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Abstract—To process and transfer large amounts of data in
emerging wireless services, it has become increasingly appeal-
ing to exploit distributed data communication and learning.
Specifically, edge learning (EL) enables local model training
on geographically disperse edge nodes and minimizes the need
for frequent data exchange. However, the current design of
separating EL deployment and communication optimization does
not yet reap the promised benefits of distributed signal process-
ing, and sometimes suffers from excessive signalling overhead,
long processing delay, and unstable learning convergence. In
this paper, we provide an overview on practical distributed EL
techniques and their interplay with advanced communication
optimization designs. In particular, typical performance metrics
for dual-functional learning and communication networks are
discussed. Also, recent achievements of enabling techniques for
the dual-functional design are surveyed with exemplifications
from the mutual perspectives of “communications for learning”
and “learning for communications.” The application of EL
techniques within a variety of future communication systems are
also envisioned for beyond 5G (B5G) wireless networks. For the
application in goal-oriented semantic communication, we present
a first mathematical model of the goal-oriented source entropy
as an optimization problem. In addition, from the viewpoint of
information theory, we identify fundamental open problems of
characterizing rate regions for communication networks support-
ing distributed learning-and-computing tasks. We also present
technical challenges as well as emerging application opportunities
in this field, with the aim of inspiring future research and
promoting widespread developments of EL in B5G.

Index Terms—Artificial intelligence (AI), deep learning (DL),
edge learning (EL), federated learning (FL), multi-agent re-
inforcement learning (MARL), communication optimization,
Internet-of-Everything (IoE), beyond 5G (B5G).
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I. INTRODUCTION

A. Motivation of Edge Learning

Owing to the massive amount of data traffic for the role-
out of the Internet-of-Everything (IoE), machine learning (ML)
is envisioned to be an important technology to facilitate the
evolution of beyond 5G (B5G) networks [1]. Traditional ML
methods needs to centrally train data on a specific data center
[2]–[5]. However, owing to the privacy concern and shortened
wireless communication resource to support extensive data
transfer, all edge devices cannot transmit the data that they
have collected to a data center to execute centralized ML
methods for data processing. This has triggered the fast-
growing research field, namely edge learning (EL), which can
deeply integrate two main directions: wireless communications
and ML. Advances in EL are widely expected to provide a
platform to implement the edge artificial intelligence (AI) in
B5G networks [6]–[9].

B. Edge Learning in B5G Networks

The EL framework allows distributed ML over numerous
edge devices that are controlled through multiple wireless
servers to collaboratively train massive AI models utilizing the
local data and distributed processors, e.g., central processing
units (CPUs) and graphic processing units (GPUs) [10], [11].
Compared with distributed ML, EL refers to that multiple
edge devices cooperatively train the ML model and this
process is implemented over edge networks. The process of EL
necessitates the download and upload of large-dimension ML
parameters as well as their frequent updates among multiple
edge devices. These new paradigms are expected to generate
enormous data traffic, which can increase burden to the already
congested communication networks [12]. This challenging
issue cannot be addressed by using current wireless techniques
aiming at capacity maximization, as they are decoupled from
ML. Realizing the goal of EL with high communication effi-
ciency requires advanced techniques of new distributed signal
processing and wireless techniques that seamlessly integrate
communications and learning approaches.

The deployment of EL in B5G networks leads to dual-
functional performance metrics for both learning and com-
munication. On the one hand, the EL framework requires
frequent parameter exchanges among edge devices or be-
tween edge devices and a central aggregator through capacity-
limited wireless links. Thus, wireless communication resource
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allocation, such as beamforming design, power control, user
scheduling, and resource block allocation, can be optimized to
improve the dual-functional performance metrics to facilitate
learning [6], [7], [13]. On the other hand, the spectral and
energy efficiency optimization of B5G networks often results
in less tractable nonconvex resource allocation problems due
to interference [2], [14]. Traditional signal processing algo-
rithms relying on a local search can only guarantee a sub-
optimal solution and centralized learning techniques usually
lead to high communication signaling overhead and long delay.
Thus, EL, in the form of distributed reinforcement learning
(DRL) represents an elegant and efficient mechanism to enable
distributed optimization procedure to approach the optimal
solution of wireless resource allocation problems requiring
only limited overhead under stringent delay constraints.

C. Focus and Structure

There are some recent surveys about EL techniques. For
instance, in [15] the opportunities and advantages of dis-
tributed and centralized ML algorithms were discussed from
the viewpoint of computer science. Moreover, the authors in
[16]–[18] covered the technical issues and recent progress of
a specific EL framework of federated learning (FL). Addition-
ally, possible architectures of EL over wireless communication
networks were summarized in [19], [20]. Compared with these
above works [15]–[20], the main focus of this paper is to
provide a comprehensive overview of state-of-the-art signal
processing techniques for EL over B5G networks.

We aim to gather recent contributions that address the key
challenges of applying EL techniques to understanding and
designing upcoming B5G networks from the viewpoint of joint
learning and communication. In particular, our objectives are
two-fold: 1) to provide the key open problems in B5G raised
in the applications of EL methods, and 2) to pinpoint main
EL techniques that can be adopted for developing B5G.

In the rest of this paper, we first provide an overview
of EL techniques from the viewpoint of joint learning and
communication in Section II. Then, in Section III, interplay be-
tween EL and wireless communication systems is introduced
in detail, including dual-functional performance metrics and
optimization frameworks. Emerging applications of EL in B5G
networks are further discussed in Section IV. Finally in Section
V, open problems and challenges are pointed out before the
concluding remarks in Section VI. The structure of this paper
is summarized in Fig. 1. Meanwhile, in Table I, we list the
key acronyms about ML used in this paper.

II. EDGE LEARNING TECHNIQUES

The main task of EL is to deploy ML algorithms at network
edges such that highly-distributed real-time data generated
by edge devices can be used for fast and cost-effective AI
training [21]. In this section, we provide a general overview
of major ML techniques and then introduce ML architectures
from the perspective of network topology, with special fo-
cus on distributed EL. Typical EL training methods includ-
ing FL, split learning (SL), and multi-agent reinforcement
learning (MARL). The interplay of those EL methods with

TABLE I
KEY ACRONYMS IN LEARNING

Acronym Description
AI Artificial Intelligence

AirComp Over-the-air Computation
Air-FL Over-the-air Federated Learning

CI Centralized Inference
CNN Convolution Neural Network

DI Distributed Inference
DL Deep Learning

DNN Deep Neural Network
DP Differential Privacy

DQL Deep Q-learning
DRL Deep Reinforcement Learning
EL Edge Learning

FDRL Federated Deep Reinforcement Learning
FL Federated Learning

FTL Federated Transfer Learning
GNN Graph Neural Network
HFL Horizontal Federated Learning

MARL Multi-Agent Reinforcement Learning
MADRL Multi-Agent Deep Reinforcement Learning
MAFRL Multi-Agent Federated Reinforcement Learning

MDP Markov Decision Process
ML Machine Learning
RL Reinforcement Learning

RNN Recurrent Neural Network
SG Stochastic Game

SGD Stochastic Gradient Descent
SL Split Learning

VFL Vertical Federated Learning

wireless communications is also briefly discussed to highlight
the necessity of communication theory for EL in turns of
its fundamental privacy concerns, security guarantees, and
performance improvement.

A. General Overview of Machine Learning

In definition, ML methods refer to a set of algorithms
that make decisions, inferences, or predictions based on the
observed data [22]. An ML problem can be generally divided
into two phases: a training phase and an inference phase.
The training phase is used for training particular ML models
by utilizing a large amount of data and some specific ML
algorithms. The output of the training phase is a trained model.
As for the inference phase, the trained model is deployed
to support real-world applications, taking new data as input
and yielding corresponding inference results. Training an ML
model requires some form of feedback to guide the learning
process. According to the types of feedback, ML algorithms
are usually divided into the following paradigms [15].
• Supervised learning. The training data set for this

paradigm contains both inputs and labelled outputs. Su-
pervised learning algorithms learn the underlying map-
ping between the inputs to the outputs. The outputs are
also known as (a.k.a.) labels which provide supervised
feedback.

• Unsupervised learning. The training set for unsuper-
vised learning contains only inputs, without labelled
outputs. Unsupervised learning algorithms aim to learn
functions that describe intrinsic structural characteristics
of the data. Unsupervised learning algorithms have been
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Fig. 1. Structure of this paper: An overview of the main results and topics.

widely used, for instance, for dimensionality reduction
and data clustering [23].

• Semi-supervised learning. Under the assumption of la-
bel sharing among similar data, semi-supervised learning
assigns known labels to unlabeled data, e.g., via clus-
tering. In order to minimize the requirement of manual
labeling, semi-supervised learning adopts a small labeled
dataset and a large amount of unlabeled data, which
is more economical than the fully supervised learning
methods, while often achieving comparable performance.

• Reinforcement learning. Different from the above
paradigms of learning, the feedback of reinforcement
learning (RL) takes the form of a reward function, which
is designed to evaluate the states of a given environment.
RL algorithm learns by using agents taking actions based
on the observations from the environment.

Along with these mature learning paradigms, a successful
ML algorithm also requires massive data and computing
power for effective learning. Historically, conventional ML
algorithms were limited by computing power and the amount
of data. As such, shallow structures were used in ML to limit
the model complexity. Such shallow structures mostly relied
on effective features selected or extracted by human experts,
which restrict their learning power in challenging problems,
e.g., computer vision and natural language processing [24].

Benefiting from developments of high-performance comput-
ing hardware and exponentially growing volume of data, it has
become now possible to train and deploy more complicated
deep structures, e.g., deep neural network (DNN). One rep-
resentative branch of ML, namely deep learning (DL) [25],
leverages data-driven feature extraction with deep structures
of neural networks to achieve performance that approaches,
or even surpasses, human skill on tasks such as image clas-
sifications [26], machine translations [27], and gaming [28].
In addition, DL with powerful feature extraction ability has
recently been applied to wireless communications and IoE
applications, e.g., physical layer authentication [29]–[31],
channel state information (CSI) compression [32]–[34], signal
detection [35]–[38], and transceiver optimization [39], [40].
However, the increasing complexity of DL applications poses
new challenges toward practical system deployments due to

computing and storage limitations, especially in processing
centralized networks with massive nodes exogenous data, and
thus requiring frequent communications.

B. Architectures for Machine Learning

The complexity of DL has raised an unprecedented growth
in demanding computing power and storage resources. There
are two main approaches to supply resources to an ML system:
1) scale-up, i.e., allocating more computing and storage re-
sources to a single commodity server, and 2) scale-out, i.e., in-
volving additional compute-capable nodes in the system. Since
the growth of data processing requirement of DL training has
far exceeded the development of computing power, scale-out
has become a more economical option, motivating ML systems
to evolve from a centralized implementation to a distributed
realization. In the following, we introduce the architectures
of both centralized and distributed ML systems from the
perspectives of both system topology and parallelization.

a) Topology: Begin with the topology, i.e., the orga-
nization of the compute nodes within a learning system.
Fig. 2(a) depicts a conventional client-server topology with
a single central server as the only compute-capable node.
Data collected from clients are first uploaded to the central
server. The central server stores and processes the data. Then,
the server returns inference results to the clients. Due to the
need for centralized processing of the data, long latency and
large transmission costs are incurred when the communication
links between the clients and the server have low capacity, or
when the clients and server are topologically distant in the
network. Furthermore, constraints in computing power and
storage resource of the central server introduces challenges
when centralized learning are used to support the training of
sophisticated models based on extensive datasets. To address
these challenges, distributed ML systems have been pro-
posed. We summarize three types of topologies for developing
distributed ML according to the degrees of distribution as
characterized in [15].
• Centralized learning architecture, a star-like topology,

refers to a distributed ML system with a strict hierar-
chical structure and a central aggregation server. Besides
the conventional client-server architecture in Fig. 2(a),
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Peer Network

Centralized Decentralized Distributed(a) (b) (c) (d)

: Server : Client : Data : Inference: ML model : Communication

Ensemble Parameter ServerClient-server

Fig. 2. Three typologies of distributed ML architectures.

another representative learning architecture is ensemble
learning [41], which is shown in Fig. 2(b). In ensemble
learning, the model training of each node adopts its local
data, and the results from the local models are then ag-
gregated on a centralized server using ensemble methods
to calculate a global result. This topology, illustrated in
Fig. 2(a)-(b), is easy to deploy and maintain, and is
especially suitable for settings where data is scattered
across different regions and data interactions are costly.
However, due to the use of local data, the performance
of the model on a single node is often unsatisfactory and
global calculation are critical for inference, which results
in large latency.

• Decentralized learning architecture includes multiple
“central” servers and can shape in multiple topologies,
e.g., a tree, a ring, and a mixture of both, allowing
information aggregation at different levels to synchronize
model parameters, as shown in Fig. 2(c). Decentralized
learning architectures, e.g., AllReduce [42] and Parameter
Server [43]–[45], have been widely used for large-scale
training of DL algorithms. In AllReduce, the topology
of compute nodes forms a tree structure. Each children
node in the tree computes local gradients, aggregates
them, and transmits the aggregated gradients to its parent
node to complete the gradient calculation. Parameter
Server, is the prototype of FL [10] and implements local
computation and global parameter sharing through a set
of worker nodes and a set of master nodes. The advan-
tage of Parameter Server is that global data knowledge
sharing can be achieved without transferring raw data
from local storage. However, the requirement for global
model synchronization leads to distributed acceleration
bottlenecks. For example, when the computing power
of the worker nodes is unbalanced or the worker nodes
are heterogeneous, the time consumption of the global
model synchronization depends on the slowest compute
node, resulting in the computation idleness of the faster
compute nodes.

• Distributed learning architecture, a mesh topology,
generally composed of multiple independent compute

nodes, with no role differences in the topology and using
point-to-point communications (see Fig. 2(d)). All the
nodes own a copy of the model and altogether build a
complete solution. This architecture has obvious advan-
tages over the centralized counterpart in terms of scala-
bility and elimination of single points of failure (SPoF).
The challenge is that it results in an extremely high data
volume to be transferred for model synchronization.

