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Abstract—A simultaneously transmitting and reflecting sur-
face (STARS) aided terahertz (THz) communication system is
proposed. A novel power consumption model is proposed that
depends on the type and resolution of the STARS elements. The
spectral efficiency (SE) and energy efficiency (EE) are maximized
in both narrowband and wideband THz systems by jointly
optimizing the hybrid beamforming at the base station (BS) and
the passive beamforming at the STARS. 1) For narrowband sys-
tems, independent phase-shift STARSs are investigated first. The
resulting complex joint optimization problem is decoupled into
a series of subproblems using penalty dual decomposition. Low-
complexity element-wise algorithms are proposed to optimize the
analog beamforming at the BS and the passive beamforming at
the STARS. The proposed algorithm is then extended to the
case of coupled phase-shift STARS. 2) For wideband systems,
the spatial wideband effect at the BS and STARS leads to
significant performance degradation due to the beam split issue.
To address this, true time delayers (TTDs) are introduced into
the conventional hybrid beamforming structure for facilitating
wideband beamforming. An iterative algorithm based on the
quasi-Newton method is proposed to design the coefficients of
the TTDs. Finally, our numerical results confirm the superiority
of the STARS over the conventional reconfigurable intelligent
surface (RIS). It is also revealed that i) there is only a slight
performance loss in terms of SE and EE caused by coupled
phase shifts of the STARS in both narrowband and wideband
systems, and ii) the conventional hybrid beamforming achieves
comparable SE performance and much higher EE performance
compared with the full-digital beamforming in narrowband
systems but not in wideband systems, where the TTD-based
hybrid beamforming is required for mitigating wideband beam
split.

Index Terms—Beamforming design, simultaneously transmit-
ting and reflecting surface, terahertz communications, wideband
beam split.

I. INTRODUCTION

The sixth generation (6G) wireless communication systems
are anticipated to support a minimum peak data rate of
one terabit per second (Tbps) to enable the development
of novel applications, including virtual reality, vehicle-to-
everything, Internet of Things, and Metaverse [1]. In this
context, communication over the terahertz (THz) band, which
is situated in the frequency range of 0.1-10 THz, is considered
a promising technique for 6G as it provides a broad commu-
nication bandwidth in the order of tens of gigahertz (GHz)
[2]–[4]. However, THz signals suffer significant propagation
pass loss due to their very high frequencies, which limits
communication distance. Therefore, the massive multiple-
input multiple-output (MIMO) technique is a crucial enabler
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for THz communication [4]. Specifically, the ultra-massive
antenna array can be implemented thanks to the extremely
small wavelength of THz signals, allowing for the generation
of fine beams to compensate for significant pass loss in the
THz band.

Simultaneous transmitting and reflecting surface (STARS) is
another promising technique for 6G. Unlike the conventional
reconfigurable intelligent surface (RIS) that can only reflect the
incident signal and thus lead to the half-space coverage [5],
the STARS can simultaneously transmit and reflect the incident
signal into both sides of the surface, resulting in the full-space
coverage [6], [7]. Therefore, STARS provides more degrees of
freedom for manipulating the signal propagation and thereby
enhances the design flexibility of the wireless network.

A. Prior Works

As previously discussed, the massive MIMO technique is
crucial for THz communications, enabling accurate beamform-
ing to combat significant pathloss. However, in contrast to
sub-6 GHz communications, the full-digital beamforming ar-
chitecture, where each antenna has a dedicated radio frequency
(RF) chain, becomes infeasible in high-frequency bands such
as millimeter-wave (mmWave) and THz, due to its high cost
and power consumption [8]. Consequently, researchers have
extensively studied a hybrid analog and digital beamforming
architecture, which comprises only a few RF chains for digital
beamforming and numerous low-cost phase shifters (PSs)
for analog beamforming [9]–[13]. In particular, the authors
of [9] proposed a series of alternating minimization algo-
rithms for hybrid beamforming design, aiming to minimize
the matching error between hybrid beamforming and optimal
full-digital beamforming. The authors of [10] analyzed the
minimum number of RF chains required for hybrid beam-
forming to achieve performance comparable to that of full-
digital beamforming. Furthermore, the matrix decomposition
was employed for hybrid beamforming design in [11] and [12],
leading to relatively low complexity. As a further advance, a
penalty-based algorithm with provable optimality was devel-
oped in [13] to investigate the performance limit of hybrid
beamforming.

Nevertheless, the above hybrid beamforming designs have
mainly focused on narrowband systems and may not meet
the requirements of THz communications with large spectrum
resources. As a result, research efforts have been directed
towards investigating the hybrid beamforming design in THz
wideband systems [14]–[17]. For instance, a two-stage wide-
band hybrid beamforming design was proposed in [14] for
multi-carrier systems over frequency selective fading channels.
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Fig. 1: Applications of STARS in THz communications.

To overcome the connectivity limitation posed by the number
of RF chains, the authors of [15] introduced a cluster-based
hybrid beamforming design to serve multiple users in the
same beam with different subcarriers. However, neither of
the approaches considered the significant beam split effect
that occurs in wideband THz communications. To address this
challenge, two hybrid beamforming designs based on virtual
sub-array and true time delayers (TTDs) were presented in
[16]. Furthermore, the authors of [17] proposed a delay-phase
beamforming design, which also employs TTDs to eliminate
the beam split effect.

In addition, the high susceptibility of THz communications
to obscuration may lead to transmission unreliability caused
by blockages. One possible solution to address this issue is
through the use of RISs, which can establish an additional
line-of-sight path, thus enhancing the performance of THz
communications [18]. For instance, the authors of [19] pro-
posed a cooperative beam training scheme for RIS-aided THz
communications and designed the hybrid beamforming based
on the training results. To address the effects of imperfect
channel state information, a robust hybrid design was devel-
oped for RIS-aided THz communications in [20]. Furthermore,
the authors of [21] propose to exploit holographic RISs in
THz communications to enhance the array gain. More recently,
the beam split effect in RIS-aided THz communications was
investigated in [22] and [23].

B. Motivations and Contributions

Although RISs have the potential to solve the blockage
problem in THz communications, their hardware limitations
restrict their flexibility and effectiveness. Specifically, con-
ventional RISs can only reflect the incident signals, thus
requiring the transmitter and receiver to be located on the
same side of RISs. As a result, multiple RISs may be needed
to overcome blockages and realize full-space coverage. For
instance, in indoor THz communications, as depicted in Fig.
1, two conventional RISs are needed to cover the entire indoor
space. STARSs are promising to overcome the aforementioned
limitations and provide more benefits. On the one hand,
STARSs are more efficient in achieving full-space coverage.
As shown in Fig. 1, a single STARS can aid the THz base
station (BS) in covering the entire indoor space. On the other
hand, STARSs can bridge disconnected spaces, such as indoor

and outdoor spaces, which is impossible for conventional
RISs. Therefore, there is a natural link between STARSs and
THz communications, which motivates further exploration of
STARSs in THz communications.

Based on different spectrum allocation schemes, such
as multi-band-based and multi-transmission-window-based
schemes, the system bandwidth of THz communications can
be either reasonably small or extremely large [3]. Furthermore,
based on different hardware implementations, the transmission
and reflection phase shifts of STARSs can be either indepen-
dent or coupled [24]. Therefore, to explore the full potential
of STARSs in THz communications, we investigate the perfor-
mance of both independent and coupled phase-shift STARSs in
both narrowband and wideband THz communication systems.
The main contributions of this paper can be summarized as
follows:

• We propose a novel STARS-aided THz communication
system and evaluated its performance in terms of spec-
tral efficiency (SE) and energy efficiency (EE). We for
the first time develop a power consumption model for
STARS, which takes into account the types and resolu-
tions of the STARS elements. Furthermore, we analyze
the THz channels in both narrowband and wideband sys-
tems. Based on the different characteristics of narrowband
and wideband THz channels, we investigate the joint
design of hybrid beamforming at the BS and the passive
beamforming at the STARS for both systems.

• For narrowband systems, we formulate a general opti-
mization problem that aims to maximize SE and EE.
Specifically, for the independent phase-shift STARS, we
propose a double-loop iterative algorithm using penalty
dual decomposition (PDD) [25] to solve the optimization
problem. In particular, we develop element-wise algo-
rithms that admit optimizing the analog beamforming at
the BS and the passive beamforming at the STARS with
low computational complexity. Finally, we extend the
proposed algorithm to cover scenarios with the coupled
phase-shift STARS.

• For wideband systems, we focus on alleviating the impact
of beam split caused by the spatial wideband effect at the
BS and STARS. We introduce TTDs into the conventional
hybrid beamforming structure for facilitating wideband
beamforming. Then, we propose an iterative algorithm
based on the quasi-Newton method to optimize the coef-
ficients of TTDs.

• Our numerical results unveil that 1) the coupled phase-
shift STARS only leads to a slight performance degrada-
tion compared to the independent one, in both narrow-
band and wideband systems; 2) In narrowband systems,
the performance of hybrid beamforming is comparable
to the full-digital beamforming; and 3) in wideband
systems, TTD-based hybrid beamforming achieves sim-
ilar performance to the full-digital beamforming, while
conventional hybrid beamforming causes significant per-
formance degradation especially when the size of STARS
is large.
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C. Organization and Notations

The remainder of this paper is organized as follows. Sec-
tion II presents the system model of the proposed STARS-
aided THz communication system. Then, Sections III and IV
investigate the joint designs of hybrid beamforming at the BS
and passive beamforming at the for narrowband and wideband
systems, respectively. Section V provides numerical results
to verify the effectiveness of the proposed designs. Finally,
Section VI concludes the paper.

