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Abstract—In the vehicular mixed reality (MR) Metaverse, the
distance between physical and virtual entities can be overcome
by fusing the physical and virtual environments with multi-
dimensional communications in autonomous driving systems.
Assisted by digital twin (DT) technologies, connected autonomous
vehicles (AVs), roadside units (RSU), and virtual simulators can
maintain the vehicular MR Metaverse via digital simulations
for sharing data and making driving decisions collaboratively.
However, large-scale traffic and driving simulation via realistic
data collection and fusion from the physical world for online
prediction and offline training in autonomous driving systems are
difficult and costly. In this paper, we propose an autonomous driv-
ing architecture, where generative AI is leveraged to synthesize
unlimited conditioned traffic and driving data in simulations for
improving driving safety and traffic efficiency. First, we propose
a multi-task DT offloading model for the reliable execution of
heterogeneous DT tasks with different requirements at RSUs.
Then, based on the preferences of AV’s DTs and collected realistic
data, virtual simulators can synthesize unlimited conditioned
driving and traffic datasets to further improve robustness.
Finally, we propose a multi-task enhanced auction-based mech-
anism to provide fine-grained incentives for RSUs in providing
resources for autonomous driving. The property analysis and
experimental results demonstrate that the proposed mechanism
and architecture are strategy-proof and effective, respectively.

Index Terms—Autonomous driving, traffic and driving simu-
lations, generative artificial intelligence, auction theory.

I. INTRODUCTION

The vehicular mixed reality (MR) Metaverse is envisioned
as a promising solution for realizing autonomous driving by
fusing the physical and virtual vehicular networks [1], [2]. The
multi-dimensional communications among physical and virtual
entities can surrender the distance of “data islands” on roads
for improving road safety and traffic efficiency while reducing
energy consumption and carbon emissions [3]. Assisted by
digital twin (DT) technologies, autonomous vehicles (AV)
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Fig. 1: The MR Metaverse architecture of DT-assisted au-
tonomous driving systems with traffic and driving simulations
empowered by generative AI.

utilize advanced sensors, e.g., ultrasonic radars, cameras, and
LiDAR, to collect data from their surrounding environments
for constructing virtual representations in the virtual space [4].
Then, AVs can make driving decisions, such as driving model
selection and motion planning, via artificial intelligence (AI)
methods. Even though panoramic cameras and high-class
LiDAR are equipped with AVs, each AV can only collect
limited environment data and cannot perceive the whole en-
vironment, e.g., occlusions [5]. Therefore, multiple connected
AVs, roadside units (RSUs), and virtual simulators can share
and fuse sensing data in the virtual space, to perceive the
complete information of environments including occlusions.
However, it is difficult and costly to collect realistic driving
data on a large scale to train AVs directly in the physical world.

To address this issue, much effort from academia and
industry has been devoted to developing platforms in the
virtual space for traffic and driving simulations [6], [7]. By
establishing virtual driving simulation platforms with DT [4],
[8] and MR [9], [10] technologies, virtual representations of
AVs can efficiently collect traffic and training data and cheaply
test it on rare cases, such as virtual traffic accidents and car col-
lisions under realistic scenes [11], [12]. Although traditional
simulation platforms can generate an unlimited number of
various driving experiences, the collected driving data requires
a lot of manual work for labeling, which prevents the potential
from being fully realized [6]. Fortunately, with the multi-
modal generative AI [13]–[15], the labeled traffic and driving
data can be synthesized directly for virtual autonomous driving
systems [16]. In this way, the process of using simulation
platforms for autonomous driving training and evaluation is

ar
X

iv
:2

30
2.

08
41

8v
1 

 [
cs

.A
I]

  1
6 

Fe
b 

20
23



2

Fig. 2: The screenshots of implemented driving simulation
testbed [20] with synthetic traffic signs generated by the
proposed generative diffusion model, named TSDreamBooth.

revolutionized by shifting from collecting and labeling data
to directly synthesizing labeled data [16], [17]. Therefore, the
simulation systems empowered by generative AI can generate
large and diverse labeled driving datasets based on real-time
road and weather conditions and user preferences for online
prediction and offline training in autonomous driving systems.

Furthermore, in the vehicular Metaverse, connected AVs,
RSUs, and virtual simulators need to construct the traffic and
driving simulation platforms in the virtual space collabora-
tively. To update with virtual representations in virtual space,
AVs continuously generate and offload multiple computation-
intensive DT tasks to RSUs in online traffic simulation [4].
Specifically, these DT tasks of each AV, including simulation,
decision-making, and monitoring, are heterogeneous in requir-
ing computing, communication resources, and deadlines. In
driving simulations, virtual simulators synthesize controllable
traffic and driving data for satisfying specific requirements,
e.g., passenger preferences and weather conditions, of the
simulated driving tasks [12]. In addition, the synthesized traffic
and driving datasets can also be used in training virtual
representations of AVs to further improve driving robustness.
These synchronization activities, e.g., DT task execution, traf-
fic and driving simulations, and AV training, are demanding
enormous communication and computing resources of RSUs
for supporting autonomous driving systems [18], [19]. There-
fore, developing effective multi-task incentive mechanisms
that motivate RSUs to improve their use of communications
and computing resources is imperative.

