0 ∈ ∂fm (w�
m) + λ�

m, ∀m = 1, . . . ,M, (43)

and 2) the primal feasibility, i.e.,

w�
m −w� = 0 ∀m = 1, . . . ,M. (44)

To show the convergence of the proposedFedTOP-ADMM, we
show that the server and client processing satisfy the abovemen-
tioned optimality conditions asymptotically, i.e., when i→∞.

During the processing at the server side of Algorithm 1,
w(i+1) essentially minimizes the w-update corresponding
to (6a), i.e.,

0 ∈ ∂g
(
w(i+1)

)
−

M∑
m=1

ρm

(
w(i)

m −w(i+1) − τ (i)∇h
(
w(i)

)
+

λ(i)
m

ρm

)

+ ζ(i)
(
w(i+1) −w(i)

)
, (45)

= ∂g
(
w(i+1)

)
+

M∑
m=1

ρmτ (i)
[
∇h
(
w(i)

)
+∇h

(
w(i+1)

)
−∇h

(
w(i+1)

)]

−
M∑

m=1

ρm

[
w(i)

m −w(i+1)+
λ(i)
m

ρm
+w(i+1)

m −w(i+1)
m

]

+ ζ(i)
(
w(i+1) −w(i)

)
, (46)

(a)
= ∂g

(
w(i+1)

)
+

M∑
m=1

ρmτ (i)∇h
(
w(i)

)
−

M∑
m=1

λm
(i+1)

−
M∑

m=1

ρmτ (i)
[
∇h
(
w(i+1)

)
−∇h

(
w(i)

)]

+
M∑

m=1

ρm

(
w(i+1)

m −w(i)
m

)
+ ζ(i)

(
w(i+1) −w(i)

)
,

(47)

where in (a) we have plugged in the dual variable update (6c)
assuming γ = 1.

Now, extending the vanishing residual errors property of TOP-
ADMM to FedTOP-ADMM, we have dual residual (w(i+1) −
w(i))→ 0 and primal residual (w

(i+1)
m −w(i))→ 0, which

implies (w
(i+1)
m −w

(i)
m )→ 0 when i→∞. Because we as-

sume that the gradient of h is L-Lipschitz and (w(i+1) −
w(i))→ 0 for sufficiently large iterations, then the residual error
(∇h(w(i+1))−∇h(w(i)))→ 0 by using Definition 1—such
that (47) satisfies the stationarity condition (42).
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The processing at the user side corresponding to (6b), each
w

(i+1)
m minimizes the wm-update, i.e.,

0 ∈ ∂fm

(
w(i+1)

m

)
+ ρm

(
w(i+1)

m −w(i+1) +
λ(i)
m

ρm

)
. (48)

Now, using dual variable update (6c), (48) is

0 ∈ ∂Fm(y(i+1)
m ) + z(i+1)

m , (49)

which always satisfies the stationarity condition (43) for suffi-
ciently large iteration number i→∞.

Finally, primal feasibility (44) is satisfied by extending the
primal residual error result in Theorem 1 to FedTOP-ADMM,
i.e., limi→+∞(w

(i+1)
m −w(i+1)) = 0.
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