The purpose of distributed ML architectures is to offload
computing requirements to multiple compute nodes while
considering the communication overhead of model synchro-
nization and data transmission, thereby reducing service la-
tency and computing idle. However, when distributed ML
is deployed on wireless devices, limited wireless resources
causes additional challenges to learning, such as higher data
aggregation error and delay.

b) Parallelizations: Another perspective for the design of
distributed learning systems is parallelization. In essence, there
are two distinct ways, i.e., data parallelism and model paral-
lelism, to split an ML problem across compute nodes [24].

• Data parallelism. Based on the assumption of indepen-
dent and identically distributed (i.i.d.) data, data paral-
lelism uniformly distributes data to all compute nodes.
Additionally, all the nodes share the same algorithmic
model through centralization or replication to process
different subsets of the data. This design naturally guaran-
tees that the computing process of the model is consistent
with its centralized counterpart.

• Model parallelism. The ML model is split into multiple
submodels, each of which is deployed on a compute
node, such that each node has an accurate copy of the
complete data. However, this approach is unsuitable for
ML algorithms with non-separable parameters.

Note that the two types of parallelization are not mutually
exclusive and they can be used simultaneously in a distributed
ML system for flexible deployment.

C. Training of Edge Learning
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TABLE II
COMPARISON OF CENTRALIZED LEARNING AND DISTRIBUTED EL

ML phase Method Topology Cloud Local client Exchanging Pros. Cons.server (or agent) information

Trainning

Client-server Centralized Model & data Data Data Easy to develop and Long delay and no
maintain privacy guarantee

FL Model Model & data Model & model Low offloading cost Computing idle in
Centralized/ updates and latency model synchronization

SL Decentralized/ Partial model Partial model Forward tensors & Privacy protection, low Hard to design
Distributed & data backward gradients commun. bandwidth and slow training

MARL Model & data Model & data Data (state, Adaptive to changing Hard to convergeN/A action, reward) environments

Inference
CI Centralized Model Data Data No computing power Long delay and no

requirement for clients privacy guarantee

DI Distribued N/A Model & data N/A Privacy protection and Additional resource
low latency requirement at clients

1) Federated Learning: FL is a distributed collaborative
AI method first proposed by Google in 2016 [46], [47]. The
main idea of FL is to establish a global ML model based on
distributed datasets, where the devices send their local models
to the central server without sharing any raw training data. In
general, a FL system consists of two main entities: a central
server and a set of clients, denoted by N [18]. Each client
n ∈ N owns a local dataset Dn = {Xn,Yn}, where Xn is the
feature space vector of client n and Yn is the associated label
matrix. For each episode, a subset of clients C ⊆ N is chosen
to participate in the federated training process. Each client c ∈
C utilizes its local dataset to independently train and update
local gradients. The trained local gradients are then uploaded
to the central server for updating the global model. The central
server synchronizes the global model, i.e., the weight matrix
W of a neural network, to all participating clients in C. In the
training process of FL, the federated optimization objective is
formulated as

minimize
W

F (W) =

C∑
c=1

sc
s
fc(W), (1)

where sc = |Dc| is the cardinality of Dc, s =
∑
c sc is the

total number of data samples used in the training, C = |C|
is the cardinality of C, and fc(·) is the local loss function of
client c, which is given as

fc(W) =
1

sc

∑
i∈Dc

l(W;xi, yi), (2)

where l(·) is a metric function evaluating the loss, which
depends on the underlying learning model. The FL process
is repeated until the model reaches a desired accuracy [48].
An illustration of the federated training procedure of FL is
shown in Fig. 3.

A training dataset consists of the sample space, i.e., the
data identity document (ID) space, the feature space, and the
label space. According to the distribution characteristics of
dataset, FL can be divided into horizontal FL (HFL), vertical
FL (VFL), and federated transfer learning (FTL) as compared
in Fig. 4. The HFL is a sample-based FL, where the clients
share parts of a feature space, but have different sample spaces,
shown in Fig. 4(a). A typical use case of HFL is voice
assistants for smart homes [49], in which users issue the same

Client 1 Client 2 Client N

Central 

server

Download 

global 

model

Upload 

updated 

gradients

Local model update

Model 

aggregation

Fig. 3. Architecture for FL.

instruction (feature) with different types of voice (samples).
The VFL is a feature-based FL, as shown in Fig. 4(b), where
the clients share same data sample space, but have different
feature spaces, e.g., regarding a user access control problem in
a wireless access network, where a group of users (samples)
frequently access and switch between base stations (features)
[50]. Both HFL and VFL may be ineffective when the overlap
of data sample space and feature space is marginal for the
clients, e.g., in wearable healthcare [51]. As a remedy, FTL is
designed for addressing the issues in these use cases [52]. For
instance, different physical characteristics and daily activity
patterns (feature) of different users (sample) can be transfered
to learn to develop personalized healthcare plans, where FTL
applies.

The distributed architecture of FL effectively guarantees
both data locality and privacy, reduces the communication cost
and latency caused by data offloading, and provides high learn-
ing quality. Specifically, FL allows devices to collaboratively
train a global model without sharing personal data. Different
from collecting all data to train a model by centralized ML
methods, FL meets the requirement for data privacy and
security provision [53]. For example, in [54], FL was applied
to guarantee privacy protection and security resistance to
participating devices. Furthermore, large offloading latency is
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Fig. 4. Classification of FL.

avoided in FL, since it does not need to offload raw data to the
central server. In particular, for edge devices with insufficient
computing power, the distributed training of FL significantly
reduces model training latency [16], [55]. Additionally, by
collecting large and diverse datasets from many devices, FL
also improves the convergence rate of training and obtains
an accurate global model [56]. As such, edge devices with
insufficient local data also benefit from the collaborative
training of FL.

Despite its various advantages, personalization-related FL
systems raise the following unique challenges that are different
from the cloud data center-based learning model [57]. A
growing body of recent researches, e.g., [10], [47], [53], [58]–
[64], have developed effective methods to deal with these
challenges.

• Communication cost: The distributed training architecture
of FL comes with frequent exchanges of model param-
eters between the central server and clients, resulting
in high communication cost. Model compression can be
used to reduce the handover load in each communication
round [10], while the required number of communication
rounds can be minimized by using techniques such as the
federated average approach in [47]. Exchange of only
important gradients, the importance-based updating in
[58], is another potential approach for the cost reduction.

• Statistical heterogeneity: In wireless edge networks, it is
often unrealistic to assume that edge devices generate
i.i.d. datasets of similar sizes. Often local data do not fol-
low the same distribution as that of the overall data [65].
In practice, cross-device collaborative learning architec-
tures of FL with non-i.i.d. local data leads to statistical
heterogeneity. In [59], it was found helpful to address
the statistical heterogeneity by embedding the notion of
personalization in FL to capture non-specific aspects.
Also, in [60], [61], a multi-task learning framework was
proposed to address the heterogeneity challenge.

• System heterogeneity: FL in IoE systems often involves
numerous devices, such as smart phones, laptops, and
wearable devices, with different computing power, stor-
age capacity, and battery lifetime. Since the update effi-
ciency of gradient update per training round is determined
by the device with the most constrained capabilities [66],
it is therefore inefficient, sometimes even intractable,

to consider all clients in each update round. This syn-
chronously distributed training pattern of FL leads to the
challenge referred to as system heterogeneity [67]. As
part of the solution, a subset of clients are randomly or
deterministically scheduled to perform distributed train-
ing per update round [47], [62].

• Privacy concern: Although in FL nodes do not reveal
their local data to the others, there still are security
and privacy vulnerabilities at both the central server
and clients. This issue may prevent widespread adoption
of FL in many wireless IoE applications, e.g., vehicle-
to-vehicle (V2V) communication, healthcare, and smart
home. Recent studies have demonstrated that the process
of model sharing and update in FL poses a potential threat
of information leakage and privacy violations [68]. Fur-
thermore, malicious attackers can infer individual clients’
private information of clients by observing the transmitted
gradients. In order to protect privacy, a secure multiparty
computation algorithm was proposed for FL in [53]. Also,
in [63], [64], the addition of noise to raw data and the use
of differential privacy (DP) methods were shown effective
in privacy protection.

2) Split Learning: Unlike FL, where clients and the server
need to train a full ML model, split learning (SL) is another
distributed ML method, where the clients and server only need
to train a part of the entire model. In SL, neither raw data nor
the model architecture and weights are shared among clients
and the server such that they cannot access other’s models
[69]. Concrete differences between FL and SL are compared
in Table II.

The crux of SL is to split the entire neural network into parts
and deploy the split parts on clients and server respectively.
Each client device retains a part of the neural network, and
the network parts of all devices constitute a complete model
[69]. Importantly, the splitting strategy significantly affects
the learning performance. In general, there are three levels of
network splitting for SL [70]. A basic process of SL includes
splitting the network and training. The network is first split
into two parts. The first part, denoted by Nc, lies in a client,
and the other part, denoted by Ns, is located on the server.
There is a boundary layer between the two parts, called a cut
layer. The client inputs the source data into Nc to execute
forward propagation and outputs Cout at the cut layer. The
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output Cout and the label are sent to the server as the input
of Ns to obtain the output. Gradients are calculated using
the transmitted labels and are backpropagated to the terminal
client. These steps are repeated until the model converges.
An extension of the basic SL is to networks with multiple
clients, where each client has a different partial network that
produces different outputs at the cut layer. The gradients are
calculated and backpropagated in the same way as the basic
SL, and multiple clients can cooperate to complete the target
task without sharing the raw data. Both of the basic SL and
extended SL methods need the clients and server to share
labels. A configuration that does not require label sharing,
called U-shaped SL configuration, was proposed in [70].

SL enjoys many advantages over traditional DL methods.
Especially for applications in wireless communications, the
vigorous development of IoE has caused a surge in the number
of mobile devices generating massive data. Due to limited
computing power of most IoE devices, we usually integrate
all data to the server for centralized ML, which however
causes potential information leakage and increases processing
delay. In SL, the server is prevented from accessing client’s
networks and data, which protects privacy to some certain
extent. Meanwhile, SL distributes the training tasks and thus
eases computational burden on clients. In addition, SL does
not share the raw data, thus reducing the communication
bandwidth required for information exchange. In [71], it has
been experimentally verified that SL achieves better accuracy
and faster convergence than FL when data distributions at
multiple clients are imbalanced.

Thanks to these advantages, SL has been used in wireless
networks for millimeter-Wave (mmWave) communications
[72] [73], unmanned aerial vehicle (UAV) networks [74], mo-
bile edge networks [75], etc. In [72], a distributed multimodal
ML framework, called multimodal split learning (MultSL),
was proposed to improve the accuracy of mmWave received
power prediction while protecting privacy. In this framework, a
convolutional long short-term memory (LSTM) neural network
is split into two segments which are, respectively, deployed
in the user equipment (UE) and the base station (BS). The
UE, with a camera collecting images, extracts image features
through the partial neural network. The RF signal received
by the BS is processed by the other partial network on its
side. The features are combined at the BS to predict the
receive power. Since the methodology does not make use of
raw images and RF signals, this SL method boosts privacy.
This approach was then extended in [73] to multiple UE
cameras. The authors proposed heteromodal SL with feature
aggregation, which improved the method in [72] in terms of
both accuracy and privacy. Also, in [74], a hybrid split and
federated learning (HSFL) framework was proposed for data
analysis and inference in UAV networks. The scheduled UAVs
select SL or FL training methods according to their computing
powers. The UAV and the BS cooperatively train a part of the
DNN when the UAV chooses the SL method. It turns out that
HSFL reduces energy consumption compared to FL and split
federated learning (SFL) methods while preserving accuracy.
The idea of SL was also used to segment DNNs in mobile edge
networks and a joint model split and neural architecture search

framework was developed in [75]. This framework uses neural
architecture search method to split the DNN in the edge mobile
computing (MEC) according to the computing power and
communication capacity of MEC device. The results showed
that this splitting method achieves higher accuracy and lower
latency than the state-of-the-art methods such as MobileNet
[76] and HiveMind [77] multi-split frameworks.

3) Multi-agent Reinforcement Learning: As a central ML
paradigm, RL [78] has contributed enormously to the devel-
opment of AI in recent years. Specifically, the single-agent
RL is mainly used to solve sequential decision problems,
which are generally modeled as Markov decision processes
(MDP). Combining RL with DNN, deep reinforcement learn-
ing (DRL), e.g., deep Q-learning (DQL) [79], has emerged as
a powerful tool to solve resource allocation problems in many
wireless applications, e.g., [80]–[83].

In single-agent RL/DRL, an agent centrally processes all
information from environment. However, various emerging
services, such as MEC, IoE, and the industrial Internet,
causes the number of user equipments to grow. The B5G
networks, developing in a decentralized, self-organizing, and
autonomous, are expected to serve massive connected devices
with ultra reliability and low latency. Single-agent RL ap-
proaches are no longer suitable to meet these challenging
requirements. To address these challenges, Multi-agent RL
(MARL) generalizes the single-agent RL to settings with
multiple controllers. MARL consists of a set of physically or
logically distributed agents that can interact not only with the
environment but also other agents to acquire optimal policies
[84].

Unlike single-agent RL, MARL is usually modeled as a
Markov game (MG) or stochastic game (SG) [85]. Specifically,
an SG can be defined by a tuple 〈N ,S,A, P,R, γ〉, where N
is the set of agents, S is the set of state spaces of all agents,
A = A1 × ...×AN is the joint set of action space, An is the
action space of agent n, n ∈ N , P represents the transition
probability function from the current state S̃ ∈ S to the next
state S̃ ′, R = {r1, ..., rN} is the set of reward functions of all
agents which depends on their actions, and γ ∈ [0, 1) denotes
a discount factor. Interactions between environment and agents
in distributed MARL are illustrated in Fig. 5.

In each discrete time step t in MARL, every agent i selects
an action ai,t based on the current state S̃, and receives an
immediate reward ri,t. The environment state transits to the
next state according to the action set Ã = {ai,t, i ∈ N}.
Agent i aims to find its optimal policy π∗i to maximize its
own discounted accumulative reward. This policy, however,
depends on the joint policy π =

∏
i∈N πi of all agents. To

determine agent actions, two important functions, i.e., a state-
value function and an action-value function, a.k.a. Q-value
function, are defined for each agent i as follows:
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Qπi
(S̃, Ã) = E


∞∑
j=0

γjri,t+j |S̃, Ã, π

 , i ∈ N , (3)

Vπi(S̃) = E


∞∑
j=0

γjri,t+j |S̃, π

 , i ∈ N , (4)

where ri,t+j is the reward of j steps after time step t of
agent i and E{·} takes the average of the long-term discounted
rewards.