As shown in Fig. 1, in this paper, we propose a novel DT-
assisted autonomous driving architecture for the vehicular MR
Metaverse, where generative AI is leveraged to synthesize
massive and conditioned traffic and driving data for online
and offline simulations. In detail, to improve reliability in
DT task execution, we propose a multi-task DT offloading
model where AVs can offload heterogeneous DT tasks with
different deadlines to RSUs for real-time execution. To im-
prove reliability in driving decision-making, virtual simulators
can utilize the information in DTs, such as current location,

historical trajectory, and user preferences, for online traffic
simulations [21], [22]. Moreover, based on the collected sens-
ing data in the physical world and user preferences in DTs,
virtual simulators can synthesize massive and conditioned
driving data for AV training of virtual simulators via running
generative AI models. As a use case, we propose a diffusion
model-based traffic sign generator, named TSDreamBooth,
which is developed based on the DreamBooth [23] fine-tuned
using Belgium traffic sign (BelgiumTS) dataset [24]. The
TSDreamBooth can be leveraged to generate virtual traffic
sign images under different driving conditions and user pref-
erences. Finally, we propose a multi-task enhanced auction-
based mechanism to satisfy multi-dimensional requirements
(e.g., prices and deadlines) of multiple DT tasks. We analyze
the properties of the proposed auction and prove that it is
strategy-proof and adverse-selection free. The experimental
results demonstrate that the proposed framework can increase
total social surplus by 150%.

Our main contributions are summarized as follows:
‚ To improve the safety and reliability of autonomous

driving, we propose a novel DT-assisted MR Metaverse
architecture with MR simulations empowered by gen-
erative AI. In this architecture, connected AVs, RSUs,
and virtual simulators maintain digital simulation plat-
forms in the virtual space, where data collecting, sharing,
and utilizing among physical and virtual entities can
improve driving safety and traffic efficiency in physical
autonomous driving systems.

‚ In this architecture, we propose a reliable DT task of-
floading framework where AVs can continuously offload
multiple DT tasks with different requirements to RSUs
for updating DTs in the virtual space.

‚ In traffic and driving simulations, we consider genera-
tive AI-empowered virtual simulators to synthesize new
driving data for AVs’ decision-making and training.

‚ To incentivize RSUs for providing resources in support-
ing autonomous driving systems, we propose a multi-task
enhanced auction-based mechanism to offer fine-grained
allocation results and prices for executing heterogeneous
DT tasks with various deadlines. Based on the property
analysis, the proposed mechanism is fully strategy-proof
and adverse-selection free.

The rest of this paper is organized as follows. In Section II,
we review the related works. In Section III, we discuss the
proposed system architecture and its system model. Then, in
Section IV, we implement the multi-task enhanced auction-
based mechanism. We demonstrate the experimental results in
Section V, and provide a conclusion in Section VI.

II. RELATED WORKS

A. DT-assisted Autonomous Driving

In the vehicular MR Metaverse, DT technologies play an
important role in assisting AVs to run more accurately and
reliably in the physical transportation systems [25]. In DT-
assisted autonomous driving, driving data and AI techniques
are both important to improve the capability and intelligence
of AVs for real-time decision-making. Therefore, Niaz et al.
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in [11] develop an autonomous driving test framework via
DT technologies. Specifically, they consider using V2X com-
munications to connect virtual space and physical space for
driving safety and traffic efficiency improvement. Therefore,
pure virtual driving, sensor data collecting, and real AV driving
tests can be performed in this framework with limited test
processes and working condition scenes. Furthermore, DT
technologies can also be adopted in managing resources in
vehicular networks. Specifically, Li et al. in [26] propose a
DT-driven computation offloading framework for minimizing
computation latency and service discontinuity. Considering
social influence in vehicular networks, Zhang et al. in [27]
propose a DT-empowered content caching for improving
caching scheduling in highly dynamic environments. In detail,
the vehicular network is modeled as a digital twin where
a learning-based caching algorithm is proposed to improve
the system utility under dynamic content popularity, traffic
density, and vehicle speed collaboratively. However, existing
work on digital twin-based autonomous driving systems only
considers the single and homomorphic digital twin tasks in the
system. This is incompatible with the highly heterogeneous
computation in autonomous driving for adapting the dynamic
vehicle status and driving environments.