Notations: Scalars, vectors, and matrices are denoted by
the lower-case, bold-face lower-case, and bold-face upper-case
letters, respectively; CN×M denotes the space of N × M
complex matrices; a∗ and |a| denote the conjugate and the
magnitude of scalar a, respectively; (·)T , (·)H , ‖ · ‖, ‖ · ‖F ,
and tr(·) denote the transpose, conjugate transpose, norm,
Frobenius norm, and trace respectively; blkdiag(A) denotes
a block diagonal matrix in which the diagonal blocks are the
columns of A; IN denotes the N ×N identity matrix; [A]i,j
denotes the entry of the matrix A at the i-th row and j-th
column; [a]i:j denotes the vector composed of the i-th to
the j-th entries of the vector a; E[·] denotes the statistical
expectation; Re{·} denotes the real component of a complex
number; CN (µ, σ2) denotes the distribution of a circularly
symmetric complex Gaussian random variable with mean µ
and variance σ2; U(a, b) denotes the uniform distribution
between a and b; d·e denotes the ceiling function.

II. SYSTEM MODEL

We consider a STARS-aided THz communication system,
which consists of an N -antenna BS with a uniform linear array
(ULC), an M -element STARS with a uniform planar array
(UPA), and K single-antenna users whose indices are collected
in K. Without loss of generality, we assume that the users in
subset Kt = {1, . . . ,K0} are located on the transmission side,
and the users in subset Kr = {K0 + 1, . . . ,K} are located
on the reflection side. Due to the high susceptibility of THz
communications to obscuration, the direct links between the
BS and users are assumed to be blocked. Furthermore, it is
assumed that the channels and path angles have been acquired
through the angle-based channel estimation method [26].

A. Signal Model for STARS

In this work, we consider patch-array-based STARSs [27].
The STARS elements excited by the incident signal are
capable of radiating signals into both transmission and re-
flection spaces, which are referred to as transmitted signals
and reflected signals, respectively. Let sm ∈ C denote the
incident signal at the m-th element. Then, the corresponding
transmitted signal tn ∈ C and reflected signal rn ∈ C is given
by [28]

tm = βt,me
jφt,msm, rm = βr,me

jφr,msm, (1)

where βt,m, βr,m ∈ [0, 1] are the amplitude coefficients for
transmission and reflection and φt,m, φr,m ∈ [0, 2π] are the
corresponding phase shifts introduced by the m-th elements. In
this paper, we consider both independent and coupled phase-
shift models for the STARS. In particular, for independent
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Fig. 2: Hardware structure of the STARS

phase-shift STARSs, the law of energy conservation needs to
be satisfied, which is given by

β2
t,m + β2

r,m = 1,∀m ∈M, (2)

where M = {1, . . . ,M}. Moreover, the phase shifts for
transmission and reflection can be independently adjusted.
However, the active or lossy elements are required to achieve
independent control of phase shifts, which can significantly
increase manufacturing costs. For the low-cost passive loss-
less STARS, the electric and magnetic impedances of each
element should be purely imaginary. Under such conditions,
the transmission and reflection phase shifts of STARSs are
coupled, leading to the following constraints [24]:

cos(φt,m − φr,m) = 0,∀m ∈M. (3)

The above constraint implies that if φt,m is fixed, φr,m can
only be selected from a finite set such that φt,m−φr,m is π/2
or 3π/2, and vise versa.

B. Proposed Power Consumption Model for STARSs

For patch-array-based STARSs, each element can accommo-
date positive-intrinsic-negative (PIN) diodes to configure the
different states, as illustrated in Fig. 2. The power consumption
of STARSs is composed of two parts, namely the static power
consumption of the control circuit (e.g., field-programmable
gate array (FPGA) board connected to the PIN diodes) and
the dynamic power consumption of each element [29]. In
principle, the static power consumption is independent of the
operating states of the STARS elements. On the contrary, the
dynamic power consumption depends on the different states
of the element as well as the number of quantization levels
of each element. In the following, we present the power
consumption models for both independent phase-shift and
coupled phase-shift STARSs.

1) Independent Phase-shift STARSs: Independent phase-
shift STARSs are only subject to the energy conservation
constraint as given in (2). Thus, as shown in Fig. 2, we
need three sets of PIN diodes to control the power splitting
ratio (βt,m/βr,m), the transmission phase-shift (φt,m), and the
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reflection phase-shift (φr,m), respectively. If the number of
quantization levels assigned for the power splitting ratio and
phase shifts are Lβ and Lφ, respectively, then, the total number
of PIN diodes required is dlog2 Lβ+2 log2 Lφe. As a result, we
formulate the power consumption of the independent phase-
shift STARS as follows:

P iSTAR =
1

2
dlog2 Lβ + 2 log2 LφeMPPIN + Pcirc, (4)

where 1
2dlog2 Lβ + 2 log2 Lφe is the average number of PIN

diodes in the “ON” state per element, PPIN denotes the power
consumption per PIN diode, and Pcirc denotes the static power
consumption of the control circuit.

2) Coupled Phase-shift STARSs: Coupled phase-shift
STARSs are subject to the energy conservation constraint
and the coupled phase-shift constraint in (3). Thus, for each
element, we need two sets of PIN diodes to control the power
splitting and phase-shift for φt,m, as well as an auxiliary PIN
diode to determine whether φt,m−φr,m is π/2 or 3π/2 [24].
This is to say that for coupled phase-shift STARSs, the total
number of PIN diodes required is dlog2 Lβ + log2 Lφ + 1e.
As a result, we formulate the power consumption of coupled
phase-shift STARSs STARSs as follows:

P cSTAR =
1

2
dlog2 Lβ + log2 Lφ + 1eMPPIN + Pcirc, (5)

Theoretically, to achieve the ideal case of continuous phase
shifts, an infinite number of states are required. However,
in practical cases, continuous phase shifts are obtained with
tolerable phase-shift errors. For example, we consider the
maximum tolerable error to be 1◦, then the corresponding
“continuous phase-shift” can be achieved with dlog2 180e = 8
PIN diodes per element. A similar result holds for the control
bits of power splitting amplitudes.

C. THz Channel Model

We adopt a ray-tracing-based channel model to incorporate
the limited scattering characteristics of THz channels in both
narrowband and wideband systems. Consider a THz channel
with L paths between the BS and STARS and Lk paths
between the STARS and user k. For the channel related to
the i-th path between the BS and STARS and the j-th path
between the STARS and user k, let αi,j,k denote as the
complex path gain, τi,j,k denote the path delay, ψtj,k, ϑti, ψ

r
i ,

and ϑrj,k denote the azimuth angle of departure, elevation angle
of departure, azimuth angle of arrival, and elevation angle of
arrival at the STARS, respectively, and ϕi denote the angle
of departure at the BS. Let p(t) denote the pulse shaping
function, W denote the system bandwidth, and f denote the
carrier frequency. Then, the corresponding delay-q baseband
channel hi,j,k[q] ∈ C1×N ,∀k ∈ Kχ, is given by [30]–[32]

hi,j,k[q] = αi,j,kp(q −Wτi,j,k)

× aH(f, ψtj,k, ϑ
t
j,k)Θχa(f, ψri , ϑ

r
i )b

H(f, ϕi), (6)

where Θχ = diag([βχ,1e
jϕχ,1 , . . . , βχ,Me

jϕχ,M ]T ),∀χ ∈
{t, r}, denotes the transmission/reflection coefficient matrix
of the STARS, a(f, ψ, ϑ) denotes the array response vector
of the UPA at the STARS, and b(f, ϕ) denotes the array

response vector of the ULA at the BS. Specifically, assuming
the dimension of the UPA at the STARS to be Mh×Mv , the
array response vector can be modeled as

a(f, ψ, ϑ)

= [1, e−j
2πf
c d sinψ sinϑ, . . . , e−j

2πf
c (Mh−1)d sinψ sinϑ]T

⊗ [1, e−j
2πf
c d cosϑ, . . . , e−j

2πf
c (Mv−1)d cosϑ]T , (7)

where c and d denote the speed of light and antenna spacing,
respectively. Similarly, the array response vector of the ULA
at the BS is given by

b(f, ϕ) = [1, e−j
2πf
c d sinϕ, . . . , e−j

2πf
c (N−1)d sinϕ]T . (8)

Furthermore, the overall complex path gain can be rewritten
as αi,j,k = ᾱiα̃j,k

√
GrGt. More specifically, ᾱi and α̃j,k

denote the complex path gains between the BS and the STARS
and between the STARS and user k, respectively. Gt and Gr
denote the transmit and receive antenna gain, respectively. The
amplitude of ᾱi and α̃j,k relies on the path loss. According to
[33], the path loss L(f,D) in the THz band involves spreading
loss and absorption loss, which is given by

L(f,D)[dB] =Lspread(f,D)[dB] + Labsorption(f,D)[dB]

=20 log10

(
4πfD

c

)
+ k(f)D10 log10 e. (9)

Here, D denotes the path length and k(f) is the frequency-
dependent medium absorption coefficient.