In distributed MARL, each agent updates its own policy
locally, but this process requires information from other agents.
As shown in Fig. 5, the agents obtain the information by
interacting with other agents or from a replay buffer that
stores the information. Then, MARL involves the interaction
among multiple agents whose rewards not only depend on
their own states, but also are affected by the other agents. A
comprehensive and reasonably designed reward function plays
a crucial role in solving these problems. According to the
types of reward functions, MARL algorithms are classified
into three categories: fully cooperative, fully competitive, and
mixed MARL [86].

In fully cooperative MARL algorithms, all agents share
the same reward function, i.e., R1 = ... = RN = R.
Agents cooperate with each other to achieve the same goal.
Based on the amount of information shared between agents,
there are two types, i.e., independent MARL and collaborative
MARL [19]. For independent MARL, the agents have access
to their own local information and optimize their policies
independently. For example in [87], an Independent Learner
(IL) MARL algorithm was proposed to solve a dynamic
resource allocation problem in a multi-UAV network, where
the quality of service (QoS) is defined as the reward function
and each UAV is an independent agent with only local channel
state information. As for collaborative MARL, the agents can
share, at least partially, information with each other. This kind
of MARL was used for trajectory design in UAV networks
[88] and task offloading in MEC [89].

In fully competitive MARL algorithms, multiple agents
have conflicting goals, and each agent desires to maximize
its own reward while minimizing the opponents’ reward. It
is often defined as zero-sum MGs, i.e.,

∑
i=0Ri = 0. A

typical algorithm is Minimax-Q [90]. Note that this kind of
algorithm is applicable to scenarios with competitive players.
For example, jamming attack in a cognitive radio network
often uses this algorithm to maximize the spectral efficiency
[91], where secondary users and attackers are modeled as two
opposite players with opposite reward functions.

Mixed MARL algorithms combine the characteristics of
cooperation and competition. There is no clear restriction on
the relationship between the reward functions of agents. It is
generally defined as a general-sum game. Algorithms of this
type include Nash Q-learning [92], correlated Q-learning, etc.
In wireless networks, they are often used in heterogeneous
networks. For example, a network selection algorithm based
on Nash Q-learning was proposed in [93] for an heterogeneous
network where different types of networks are the agents striv-

ing to provide service for users with different requirements.
Reward functions of these agents were defined by network
utilities with different expressions, depending on their serving
users.

MARL enjoys many advantages compared to single-agent
RL. Multiple agents can solve problems in a distributed
and parallel manner, which improves the efficiency of the
algorithm. Moreover, MARL is more scalable and robust
compared to single-agent RL. As each agent learns its own
policy, sporadic changes in the number of agents has little
impact on the policy learning process of other agents.

Although MARL has made considerable progress especially
in EL, there are still many challenges to be addressed toward
its deployment in real-world applications.
• Non-stationary environment: In a multi-agent system,

agents learn their policies simultaneously. Each agent
has to jointly consider both the actions of the other
agents and its own action. These interactions with other
agents constantly alter the environment, which makes it
difficult for all agents to obtain their optimal policies.
Considering the distributed implementation of MARL, a
frequently adopted solution is centralized training and
distributed execution (CTDE). For example, a CTDE
method was used in [80] to optimize the power allocation
in a multiuser cellular network with MARL.

• Partial observation: In practice, an individual agent usu-
ally has access to partial state information, which impairs
their ability to learn the globally optimal strategy. In
[94], it was shown that a consensus communication
mechanism with a graph network-based self-attention can
effectively reduce the effect of partial observation on
MARL in a dynamic environment with device-to-device
(D2D) communications.

• Training approach: Many multi-agent algorithms exploit
a fully centralized or fully distributed training approach.
In the fully centralized approach, a central unit is respon-
sible for policy learning with data from all agents, as
shown in Table II. This approach suffers from high com-
putational complexity. However, fully distributed training
approaches suffer from convergence issues due to the
availability of only partial state information for training.
The approach of CTDE [95] has been proven to be more
effective than fully centralized and fully distributed train-
ing modes. With CTDE, a centralized network uses global
information for centralized training, and the learned pol-
icy is distributedly executed by agents with their own
local information. It alleviates the problems caused by
non-stationary environments, ensures convergence, and
reduces training overhead.

D. Inference of Edge Learning

Along with the above distributed model training methods,
inference is another important component procedure of ML
by applying a pre-trained model to new data and making a
decision or prediction. Due to the concerns of data privacy, la-
tency, energy consumption, and unstable network connection,
centralized inference (CI) at a data center can hardly satisfy
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Fig. 5. Interaction between environment and agents in distributed MARL.

these demanding requirements of massive edge devices. On
the other hand, executing inference locally on edge devices
requires significant computational resources, which is often
impractical in IoE.

To address these problems, some recent researches have
focused on applying various techniques, e.g., sparsification,
and pruning techniques [96]–[98], to enable distributed in-
ference (DI) with improved efficiency and performance. In
[97], a fuzzy DI technique was developed to recognize objects
in remote medical imaging videos, which obtains acceptable
inference accuracy with extremely low latency. In [98], an
on-demand DI framework was designed for edge devices to
conduct collaborative inference.

In ML, the stage of model training has been consid-
ered as the most computationally intensive stage. Although
computational requirements for inference are typically lower
than that for training, it is still a huge challenge for edge
devices with insufficient computing capabilities to perform DI
frequently [99]. On the other hand, as edge devices are highly
heterogeneous in terms of hardware specifications and usage
scenarios, there does not exist a universal model that fits edge
devices from all aspects, e.g., accuracy, latency, and energy
consumption. To tackle these challenges, a once-for-all net-
work was proposed in [100] to determine the inference model.
It surprisingly fits different hardware conditions and latency
constraints. Alternatively in [101], an automated DNN model
selection algorithm was developed for DI, which highlights
the potential of learning model selection.

E. Joint Edge Learning and Communication Resource Allo-
cation Optimization

As we alluded to, there exists a symbiotic relationship be-
tween EL and wireless communications. On the one hand, EL
plays a critical role in optimizing link performance in wireless
communication systems. On the other hand, the functionalities
and performance of EL depend highly on communication abil-
ity, especially when compute nodes are connected by wireless
channels. To be specific, the design of EL architectures and
their operations should be jointly optimized under communica-

tion and on-device resource constraints [102]. Besides popular
concerns of latency and reliability, additional aspects should be
counted in the on-device constraints, e.g., energy, computation,
caching memory, and privacy. From a theoretical standpoint,
a joint learning and communication optimization paradigm
provides a unified framework to fully utilize communication
theory, offer fundamental privacy and security guarantees,
and reap promised performance gains for ML at network
edges [103]. Although studies on this exciting new area is
in its infancy, preliminary efforts have been devoted to fully
explore the key building blocks, principles, and applications
of EL, as well as their connections with distributed wireless
communication. We review some state-of-the-art literature on
FL, RL, SL, and DI from a joint communication and learning
standpoint. In Fig. 6, the interplay and joint optimization of
resource allocation for wireless communication and these EL
techniques are illustrated.

Taking FL as an example, the trade-off between learning
time and UE energy consumption and the trade-off between
computation time and communication latency are of wide
interest. As a first attempt, [104] considered an energy-efficient
resource allocation strategy for FL by bandwidth allocation
and scheduling. In [105], by taking into account both commu-
nication resources and computing power for learning, the en-
ergy consumption at all edge devices is minimized for training.
In addition, to alleviate the “straggler effect” where the slowest
edge device acts as a bottleneck of learning performance [106],
a new protocol for FL was advocated in [55] through joint
optimization of heterogeneous data, computing power, and
communication resources, where only the edge devices with
good communication and computation qualities are chosen.

As for RL, it has been widely used for learning to solve
resource allocation problems in wireless communication sys-
tems. In [107], a multi-stack RL method was proposed for
task and resource allocation in MEC. Also in [108], a DRL
algorithm was devised for efficient training management which
exhibited superiority in terms of both energy consumption and
training latency. For a UAV-communication system, a DRL-
based collaborative optimization was developed in [109] for
communication resource allocation and UAV route planning,
achieving real-time obstacle avoidance.

When it comes to SL and DI, some recent studies have
started investigating their joint optimization with communi-
cations. It has been shown in [110] and [111] that separate
communication and inference design at the network edge can
be highly suboptimal. In contrast, a joint optimization of
communication and inference helps improve both the accuracy
and speed of inference. Inspired by this, a communication-
efficient SL framework was proposed in [112] to cope with
the problems of limited bandwidth and noisy time-varying
channels. While in [72], SL is considered for received power
prediction for mmWave systems in a privacy-preserving man-
ner.

The optimization of communication resources is of signif-
icant importance in improving the performance of EL in not
only training but also inference stages. In what follows, we
will focus on distributed optimization techniques to enable
service-driven resource allocation in B5G networks under the
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aforementioned communication and on-device constraints.

III. EDGE LEARNING AND COMMUNICATION
OPTIMIZATION

In this section, we investigate the interplay between EL
techniques and wireless communication resource allocation
optimization. We first introduce the performance metrics for
EL network design, capturing both learning and communica-
tion performance. Thereafter, we provide a holistic overview of
key optimization methods for EL. Finally, we end this section
with discussions on the convergence and signaling overhead
of these algorithms and methods.

A. Dual-functional Performance Metrics for Learning
It is expected that edge networks will serve as a key

enabler for the future 6G intelligent networks. Compared to
conventional centralized ML approaches that require a central
controller to train large datasets, each user terminal in EL col-
lects its local data for the neural network training without raw
data exchanged among users, as such data is usually private
or cannot be transmitted completely due to limited wireless
resource. In EL, all terminals need to train a common global
model collaboratively. Implementing EL networks usually
relies on data and gradient signaling over wireless channels,
which inevitably suffers from transmission error and delay due
to channel fading and interference. To mitigate interference
and cope with fading effects, it is important to investigate
optimizing EL design over wireless channels with limited
resources for communications. Therefore, various schemes
have been proposed to solve these difficulties in EL under
wireless communication constraints, aiming to improve learn-
ing performance in terms of model accuracy, convergence,

privacy protection, and network security, as summarized in
Table III.

1) Accuracy and Convergence: Similar to traditional ML
networks, model accuracy and convergence are important
aspects of EL optimization. Especially in edge networks, edge
terminals can only share a part of the processed data with each
other as well as the central servers through wireless channels,
which makes it challenging to guarantee learning accuracy
and convergence of EL methods with imperfect and outdated
signaling.

A typical edge network accuracy optimization problem can
be formulated as

minimize
θ∈Rd

L(θ) :=
∑
k∈S

wkLk(θ;Dk), (5)

where θ is used for representing the real-valued network
parameters, Lk(·) is the local loss function of the k-th terminal
calculated using the dataset Dk, S denotes the set of all edge
terminals, and wk ≥ 0 is the weight for each local loss
function with

∑
k∈S wk = 1 [8]. For edge inference, network

accuracy is defined as the completion quality of the given task,
which is closely related to the target task, training dataset, and
communication quality. Based on the accuracy requirements
of an edge inference network, the authors of [8] constructed
a unified framework for service resource allocation in the
edge network and presented optimization algorithms based
on mathematical programming and ML. Besides, the authors
of [113] tried to reduce the consumption of communication
resources in edge reasoning and improve the accuracy of the
network by using the guideline of information bottleneck,
i.e., maximizing the mutual information between the inference
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result and the coded feature, while minimizing the mutual
information between the coded feature and the input data.

Different from edge inference, in FL, the quality of iterative
updates of the global model depends on the gradient informa-
tion fed back from edge devices over a wireless network. Due
to limited transmission bandwidth, selection of user gradient
information for aggregation is crucial [6]. A jointly optimized
resource block allocation, power control, and user selection for
FL was proposed to address this issue. Alternatively, in [114],
a new framework was proposed by letting models of edge users
be quantized and aggregated in the edge server before being
uploaded to the central server for global model aggregation. In
addition, the convergence bound of this new framework was
deduced, and the impact of quantization of shared parameters
on convergence of the model was also investigated. Then
in [115], an adaptive quantizer was proposed, which shows
that transferring only a few bits per iteration is sufficient for
ensuring linear convergence.

2) Privacy Protection: Privacy protection is a key indica-
tor in future intelligent communication systems. Traditional
centralized networks require raw data that contains the private
information collected from users for model training. In edge
networks, the original user data is not transmitted between
edge terminals and central servers, as the user data privacy
is protected by methods like differential privacy and FL
framework.

Differential privacy is a common method used to protect
user privacy. A randomized functionM(·) gives ε-differential
privacy, if for all datasets D1 and D2 differing on at most one
element and

P (M(D) ∈ S)
P (M(D′) ∈ S)

≤ eε, (6)

where ε is a small positive number and P (·) is the probability
of an occurrence. The notation M(D) ∈ S means that the
output of algorithm M(·) with inputting D is in the range of
S [116].

A randomized mechanism M space : XK×m → Rd is said
to be ρ-zero-concentrated differentially private (CDP) if for
every adjacent of X , denoted by X̃ ∈ XK×m, it holds that

Dα

(
M(X) ‖M(X̃)

)
≤ ρα, (7)

for all α ∈ (1,∞), where Dα is the α-Rényi divergence [117].
To achieve differential privacy in distributed DL, a frame-

work was proposed in [118] based on a new approximation
mechanism while considering practical communication restric-
tions in the actual system, like bandwidth restriction. On the
other hand, to realize local differential privacy for DL, it was
proposed in [119] that all edge users add a randomization layer
to convolutional neural networks (CNN).