B. Generative AI-empowered Autonomous Driving Simulation

Through autonomous driving simulations, AVs can synthe-
size additional virtual driving experience for enhancing the
inference and generalization capabilities of AI algorithms [28].
The synthesized driving experiences and sensor data need to
include not only rare conditions but also realistic observations
that are similar to the scenes in the real world. Therefore,
generative AI, such as generative adversarial networks (GANs)
and diffusion models, is the promising solution to synthesizing
new virtual driving data based on the existing realistic driving
experience in the AVs’ DTs. For instance, Kim et al. propose
the controllable simulation platform, named DriveGAN [16].
Trained on 160 hours of real-world driving datasets, the Drive-
GAN can generate high-resolution and diverse simulations
based on user-defined conditions, e.g., weather conditions and
locations of simulation objects. Nevertheless, there is a gap
between virtual and physical driving experiences and sensor
data for AVs that are trained in simulation platforms [29].
Therefore, Yang et al. in [17] propose a realistic sensor data
synthesizing framework, named Surfelgan, for autonomous
driving. The proposed data-driven data camera generation
scheme demonstrates that the generated data can not only
be visualized as high-quality data but also can be utilized as
training datasets to improve the performance of AI algorithms
in AVs. Furthermore, Zhong et al. [21] propose a generative
diffusion model to synthesize controllable and realistic traffic
simulations in autonomous driving systems. However, these
simulation platforms cannot synthesize controllable and real-
istic driving experiences and sensor data. Therefore, they can
merely synthesize and then label traffic and driving simulations
for utilization in autonomous driving, rather than directly
synthesizing labeled datasets based on specific requirements
and conditions.

C. Incentive Mechanisms in Connected Vehicular Networks

With the goal of improving resource utilization in connected
vehicular networks, incentive mechanisms are being developed
to encourage RSUs to provide resources to vehicles [8], [30].
For example, Sun et al. propose a preference-based incentive
mechanism for resource allocation and scheduling in dynamic
DT-assisted vehicular networks. In detail, the Stackelberg
game is leveraged to formulate the interaction between lead-
ers, i.e., vehicles, and followers, i.e., RSUs. Meanwhile, the
Stackelberg game-based mechanisms can also be developed
to encourage vehicles to participate in blockchain transactions
and improve their utility [31]. In addition, storage resources
in vehicular networks are valuable as the limited caching size
and high deployment cost. In this regard, Xing et al. in [32]
propose a coalition formation game-based mechanism to moti-
vate storage resource sharing in vehicular networks. Under this
mechanism, vehicles can establish coalitions based on their
routes for maximizing their utilities. In addition to storage
resources, computing and communication resource sharing
are considered in [4]. Hui et al. propose a collaboration-
as-a-service framework in DT-enabled connected autonomous
driving systems, where an auction game-based mechanism is
proposed to obtain the Nash stable collaboration structure.

However, previous works only focus on optimizing resource
allocation in the physical world or building simulation plat-
forms in the virtual world, while ignoring the potential of
the synergistic effect between them. In this work, we propose
a DT-assisted autonomous driving architecture empowered
by generative diffusion models which can synthesize diverse
and conditioned data for traffic and driving simulations. In
addition, generated diffusion models are adopted to enhance
the simulation capability for cross-modal traffic and driving
data synthesizing. Finally, we propose a multi-task enhanced
second-score auction-based mechanism to provide fine-grained
incentives for resources provided by RSUs.

III. SYSTEM MODEL

In this section, we first give an overall description of the
proposed system architecture consisting of connected AVs,
RSUs, and virtual simulators for autonomous driving systems
in Subsection III-A. Then, we introduce the system model
in this simulation system, including the network model in
Subsection III-B, the DT task model in Subsection III-C, and
the generative AI-empowered traffic and driving simulation
models in Subsection III-D. Finally, we formulate the incen-
tive problems in Subsection III-E for RSUs with regards to
the social surplus obtained by the provisioned resources to
collaborate with autonomous driving systems.

A. The Architecture of DT-assisted Autonomous Driving

To enable autonomous driving in the vehicular MR Meta-
verse, connected AVs, RSUs, and virtual simulators can work
together to maintain digital simulation platforms to share data
and make AI-driven driving decisions. In this architecture,
RSUs with sufficient communication and computing resources
can provide online and offline simulation services for AVs and
virtual simulators. Through the communication and computing
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Fig. 3: The workflow of DT-assisted autonomous driving
simulation platforms empowered by generative AI.

resources of RSUs, AVs can maintain their digital represen-
tations in the virtual space. Specifically, AVs continuously
generate digital representations during their traveling, which
are offloaded to RSUs for remote executions within required
deadlines [33], [34]. During the execution of DTs, online
simulations can be performed to improve the performance
of decision-making modules in making driving decisions. As
illustrated in Fig. 3, virtual simulators can use the available
resources and time of RSUs to improve training modules of
AVs via offline simulations. During the offline simulations,
virtual driving environments are adopted to let AVs collect
training data. Empowered by generative AI models, massive
and conditioned traffic and driving can be synthesized and
collected in the datasets for AVs’ decision-making training
modules. Therefore, more high-quality and diverse driving
experiences can be leveraged by virtual simulators to train
AVs. Finally, the simulation results are sent back to AVs for
future utilization. In this architecture, online decision-making
and offline training via traffic and driving simulations can
improve driving safety and traffic efficiency in autonomous
driving systems.