Given the delay-q channel hi,j,k[q] of each path, the overall
channel for user k at time n is given by

hk[n] =

Qk−1∑
q=0

L∑
i=1

Lk∑
j=1

hi,j,k[q]δ[n− q], (10)

where Qk denotes the maximum resolvable delays at user k
and δ[·] denotes the unit impulse function. The value of Qk is
determined by the relationship between the system bandwidth
and the coherence bandwidth Wcorr,k = 1/[(maxi,j τi,j,k) −
(mini,j τi,j,k)]. Therefore, in the following, we further ana-
lyze the overall channel hk[n] in narrowband and wideband
systems, respectively

1) Narrowband System: In narrowband systems, the system
bandwidth is assumed to be much smaller than the coherence
bandwidth, i.e., W � Wcorr,k [30]. For the purpose of
exposition, we set the time of the first arrival path as the
reference time, i.e., mini,j τi,j,k = 0. Hence, the coherence
bandwidth can be simplified as Wcorr,k = 1/maxi,j τi,j,k.
Based on the narrowband condition W � Wcorr,k, it holds
that Wτi,j,k ≈ 0,∀m,n, resulting in p(q −Wτi,j,k) ≈ p(q).
Generally, the pulse-shaping function can be the optimal sinc
function or the practical raise-cosine function, which has the
property of rapid decay, i.e., p(q) = 1 when q = 0 and
p(q) ≈ 0 when q ≥ 1. Therefore, the value of delay-q
channel hm,n,q is almost zeros when q ≥ 1. Therefore, the
overall channel for user k, ∀k ∈ Kχ, can be simplified into
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the following form:

hnk [n] =

L∑
i=1

Lk∑
j=1

hi,j,k[0]δ[n] = vnkΘχGnδ[n], (11)

where

Gn =

L∑
i=1

√
Gtᾱia(f, ψri , ϑ

r
i )b

H(f, ϕi), (12)

vnk =

Lk∑
j=1

√
Grα̃j,ka

H(f, ψtj,k, ϑ
t
j,k). (13)

2) Wideband System: In wideband systems, the system
bandwidth is assumed to be comparable to or much larger
than the coherence bandwidth. In this case, the condition
Wτi,j,k ≈ 0 no longer holds. Therefore, unlike narrowband
systems where a single delay channel is sufficient to represent
the overall channel, multiple delay channels are required for
wideband systems, i.e., Qk ≥ 1. Such a channel is referred to
as a frequency-selective channel, which causes inter-symbol
interference since each user k receives overlapped transmit
signals with different delays at each time index n. The multi-
carrier orthogonal frequency-division multiplexing (OFDM)
technique is typically exploited to address this issue, where
the signal is transformed into the frequency domain using
discrete Fourier transform (DFT). Let Mc denote the number
of subcarriers in the OFDM system and fc denote the central
frequency. The frequency for subcarrier m is thus given by
fm = fc + W (2m−1−Mc)

2Mc
. Then, the overall channel for user

k, ∀k ∈ Kχ, at subcarrier m obtained by DFT is given by

hwm,k =

Qk−1∑
q=0

L∑
i=1

Lk∑
j=1

hi,j,k[fm, q]e
−j2πmq
Mc = vwm,kΘχGw

m,

(14)

where

Gw
m =

L∑
i=1

ᾱwi a(fm, ψ
r
i , ϑ

r
i )b

H(fm, ϕi), (15)

vwm,k =

Lk∑
j=1

α̃wj,ka
H(fm, ψ

t
j,k, ϑ

t
j,k), (16)

ᾱwi α̃
w
j,k =

Qk−1∑
q=0

αi,j,kp(q −Wτi,j,k)e
−j2πmq
Mc . (17)

Note that in the above expression, we rephrase hi,j,k[q] for
subcarrier m as hi,j,k[fm, q], since it is also a function of
carrier frequency. To further explain this, we take the array
response vector of the ULA at the BS as an example. When
manufacturing the antenna arrays, the antenna spacing is
usually set as half of the wavelength at the central frequency,
i.e., d = c

2fc
. According to (8), the array response vector of

the ULA at the BS at subcarrier m is given by

b(fm, ϕ) = [1, e−jπ
fm
fc

sinϕ, . . . , e−jπ(N−1)
fm
fc

sinϕ]T . (18)

Therefore, for frequency-independent analog beamforming at
the BS and the passive beamforming at the STARS, the

frequency-dependent array response vector can lead to beam
split effect, which will be detailed in Section IV.

III. NARROWBAND SYSTEM

In this section, we investigate the narrowband STARS-aided
THz communication system with the hybrid beamforming
structure with the aim of maximizing its SE and EE. We first
propose a PDD-based algorithm for solving the SE and EE
maximization problem in the case of independent phase-shift
STARSs, which is then extended to the case of coupled phase-
shift STARSs.

A. Hybrid Beamforming

According to (9), the path loss in the THz band can be
very large due to very high frequencies. To compensate for
the severe path loss, we exploit a massive antenna array with
a hybrid beamforming structure, as shown in Fig. 3, at the
BS to achieve a large array gain. In the hybrid beamforming
structure, we assume that there are NRF RF chains (NRF �
N ). Each RF chain is connected to the N antenna via N
phase shifters (PSs). Therefore, there are total NRFN PSs. Let
FRF ∈ CN×NRF denote the analog beamformer achieved by
PSs, FBB = [fBB,1, . . . , fBB,K ] ∈ CNRF×K denote the digital
beamformers for K users, and s[n] = [s1[n], . . . , sK [n]]T ∈
CK×1 denote the information symbols for K users. The
transmit signal at the BS is given by

x[n] = FRFFBBs[n] = FRF

∑
k∈K

fBB,ksk[n]. (19)

Since the PSs can only change phase shifts of signals, each
entry of the analog beamformer matrix FRF needs to satisfy
the following unit-modulus constraint:

|[FRF]i,j | = 1,∀i, j. (20)

It is assumed that s[n] is the independent complex Gaus-
sian signal, i.e., E[s[n](s[n])H ] = IK . Therefore, the co-
variance matrix of the transmit signal is given by Q =
E[x[n](x[n])H ] = FRFFBBFHBBFHRF. In this paper, we con-
sider the average power constraint, which is given by

tr(Q) = ‖FRFFBB‖2F ≤ Pt. (21)

Then, the received signal at user k, ∀k ∈ Kχ, χ ∈ {t, r}, is
given by

yk[n] =hnk [n] ∗ x[n] + nk[n]

=vnkΘχGnFRF

∑
k∈K

fBB,ksk[n] + nk[n]

=θTχHn
kFRFfBB,ksk[n]︸ ︷︷ ︸
desired signal

+
∑

i∈K,i6=k

θTχHn
kFRFfBB,isi[n]︸ ︷︷ ︸

inter-user interference

+nk[n], (22)

where θχ = [βχ,1e
jφχ,1 , . . . , β

jφχ,M
χ,M ]T ,∀χ ∈ {t, r}, denotes

the vector of transmission/reflection coefficients of STARS,
Hn
k = diag(vnk )Gn denotes the cascaded channel from the
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BS to user k, and nk[n] ∼ CN (0, σ2
k) denotes the additive

complex Gaussian noise at user k.

B. Problem Formulation

Both SE and EE are important performance metrics for
communication systems. Specifically, SE is defined as the sum
of the achievable rate of communication users. According to
(22), the achievable rate of user k, ∀k ∈ Kχ, χ ∈ {t, r}, is
given by

Rk = log2

(
1 +

|θTχHn
kFRFfBB,k|2∑

i∈K,i6=k |θ
T
χHn

kFRFfBB,j |2 + σ2
k

)
.

(23)
The system SE is given by

fSE =
∑
k∈K

Rk. (24)

Moreover, EE is defined as the ratio of SE to average
power consumption. In this work, we exploit a practical rate-
dependent power consumption model as follows:

P = ‖FRFFBB‖2F + ξfSE + Pc, (25)

where ‖FRFFBB‖2F is the transmit power consumption, ξ
denotes the dynamic power consumption per unit data rate
incurred by the coding, decoding, and backhaul processes [34],
and Pc denotes the rate-independent power consumption as
follows. More particularly, Pc can be modeled as follows:

Pc = PBS +PBB +NRFPRF +NRFNPPS +PSTAR +KPUE,
(26)

where PBS, PBB, PRF, PPS, PSTAR, and PUE correspond to
the power consumption of the oscillator and circuit at the BS,
the baseband processing, each RF chain, each PS, the STARS,
and the circuit at each user, respectively. Specifically, PSTAR

is defined in equations (4) and (5) for independent phase-shift
and coupled phase-shift STARSs, respectively. Hence, the EE
is given by

fEE =
fSE
P

=
fSE

‖FRFFBB‖2F + ξfSE + Pc
. (27)

We aim to optimize the hybrid beamformers FRF and
FBB at the BS, along with the transmission and reflection
coefficients θt and θr of the STARS, in order to maximize SE
and EE. However, maximizing SE and EE requires different
design strategies. Specifically, SE maximization aims to use all

available power, whereas EE maximization involves balancing
SE and power consumption. To investigate the optimization of
both SE and EE, we formulate a general optimization problem
as follows:

max
FRF,FBB,θt,θr

fSE
w (‖FRFFBB‖2F + ξfSE) + Pc

(28a)

s.t. ‖FRFFBB‖2F ≤ Pt, (28b)
θχ ∈ F ,∀χ ∈ {t, r}, (28c)
|[FRF]i,j | = 1,∀i, j. (28d)

where constraint (28b) represents the total power constraint,
constraint (28c) refers to the transmission and reflection
coefficients constraint for either the independent phase-shift
STARS or the coupled phase-shift STARS and F denotes the
corresponding feasible set, and constraint (28d) is the unit-
modulus constraint of PSs. Moreover, a weight factor w is
introduced to regulate the rate-dependent power. In particular,
the optimization problem (28) reduces to the SE maximization
problem when w = 0, and to the EE maximization problem
when w = 1. This problem is challenging to solve due
to the non-convex fractional objective function, coupling of
optimization variables, non-convex feasible set F , and unit-
modulus constraint (28d).

C. Proposed Solution for Independent Phase-shift STARSs

In this subsection, we propose a PDD-based algorithm to
solve problem (28) for the independent phase shift STARS. In
this case, the feasible set F is given by

F =
{
θχ,∀χ ∈ {t, r}|β2

t,m + β2
r,m = 1,∀m

}
(29)

To solve this problem, we first introduce auxiliary variables η,
a, b, and rk,∀k ∈ K to transform (28) into a more tractable
form. We then prove the following lemma.