Concerning FL, it is thought of a privacy-secure architecture
[46] [47]. A typical model update strategy in a federated
network is

θt+1 = θt − ηt
1

K

K∑
k=1

gk(θt), (8)

where ηt is the learning rate, subscript t denotes the iteration
index, gk(θt) is the gradient computed at the k-th user.
Because edge users only transported the gradient information

of local model, i.e., gk in (8), to the central server, FL was
considered sufficient to protect the privacy of users. However,
it is recently found in [139] that a neural network based on RL
is able to break the privacy protection of FL. Therefore, for
the FL framework, additional methods for privacy protection
should be considered. An ingenious way to add privacy
protections in the FL framework was proposed in [120]. In
particular, the authors first proved that channel noise can be
used to achieve differential privacy in FL. In addition, another
method to provide privacy protection was proposed in [121]
by incremental learning in network intrusion detection systems
(NIDS). The incremental learning reprocess the transmitted
data, which led to a distribution of the input classifier data
different from the original data, so as to protect the data
privacy of users.

3) Security Design: On top of the privacy protection,
security of edge networks is another challenging but important
factor that needs to be considered seriously. Due to the lim-
ited computational power, memory capacity, battery life, and
network bandwidth of edge devices deployed on the Internet,
the edge networks are facing endless threats or attacks.

In particular, the study [122] analyzed the threats and
challenges faced by Internet-of-Things (IoT), including imper-
sonation attacks, distributed Denial of Service (DDoS) attacks,
routing attacks, etc. Meanwhile, in [122], the authors also
introduced traditional defense mechanisms which protect the
current IoT, including filter packets, adopting encryption, audit
and log activities, etc. A DL-based method was proposed in
[122] to protect network security in NIDS, including build-
ing free datasets for NIDS implementation, monitoring the
network transit traffic using free and open-source network
sniffers, and using open-source NIDS tools for detecting
malicious events.

On the other hand, the authors of [124] studied the per-
formance of FL approaches for cyber security in IoT, such
as detecting compromised IoT devices. Specifically, three
different FL networks were considered with DNN, CNN, and
recurrent neural network (RNN) architectures, which validates
that FL framework is helpful for guaranteeing security in IoT.

In addition to the above terrestrial communication scenarios,
satellite communication will also be an important part of the
future edge networks. However, due to limited computing
resources in space, a popular practice, i.e., computation of-
floading (CO), in edge/fog computing is a potential solution,
which alters the threat and risk profile of the system. In [123], a
security-aware algorithm for CO was based on RL. In specific,
the authors in [123] formulated the security-aware CO problem
as a multi-objective problem and designed a RL network to
achieve secure satellite communication.

B. Dual-functional Performance Metrics for Communication

It has been stated that EL networks enable better commu-
nication to user terminals than the typical cloud data center
method [140]. For the cloud data center method, the input data
from user terminals is sent to a remote cloud data center and
then the cloud data center feeds back execution results to user
terminals. A large amount of data is transmitted back-and-forth
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TABLE III
DUAL-FUNCTIONAL PERFORMANCE METRICS FOR LEARNING AND COMMUNICATION

Dual-functional
Performance Performance Metrics References Objective Method

Learning

Accuracy and
convergence

[8], [113] Resource allocation for improving accuracy in training of EL Optimization
[6], [114] Accuracy and latency tradeoff in EL with convergence analysis Optimization

[115] Data communication compression for EL with guaranteed linear
convergence Optimization

Privacy protection
[118] Privacy protection in FL via power control DL

[119], [120] Privacy protection and efficient communication in FL DL
[121] Privacy protection by incremental learning in distributed networks DL

Security [122], [123] Network intrusion detection using DL DL
[124] Achieving cyber security using FL FL

Communication

Spectral efficiency
optimization

[125] A framework of communication resource share and reallocation in a
self-adaption manner Optimization

[126] A three-layer network of cloud-and-edge nodes for computing and c-
ommunication resource reuse Optimization

[127], [128] DL-based strategy to balance resource consumption between edge de-
vices and terminals DL

[129] A FL-based hierarchical framework of dynamic resource allocation f-
or terminals FL

Low latency
optimization

[130], [131] Optimization of EL network structure for latency reduction DL and FL
[132], [133]

[134] Acceleration of EL network convergence for latency reduction DL and FL

Energy efficiency
optimization

[104], [135] Efficient resource allocation and user selection to enable energy-effic-
ient FL implementation FL

[136] Joint power and rate control under imperfect channel information FL

[137], [138] A framework of DL-based edge processing for communication
power minimization DL

between terminal devices and the cloud center over a wide-area
network, which can result in high latency and excessive energy
consumption. In EL, neural networks are trained on devices
that are close to user terminals, which avoids sending data
to the cloud center and therefore can reduce communication
delay and support sophisticate ML algorithms with distributed
computation offloading. Due to the diversity and heterogeneity
of user terminal devices, researchers have devised numerous
algorithms to optimize the communication metrics for EL net-
works, e.g., spectral efficiency, latency, and energy efficiency,
to achieve efficient communication between user terminals in
EL, details of which are summarized in Table III.

1) Spectral Efficiency Optimization: Similar to data
transfer-oriented communication optimization, spectral effi-
ciency is still a key performance metric in EL and edge
computing optimization. Recently, researchers have focused
on spectral efficiency optimization by designing algorithms for
edge computing and introducing AI to edge networks. Due to
the heterogeneity of user terminals and the large amount of
data processed at EL networks, it is challenging to improve
spectral efficiency for EL networks on edge devices with
limited computing power and storage capacity. By considering
the heterogeneity of user terminals, a finite memory multi-
state framework was proposed in [125] to share and reallocate
limited communication resources in a self-adaption manner.
The framework first identified periodic and critical messages,
then dynamically allocated communication resources based on
the number of critical messages. To overcome the challenge
of transmitting a large amount of data to the edge network,
a three-layer network was proposed in [126] to jointly utilize
communication resources in cloud centers, access point, and
edge devices.

With the development of AI, DL and FL techniques have

been introduced to edge networks to optimize spectral effi-
ciency. In [127], a DL-based control algorithm based on label-
less learning was proposed to minimize the amount of data
communication by using limited computing and spectrum. An
enhanced online Q-learning network was proposed in [128]
to optimize the spectral efficiency and retain the fairness of
resource allocation simultaneously. This Q-learning network
first received context information from user terminals, includ-
ing priority, latency information, and server load. Then it
allocated resource to edge devices by exploiting the above
context information. On the other hand, by exploiting FL, a
hierarchical game framework was proposed in [129] to study
the dynamics of edge association and spectral efficiency in an
edge network.

2) Low Latency Optimization: Another important metric of
communication for EL is the end-to-end latency, especially
for B5G networks. Note that the definition of latency in EL
networks is different from traditional communication latency.
Edge communication latency is the total time from the gen-
eration of demand by user terminals to the completion of
calculation by edge devices. Researchers have paid attention
to reduce the communication latency by optimizing the EL
network structure and elevating the EL network convergence
rate. For optimizing the EL network, a large-scale matching
algorithm was proposed in [130] to find the optimal low la-
tency assignment. Besides, a multi-access network for EL was
proposed in [131] to reduce the communication latency. The
multi-access network balanced receive SNR, truncation ratio,
and a fraction of exploited data metrics to optimize the com-
munication latency. In [132], an FL algorithm was enhanced to
handle heterogeneous UE data and reduce the communication
latency. Also, for elevating the EL network convergence rate,
given the transmission overhead and transmission efficiency of
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each data packet, an optimal solution was proposed in [133]
to accelerate network convergence. To address the issue of
slow convergence, a novel coded computing framework was
proposed in [134] to mitigate stragglers and speed up the
training procedure by injecting structured coding redundancy
into FL.

3) Energy Efficiency Optimization: As a counterpart of
spectral efficiency, energy efficiency considers the average
energy consumption of a communication system in order to
transmit a unit of information. In general, EL approaches, e.g.,
FL, facilitates the training of models and enables distributed
data collection [10]. However, due to the growing number of
transmission nodes and unstable wireless channels with limited
bandwidth, implementing distributed algorithms usually costs
large energy consumption, which does not meet the demand
on green communications and efficient computing.

In order to address the challenge imposed by the need of
energy-efficient FL, various approaches have been developed
in recent years. In [6], by considering the connection between
the FL and resource allocation, a universal and flexible frame-
work was proposed for enabling a practical implementation
of FL models. To reduce the energy computation of the
training of FL, a resource allocation algorithm was proposed
in [141] to balance the training time of FL models and the
energy consumption of UEs. In [104], an optimal bandwidth
allocation policy with a closed-form scheduling priority func-
tion was presented to save the energy consumption of UEs
without learning performance loss. To save the total energy
consumption of a system under a latency constraint, the study
[135] proposed a low-complexity energy-efficient algorithm,
for solving classical resource optimization problems, e.g.,
bandwidth allocation.

In an MEC-based wireless network, deploying DL models
for FL, i.e., DNNs, and executing inference tasks are also
very challenging for saving energy [142]. To facilitate energy
efficient transmission in an MEC-based wireless network, a
framework of edge processing was proposed in [137], where
DL inference tasks can be effectively executed at the edge
computing nodes. In particular, the minimization of the sum
of the computation in edge nodes and the power consumption
for signal transmission is considered. A statistical learning-
based robust optimization method was proposed for solving
this minimization problem.

C. Communication Optimization for Edge Learning

In EL networks, it is of great importance to properly manage
limited wireless resources for implementing ML algorithms.
More specifically, for FL, optimizations to the wireless re-
sources, e.g., transmit power and frequency spectrum, of the
edge devices can bring tremendous improvements to the entire
system, e.g., achieving lower energy assumption [135], [143],
and accelerated convergence speed [144]. On the other hand,
MEC, as an effective framework with the ability of distributed
computing, can offload learning tasks and computing resources
for EL. Thus, the strategy of task and computing resource al-
location plays an important role to realize energy-efficient and
low-latency MEC [145], [146]. In this subsection, we provide

a comprehensive overview of common optimization methods
for communication in FL and MEC networks, respectively.

1) Optimization of FL Networks: In an edge FL network,
jointly optimizing the decisions of multiple devices can im-
prove the learning efficiency of the collaborative system. In
general, the involved optimization problem can be modeled as
follows:

minimize
x

F (x) ,
K∑
k=1

fk(x, ξ) (9)

subject to xk ∈ Xk, k = 1, · · · ,K, (9a)
hm(x, ξ) ≤ 0, m = 1, · · · ,M, (9b)

where x , {xk}Kk=1 denotes the set of optimization variables
of all involved devices and xk ∈ Xk corresponds to the
decision variable judged at the kth device with Xk denoting
the corresponding local set. Here ξ represents the set of
problem parameters relying on the network environments, e.g.,
CSI. The function F (x) is the design objective of the edge
network consisting of a series of local functions of all devices,
fk(x, ξ), k = 1, · · · ,K. The involved constraints can be
categorized as the local individual constraints at each device
in (9a), and the network-level constraints in (9b). The former
is locally associated with each device and the latter is used
for guaranteeing a cooperative design of the entire network.

Some of the problems in (9) can be addressed using convex
optimization techniques. Concretely, by splitting the variables
into several groups and employing the alternating optimization
framework, the original complicated problem can usually be
transformed into multiple convex subproblems and solved in
an iterative manner. For each of these convex subproblems, by
further analyzing the properties of the objective function, e.g.,
the monotonicity, or focusing on manipulating the Karush-
Kuhn-Tucker (KKT) conditions, a closed from or semi-closed
form solution can be obtained, thus yielding a relatively low
computational complexity.

For example, the authors in [104] investigated the energy
consumption minimization problem for implementing FL over
wireless channels via iteratively optimizing the bandwidth
allocation and user scheduling. With a given set of active
devices, the subproblem of bandwidth allocation can be for-
mulated considering the following constraints

K∑
k=1

γk = 1, 0 ≤ γk ≤ 1, k = 1, · · · ,K, (10)

where γk denotes the ratio of bandwidth allocation for de-
vice k, and 0 ≤ γk ≤ 1, k = 1, · · · ,K are individual
constraints for each device while

∑K
k=1 γk = 1 is a system-

level constraint. By directly solving the KKT conditions, a
group of closed form solutions to {γk}Kk=1 of the bandwidth
allocation subproblem can be obtained. In contrast with the
classical design for rate maximization, the optimized results
of [104] indicate that more bandwidths should be allocated
to those scheduled devices with weaker channels and worse
computation capacities, since they are the bottlenecks for
synchronized model updates in an edge FL system. Similarly,
a joint computation and transmission problem was studied
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in [135] for edge FL networks under a latency constraint.
With the assistance of the proposed iterative algorithm, the
authors derived closed form solutions for assigning time and
bandwidth, power control, computation frequency, and even
learning accuracy of each device at each iteration. In [143],
the authors studied the trade-off between energy consumption
and learning time of FL in fog-aided IoT networks. They
proposed an alternating optimization algorithm to optimize
CPU frequency and wireless transmission power, where a
closed form solution and a semi-closed form solution were
obtained, respectively. On the other hand, the work in [147]
considered the implementation of distributed stochastic gradi-
ent descent (SGD) for FL and an efficient power allocation
scheme was given for aligning the received gradient vectors
at the parameter server.

The above convex optimization-based methods provide effi-
cient solutions of the optimization in FL networks. However,
it is applicable only when the considered problem is relatively
simple. Unfortunately, for most cases, there exists complicated
coupling among variables and strong non-convexity in problem
(9) such that conventional convex optimization approaches fail.
To tackle this difficulty, a natural and direct method is to
replace the non-convex functions by convex approximations.
For example, the authors of [136] proposed a scheme for
implementing FL in massive MIMO networks, where each
iteration of the FL framework is accomplished during a large-
scale coherence time. Then, an FL training time minimization
problem using this proposed scheme was exemplified as a
case study. The local accuracy, transmit power, data rate, and
computational frequency were jointly optimized based on a
successive convex approximation (SCA) method, by solving a
sequence of convex problems. In [148], the authors considered
a reconfigurable intelligent surface (RIS)-assisted over-the-air
FL network. The non-convex problem of the joint design of
receiver beamforming and RIS phase shifts was solved by ex-
ploiting the technique of semidefinite relaxation (SDR) [149].
Moreover, for non-convex unit-modulus phase shift constraints
in RIS-aided systems, the majorization-minimization (MM)
framework [150] and the Riemannian manifold optimization
[151] are also commonly used.

Besides the above resource allocation elements with contin-
uous values, device selection is usually necessary for the BS to
extract appropriate devices so as to execute the FL algorithm,
since the bandwidth for multiple users uplink transmission is
limited. This leads to a mixed integer optimization problem.
Mathematically, the device selection is taken into account by
multiplying a series of integer factors, written as

ak ∈ {0, 1}, k = 1, · · · ,K, (11)

to weight each device, where ak = 1 indicates that user
k participates the FL algorithm and otherwise ak = 0. For
handling this kind of mixed integer optimizations, the works
[141], [152] transformed the device selection problem to a
reformulated sparse and low-rank optimization problem. Prob-
lems of sparse optimization and low-rank optimization occur
frequently in ML and signal processing [153]–[156], whose
difficulties mainly lie in the minimization of the nonconvex
sparse function, ‖x‖0, and the low-rank constraint of a positive

semidefinite matrix, rank(M) = 1, where rank(·) returns the
rank of the input matrix M. In previous works, the non-convex
sparsification is often approximated by the convex `1-norm or
the smoothed `p-norm minimization [157] and the technique
of SDR is widely used to handle the rank-one constraints. Dif-
ferent from these methods, the works [141], [152] developed
a unified difference-of-convex-functions (DC) programming
based approach to deal with sparse and low-rank optimizations
in FL networks with global convergence guarantees, which
yields considerable performance improvements. Moreover, the
authors of [144] proposed a probabilistic device selection
scheme aiming at choosing the devices, whose local learning
models have larger effects on the global model, with higher
probabilities. In [158] and [148], a greedy device scheduling
algorithm and a Gibbs sampling based device selection method
were devised, respectively.

2) Optimization of Edge Computing/Caching: Another type
of edge network is for edge computing/caching. The optimiza-
tions of resource management in MEC edge networks have
been discussed in [146]. In particular, stochastic optimization
is an important focus since the CSI acquisition in MEC
is inevitably imperfect owing to channel estimation error
[159], limited feedback [160], uncertainty [161], and delays
[162]. With the stochastic CSI and unknown link conditions,
stochastic optimization can adopt online decisions to achieve
optimal solutions in MEC networks. For example, a Lyapunov
stochastic optimization based algorithm was proposed in [163]
to jointly optimize the transmission rate and computation rate
for minimizing power consumption. Then, based on game-
theoretic and perturbed Lyapunov optimization theory, the
authors in [145] jointly optimized task offloading, computing
resource allocation, and battery energy management in a
distributed energy harvesting-enabled MEC system. Moreover,
alternating direction method of multipliers (ADMM) is another
approach to distributed stochastic optimization in EL inte-
grated IoE. A coding-based stochastic ADMM algorithm was
proposed in [164] to optimize the communication efficiency
and straggler nodes in coded edge computing networks.

D. Edge Learning for Communication Optimization

Techniques of EL benefit from the optimization of wireless
resource allocation. On the other hand, learning is useful
for solving complicated optimization problems in edge com-
munication networks. ML-driven approaches can overcome
the drawbacks of conventional optimization methods, such
as numerous iterations and high computational complexity.
It has been applied to power allocation [165], precoding
design [166], and other end-to-end designs in communication
systems. The EL techniques including DL, FL, and RL are re-
garded as promising approaches for solving resource allocation
problems in edge computing, IoE, and other edge networks.
We introduce learning-driven edge network optimization with
perfect CSI and statical CSI, respectively.

1) EL Techniques with Perfect CSI: Learning-based dis-
tributed optimization is an essential technique in communi-
cation systems, especially in edge networks like MEC. To
address the lack of latency-energy balance, time efficiency,
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and robustness in MEC, a number of studies have focused on
ML-based computation offloading algorithms [167], [168]. In
general, the optimization problem in MEC networks can be
formulated as

minimize
X

U (X)
∆
= λtT (X) + λeE (X) (12)

subject to xij ∈ X , ∀i ∈ I,∀j ∈ J , (12a)
g (xi, τi) =Mi, ∀i ∈ I, (12b)
h (xj , τj) ≤ Nj , ∀j ∈ J , (12c)

where X
∆
= {xij} denotes the variables of MEC task of-

floading indicators and I and J are respectively the set of
mobile devices (MD) and the set of computation access points
(CAP). Each element xij denotes the variable with respect to
MD i and computing CAP j. The utility function U (X) can
be formulated as a weighted objective function representing
the balance between T (X) and E (X), which respectively
denote the two key metrics in MEC as edge computing latency
and power consumption. The optimization variable xij is
characterized by the policy space X , e.g., integer constraints.
Equations (12b) and (12c) denote the constraint of MDs and
CAPs, respectively, where τ denotes the system parameter set
in the MEC system.

Rather than resorting to convex optimization tools for
solving (12), ML-based methods can be utilized for getting
near-optimal solutions to (12) with high probability and low
complexity [167], [168]. By regarding the solution of X as a
random variable following a specific probability mass function
with respect to the given system parameters, it is equivalent to
solve (12) by learning the probability mass function of optimal
X in a data-driven way using ML algorithms. Denote by q (X)
as the probability mass function of the optimal solution of X,
and let p (X) be the probability distribution function of X that
is to be learned. The problem of (12) is equivalent to finding
p in the following problem as

minimize
p

∑
q (X) ln q (X)−

∑
q (X) ln p (X). (13)

The objective function is defined by the cross-entropy (CE)
[169] measuring the difference between p (X) and q (X).
The optimization problem (13) is a probability approximation
problem that is readily solved by ML methods with offline
training.

Another form of learning-based MEC design exploits DL
methods to learn the mapping function of an arbitrary problem
in edge networks. A general framework of deep learning inte-
grated optimization was proposed to solve non-convex prob-
lems in wireless resource management [170]. The framework
was implemented in a distributed paradigm, where multiple
DNNs were utilized to work as compute nodes and exchange
information via backhaul. Specifically, a distributed DL-based
algorithm was proposed in [171] to optimize task offloading
strategies in a heterogeneous network of cloud and edge com-
puting. However, DNNs in the above studies are exploited to
learn the solution variables directly from the training dataset.
To address the lack of generalization capability of conventional
DL methods, a DNN-based offloading assignment method was
proposed in [172] to learn the pruning strategy as a part of the

entire algorithm instead of learning the entire offloading strat-
egy directly. It achieves low complexity, sufficient robustness
and near-optimal efficiency performance in the tested multi-
user MEC network. In addition, learning-driven approaches
without DNN have also been applied to edge networks. A
low-rank learning-based algorithm was proposed in [173] to
predict task execution time with the knowledge of a small
sampled dataset, then a task offloading algorithm based on
this predicted task execution time was proposed to improve
the success rate of task offloading and reduce latency in the
edge computing network. To improve the fairness of users, a
multi-agent imitation learning scheme was utilized in [174]
to optimize the computation offloading strategy in a fully
decentralized pervasive edge computing network.

The techniques of RL have also been shown promising in
solving optimization problems in edge networks, owing to its
adaptive capacity in dynamic environments. Instead of solving
a single problem of computation offloading, many studies
intended to jointly optimize offloading, caching, resource
allocation, security, and other issues via RL-based methods.
Edge caching and resource allocation were jointly considered
in [175], where a DRL-based algorithm was proposed to
design caching strategies. In addition, a Bayesian DL-based
method combined with DQL was proposed in [176] to jointly
optimize the pricing and resource management in a blockchain
integrated edge computing networks.

As an alternative, distributed FL has also been extensively
employed in edge network optimization. A distributed multi-
agent deep deterministic policy gradient algorithm realized
by FL was proposed in [177] to jointly decide resource
allocation and cell association in ocean IoT environment. The
learning-based joint optimization in [177] was modeled in
a single timescale. However, the various delay sensitivity of
caching, computation offloading, and resource allocation can
be described by different timescales. An FL-based approach
was proposed in [178] to jointly optimize resource allocation,
offloading, and caching to reduce latency and save resource
consumption in MEC. In [178], caching was regarded as delay
insensitive and managed in slow timescale, while the other
issues were managed in fast timescale. The FL-based training
helps ensure the privacy of information in edge devices.

2) EL Techniques with Statical CSI: Communication op-
timization with only statical CSI is a crucial challenge in
distributed networks due to imperfect CSI acquisition and
dynamically changing network topology. Learning techniques
can overcome the lack of adaptability to stochastic wireless
environments in conventional optimization methods. Conven-
tional learning-based methods are designed with the assump-
tion of a single distributed dataset, which is hardly scalable
in practical scenarios. Thus, it is essential to design learning-
based models that fit the dynamics and uncertainty of CSI.
In particular, a model-free DQL framework was proposed
to apply the dynamic power allocation strategy sum rate
maximization with scheduling in a mobile Ad-hoc network
[179]. Specifically, this unsupervised DQL-based method with
novel designs of state and reward was shown to obtain near-
optimal performance.

Learning-based stochastic optimization is also considered
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TABLE IV
SUMMARY OF CONVERGENCE ANALYSIS

Reference Loss function Factors of the framework Convergence rate
[181] Convex and nonconvex One-bit gradient quantization, AirComp, fading channels, perfect/imperfect CSI O(1/

√
T )

[182] Strongly convex Transmission scheduling policy, features of wireless channels, inter-cell interference O
(
log(n

ε
)
)

[183] Nonconvex Grouping devices into M clusters, cluster-cycling, device-level data heterogeneity O(1/
√
MNT )

[184] Nonconvex Model pruning, device selection, wireless resource allocation SlowerthanO(1/
√
T )

[185] Convex and nonconvex AirComp, robust transmission policy against Byzantine attacks O(Ω/(ω2
√
T ))

[186] Convex Distributed approximate Newton-type algorithm, heterogeneous and non-i.i.d. data O
(
log( 1

ε
)
)

[186] Nonconvex Distributed approximate Newton-type algorithm, heterogeneous and non-i.i.d. data O(1/
√
T )

[187] Strongly convex Sparsification and error correction, sparsified gradient difference transmission O
(
log( 1

ε
)
)

in edge computing networks. For edge inference with finite
samples of random channel coefficients, a statistical learning-
based approach was exploited to approximate the robust
optimization of cooperative transmission [137]. Since the
optimization problem could not be expressed in a closed form
due to the joint chance constraints in MEC, robust optimization
approximation and statistical learning-based approaches can
provide a robust and energy-efficient solution by learning
the parameters from a finite dataset. Also, FL is promising
for solving distributed stochastic optimization problems in
edge networks. An FL-based joint scheduling and resource
allocation algorithm under imperfect CSI was proposed in
[180]. The FL-based stochastic optimization algorithm predicts
the unexplored CSI via Gaussian process regression and dual-
plus-penalty. This improved the accuracy of FL and the
stochastic algorithm was shown to be robust against various
CSI distributions.

E. Convergence, Complexity, and Signaling Overhead

1) Convergence: Convergence is one of the key factors
determining the accuracy, rate, and overhead of EL. Through
theoretical convergence analysis, the impact of wireless factors
on convergence can be specified, which guides the optimiza-
tion design for edge networks. We discuss state-of-the-art
convergence analysis of optimization schemes under realis-
tic constraints, including heterogeneity of data and devices,
dynamic wireless environments, and limited communication
resources.

To begin with, we focus on a decentralized network with
a central coordinator, a.k.a. a parameter server as depicted in
Fig. 2. FL is one of the typical representatives of this network
of EL and its convergence rate achieves O(1/

√
NT ) for

nonconvex loss functions [188] and O
(
log( 1

ε )
)

for strongly
convex ones [189], where N and T represent the number
of devices and the number of iterations, respectively, and
ε > 0 is the required accuracy. Considering the impact of
unreliable communication, there may exist a gap between the
convergence of the model in practice and the optimal one
in theory. Given the presence of uplink transmission errors,
the study in [6] derived the expected convergence rate and
revealed that the packet errors lead to a gap between the
globally optimal model. In [190], reducing the frequency of
global aggregations was considered and the gap in term of
convergence rate under this scheme was characterized. Over-
the-air computation (AirComp) is another effective way for

facilitating FL with communication constraints. For example,
in [191], the expected convergence rate for both convex and
non-convex cases was derived, which accurately revealed the
influence of AirComp on convergence. In addition, limited
communication resources may also have an impact on the
convergence rate of the model. Therefore, methods to reduce
communication overheads and speed up convergence have
been widely discussed. For FL with data heterogeneity, fast
convergence could be achieved by exploiting nonuniform
aggregation of the gradients from different devices [192].
Similarly, a node selection method in [193] was also shown
to have a faster convergence rate in the face of non-i.i.d.
data. In [114], a hierarchical FL system with less aggregations
and quantization was proposed and the convergence rate of
O(1/

√
T ) was derived for non-convex loss functions. The

authors in [194] exploited the gradient sparsification combined
with gradient correction and batch normalization (BN) update
with local gradients to reduce communication overheads and
accelerate the convergence.

Further considering a fully distributed network with no
central coordinator, where the devices can only communicate
with finite neighbours. Under vulnerable communications, the
authors in [195] adopted the user datagram protocol (UDP) for
more efficient transmission and developed a robust algorithm
with asymptotic convergence rate of O(1/

√
NT )+O(N/T ).

Furthermore, in [196], an ADMM-based communication-
efficient framework was proposed which is able to guarantee
optimality of convergence under a convex loss function. Dif-
ferent from the supervised learning methods discussed above,
MARL is also a typical distributed EL technique, which can
achieve optimal decision by interacting with the dynamic
environments [197], [198]. Unfortunately, to the best of our
knowledge, a rigorous analysis of the convergence of MARL
has not yet been reported in literature.

Except for the above representative schemes, we summarize
the rest of the latest research results about convergence in
Table IV.

2) Complexity: Optimization for EL grants better perfor-
mance via rational allocation of resources at the expense
of computational complexity in practice. Excessive computa-
tional complexity introduces larger latency, thereby reducing
the performance gain brought by the proposed optimization.

To begin with, we consider methods based on convex
optimization tools, which are widely used for continuous
variable optimization under perfect CSI. Based on an iterative
mechanism, low-complexity algorithms are available by deriv-
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ing closed-form solutions of convex subproblems [199], [200].
The computational complexity mainly depends on the accuracy
requirement of convergence as well as the calculations of
the closed-form solutions. However, most practical problems
admit intractable non-convex forms. When it is difficult to
obtain closed-form solutions of the subproblems, it may be
solved by means of, e.g., the interior point method, with poly-
nomial computational complexity. For example, in [199], due
to the introduction of semi-definite programming (SDP), the
complexity of solving subproblems in each iteration is O(N6),
where N is the the dimension of the problem. In addition, to
handle discrete variables, mixed integer optimization is applied
with its complexity dominated by the size of the solution
space. In [191], the complexity of the problem was O(U) and
the size of the search space, U , was further reduced without
loss of optimality.