Lemma 1. Problem (28) is equivalent to the following
optimization problem1:

max
FRF,FBB,θt,θr

η,a,b,rk

η (30a)

s.t. η ≤ a2

b
, (30b)

a2 ≤
∑
k∈K

rk, (30c)

w
(
‖FRFFBB‖2F + ξ

∑
k∈K

rk
)

+ Pc ≤ b, (30d)

rk ≤ Rk,∀k ∈ K, (30e)
(28b)− (28d), (30f)

Proof. According to constraints (30b)–(30d), it can be readily
proved that maximizing η is equivalent to maximizing the

1With the equivalent transformation in Lemma 1, a quality-of-service (QoS)
constraint rk ≥ Rk , where Rk denotes the required minimum rate, can be
introduced to each user without affecting the convexity of the optimization
problem. Therefore, the resulting optimization can also be solved by the
algorithms proposed in this work.
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following objective function:

η̃ =

∑
k∈K rk

w
(
‖FRFFBB‖2F + ξ

∑
k∈K rk

)
+ Pc

=

(
w‖FRFFBB‖2F + Pc∑

k∈K rk
+ wξ

)−1
. (31)

It can be seen that η̃ increases as
∑
k∈K rk increase. Then,

according to constraint (30e), we have the maximum value of∑
k∈K rk is fSE =

∑
k∈KRk. As such, the maximum value

of η̃ must be the maximum value of the following function

¯̃η =
fSE

w (‖FRFFBB‖2F + ξfSE) + Pc
, (32)

which is the objective function of problem (28). Thus, the
proof is completed. �

For the equivalent optimization problem in Lemma 1, the
objective function is only related to the auxiliary variable η.
However, the coupling between the remaining optimization
variables still makes it difficult to solve the new optimiza-
tion problem. To address this issue, we introduce additional
auxiliary variables F = [f1, . . . , fK ] = FRFFBB and pk =
θTχHn

kF,∀k ∈ Kχ, χ ∈ {t, r}. In this case, the achievable
rate of user k can be rewritten as a function of pk, i.e.,

Rk(pk) = log2

(
1 +

|pk,k|2∑
i∈K,i6=k |pk,i|2 + σ2

k

)
, (33)

where pk,i denotes the i-th entry of pk. Then, problem
(30) can be further transformed into the following equivalent
optimization problem:

max
FRF,FBB,F,pk,
θt,θr,η,a,b,rk

η (34a)

s.t. ‖F‖2F ≤ Pt, (34b)

w
(
‖F‖2F + ξ

∑
k∈K

rk
)

+ Pc ≤ b, (34c)

rk ≤ Rk(pk),∀k ∈ K, (34d)
F = FRFFBB, (34e)

pk = θTχHn
kF,∀k ∈ Kχ, χ ∈ {t, r}, (34f)

(28c), (28d), (30b), (30c). (34g)

In this optimization, all couplings have been transformed into
equality constraints (34e) and (34f), which motivates us to ap-
ply the PDD framework [25] to solve it. The PDD framework
relies on constructing an augmented Lagrangian (AL) problem
for the original optimization problem. By introducing the dual
variables Ψ ∈ CN×K and λk ∈ C1×K ,∀k ∈ K, for the
equality constraints (34e) and (34f), respectively, the following
AL problem of problem (34) can be formulated:

max
FRF,FBB,F,pk,
θt,θr,η,a,b,rk

η − 1

2ρ
‖F− FRFFBB + ρΨ‖2F

−
∑

χ∈{t,r}

∑
k∈Kχ

1

2ρ
‖pk − θTχHn

kF + ρλk‖2 (35a)

s.t. (28c), (28d), (30b), (30c), (34b)− (34d), (35b)

where ρ ≥ 0 is the penalty factor. The PDD framework follows
a double-loop structure, where the inner loop solves the AL
problem (35) and the outer loop updates the dual variables
and the penalty factor based on the results obtained in the
inner loop. Note that the AL problem (35) is separable, which
motivates us to solve it through block coordinate descent
(BCD). Specifically, we divide the optimization variables into
four blocks, namely {F,pk, η, a, b, rk}, {θt,θr}, FRF, and
FBB. In each iteration of the inner loop, each block is
updated sequentially by fixing the other blocks. The details
for developing the PDD-based algorithm are given as follows.

1) Subproblem With Respect to {F,pk, η, a, b, rk}: By
fixing the other blocks, the subproblem with respect to
{F,pk, η, a, b, rk} is given by

max
F,pk,
η,a,b,rk

η − 1

2ρ
‖F− FRFFBB + ρΨ‖2F

−
∑

χ∈{t,r}

∑
k∈Kχ

1

2ρ
‖pk − θTχHn

kF + ρλk‖2 (36a)

s.t. (30b), (30c), (34b)− (34d). (36b)

The non-convexity of this problem only lies in constraints
(30b) and (34d). We observe that the right-hand side of the
constraint (30b), i.e., a2/b, is a quadratic-over-linear function,
which is jointly convex for a and b. This motivates us to exploit
successive convex approximation (SCA) to approximate it. Let
ă and b̆ denote the results of a and b obtained in the previous
iteration of the inner loop, respectively. The following convex
lower bound of a2/b can be obtained via the first-order Taylor
expansion:

a2

b
≥ 2ă

b̆
a−

(
ă

b̆

)2

b , $̆(a, b). (37)

Now, we show that the constraint (34d) can be approximated
in a similar way. By defining γk as the signal-to-interference-
plus-noise ratio (SINR) term in Rk(pk), the constraint (34d)
can be reformulated as

2rk − 1 ≤ |pk,k|2∑
i∈K,i6=k |pk,i|2 + σ2

k

= γk,∀k ∈ K. (38)

The expression of γk is also in a quadratic-over-linear form.
Let p̆k denote the result of pk obtained in the previous
iteration of the inner loop. The following convex lower bound
of γk can be obtained based on the results in (37):

γk ≥
2Re{p̆∗k,kpk,k}

Ik(p̆k)
−
∣∣∣∣ p̆k,k
Ik(p̆k)

∣∣∣∣2 Ik(pk) , γ̆k(pk), (39)

where Ik(pk) =
∑
i∈K,i6=k |pk,i|2 +σ2

k and p̆k,i denotes the i-
th entry of p̆k. As a result, problem (36) can be approximated
by the following optimization problem:

max
F,pk,
η,a,b,rk

η − 1

2ρ
‖F− FRFFBB + ρΨ‖2F

−
∑

χ∈{t,r}

∑
k∈Kχ

1

2ρ
‖pk − θTχHn

kF + ρλk‖2 (40a)

s.t. η ≤ $̆(a, b), (40b)
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2rk − 1 ≤ γ̆k(pk),∀k ∈ K, (40c)
(30c), (34b), (34c). (40d)

The above optimization problem is convex and can be effec-
tively solved by the standard interior-point algorithm.

2) Subproblem With Respect to {θt,θr}: The block
{θt,θr} only appears in the last term of the objective func-
tion and the constraint (28c) of the AL problem. Thus, the
corresponding subproblem is given by

min
θt,θr

∑
χ∈{t,r}

∑
k∈Kχ

‖pk − θTχHn
kF + ρλk‖2 (41a)

s.t. β2
t,m + β2

r,m = 1,∀m, (41b)

which is non-convex due to the quadratic equality constraint.
To address this issue, we propose a low-complexity element-
wise algorithm to solve it, where one entry of θχ,∀χ ∈ {t, r},
is optimized at each iteration while fixing the others. In
particular, recall that βχ,m ∈ [0, 1] and φχ,m ∈ [0, 2π]
denote the amplitude and phase of the m-th entry of θχ,
respectively. Then, the subproblem with respect βχ,m and
φχ,m,∀χ ∈ {t, r}, is given in the following lemma.

Lemma 2. By fixing the other entries of θχ,∀χ ∈ {t, r}, the
optimization problem with respect to βχ,m and φχ,m,∀χ ∈
{t, r}, is given by

min
βt,m,βr,m
φt,m,φr,m

∑
χ∈{t,r}

cχ,mβ
2
χ,m − 2βχ,mRe{d∗χ,mejφχ,m}

(42a)

s.t. βt,m, βr,m ∈ [0, 1], β2
t,m + β2

r,m = 1, (42b)

where cχ,m and dχ,m are given in (91).

Proof. Please refer to Appendix A. �

For problem (42), it is not difficult to show that the optimal
value of φχ,m is given by

φ?χ,m = ∠dχ,m,∀χ ∈ {t, r}, (43)

which is independent to the value of βχ,m. Therefore, it only
remains to find the optimal value of βχ,m. To this end, we de-
fine an auxiliary variable ϑm ∈ [0, π2 ] such that βt,m = sinϑm
and βr,m = cosϑm. In this case, the constraints on βt,m and
βr,m are automatically satisfied. Then, by substituting (43),
the optimization problem (42) can be reformulated as follows:

min
ϑm

ct,m sin2 ϑm + cr,m cos2 ϑm

− 2|dt,m| sinϑm − 2|dr,m| cosϑm (44a)

s.t. ϑm ∈ [0,
π

2
]. (44b)

The above optimization problem is to find the minimum of a
single-variable function on a fixed interval. Such a problem
can be effectively solved by some standard methods, such as
golden-section search. Let θ?m denote the optimal solution to
problem (44). Then, the optimal βt,m and βr,m are given by

β?t,m = sinϑ?m, β
?
r,m = cosϑ?m. (45)

Algorithm 1 Element-wise algorithm for solving (41).

1: initialize θχ,∀χ ∈ {t, r}.
2: repeat
3: for m ∈ {1, . . . ,M} do
4: calculate cχ,m and dχ,m, according to (91).
5: calculate φ?χ,m, according to (43).
6: calculate β?χ,m, according to (45).
7: update [θχ]m as β?χ,me

jφ?χ,m .
8: end for
9: until the fractional reduction of the objective value falls

below a predefined threshold.

Therefore, problem (41) can be solved by exploiting Algo-
rithm 1.