In order to reduce complexity, learning-based methods can
be computationally efficient for some cases. For example,
a graph neural network (GNN) was applied to assist radio
resource management in [201] and its complexiy is O(LD),
where L is the number of layers of the GNN and D is the max-
imal degrees of the graph. Compared with the conventional
weighed minimum mean-square error (WMMSE) method in
[202], the GNN-based scheme has a significant complexity
reduction. In [172], DL was applied to optimize resource
assignment in a multiuser MEC system and the complexity
was reduced by 80% compared to the conventional branch-
and-bound approach.

3) Signaling Overhead: Due to limited communication
resource, signaling overhead in implementation of EL is also
an essential factor worth considering. A large number of
signaling interactions lead to huge communication overheads

and communication latency. They also greatly hinder the rate
of model training and convergence.

In a typical FL framework, the signaling overhead can be
evaluated as

TFL = 2TPK, (14)

where T , P , and K represent the number of communication
rounds, the number of model parameters, and the number of
edge devices, respectively. It is not difficult to find that the
signaling overhead is extensive with either a large model or
a slow convergence rate. Many methods have been proposed
to reduce the requirements on communication resource. To re-
duce the number of model parameters, P , sparsification [194],
[203] and quantization [115], [204] have been widely used.
As exemplified in [203], sparsification is a largely effective
compression method, which achieves a compression rate up
to 1/600, while a quantization method can only achieve 1/32.
For the number of communication rounds, the lazy aggregation
scheme was verified to be effective in [190]. Furthermore,
speeding up the convergence is also a useful method, such
as those in [186], [205].

For SL, all the values of gradients, tensor outputs from
intermediate layers, and the labels need to be transmitted over
wireless links. It leads to the total overhead as [206]

TSL = 2Tpq, (15)

where p > 0 and q > 0 denote the total dataset size and
the size of the smashed layer, respectively. Compared with
FL, SL usually enjoys a faster convergence rate [70] and it is
more suitable for situations with a massive number of edge
devices. In this sense, SL may be a more communication-
efficient architecture than FL.
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For MARL, all values of reward, action, state, and the
model parameters should be shared among different agents.
For various MARL schemes, the information to be shared
can be quite different, which results in different signaling
overheads.

For the procedure of DI, especially in latency-sensitive
applications, signaling overhead can not be ignored. Similar to
SL, in a device-server co-inference framework, a large DNN
is divided into two parts, which are respectively deployed on
the device and the server. Based on [207], the choice of the
split point determines the signaling overhead and also involves
the trade-off between the communication overhead and the
computational cost at the device. Recently, some possible
methods to alleviate excessive signaling overhead have also
been studied from the perspective of compression coding and
reducing the scale of the model, such as joint source-channel
coding (JSCC) [111] and pruning [207], [208].

IV. B5G WIRELESS APPLICATIONS WITH EDGE LEARNING

In this section, we introduce multiple emerging applica-
tion scenarios of EL, e.g., vehicle networks, UAV networks,
satellite networks, over-the-air computation, and holographic
communication, as depicted in Fig. 7, where edge nodes
implement the function of communication, sensing, caching,
computing by utilizing ML algorithms.

A. Distributed Goal-oriented Semantic Communication

The entropy and capacity defined by Shannon [209] char-
acterizes the maximum achievable rate bound for the com-
munication whose goal is to exactly recover the transmitted
information at the receiver. In most applications at IoE devices
in B5G networks, however, the goal of communication is to
make a correct inference or acquire a computation result from
the received data at the server. For these computing tasks, it
has been shown in [210]–[212] that the transmission rate can
be further reduced below the entropy of the source and joint
source-channel coding can perform better than a conventional
separate coding design in terms of computing accuracy and
speed.

To provide the source entropy related to various task goals,
a first information theoretic model for the goal-oriented se-
mantic communication is proposed, where the source is X

and the desired information at the receiver is Y , as shown in
Fig. 8. In conventional communication for data recovery, it
corresponds to the goal of realizing Y = X . Accordingly, the
minimum required transmission rate is known to be H(X),
that is the entropy of the source. For a general task goal,
Y can be a decision or a prediction result that obeys some
joint probability distribution PX,Y (x, y), where x and y are
realizations of X and Y , respectively. Then, the goal-oriented
communication can transmit at the minimum rate characterized
by the following problem:

minimize
g(·)

H(X̃) (16)

subject to X̃ = g(X), (16a)

I(X̃;Y ) ≥ I(X;Y ), (16b)

where g(·) is a deterministic mapping function from X to
the compressed information X̃ , and I(·; ·) is the mutual
information of the two random variables, which is defined by
the joint probability distribution PX,Y (x, y) and the marginal
distributions PX(x) and PY (y). In the above formulation, we
seek a deterministic mapping, g, of the source X . It is used
at the receiver to obtain a corresponding Y from X̃ , while the
accuracy should be, at least, the same as the best inference of
Y directly from X . It is easy to verify that

H(X̃) ≤ H(g(X), X)

= H(X) + H(g(X)|X)

= H(X), (17)

where the last equality holds because g is a deterministic
function of X . This relationship in (17) proves that the min-
imum transmission rate of this goal-oriented communication
design is theoretically no larger than the source entropy in
the conventional design. In addition, it is expected that the
inequality constraint in (16) achieves equality at the optimum,
and this optimization problem can be further extended for
modelling multi-node semantic communications in distributed
edge networks.

In order to solve (16), it is necessary to know the task goal in
terms of PX,Y (x, y) with explicit expressions. However, for
most advanced applications like image retrieval and natural
language processing, PX,Y (x, y) can be hardly acquired with
an explicit expression while it is usually learned implicitly
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by using DL methods. Without an explicit expression of
PX,Y (x, y) for these tasks, it is intractable to solve the
problem in (16) by using conventional convex optimization
tools. Therefore, recent works seek powerful DL techniques to
obtain g implicitly. For instance in [210], a DL-based semantic
communication system was proposed for speech transmission,
where the mean-squared error (MSE) was used as the learning
goal. In [211], a retrieval-oriented image transmission was
designed to maximize the accuracy of the inference task,
where the objective was defined as the cross-entropy between
the ground truth and the predicted class (identity). Also, in
[212], a task-oriented semantic communication scheme was
proposed, where the cross-entropy objective with multiuser
multi-modal data fusion was considered. In general, the task-
relevant information g(X) is represented by deep semantic
coding of black-box neural networks from the signals of
various modalities, such as text, speech, image, and video
streaming.

Alternatively, a principle of information bottleneck (IB) was
introduced in [213] to characterize the relationships among X ,
X̃ , and Y in terms of mutual information. The IB principle
indicates that X̃ should be sufficient for the inference task
goal if the inequality (16b) holds. In [113], the IB principle
was used for a communication system orienting image classi-
fication task. By combining IB with stochastic optimization,
this method in [113] was then extended in [214] to deal
with the same task while simultaneously minimizing energy
consumption and service latency. For IoE applications with
booming devices and data, distributed EL has been an appeal-
ing alternative technique to extend intelligent services from a
centralized cloud data center to the proximity of edge nodes,
allowing fast ML model training at edge while performing the
task goal at the server [110]. In a distributed IoE network,
a lightweight DL-based semantic communication system was
proposed in [215] by training semantic feature extraction and
coding at edge nodes while updating at the server. By applying
the IB principle, a task-oriented communication design for
cooperative inference by multiple edge devices was proposed
in [216], where a group of edge nodes perform the inference
task collaboratively with the assistance of an edge server.
It is concluded that EL methods are promising candidates
for promoting goal-oriented semantic communications serving
downstream tasks.

B. Wireless Sensing and Edge Caching

Fast growing IoE devices impose heavy load to current
wireless networks with limited spectral resource, requiring
better energy utilization efficiency and low latency with high
reliability. Wireless sensing and edge caching are the promis-
ing solutions to cope with these challenges. To develop these
techniques for IoE applications with scalability and stability,
EL plays an important role to help improve the performance
of delay-sensitive sensing and spatially-variant caching tasks.

1) Sensing: Sensing is an essential function of IoE net-
works with vertical applications like Internet-of-Vehicles
(IoV), UAVs, mobile robots, and smart city. Particularly in an
IoV network, collaboration among different types of networks

is inevitable and the vehicles are usually equipped with sensors
and radio transponders. Such a multi-attribute network needs
to process heterogenous sensing data. Besides, it is difficult
to leverage constrained resources such as energy, spectrum,
and power to deal with high-mobility and severe noise in IoV.
To address these issues, EL releases a part of the computing
and learning pressure to edge vehicle nodes, by which the
computation load of the fusion center is greatly reduced. In
addition, since the transmitted data in EL is preprocessed in
edge vehicle nodes, communication overhead and processing
delay of the entire IoV network can be effectively minimized
[217].

Due to the characteristics of the edge nodes in sens-
ing networks, there are numerous practical constraints in
terms of bandwidth, computation, memory, and battery life.
To meet these constraints, one has to substantially reduce
the requirement of communication accuracy and weaken the
adaptability to dynamic IoE environments when applying
EL with conventional DL methods like CNNs [218]. This
problem was studied in [219] for a distributed network of
mobile robots with communications. Also, in [219], FL was
applied for monitoring device activities with local computing
resource, and individual trust measures. Especially during the
training period, asynchronous FL was applied to accelerate the
convergence when untrustworthy and ineffective devices were
eliminated.

2) Caching: Besides the integration of sensing, edge data
caching also plays a key role in future IoE networks. An
exponential growth of data in smart cities is generated by
massive smart devices, e.g., sensors, smartphones, autonomous
vehicles, as illustrated in Fig. 7. These explosive data could
possibly saturate the traffic of wireless networks and prevent
QoS from being satisfied [220]. For instance, as shown in Fig.
7, the autonomous vehicles constantly communicate with both
roadside sensors and adjacent autonomous vehicles to collect
information about the environment [221]. Indeed, low latency
design is a key challenge in this application. Edge data caching
is an effective tool for alleviating high latency and heavy load
on fronthaul networks. Repeated transmission of the same data
can be avoided by caching the data at edge nodes. Along with
the edge caching, a slew of notable challenges are the design
of caching update policy and caching transmission policy.

In terms of caching update policy, the freshness of cached
data has a significant impact on the system caching update
policy. For some practical scenarios, a new metric was pro-
posed in [222], that is, Age of Information (AoI). AoI is
defined as the length of time since the last measurement
of the data. Investigations on scheduling policies have been
considered to minimize AoI by utilizing the queuing model
and conventional optimization theory [223]. However, due to
the lack of prior knowledge about network characteristics and
data status, the queuing model is typically inapplicable in
real-world network environments [224]. This has inspired the
use of ML methods for edge caching, which are capable of
recognizing dynamic situations of temporal variation. In [225],
an RL method was developed to find scheduling decisions
with the goal of minimizing long-term AoI at a single edge
node. The subsequent work in [226] dedicated to developing
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an energy-efficient caching update policy at a single edge node
by using ML. Then in [227], an intelligent caching policy
was explored for multiple edge nodes under the coordination
of a cloud. As a further step, broader performance metrics
including AoI, energy consumption, fronthaul traffic, were
examined, and a type of MARL, known as multi-agent discrete
variant of soft actor-critic RL, was proposed to achieve caching
update of multiple edge nodes [227].

Another focus of edge caching is the caching transmission
policy. Due to the broadcast nature of wireless channels,
interference is a critical challenge in cloud-edge caching IoE
networks, which seriously affects the transmission rates of
cached data. The study in [228] investigated joint optimization
of caching and interference alignment under time-invariant
channels. Since wireless channels are time-varying and cannot
be modeled accurately, ML were further introduced to tackle
this issue [229]. In [230], a DRL algorithm was proposed to
realize cache-enabled interference alignment. For a heteroge-
neous network, an extension of [230], a caching, networking,
computing integrated framework based on DRL was proposed
to minimize the energy consumption [231].

Edge caching not only improves transmission rates, but
also reduces communication latency. Studies in [232] and
[233] considered the same objective of minimizing average
communication delay. Yet, the former was to find the optimal
caching data transmission policy by a conventional convex
optimization tool, while the latter was to jointly optimize
user scheduling and caching by a DRL algorithm. Further in
[234], a multi-agent actor-critic algorithm, which is a type
of multi-agent DRL (MADRL), was proposed to mitigate the
transmission delay in decentralized edge caching.

C. Integrated Aerial and Satellite Computing Networks

1) Aerial Networks: UAV is a promising technology for
enabling B5G IoT which enhances the performance of edge
networks by acting as an aerial BS. Typically, in an edge
network, UAV with high mobility can assist mobile edge
computing (MEC) in offloading computationally intensive
tasks from IoT devices. The flexible deployed UAV can
handle emergency communication in the cases of inevitable
natural disasters or temporary malfunctioning. Recently, the
integration of UAV into MEC systems based on a single-agent
DRL has been studied from various aspects. For instance, an
UAV path planning method based on the DRL was proposed
in [235] to collect the distributed data from sensors for edge
computing.

In future IoT edge networks, there can be multiple UAVs
serving as multiple distributed edge agents. Then, MARL
approaches have been exploited to solve the problems like
distributed resource management for computation offloading at
the edge network. For UAV-assisted edge computing networks,
Sacco et al. [236] applied MARL to coordinately improve the
system energy efficiency and accelerate task completion by
distributedly offloading decision strategies. Also, in [237], Zhu
et al. proposed an MARL framework to learn the effect of
environment on the offloading policy, where task allocation
and bandwidth allocation are handled distributedly by two

agents. In addition to MARL, DRL facilitates convergence by
exploiting the power of DNNs for estimating the associated
functions in conventional RL. For modeling cooperative com-
putation offloading, an MADRL-based method was proposed
in [238] to minimize the overall network computation cost.
Meanwhile, in [239], an MADRL-based trajectory control
algorithm was developed to manage the trajectory design of
each individual UAV in a decentralized manner.

These studies on MARL/MADRL focused on the design in
a distributed manner without considering privacy protect of
IoT devices. Recently, one of the latest researches considered
the privacy issue by applying FL [240]. Driven by the ad-
vantages brought by FL as described in the previous sections,
a federated DRL (FDRL) framework was proposed to learn
joint task offloading and energy allocation in an UAV-aided
MEC system. More recently, in [241], a semi-distributed multi-
agent federated reinforcement learning (MAFRL) algorithm
was devised to keep the data training locally and thus protect
privacy of all IoT devices by the integration of FL and
MADRL.

Besides being employed for computation offloading in MEC
systems, UAV can also collaboratively perform AI tasks using
their locally distributed data and computation capabilities.
This provides a promising approach of meeting challenges
of limited resources of edge devices as well as the ubiqui-
tous coverage envisioned by B5G IoT. In [242], distributed
intelligence was delivered by UAVs to perceive environmental
changes for edge service scheduling. In [243], a framework
by integrating air-ground networks and FL was proposed
to empower edge intelligence, where UAVs were deployed
as aerial nodes to collaboratively train an effective learning
model. Meanwhile, in [244], UAVs were employed to provide
intermediate model aggregation in FL models to improve the
efficiency of both learning and communication. In addition,
UAVs were also considered as edge servers for FL to boost
edge intelligence in [245] and were acting as wireless relays
to facilitate the communications between vehicles and the FL
server in [246]. Despite these research progress, fundamental
performance limits of distributed edge learning with mobile
UAV nodes is still a largely uncharted area.

2) Satellite: Thanks to the ability of providing seamless
coverage for remote and depopulated areas, satellite commu-
nication forms a critical part of IoE in B5G networks [247]. In
satellite-served IoE, computation tasks generated by terrestrial
IoE devices are offloaded to satellites [123]. These tasks can
be processed by satellite-enabled local computation platforms
or allocated to other compute nodes, such as space station,
super computation satellite, and ground edge servers. However,
limited by energy and computation capacity, satellite local
compute servers cannot handle all tasks from IoE devices. If all
of these tasks are offloaded to other compute nodes, high delay
caused by queuing and transmission process may prevent these
tasks from being processed in time. In addition, the network
topology is dynamic and the channel fluctuation is fast due to
high-speed movement of low earth orbit (LEO) satellites. All
these impose significant challenges to the task offloading pro-
cess. Therefore, the computation offloading (CO) for satellite-
served IoE requires complicated optimization involving energy
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TABLE V
REPRESENTATIVE WORKS ON EL

AI Method Reference Application Scenario Research Focus Objective

DNN
[113], [216] Goal-oriented

communication Task inference Enabling a task-oriented communication principle for
edge device inference under the IB framework

[248] Satellite-UAV-served
IoE Computation offloading Computation offloading policy to maximize the num-

ber of computing tasks

FL

[215] Distributed IoE Semantics extraction Improving transmission efficiency with lightweight
neural network

[219] Mobile robots Learning process optimization Dealing with unreliable and resource-constrained FL
environment

[240], [241] UAV-aided MEC Resource allocation Local data training with privacy protection
[243]–[246] UAV-aided MEC Edge intelligence Collaborative model training
[250]–[253] Over-the-air FL Edge intelligence Minimizing the average computation MSE

RL

SARL [225] Edge sensing IoE Caching updating policy Minimizing the average AoI and energy consumption

MARL
[236] UAV-aided MEC Task offloading Improving EE and accelerating task completion by

distributed offloading

[237] UAV-aided MEC Task offloading Minimizing the average mission response time for the
inter-dependent tasks of dynamic UAVs

DRL

[123], [249]
Satellite-and-UAV-

served
IoE

Computation offloading Finding the optimal computation offloading policy

[226], [227] Edge caching IoE Caching updating policy Trading off between the average AoI and energy cost
for multiple edge nodes

[230], [231] Edge caching IoE Caching transmission policy Trading off between interference alignment, caching,
and computing

[233], [234] Edge caching IoE Caching transmission policy Minimizing the average transmission delay

[235] UAV-aided MEC Big data processing Distributed path planning and resource management
using single-agent DRL

[238], [239] UAV-aided MEC Resource allocation Distributed multi-agent resource allocation in a multi-
UAV enabled network

consumption, computation delay, and computation capacity
constraints.

ML-based edge computing is one of the vital enabling
technologies for satellite-served IoE networks. It learns to
offload computing tasks from ground terminals to multiple
satellites and ground edge servers efficiently. In [123], the
optimization problem of the CO policy design was established
for satellite-served IoT network, which minimizes a weighted
sum of delay, energy consumption, and safety risk factors. A
DRL technology, called the deep deterministic policy gradient
method, was leveraged in [123] to solve this optimization
problem.

Considering that UAVs are closer to ground IoE devices
than LEO satellites, they provide near-real-time computing
service with less transmission power consumption. Satellite-
UAV-served IoE networks are supplements to satellite-served
IoE networks. The authors in [248] adopted the DL technique
of long short-term memory (LSTM) modules to predict the
remaining energy of IoT devices. They utilized an AI-based
method to design the task offloading policy according to
communication conditions and computation resources, aiming
to maximize the number of completed tasks. In [249], the task
offloading decision in a satellite-UAV-served IoT network was
formulated as an MDP with network dynamics, and a DRL-
based method was proposed to learn the optimal CO policy.

D. Over-the-air Computation

Although numerous emerging applications at edge wireless
networks have been developed to support universal connectiv-
ity and automatic processing, it is challenging to accomplish
effective data aggregation for a huge number of edge devices.

FL enables each device to upload model parameters obtained
from local data training. To facilitate FL data collection from
distributed devices, over-the-air FL (Air-FL) is envisioned to
provide better performance with less bandwidth requirement
[254], [255]. Air-FL can be accomplished by exploiting func-
tional decomposition and waveform superposition properties
over multiple-access channels, i.e., the technique of AirComp.
Early works on AirComp have concentrated on performance
analysis and transceiver optimization regarding the average
computation MSE. In particular, the comprehensive ergodic
performance analysis and the average MSE minimization were
considered in [256]. In [257], the authors modeled the statistics
of interference and revealed a two-sided effect of interference
on the overall training procedure in AirComp.

The advantages of Air-FL are indisputable, but they face two
main practical limitations. First, the aggregation errors in Air-
FL urgently need to be combated due to the feature of wireless
fading channels, and second, the computation accuracy of Air-
FL depends highly on the worst channel condition between the
access point (AP) and the edge devices. In light of the first
limitation, learning performance can be improved by selecting
the optimal number of devices and optimizing the transmit
power in Air-FL. For example, in [141], efficient algorithms
were proposed to cope with the nonconvex constraints for
device scheduling and transmit beamforming. Further consid-
ering synchronization in Air-FL, dynamic scheduling of edge
devices [250] and transmission power control [251] were stud-
ied to mitigate the data aggregation errors. Meanwhile, a novel
power control algorithm was presented to lighten the impact
of inter-cell interference on performance in Air-FL [252]. In
order to tackle the statistical characteristics of gradients which
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vary in each iteration, the transmit power control was obtained
in closed form under fading channels [253]. Besides, since the
training data of each user can also obey different distributions,
a local SGD-based power control algorithm was proposed by
introducing time-varying precoding [258].

On the other hand, the second limitation can be partially
addressed through the advances of RIS to enhance the quality
of the worst channel in Air-FL. Specifically, an alternative
algorithm was presented to jointly optimize the passive beam-
forming at the RIS and active beamforming at the transmitter
with low complexity, where the authors validate the superiority
of integrating RIS into Air-FL [259]. For the case of imperfect
CSI, a robust design of RIS-assisted Air-FL was proposed
in [260] under a sum-power constraint. In addition, privacy
in RIS-assisted Air-FL was studied based on differential
privacy technique [261]. As a consequence, one can tackle
the above two limitations by considering device scheduling
in RIS-assisted Air-FL. In [148], the authors highlighted
the effects of scheduling devices on training accuracy and
demonstrated the necessity of optimizing RIS for achieving
significant learning performance. To conclude, Air-FL has
great potential to enhance the efficiency of data aggregation
at each communication round for EL.

E. Holographic Beamforming

The QoS provided by B5G IoE should satisfy the require-
ments of holographic communication, which requires uninter-
rupted high speed, low latency to constantly maintain virtual
presence. As a result, EL provides a real-time processing
paradigm with low latency which helps provide holographic
contents to IoE devices on-demand. Recently, an intelligent
augmented reality (Intelli-AR) preloading algorithm was pro-
posed in [262] to improve the transmission efficiency in an
edge network, where the edge servers proactively transmit
holographic contents to IoE devices. The Intelli-AR solution
is verified to improve the ratio of successful preloading by
11.52% compared to the baseline in a practical dataset [262].

To fully unlock its potential, holographic communication
needs to reach the complete control of the electromagnetic
(EM) field generated and sensed by antennas. In such a case,
EL is a supplement to cloud computing for the complex EM
computing requirements in B5G IoE networks. A distributed
DL algorithm can be carried out on edge nodes for computing
tasks to reconfigure EM waves with reduced latency and
energy consumption.

In summary, EL techniques have shown great potential
in empowering these B5G wireless applications. For the
convenience of comparison, representative works of these
applications with EL are listed in Table V.

V. OPEN PROBLEMS AND CHALLENGES

In this section, we point out major open problems and
challenges in implementing EL over B5G and IoE wireless
networks.

A. Open Problems in Information Theory

In theory, the limits on information flow for communication
networks were originally discovered by Claude Shannon in the
seminal work [209]. Most well-known information theoretical
results thereafter successfully characterized the source infor-
mation entropy and channel capacity of various communica-
tion networks for a conventional task of exactly recovering the
source information at receiver(s) [263]. For EL and inference,
however, the task of a communication network can be the
computation on a utility function, or an inference decision
based on the distributed information, rather than recovering
all source information explicitly. For instance, an FL server
requests for only an averaging aggregation of the gradients
calculated and sent by distributed ML nodes. Under these
scenarios, the communication rate region established by exist-
ing distributed source coding theorems, e.g., the Slepian-Wolf
theorem [264] and the Wyner-Ziv coding [265], sometimes
becomes much larger than the minimum communication rate
needed for these computing tasks. Till today, the theoretical
rate limits are available for a few types of computing tasks in
very special use cases, e.g., the “µ-sum” computing task of
two distributed Gaussian sources in a multiple access channel
[266]. In particular, as we formulated the problem in (16),
it should be possible to design the optimal mapping function
g in a closed form, rather than by resorting to unexplained
black-box neural networks, for a goal-oriented communication
system with some specific task goals. Therefore, it is of both
theoretical and practical importance to find the rate-tuple limit
of distributed source coding for general computing tasks in
B5G networks with heterogeneous data and arbitrary topology.

On the other hand, current design of separate source-channel
coding in most communication systems is guaranteed optimal
in theory under the assumptions of using long codewords and
aiming at exact information recovery. In B5G networks, it
is natural to expect growing demands on short-packet data
communication by the applications of distributed FL and sens-
ing data collection [20]. For these short-packet transmissions,
source-channel separation can be far from optimal to fulfil
the edge computing and learning tasks, even if the distributed
sources are independent [266]. To improve the performance,
state-of-the-art goal-oriented communication designs have ad-
vocated joint source-channel coding techniques using DL.
However, these data-driven DL techniques have to be trained
case-by-case for vast applications. Also, their performance
gaps to the optimum are still unknown in general. In order
to promote the widespread goal-oriented semantic communi-
cation design in practice, we should envision significant ben-
efits of completing theoretical studies on joint source-channel
coding for EL and computing. In addition, related theoretical
development should provide an extra potential dimension of
joint source-channel coding to strengthen stream data caching,
privacy, and communication security in EL networks.

B. Architecture and Technique Challenges

The architecture of EL mainly faces two kinds of challenges,
i.e., from the communication system and learning procedure.
As for the communication system, B5G networks tend to
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be heterogeneous with multiple tiers of BSs. Besides, due
to the mobility of edge devices, they can leave or join the
communication system. Thus, one challenge is that EL should
be adaptive to the time varying heterogeneous properties of
network as well as the mobility of edge devices. As for
learning procedure, the EL performance can only be well
guaranteed when the dataset is uniformly distributed among
edge devices. However, edge devices usually have non-i.i.d.
dataset, which can lead to poor learning performance of EL.
As a result, the other challenge is that model aggregation of
EL should cope with non-i.i.d. dataset.

It is also of great interest to investigate the joint commu-
nication and computation resource allocation, such as com-
munication bandwidth for improving convergence of FL. FL
relies on mobile wireless communications to collaboratively
learn ML models. Although the computing resource of mobile
phones is becoming more powerful, the bandwidth of wireless
communication has not increased much. Therefore, the bot-
tleneck shifts from computing to communicating. The limited
communication bandwidth may cause a longer communication
delay, which definitely results in longer convergence time in
FL.

C. Research Opportunities with New Applications

In B5G communication networks, there are new emerging
applications such as blockchain techniques [267], quantum
computing [268], and metaverse. Since the central learning
model can suffer from servers’ constant attack and there can
exist malicious clients, the security is an important issue
of EL. Combining the committee consensus mechanism of
blockchain technique, EL framework can effectively reduce
consensus computation and malicious attacks. Due to the
explosive growth of data edge devices, quantum computing
can be effectively utilized to solve large complex EL problems
through performing classic ML tasks on quantum data.

With the rapid development of wireless networks and AI,
emerging applications continue to appear and metaverse is
a future perspective of wireless communication systems to
realize a virtual digital universe. Emerging metaverse appli-
cations have put forward higher demands on 6G networks
for end-to-end information processing capabilities. In order
to meet these higher performance demands, 6G will be an
end-to-end information processing and service network, and
its core functions will expand from information transmission
to information collection, information computing and appli-
cation, and providing stronger sensing, communication, and
computing capabilities. It is also expected that advancements
in joint sensing, communication, and computing would help
form a platform for implementing EL in B5G networks.

VI. CONCLUSION

In this paper, we presented a comprehensive overview
on distributed EL techniques. We introduced the interplay
between EL and communication optimization design. In par-
ticular, we provided dual-functional performance metrics for
both learning and communication. We also pointed out the

communication optimization design for EL and learning tech-
niques for communication optimization from the pointview of
signal processing. Moreover, we provided the detailed B5G
applications, open problems, and challenges of EL framework.
The in-depth study on the signal processing techniques for the
EL over wireless communications provides guidelines for the
native integration of ML and edge networks.
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[46] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization:
Distributed optimization beyond the datacenter,” arXiv:1511.03575,
Oct. 2015.