3) Subproblem With Respect to FRF: The block FRF only
contributes to the second term in the objective function and
the unit-modulus constraint (28d) of the AL problem, leading
to the following subproblem:

min
FRF

‖F− FRFFBB + ρΨ‖2F (46a)

s.t. |[FRF]i,j | = 1,∀i, j. (46b)

The above subproblem can be transformed into the following
equivalent form:

min
FRF

tr(FHRFFRFA)− 2Re{tr(FHRFB)} (47a)

s.t. |[FRF]i,j | = 1,∀i, j, (47b)

where A = FBBFHBB and B = (F + ρΨ)FHBB. This problem
is non-convex due to the unit-modulus constraint. Similarly,
this problem can be solved by a low-complexity element-
wise algorithm. Following the same path in Appendix A, the
subproblem with respect to the (i, j)-th entry of [FRF]i,j can
be expressed as

min
[FRF]i,j

pi,j |[FRF]i,j |2 − 2Re{q∗i,j [FRF]i,j}, (48a)

s.t. |[FRF]i,j | = 1, (48b)

where pi,j is some real number and qi,j is given by

qi,j = [FRF]i,j [A]j,j − [FRFA]i,j + [B]i,j . (49)

Given that |[FRF]i,j | = 1, problem (48) is equivalent to maxi-
mizing Re{q∗i,j [FRF]i,j} subject to the unit-modulus constant.
It can be readily obtained that the optimal solution is

[FRF]i,j =
qi,j
|qi,j |

. (50)

Therefore, problem (47) can be efficiently solved using the
algorithm described in Algorithm 2.

4) Subproblem With Respect to FBB: The subproblem with
respect to FBB is given by

min
FBB

‖F− FRFFBB + ρΨ‖2F . (51)

The above problem is an unconstrained convex optimization
problem. Thus, the optimal solution can be obtained by the
first-order optimality condition and is given by

F?BB = (FHRFFRF)−1FHRF(F + ρΨ). (52)
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Algorithm 2 Element-wise algorithm for solving (47).

1: initialize FRF.
2: repeat
3: for (i, j) ∈ {1, . . . , N} × {1, . . . , NRF} do
4: calculate qi,j according to (49).
5: update [FRF]i,j as qi,j/|qi,j |.
6: end for
7: until the fractional reduction of the objective value falls

below a predefined threshold.

5) Update Dual Variables and Penalty Factor: With the
proposed solutions for the above four subproblems, the AL
problem (35) can be efficiently solved by iteratively updating
the blocks {F,pk, η, a, b, rk}, {θt,θr}, FRF, and FBB within
the inner loop of the PDD framework. In the outer loop, the
dual variables and the penalty factor are updated according
to the following policy [25]. Firstly, we define the constraint
violation function as

h = max

{
‖F− FRFFBB‖∞,

maxk,χ ‖pk − θTχHn
kF‖∞

}
. (53)

If the constraint violation function h is smaller than the
predefined threshold ε at the n-th iteration of the outer loop,
the penalty factor keeps unchanged, while the dual variables
are updated based on gradient descent as follows:

Ψ← Ψ +
1

ρ
(F− FRFFBB), (54a)

λk ← λk +
1

ρ
(pk − θTχHn

kF),∀k ∈ Kχ, χ ∈ {t, r}. (54b)

If the constraint violation function is larger than the predefined
threshold, the dual variables keep unchanged, and the penalty
factor is updated by ρ← κρ, where 0 < κ < 1 is a reduction
factor. The proposed PDD-based algorithm for problem (34)
is summarized in Algorithm 3.

6) Initialization, Convergence, and Complexity: The initial
optimization variables of Algorithm 3 are generated as fol-
lows. For the BS, the analog beamformer FRF is initialized
based on the knowledge of the physical directions of the
channel in (6). More specifically, the NRF strongest paths
are firstly selected from the total L paths between the BS
and the STARS. The analog beamformer is then initialized
to generate directional beams toward the physical directions
of these paths. For example, for the n-th strongest path with
the physical direction ϕn, the n-th column f init

RF,n of the initial
analog beamformer is given by

f init
RF,n = b(f, ϕn). (55)

Then, the digital beamformer FBB and the STARS coefficients
{θt,θr} are randomly initialized such that the constraint (28c)
and the constraint (2) are satisfied, respectively. The auxiliary
variables are initialized such that the corresponding equality
constraints are satisfied.

In Algorithm 3, for any given dual variables Ψ and λk and
the penalty factor ρ, the AL problem (35) is solved by applying
BCD with non-decreasing objective value over iterations in the
inner loop. Moreover, the objective value is upper-bounded

Algorithm 3 PDD-based algorithm for solving (34).

1: initialize the optimization variables, and set 0 < c < 1.
2: repeat
3: repeat
4: update {F,pk, η, a, b, rk} by solving problem (40).
5: update {θt,θr} by Algorithm 1.
6: update FRF by Algorithm 2.
7: update FBB by (52).
8: until convergence.
9: if h ≤ ε then

10: update the dual variables Ψ and {λk}k∈K by (54).
11: else
12: update the penalty factor as ρ← cρ.
13: end if
14: set ε = 0.9h.
15: until h falls below a predefined threshold.

because of the maximum power constraint. Thus, according
to the analysis in [25], the proposed algorithm is guaranteed
to converge to a stationary point of problem (34), which is
also a stationary point of the original problem (28).

The complexity of Algorithm 3 primarily stems from the
BCD iterations in the inner loop. Specifically, each BCD itera-
tion involves solving problem (40), the complexity of which is
dominated by the second-order cone (SOC) constraints. This
problem has No = NK+K2+K+3 optimization variables, K
SOC constraints with a dimension of K−1, and two SOC con-
straints with a dimension of NK. Therefore, the complexity
of solving problem (40) is O(N3

o +N2
o (K(K−1)2+2N2K2))

[35], where O(·) is the big-O notation. Problems (41) and (46)
are solved in an element-wise manner, which has a complexity
of O(1) of each step. Finally, calculating the closed-form FBB

according to (52) has a main complexity arising from the
matrix inversion operation, which is O(N3

RF).

D. Proposed Solution for Coupled Phase-shift STARSs
In this subsection, we extend the proposed PDD-based

algorithm to the case of coupled phase-shift STARSs, where
the feasible set F becomes

F =

{
θχ,∀χ ∈ {t, r}

∣∣∣ β2
t,m + β2

r,m = 1,∀m
cos(φt,m − φr,m) = 0,∀m

}
.

(56)
To address the additional coupled phase-shift constraint, we
further introduce an equality constraint as follows [36]:

ϑχ = θχ,∀χ ∈ {t, r}, (57)

where ϑχ = [β̃i,1e
jφ̃i,1 , . . . , β̃i,Me

jφ̃i,M ]T ,∀χ ∈ {t, r}, is
the auxiliary variable. Based on Lemma 1, the resulting
optimization problem can be transformed into the following
equivalent form:

max
FRF,FBB,F,pk,

θt,θr,ϑt,ϑr,η,a,b,rk

η (58a)

s.t. ϑχ = θχ,∀χ ∈ {t, r}, (58b)

β̃2
t,m + β̃2

r,m = 1,∀m ∈M, (58c)

cos(φ̃t,m − φ̃r,m) = 0,∀m ∈M, (58d)
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(28d), (30b), (30c), (34c)− (34f). (58e)

In this problem, the complicated constraint in the feasible
set F is transferred to the auxiliary variables ϑχ and the
optimization variables θχ is only subject to the equality
constraint (58b). Therefore, by defining the dual variables
µi ∈ CM×1,∀χ ∈ {t, r}, for the equality constraint (58b),
we can formulate the following AL problem:

max
FRF,FBB,F,pk,

θt,θr,ϑt,ϑr,η,a,b,rk

η − 1

2ρ
‖F− FRFFBB + ρΨ‖2F

−
∑

χ∈{t,r}

∑
k∈Kχ

1

2ρ
‖pk − θTχHn

kF + ρλk‖2

−
∑

χ∈{t,r}

1

2ρ
‖ϑχ − θχ + ρµi‖2 (59a)

s.t. (28d), (30b),(30c), (34c), (34d), (58c), (58d), (59b)

In a similar manner to the independent phase-shift STARS
case, the AL problem can be efficiently solved through
BCD by dividing the optimization variables into five blocks,
which include {F,pk, η, a, b, rk}, {θt,θr}, {ϑt,ϑr}, FRF,
and FBB. Each of these blocks can be updated using the
same method as that employed in the independent phase-shift
STARS case, with the exception of {θt,θr} and {ϑt,ϑr},
which require new optimization approaches due to differences
in their respective objective functions and constraints. There-
fore, we focus on solving the subproblems with respect to
these two blocks in the following.

1) Subproblem With Respect to {θt,θr}: The block
{θt,θr} appears in the second and third terms of the objective
function of the AL problem. The corresponding subproblem
is thus given by

min
θt,θr

∑
χ∈{t,r}

∑
k∈Kχ

‖pk − θTχHn
kF + ρλk‖2

+
∑

χ∈{t,r}

‖ϑχ − θχ + ρµi‖2. (60)

With some algebraic manipulations, the above problem can be
simplified as

min
θt,θr

∑
χ∈{t,r}

( ∑
k∈Kχ

‖Φkθχ − uk‖2 + ‖θχ − ũi‖2
)
, (61)

where Φk = (FHn
k )T , uk = pTk + ρλTk , and ũi = ϑχ + ρµi.

This problem is an unconstrained convex optimization prob-
lem. Thus, the optimal solution can be obtained by checking
the first-order optimality condition, which is given by

θ?χ =
( ∑
k∈Kχ

ΦH
k Φk + IM

)−1( ∑
k∈Kχ

ΦH
k uk + ũi

)
. (62)

2) Subproblem With Respect to {ϑt,ϑr}: The block
{ϑt,ϑr} is only related to the second term of the objective
function and the constraints (58c) and (58d) of the AL
problem. Thus, the subproblem with respect to {ϑt,ϑr} is
given by

min
ϑt,ϑr

∑
χ∈{t,r}

‖ϑχ − θχ + ρµi‖2 (63a)

s.t. (58c), (58d). (63b)

Although this problem is non-convex due to the non-
convex quadratic equality constraint and coupled phase-
shift constraint, it has been shown in [36] that it can be
solved by iteratively updating the amplitude vector β̃i ,
[β̃i,1, . . . , β̃i,M ]T ,∀χ ∈ {t, r}, and the phase-shift vector φ̃i =

[ejφ̃i,1 , . . . , ejφ̃i,M ]T ,∀χ ∈ {t, r}. The closed-form optimal
solutions for the phase-shift vector and the amplitude vector
when the other is fixed have been given in [36, Proposition
1] and [36, Proposition 2], respectively, which is thus omitted
here.