[47] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), Fort
Lauderdale, FL, USA, Apr. 2017, pp. 1273–1282.

[48] J. Zhang et al., “Adaptive federated learning on non-iid data with
resource constraint,” IEEE Trans. Commun., Jul. 2021, early access.

[49] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau,
“Federated learning for keyword spotting,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP), Brighton, UK 2019, pp.
6341–6345.

[50] Y. Cao, S.-Y. Lien, Y.-C. Liang, K.-C. Chen, and X. Shen, “User access
control in open radio access networks: A federated deep reinforcement
learning approach,” IEEE Trans. Wirel. Commun., Nov. 2021, early
access.

[51] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intell. Syst.,
vol. 35, no. 4, pp. 83–93, Jul./Aug. 2020.

[52] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[53] B. Gu, A. Xu, Z. Huo, C. Deng, and H. Huang, “Privacy-preserving
asynchronous vertical federated learning algorithms for multiparty
collaborative learning,” IEEE Trans. Neural Netw. Learn. Syst., 2021,
early access.

[54] J. Domingo-Ferrer, A. Blanco-Justicia, J. Manjón, and D. Sánchez,
“Secure and privacy-preserving federated learning via co-utility,” IEEE
Internet Things J., Mar. 2021, early access.

[55] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.
Commun. (ICC), Shanghai, China, May 2019, pp. 1–7.

[56] D. C. Nguyen et al., “Federated learning for Internet of Things: A
comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 1622–1658, Apr. 2021.

[57] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process.
Mag., vol. 37, no. 3, pp. 50–60, May 2020.

[58] W. Xia et al., “Federated-learning-based client scheduling for low-
latency wireless communications,” IEEE Wireless Commun., vol. 28,
no. 2, pp. 32–38, Apr. 2021.

[59] Q. Wu, K. He, and X. Chen, “Personalized federated learning for
intelligent IoT applications: A cloud-edge based framework,” IEEE
Open J. Comput. Soc., vol. 1, pp. 35–44, May 2020.

[60] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Adv. Neural Inf. Process. Syst., pp. 4424–4434,
May 2017.

[61] S. Caldas, V. Smith, and A. Talwalkar, “Federated kernelized multi-
task learning,” in Proc. SysML Conf., Stanford, CA, USA, Feb. 2018,
pp. 1–3.

[62] H. Xu, J. Li, H. Xiong, and H. Lu, “Fedmax: Enabling a highly-efficient
federated learning framework,” in Proc. 13th IEEE Int. Conf. Cloud
Comput., Beijing, China, Oct. 2020, pp. 426–434.

[63] Y. Zhao et al., “Local differential privacy-based federated learning for
Internet of Things,” IEEE Internet Things J., vol. 8, no. 11, pp. 8836–
8853, Jun. 2020.

[64] X. Ding, C. Wang, K.-K. R. Choo, and H. Jin, “A novel privacy
preserving framework for large scale graph data publishing,” IEEE
Trans. Knowl. Data Eng., vol. 33, no. 2, pp. 331–343, Feb. 2021.

[65] D. C. Verma et al., “Approaches to address the data skew problem in
federated learning,” in Proc. Artif. Intell. Mach. Learn. Multi-Domain
Operations Appl., Baltimore, MD, USA, May 2019, p. 50.

[66] Y. Cui, K. Cao, G. Cao, M. Qiu, and T. Wei, “Client scheduling and
resource management for efficient training in heterogeneous iot-edge
federated learning,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., Sep. 2021, early access.

[67] D. C. Nguyen et al., “Federated learning meets blockchain in edge
computing: Opportunities and challenges,” IEEE Internet Things J.,
vol. 8, no. 16, pp. 12 806–12 825, Aug. 2021.

[68] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc. IEEE
Symp. Secur. Privacy (SP), San Francisco, CA, USA, May 2019, pp.
691–706.

[69] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, Aug.
2018.

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.1007/s11704-019-8208-z


25

[70] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient
data,” CoRR, vol. abs/1812.00564, Dec. 2018. [Online]. Available:
https://arxiv.org/abs/1812.00564

[71] Y. Gao et al., “End-to-end evaluation of federated learning and split
learning for Internet of things,” in Proc. Int. Symp. Rel. Distrib. Syst.
(SRDS), Shanghai, China, Sep. 2020.

[72] Y. Koda, J. Park, M. Bennis, K. Yamamoto, T. Nishio, M. Morikura,
and K. Nakashima, “Communication-efficient multimodal split learning
for mmWave received power prediction,” IEEE Commun. Lett., vol. 24,
no. 6, pp. 1284–1288, Jun. 2020.

[73] Y. Koda et al., “Distributed heteromodal split learning for vision aided
mmWave received power prediction,” CoRR, vol. abs/2007.08208, Jul.
2020. [Online]. Available: https://arxiv.org/abs/2007.08208

[74] X. Liu, Y. Deng, and T. Mahmoodi, “Energy efficient user scheduling
for hybrid split and federated learning in wireless UAV networks,”
in Proc. IEEE Int. Conf. Commun. (ICC), Seoul, South Korea, early
access, May, 2022.

[75] Y. Tian, Z. Zhang, Z. Yang, and Q. Yang, “JMSNAS: Joint
model split and neural architecture search for learning over mobile
edge networks,” CoRR, vol. abs/2111.08206, Nov. 2021. [Online].
Available: https://arxiv.org/abs/2111.08206

[76] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Seoul, South Korea, Oct. 2019, pp.
1314–1324.

[77] S. Wang, X. Zhang, H. Uchiyama, and H. Matsuda, “HiveMind:
Towards cellular native machine learning model splitting,” IEEE J. Sel.
Areas Commun., vol. 40, no. 2, pp. 626–640, Oct. 2022.

[78] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[79] V. Mnih et al., “Playing atari with deep reinforcement learning,”
CoRR, vol. abs/1312.5602, Dec. 2013. [Online]. Available: https:
//arxiv.org/abs/1312.5602

[80] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-
user cellular networks: Deep reinforcement learning approaches,” IEEE
Trans. Wireless Commun., vol. 19, no. 10, pp. 6255–6267, Oct. 2020.

[81] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation
in heterogeneous cellular networks,” IEEE Trans. Wireless Commun.,
vol. 18, no. 11, pp. 5141–5152, Aug. 2019.

[82] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning
based resource allocation for V2V communications,” IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 3163–3173, Feb. 2019.

[83] H. Zhang, N. Yang, W. Huangfu, K. Long, and V. C. M. Leung, “Power
control based on deep reinforcement learning for spectrum sharing,”
IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 4209–4219, Mar.
2020.

[84] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Trans. Syst. Man Cybern.
Part C, vol. 38, no. 2, pp. 156–172, Mar. 2008.

[85] L. S. Shapley, “Stochastic games,” Proc. Nat. Acad. Sci., vol. 39, no. 10,
pp. 1095–1100, Oct. 1953.
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[111] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Deep joint source-
channel coding for wireless image retrieval,” in Proc. 2020 IEEE
International Conference on Acoustics, Speech, and Signal Processing.
(ICSAAP), Barcelona, Spain, May 2020, pp. 5070–5074.

[112] M. Krouka, A. Elgabli, C. b. Issaid, and M. Bennis, “Communication-
efficient split learning based on analog communication and over the air
aggregation,” in Proc. 2021 IEEE Global Communications Conference.
(GLOBECOM), Madrid, Spain, Dec. 2021, pp. 1–6.

[113] J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication
for edge inference: An information bottleneck approach,” IEEE J. Sel.
Areas Commun., vol. 40, no. 1, pp. 197–211, Jul. 2021.

https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/2007.08208
https://arxiv.org/abs/2111.08206
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1908.09791
http://arxiv.org/abs/1908.09791


26

[114] Liu et al., “Hierarchical quantized federated learning: Convergence
analysis and system design,” arXiv:2103.14272, Mar. 2021. [Online].
Available: https://arxiv.org/abs/2103.14272
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over-the-air federated edge learning with energy constraints,” IEEE J.
Sel. Areas Commun., vol. 40, no. 1, pp. 227–242, Jan. 2021.

https://arxiv.org/abs/1909.09145


29

[251] X. Cao, G. Zhu, J. Xu, Z. Wang, and S. Cui, “Optimized power control
design for over-the-air federated edge learning,” IEEE J. Sel. Areas.
Commun., vol. 40, no. 1, pp. 342–358, Jan. 2021.

[252] X. Cao, G. Zhu, J. Xu, and K. Huang, “Cooperative interference
management for over-the-air computation networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 4, pp. 2634–2651, Apr. 2020.

[253] N. Zhang and M. Tao, “Gradient statistics aware power control for over-
the-air federated learning,” IEEE Trans. Wireless Commun., vol. 20,
no. 8, pp. 5115–5128, Aug. 2021.

[254] G. Zhu and K. Huang, “MIMO over-the-air computation for high-
mobility multimodal sensing,” IEEE Internet Things J., vol. 6, no. 4,
pp. 6089–6103, Aug. 2018.

[255] X. Li, G. Zhu, Y. Gong, and K. Huang, “Wirelessly powered data ag-
gregation for IoT via over-the-air function computation: Beamforming
and power control,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp.
3437–3452, Jul. 2019.

[256] W. Liu, X. Zang, Y. Li, and B. Vucetic, “Over-the-air computation sys-
tems: Optimization, analysis and scaling laws,” IEEE Trans. Wireless
Commun., vol. 19, no. 8, pp. 5488–5502, Aug. 2020.

[257] H. H. Yang, Z. Chen, T. Q. Quek, and H. V. Poor, “Re-
visiting analog over-the-air machine learning: The blessing and
curse of interference,” IEEE J. Sel. Topics Signal Process., 2021,
doi:10.1109/JSTSP.2021.3139231.

[258] T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, “Over-the-air feder-
ated learning from heterogeneous data,” IEEE Trans. Signal Process.,
vol. 69, pp. 3796–3811, Jul. 2021.

[259] W. Fang, Y. Jiang, Y. Shi, Y. Zhou, W. Chen, and K. B. Letaief, “Over-
the-air computation via reconfigurable intelligent surface,” IEEE Trans.
Commun., vol. 69, no. 12, pp. 8612–8626, Dec. 2021.

[260] W. Zhang, J. Xu, W. Xu, X. You, and K. Yang, “Worst-case design for
RIS-aided over-the-air computation with imperfect CSI,” arXiv preprint
arXiv:xxxx, 2022. [Online]. Available: https://arxiv.org/abs/xxxx

[261] Y. Yang, Y. Zhou, Y. Wu, and Y. Shi, “Differentially private
federated learning via reconfigurable intelligent surface,” arXiv
preprint arXiv.2203.17028, 2022. [Online]. Available: https://arxiv.org/
abs/2203.17028

[262] Y. Han, Y. Chen, R. Wang, J. Wu, and M. Gorlatova, “Intelli-
AR preloading: A learning approach to proactive hologram trans-
missions in mobile AR,” IEEE Internet Things J., early access, doi:
10.1109/JIOT.2022.3159554.

[263] T. M. Cover and J. A. Thomas, Elements of Information Theory. John
Wiley & Sons, Inc., 2006.

[264] D. Slepian and J. K. Wolf, “Noiseless coding of correltaed information
sources,” IEEE Trans. Inf. Theory, vol. IT-19, pp. 471–480, 1973.

[265] A. Wyner and J. Ziv, “The rate distortion function for source coding
with side information at the receiver,” IEEE Trans. Inf. Theory, vol.
IT-22, pp. 1–11, 1976.

[266] A. E. Gammal and Y.-H. Kim, Network Information Theory. Cam-
bridge University Press, 2011.

[267] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A blockchain-
based decentralized federated learning framework with committee
consensus,” IEEE Network, vol. 35, no. 1, pp. 234–241, Jan. 2021.

[268] M. Chehimi and W. Saad, “Quantum federated learning with quantum
data,” arXiv preprint arXiv:2106.00005, 2021.

https://arxiv.org/abs/xxxx
https://arxiv.org/abs/2203.17028
https://arxiv.org/abs/2203.17028

	I Introduction
	I-A Motivation of Edge Learning
	I-B Edge Learning in B5G Networks
	I-C Focus and Structure

	II Edge Learning Techniques
	II-A General Overview of Machine Learning
	II-B Architectures for Machine Learning
	II-C Training of Edge Learning
	II-C1 Federated Learning
	II-C2 Split Learning
	II-C3 Multi-agent Reinforcement Learning

	II-D Inference of Edge Learning
	II-E Joint Edge Learning and Communication Resource Allocation Optimization

	III Edge Learning and Communication Optimization
	III-A Dual-functional Performance Metrics for Learning
	III-A1 Accuracy and Convergence
	III-A2 Privacy Protection
	III-A3 Security Design

	III-B Dual-functional Performance Metrics for Communication
	III-B1 Spectral Efficiency Optimization
	III-B2 Low Latency Optimization
	III-B3 Energy Efficiency Optimization

	III-C Communication Optimization for Edge Learning
	III-C1 Optimization of FL Networks
	III-C2 Optimization of Edge Computing/Caching

	III-D Edge Learning for Communication Optimization
	III-D1 EL Techniques with Perfect CSI
	III-D2 EL Techniques with Statical CSI

	III-E Convergence, Complexity, and Signaling Overhead
	III-E1 Convergence
	III-E2 Complexity
	III-E3 Signaling Overhead


	IV B5G Wireless Applications with Edge Learning
	IV-A Distributed Goal-oriented Semantic Communication
	IV-B Wireless Sensing and Edge Caching
	IV-B1 Sensing
	IV-B2 Caching

	IV-C Integrated Aerial and Satellite Computing Networks
	IV-C1 Aerial Networks
	IV-C2 Satellite

	IV-D Over-the-air Computation
	IV-E Holographic Beamforming

	V Open Problems and Challenges
	V-A Open Problems in Information Theory
	V-B Architecture and Technique Challenges
	V-C Research Opportunities with New Applications

	VI Conclusion
	References