3) Update Dual Variables and Penalty Factor: Problem
(58) can also be solved by exploiting the PDD framework. The
corresponding algorithm has a similar structure as Algorithm
3. The differences with Algorithm 3 in the outer loop for
updating dual variables and penalty factor are summarized as
follows:
• The new constraint violation function is defined as

h̃ = max


‖F− FRFFBB‖∞,

maxk,χ ‖pk − θTχHn
kF‖∞,

maxχ ‖ϑχ − θχ‖∞

 . (64)

• The additional dual variables {µt,µr} are updated by

µi ← µi +
1

ρ
(ϑχ − θχ),∀χ ∈ {t, r}. (65)

4) Initialization, Convergence, and Complexity: To guar-
antee the performance of the new PDD-based algorithm, its
initialization point can be selected as the output of Algorithm
3, where the variable blocks in addition to {ϑt,ϑr} has been
well optimized without the coupled phase-shift constraints.
The convergence to a stationary point is also guaranteed by
the new PDD-based algorithm due to the non-decreasing and
upper-bounded objective value over iterations. Compared with
Algorithm 3, the complexity of the new PDD-based algorithm
mainly has differences in updating {θt,θr} and {ϑt,ϑr}.
Specifically, the complexity of updating according to (62) is
O(M3). The complexity of updating each entry of {ϑt,ϑr}
based on the closed-form solution is O(6M) [36].

IV. WIDEBAND SYSTEM

In this section, we study the wideband STARS-aided THz
communication system, where the OFDM technique is adopted
to effectively utilize the wideband resources. Specifically, we
focus on addressing the issue of beam split caused by the
mismatch between the frequency-dependent spatial wideband
effect and the frequency-independent beamforming structures
at the BS and STARS.

A. Wideband Beam Split

Fig. 4(a) illustrates the conventional hybrid beamforming
structure for wideband OFDM systems. In this structure,
although different digital beamformers can be generated for
different subcarriers with different frequencies, the analog
beamformer is frequency-independent due to the hardware
limitation of the PSs. In other words, all subcarriers share
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Fig. 4: Beamforming structures at the BS in wideband THz commu-
nication systems.

the same analog beamformer in the conventional hybrid
beamforming structure. However, the wideband THz channel,
as detailed in Section II-C, can be significantly frequency-
dependent due to the frequency-dependent array response
vectors. Consequently, the conventional hybrid beamforming
may result in beam mismatch at different subcarriers, which
is referred to as the beam split effect. Specifically, when
an analog beamformer is designed to steer a beam towards
a specific direction at a subcarrier, the beams generated by
this analog beamformer at other subcarriers will steer towards
other directions, as shown in Fig. 5(a), leading to significant
performance degradation. Furthermore, STARS shares a sim-
ilar property as the analog beamforming structure, which has
frequency-independent passive beamforming. Therefore, beam
split effect also exists at STARS.

B. TTD-based Hybrid Beamforming

As discussed above, the beam split effect mainly arises from
the mismatch between the frequency-dependent wideband
channel and the frequency-independent analog beamforming
at the BS and passive beamforming at the STARS. To address
this issue, a frequency-dependent component is required in
the system. Given the hardware limitations of the STARS,
it is more practical to introduce such a component at the
BS. Recently, TTD-based hybrid beamforming structures have
been proposed [16], [17], as shown in Fig. 4(b). In this
structure, a time-delay network realized by TTDs is intro-
duced between the RF chains and the frequency-independent
PSs. Unlink PSs, TTDs are capable of achieving frequency-
dependent phase shifts. For example, a time delay t realized
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Fig. 5: Normalized array gain achieved by (a) the conventional hybrid
beamforming and (b) the TTD-based hybrid beamforming at different
frequencies [17], where the desired physical direction is 45◦. Other
simulation setup is N = 128, fc = 0.1 THz, W = 10 GHz, and
Mc = 10.

by TTDs becomes a phase shift e−2πfmt at the subcarrier m,
thus facilitating the frequency-dependent analog beamforming.
Consequently, as illustrated in Fig. 5(b), the beam split effect
can be considerably minimized by appropriately designing the
time delay of TTDs. However, in wideband STARS-aided THz
communication systems, the TTDs need to be configured to
mitigate the beam split effect caused by both BS and STARS,
which requires joint optimization.

In the TTD-based hybrid structure, each RF chain is con-
nected to N PSs via NT TTDs and each TTD is connected to
N
NT

PSs. Thus, there are NRFNT TTDs and NRFN PSs in to-
tal. Let FPS ∈ CN×NTNRF denote the frequency-independent
analog beamformer achieved by PSs, Tm ∈ CNTNRF×NRF

denote the frequency-dependent analog beamformer achieved
by TTDs, FBB

m = [fBB
m,1, . . . , f

BB
m,K ] ∈ CNRF×K denote the

digital beamformer for K user at subcarrier m, and s̃m =
[sm,1, . . . , s̃m,k]T ∈ CK×1 denote the information symbols
for K users at subcarrier m. More particularly, the frequency-
dependent analog beamformer can be expressed as follows:

FPS = [FPS
1 , . . . ,FPS

NRF
], (66)

where FPS
n = blkdiag([fPS

n,1, . . . , f
PS
n,NT

]) ∈ CN×NT denote
the analog beamformer connected to the n-th RF chain via
TTDs and fPS

n,i ∈ C
N
NT
×1 denote the corresponding analog

beamformer connected to the i-th TTD. Due to the hardware
limitation of PSs, each entry of fPS

n,i needs to satisfy the
following constant-modulus constraint:

|[fPS
n,i ]j | = 1,∀n, i, j. (67)

The frequency-independent analog beamformer can be ex-
pressed as follows:

Tm = blkdiag
(
[e−j2πfmt1 , . . . , e−j2πfmtNRF ]

)
, (68)
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where tn = [tn,1, ..., tn,NT
]T ∈ CNT×1 denotes the time

delays realized by TTDs connected to the n-th RF chain, where
tn,i ≥ 0. One can observe from (68) that the phase shifts of
matrices Tm and Tn,∀n 6= m, are coupled with each other
since they are realized by a common set of time delays. The
transmit signal at the subcarrier m through the TTD-based
hybrid beamforming is expressed as follows:

x̃m = FPSTmFBB
m s̃m = FPSTm

∑
k∈K

fBB
m,ks̃m,k. (69)

Assuming that s̃m is an independent complex Gaussian signal,
the covariance matrix of x̃m can be obtained as Q̃m =
E[x̃mx̃Hm] = FPSTmFBB

m (FPSTmFBB
m )H . We assume the

power constraint for each subcarrier to be the same, resulting
in the following power constraint:

tr(Q̃m) = ‖FPSTmFBB
m ‖2F ≤ Pt. (70)

The received signal at subcarrier m for user k,∀k ∈ Kχ, χ ∈
{t, r}, is given by

ỹm,k =hwm,kx̃m + ñm,k

=vwm,kΘχGw
mFPSTm

∑
k∈K

fBB
m,ks̃m,k + ñm,k,

=θTχHw
m,kFPSTmfBB

m,ks̃m,k︸ ︷︷ ︸
desired signal

+
∑

i∈K,i6=k

θTχHw
m,kFPSTmfBB

m,is̃i,k︸ ︷︷ ︸
inter-user interference

+ñm,k, (71)

where Hw
m,k = diag(vwm,k)Gw

m denotes the cascaded channel
from BS to user k at subcarrier m, and ñm,k ∼ CN (0, σ2

m,k)
denotes the additive complex Gaussian noise.

C. Problem Formulation

Similarly, we aim to maximize the SE and EE of wide-
band STARS-aided THz communication systems. According
to (71), the achievable rate for user k,∀k ∈ Kχ, χ ∈ {t, r}, at
subcarrier m is given by

R̃m,k

= log2

(
1 +

|θTχHw
m,kFPSTmfBB

m,k|2∑
i∈K,i6=k |θ

T
χHw

m,kFPSTmfBB
m,i|2 + σ2

m,k

)
.

(72)

Thus, the SE of the wideband STARS-aided THz-OFDM
system is given by

f̃SE = µ
∑

m∈Mc

∑
k∈K

R̃m,k, (73)

where Mc = {1, . . . ,Mc}, µ = 1/(Mc + LCP), and
LCP ≥ maxk∈K{Qk} denotes the length of the cyclic prefix
(CP) of the OFDM system. Then, the rate-dependent power
consumption can be modeled as follows:

P̃ =
1

Mc

∑
m∈Mc

‖FPSTmFBB
m ‖2F + ξf̃SE + P̃c, (74)

where 1
Mc

∑
m∈Mc

‖FPSTmFBB
m ‖2F is the average power

consumption over all subcarriers, and P̃c denotes the rate-
independent power consumption given as follows:

P̃c = PBS + PBB +NRFPRF +NRFNTPTTD

+NRFNPRS + PSTAR +KPUE. (75)

Here, PTTD denotes the power consumption of each TTD.
Then, the EE of the wideband system can be expressed as

f̃EE =
f̃SE

P̃
=

f̃SE
1
Mc

∑
m∈Mc

‖FPSTmFBB
m ‖2F + ξf̃SE + P̃c

(76)

The general optimization problem for SE and EE maximiza-
tion can be formulated as follows:

max
FBB
m ,fPS

n,i,tn,i
θt,θr

f̃SE

w
(

1
Mc

∑
m∈Mc

‖FPSTmFBB
m ‖2F + ξf̃SE

)
+ P̃c

(77a)

s.t. ‖FPSTmFBB
m ‖2F ≤ Pt,∀m, (77b)

θχ ∈ F ,∀χ ∈ {t, r}, (77c)

|[fPS
n,i ]j | = 1,∀n, i, j, (77d)

tn,i ≥ 0,∀n, i. (77e)

Compared to the problem (28) encountered in narrowband
systems, the problem (77) poses a greater challenge. This is
primarily because it involves additional frequency-dependent
analog beamformers Tm realized by a common set of time
delays tn,i.

D. Proposed Solution

In this subsection, we propose a new PDD-based algorithm
for solving problem (77), with a particular focus on optimizing
the time delays tn,i of each TTD. In a manner similar to
narrowband systems, we define auxiliary variables η̃, ã, b̃,
r̃m,k, F̃m, and p̃m,k. Then, problem (77) be transferred into
the following equivalent form:

max
FBB
m ,fPS

n,i,tn,i,F̃m,p̃m,k

θt,θr,η̃,ã,b̃,r̃m,k

η̃ (78a)

s.t. η̃ ≤ ã2

b̃
, (78b)

ã2 ≤ µ
∑
m,k

r̃m,k, (78c)

w
( 1

Mc

∑
m

‖F̃m‖2F + ξµ
∑
m,k

r̃m,k
)

+ P̃c ≤ b̃, (78d)

r̃m,k ≤ R̃m,k(p̃m,k),∀m, k, (78e)

‖F̃m‖2F ≤ Pt,∀m, (78f)

F̃m = FPSTmFBB
m ,∀m, (78g)

p̃m,k = θTχHw
m,kF̃m,∀m, k, χ, (78h)

(77c)− (77e). (78i)
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Here, R̃m,k(p̃m,k) is defined as

R̃m,k(p̃m,k) = log2

(
1 +

|p̃mk,k|2∑
i∈K,i6=k |p̃mk,i|2 + σ2

m,k

)
, (79)

where p̃mk,i denotes the i-th entry of p̃m,k. Then, by introducing
the dual variables Ψ̃m and λ̃m,k,∀m ∈ Mc, k ∈ K, for
the equality constraints (78g) and (78h), respectively, the
following AL problem of (78) can be formulated:

max
FBB
m ,fPS

n,i,tn,i,F̃m,p̃m,k,

θt,θr,η̃,ã,b̃,r̃m,k

η̃ − Pρ (80a)

s.t. (77c)− (77e), (78b)− (78f). (80b)

where

Pρ =
∑
m

1

2ρ
‖F̃m − FPSTmFBB

m + ρΨ̃m‖2F

−
∑
m,k,χ

1

2ρ
‖p̃m,k − θTχHw

m,kF̃m + ρλ̃m,k‖2. (81)

To address the AL problem presented above, the BCD is em-
ployed, whereby the optimization variable is divided into five
blocks: {F̃m, p̃m,k, η̃, ã, b̃, r̃m,k}, {θt,θr}, {fPS

n,i}, {FBB
m },

and {tn,i}. Notably, the subproblems associated with the first
four blocks have the same structure as those encountered
in narrowband systems and can be solved via the methods
outlined in Sections III-C and III-D for independent and
coupled phase-shift STARSs, respectively. Furthermore, the
dual variables and penalty factor can also be updated similarly
in the outer loop of the PDD framework. Therefore, we
focus on solving the subproblem with respect to {tn,i} in the
following.

1) Subproblem With Respect to {tn,i}: The block {tn,i}
only appears in the penalty term Pρ and the constraint (77e).
Thus, the corresponding subproblem is given by

min
tn,i

∑
m∈Mc

‖F̃m − FPSTmFBB
m + ρΨ̃m‖2F (82a)

s.t. tn,i ≥ 0,∀n, i. (82b)

The problem described above can be converted into an uncon-
strained optimization problem. Specifically, the objective func-
tion can be reformulated as a function of tn,i by substituting
equation (68). From equation (68), it is evident that Tm is a
periodic function of tn,i, with a period of 1/fm. Typically, the
ratio of these periods is rational, indicating that the objective
function is also periodic with respect to tn,i. Consequently,
any negative value of tn,i can be replaced by a positive value
t′n,i ≥ 0 that produces the same objective value. Hence,
the constraint tn,i ≥ 0 can be removed without affecting
the solution. Now, with no constraint on tn,i, problem (82)
can be formulated as an unconstrained optimization problem.
Therefore, the optimization variables tn,i can be optimized
directly using the quasi-Newton method [37].

2) Initialization, Convergence, and Complexity: The initial
optimization variables of the new PDD-based algorithm for
wideband systems are generated as follows. Firstly, to initialize
fPS
n,i and tn,i, the NRF strongest paths are selected from the

total L paths between the BS and STARS. Then, they are

initialized following the design principle proposed in [17].
More specifically, given the n-th strongest path with direction
ϕn, fPS

n,i is initialized as [17, Eq. (30)]

fPS,init
n,i = ejπ(i−1)δ sinϕn [b(fc, ϕn)](i−1)δ+1:iδ,∀i. (83)

where δ = N/NT. Then, the time delay for the i-th TTD
connected to the n-th RF chain is initialized as [17, Eq. (31)]

tinit
n,i =

(i− 1) δ sinϕn2fc
, sinϕn ≥ 0,

(i− 1) δ sinϕn2fc
+ (NT − 1)

∣∣∣ δ sinϕn2fc

∣∣∣ , sinϕn < 0.

(84)
Then, the digital beamformers FBB,m and the STARS coef-
ficients {θt,θr} are randomly initialized within the feasible
set. The auxiliary variables are initialized such that the corre-
sponding equality constraints are satisfied.

Similarly, the new developed PDD-based algorithm is also
guaranteed to converge to a stationary point. The complex-
ity of the new algorithm is analyzed as follows. Firstly,
when updating the block {tn,i}, the number of uncon-
strained optimization variables tn,i is equivalent to the number
of TTDs, which is NRFNT. By using Broyden-Fletcher-
Goldfarb-Shanno (BFGS) formula for updating the approxi-
mation of the Hessian matrix in the quasi-Newton method,
the complexity of each iteration is O(N2

RFN
2
T) [37]. Then,

since the other variable blocks can be solved by the methods
outlined in Sections III-C and III-D, their corresponding
complexity can be analyzed similarly. Therefore, we omit it
here.

V. NUMERICAL RESULTS

In this section, the numerical results obtained through Monte
Carlo simulations are provided to evaluate the performance
of the proposed STARS-aided THz wireless communication
system in both narrowband and wideband systems. Fig. 6
illustrates the considered three-dimensional simulation setup.
In particular, it is assumed that a BS equipped with N = 128
antennas and NRF = 4 RF chains is 10 m away from the
STARS. There are K = 4 communication users located on
half-circles centered at the STARS with a radius of 3 m. The
number of paths between the BS and STARS and between
the STARS and users is assumed to be L = 4 and Lk = 4,
respectively. The azimuth and elevation physical angles of
channel paths are randomly generated following U [−π2 ,

π
2 ].

The transmit and receive antenna gain are set to Gt = 25
dBi and Gr = 20 dBi, respectively. The noise power density
is assumed to be −174 dBm/Hz. The frequency-dependent
medium absorption coefficient k(f) in THz pathloss model
is obtained from the high-resolution transmission (HITRAN)
database [38].

For power consumption, the rate-dependent consumption
factor ξ is set to 0.1 W/(bit/s/Hz). For rate-independent power
consumption, the practice values are adopted as PBS = 3 W
[34], PBB = 300 mW [39], PRF = 200 mW [17], PPS = 30
mW [39], PTTD = 100 mW [40], and PUE = 100 mW
[34]. For STARSs, the power consumption of each PIN diode
and control circuit is PPIN = 0.33 mW and Pcirc = 10
W, respectively [29]. Furthermore, it is assumed that the
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Fig. 6: The simulation setup.

maximum tolerable error of the amplitudes and phase shifts
is 0.005 and 1◦, respectively. Thus, according to the model
proposed in Section II-B, the power consumption of each
element of the independent phase-shift STARS and the coupled
phase-shift STARS is 3.63 mW and 2.64 mW, respectively.

For the proposed algorithms, the convergence thresholds
are set to 10−3. The initial penalty factor of the PDD-based
algorithms is set to ρ = 103 and its reduction factor is set to
c = 0.6. The convex problems are solved by the CVX toolbox
[41]. The golden-section search method for solving (44) and
the quasi-Newton method for solving (82) are implemented by
the MATLAB function fminbnd and fminunc, respectively.
The following simulation results are obtained by averaging
over 100 random channel realizations. In particular “STARS-i”
and “STARS-c” represent the independent and couple phase-
shift STARSs, respectively, “HB” represents the conventional
hybrid beamforming, and “TTD” represents the TTD-based
hybrid beamforming.

A. Narrowband System

We first investigate the performance of a narrowband
STARS-aided THz communication system that operates at
a frequency of 0.1 THz and has a bandwidth of 100 MHz
[23]. For performance comparison, we consider the following
benchmark schemes:
• Full-digital (FD) beamforming: In this scheme, each

antenna at the BS is linked to an RF chain in this
scheme, necessitating N RF chains. The transmit signal
then becomes xFD[n] = FFDs[n], where FFD ∈ CN×K
represents the unconstrained FD beamformer.

• Conventional RIS: This scheme employs two M/2-
element RISs, one for reflection and one for transmis-
sion. These RISs are placed next to each other at the
same location as the STARS. The power consumption of
the conventional RIS can be calculated similarly to the
STARS. But the PIN diodes are only required to control
the phase shifts. When the maximum tolerable error of
phase shifts is 1◦, the power consumption of each element
is 1.32 mW.

1) Spectral efficiency versus Pt: In Fig. 7, we investigate
the achieved SE under different maximum transmit power
Pt using different schemes when w = 0 (SE maximization)
and w = 1 (EE maximization). We set M = 6 × 6. It can
be observed for both SE and EE maximization, the obtained
SE increases with Pt when Pt ≤ 35 dBm. However, as the
transmit power Pt increases beyond 35 dBm, the SE obtained
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Fig. 7: Spectral efficiency versus maximum transmit power Pt for
M = 6× 6 in the narrowband system.
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M = 6× 6 in the narrowband system.

through EE maximization plateaus, while the SE obtained
through SE maximization continues to increase. The reason for
this phenomenon is that, at high values of Pt, only a fraction
of the available power is utilized for maximizing EE, whereas
maximizing SE always aims to utilize all available transmit
power. Furthermore, although utilizing fewer RF chains, the
hybrid beamforming achieves a comparable performance to
the fully-digital beamforming. Finally, the STARS approach
achieves a substantial performance gain over conventional RIS
due to its utilization of all elements for both transmission and
reflection. As a result, it can generate more precise directional
beams towards users, leading to higher array gain and superior
inter-user interference mitigation compared to conventional
RIS.

2) Energy efficiency versus Pt: In Fig. 8, we study the
achieved EE under different maximum transmit power Pt
using different schemes when w = 0 (SE maximization) and
w = 1 (EE maximization). We set M = 6× 6. For the results
obtained by the EE maximization, it can be observed that the
EE first increases with Pt and finally becomes constant. This
is because the EE is not a monotonically increasing function
of the transmit power Pt but has a finite upper bound. In
contrast, SE maximization achieves the same EE performance
in the low-power region, but results in significant drops in EE
in the high-power region due to the different power utilization
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Fig. 9: Performance versus the number of STARS elements M for
Pt = 20 dBm in the narrowband system.

strategies of SE and EE maximization. Furthermore, hybrid
beamforming consistently outperforms fully-digital beamform-
ing. This is because, in the hybrid beamforming structure, a
large number of RF chains with a large power consumption are
replaced with a large number of PSs with much lower power
consumption. Although these PSs cannot adjust the amplitude
of signals as the RF chains, hybrid beamforming can still
achieve comparable SE as fully-digital beamforming, but uses
much less power. Finally, the superiority of both independent
and coupled phase-shift STARS over conventional RIS can be
observed.

3) Impact of M : In Fig. 9, we study the impact of the
number of STARS elements on the maximum SE and EE.
We set Pt = 20 dBm. As can be observed, both SE and EE
monotonically increase with the number of RIS elements. This
is because the larger number of STARS elements provides
more degrees of freedom to achieve the higher SE but the
power consumption introduced by the additional elements is
relatively low.

B. Wideband System

We continue to investigate a wideband OFDM system that
operates at a frequency of fc = 0.1 THz and has a bandwidth
of 10 GHz [23]. The number of TTDs for each RF chain is
set to NT = 8. The number of subcarriers is set to Mc = 10.
The length of CP is set to LCP = 4. Apart from the FD
beamforming and conventional RIS, the following benchmark
scheme is also considered:
• Conventional hybrid beamforming: In this scheme,

the analog beamforming is achieved by exploiting only
PSs, which is totally frequency-independent. The cor-
responding transmit signal at subcarrier m is given by
x̃m = F̃RFFBB

m s̃m, where F̃RF ∈ CN×NRF represents
the frequency-independent analog beamformer subject to
unit-modulus constraints.

1) Spectral efficiency versus Pt: In Fig. 10, we plot the SE
versus the maximum transmit power Pt achieved by different
schemes when w = 0 (SE maximization) and w = 1 (EE
maximization). We set M = 6 × 6. As we can see, there is
a tradeoff between SE maximization and EE maximization in
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M = 6× 6 in the wideband system.
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M = 6× 6 in the wideband system.

the high-power region, which is similar to the narrowband sys-
tem. Furthermore, TTD-based hybrid beamforming achieves a
comparable performance to fully-digital beamforming, while
conventional hybrid beamforming causes significant perfor-
mance loss in terms of SE. This is because by exploiting
TTD-based hybrid beamforming, the impact of beam split at
the BS and STARS can be efficiently reduced through the
frequency-dependent analog beamforming realized by TTDs.
Finally, both independent and coupled phase-shift STARSs
outperform conventional RIS in the wideband system.

2) Energy efficiency versus Pt: In Fig. 11, we further
investigate the EE versus the maximum transmit power Pt
achieved by different schemes when w = 0 (SE maximization)
and w = 1 (EE maximization). We set M = 6× 6. It can be
observed that the proposed schemes that exploit STARS and
TTD-based hybrid beamforming achieve the best performance
in terms of EE. In particular, compared with conventional
hybrid beamforming, although TTD-based hybrid beamform-
ing involves additional TTDs that require much higher power
consumption than PSs, it can significantly enhance SE and
thus can realize higher EE.

3) Impact of M : In Fig. 12, we illustrate the maximum SE
and EE versus the number of STARS elements. We set Pt = 20
dBm. In wideband systems, the maximum SE and EE also
increase with the number of STARS elements. Furthermore, it
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Fig. 12: Performance versus the number of STARS elements for Pt =
20 dBm in the wideband system.

can also be observed that the performance gap between TTD-
based hybrid beamforming and conventional hybrid beam-
forming becomes larger with the exploitation of more STARS
elements. This is due to the larger array at the STARS which
exacerbates the impact of beam split, further reducing the
performance of conventional hybrid beamforming.

VI. CONCLUSION

A STARS-aided THz communication system was proposed.
Considering both independent and coupled phase shifts, the
power consumption models were proposed for STARSs. The
general SE and EE optimization problems were formulated for
both narrowband and wideband systems to jointly design the
hybrid beamforming at the BS and the passive beamforming at
the STARS. In particular, in wideband systems, the TTDs were
introduced into the conventional hybrid beamforming structure
to mitigate the wideband beam split. The numerical results
confirmed the effectiveness of exploiting the STARS in THz
communication systems. The great potential revealed in this
work practical implementation of STARSs that can operate at
THz frequencies, which could be an appealing future research
direction.

APPENDIX A
PROOF OF LEMMA 2

First, we transform the objective function of problem (41)
into the following more tractable form:∑

χ∈{t,r}

∑
k∈Kχ

‖pk − θTχHn
kF + ρλk‖2

=
∑

χ∈{t,r}

θHχ Φχθχ − 2Re{θHχ υχ}︸ ︷︷ ︸
=g(θχ)

+C, (85)

where

Φχ =
∑
k∈Kχ

(Hn
k )∗F∗FT (Hn

k )T , (86)

υχ =
∑
k∈Kχ

(Hn
k )∗F∗(pTk + ρλTk ), (87)

and C is the constant value irrelevant to θχ. It is easily known
that g(θχ) is a quadratic function of each entry of θχ. Let

ϑχ,m denote the m-th entry of θχ. Then, the function g(θχ)
with respect to ϑχ,m can be expressed in the following form:

g̃(ϑχ,m) = cχ,m|ϑχ,m|2 − 2Re{d∗χ,mϑχ,m}, (88)

where cχ,m and dχ,m are some real number and some complex
number, respectively. The exact values of cχ,m and dχ,m can
be obtained as follows. First, the derivative of g(θχ) with
respect to θχ is given by

∂g(θχ)

∂θ∗χ
= Φχθχ − υχ. (89)

The derivative of g̃(ϑχ,m) with respect to ϑχ,m is given by

∂g̃(ϑχ,m)

∂ϑ∗χ,m
= cχ,mϑχ,m − dχ,m. (90)

By comparing the above two derivatives, it can be obtained
that [Φχθχ−υχ]m = cχ,mϑχ,m− dχ,m. Therefore, we have

cχ,m =[Φχ]m,m, (91a)
dχ,m =[Φχ]m,m[θχ]m − [Φχθχ]m + [υχ]m. (91b)

Finally, by substituting ϑχ,m = βχ,me
jφχ,m , where βχ,m ∈

[0, 1] and φχ,m ∈ [0, 2π], into (88), the objective function in
(41) can be obtained. The proof is thus completed.
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Heath, “Hybrid MIMO architectures for millimeter wave communica-
tions: Phase shifters or switches?” IEEE Access, vol. 4, pp. 247–267,
Jan. 2016.

[40] M.-K. Cho, I. Song, and J. D. Cressler, “A true time delay-based SiGe bi-
directional T/R chipset for large-scale wideband timed array antennas,”
in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Philadelphia,
PA, USA, Jun. 2018, pp. 272–275.

[41] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

http://cvxr.com/cvx

	I Introduction
	I-A Prior Works
	I-B Motivations and Contributions
	I-C Organization and Notations

	II System Model
	II-A Signal Model for STARS
	II-B Proposed Power Consumption Model for STARSs
	II-B1 Independent Phase-shift STARSs
	II-B2 Coupled Phase-shift STARSs

	II-C THz Channel Model
	II-C1 Narrowband System
	II-C2 Wideband System


	III Narrowband System
	III-A Hybrid Beamforming
	III-B Problem Formulation
	III-C Proposed Solution for Independent Phase-shift STARSs
	III-C1 Subproblem With Respect to {F, pk, , a, b, rk}
	III-C2 Subproblem With Respect to { bold0mu mumu t, bold0mu mumu r }
	III-C3 Subproblem With Respect to FRF
	III-C4 Subproblem With Respect to FBB
	III-C5 Update Dual Variables and Penalty Factor
	III-C6 Initialization, Convergence, and Complexity

	III-D Proposed Solution for Coupled Phase-shift STARSs
	III-D1 Subproblem With Respect to {bold0mu mumu t, bold0mu mumu r}
	III-D2 Subproblem With Respect to {bold0mu mumu t, bold0mu mumu r}
	III-D3 Update Dual Variables and Penalty Factor
	III-D4 Initialization, Convergence, and Complexity


	IV Wideband System
	IV-A Wideband Beam Split
	IV-B TTD-based Hybrid Beamforming
	IV-C Problem Formulation
	IV-D Proposed Solution
	IV-D1 Subproblem With Respect to {tn,i}
	IV-D2 Initialization, Convergence, and Complexity


	V Numerical Results
	V-A Narrowband System
	V-A1 Spectral efficiency versus Pt
	V-A2 Energy efficiency versus Pt
	V-A3 Impact of M

	V-B Wideband System
	V-B1 Spectral efficiency versus Pt
	V-B2 Energy efficiency versus Pt
	V-B3 Impact of M


	VI Conclusion
	References