In the system model, we consider three main roles in
the vehicular MR Metaverse, i.e., AVs, RSUs, and virtual
simulators. The set of I AVs is represented by the set
I “ t1, . . . , i, . . . , Iu, the set of J RSUs is represented as
J “ t1, . . . , j, . . . , Ju, and the set of K virtual simulators
is represented as K “ t0, 1, . . . , k, . . . ,Ku. We consider
the RSUs to own adequate communication and computing
resources for enabling autonomous driving systems, i.e., the
resources of RSUs are enough for executing all the computa-
tion tasks of AVs within deadlines. To facilitate autonomous
driving systems, both uplink and downlink communication
channels are allocated to upload DT tasks and stream sim-
ulation results. Therefore, communication resources at RSU j
consist of uplink bandwidth Buj and downlink bandwidth Bdj .
Moreover, to provide services such as executing DT tasks and
simulating virtual traffic and driving, each RSU j is equipped
with computing resources, including the CPU frequency fCj
and the GPU frequency fGj .

In autonomous driving, AVs maintain the DTs in the vir-
tual space and continuously update the DTs by executing
DT tasks, e.g., simulation, decision-making, and monitor-

ing. These DT tasks require heterogeneous resources with
various deadlines. Therefore, in the system model, Ni DT
tasks can be generated by AV i, which can be repre-
sented as DTi “ păsDT

i,1, e
DT
i,1, di,1ą, . . . ,ăs

DT
i,n, e

DT
i,n, di,ną,

. . . ,ăsDT
i,N`i, e

DT
i,Ni

, di,Ni
ąq, where sDT

i,n is the size of DT data,
eDT
i,n represents the number of CPU cycles required per unit

data, and di,n denotes the deadline for completing the task.
As part of the DT data from AVs, there are preference caches
that store passenger preferences, interests, and behaviors. This
information is used to personalize the user’s experience with
DT and provide them with relevant and targeted content,
services, and advertising. The size of preference caches of AV
i within the DTi is Ci. Each AV i P I has its private value
vi for executing its DT task DTi, drawn from the probability
distributions. The values of DT tasks can be interpreted as the
characteristics of the AVs, such as the level of urgency to align
with DT models [4], which may vary for each AV during its
travel.

We consider two types of virtual simulators in the ve-
hicular MR Metaverse, i.e., driving virtual simulators and
traffic virtual simulators. Traffic virtual simulators 1, . . . ,K
provide online traffic simulation designed to assist real-time
decision-making of AVs, including driving mode selection,
information fusion, and motion planning [5]. Online decision-
making module via traffic simulation uses data collected from
AVs, RSUs, and virtual simulators to create a simulated driving
environment for testing and validating driving decisions and
improving the safety and reliability of autonomous driving
systems. As a result, the feedback of these driving decisions
is immediately returned and perceived by the AVs. The driv-
ing virtual simulator 0 delivers offline driving simulation to
provide training simulation platforms to AVs. In the offline
training module, the AI algorithms of AVs are trained by
simulated driving practice. However, the performance im-
provement of AVs in the future still needs to be tested and
validated, and thus the AVs cannot perceive immediate returns.
The value of simulations for each simulation pair of AV i
and virtual simulator k is Ui,k, which is the product of the
common value vi of AV i and the match quality mi,k, i.e.,
Ui,k “ vimi,k. The common values for every virtual simulator
k are gained from the provisioning of traffic simulation for the
AV i, which can be represented by the AV i’s private value
vi [35]. Additionally, the amount of personalized information
determines the match quality mi,k of virtual simulator k. This
way, the values of AVs and virtual simulators in autonomous
driving systems are positively correlated. Finally, let Uι,plq and
mι,plq represent the l highest value and match quality for the
AV ι, respectively.

B. Network Model

In autonomous driving systems, cooperative vehicular net-
works are utilized for updating DTs and streaming simulation
results [36], [37], respectively. The channel gain between AV
i and RSU j is represented by gi,j , and the downlink trans-
mission rate can be calculated as Rdi,j “ Bdj logp1 `

gi,jPj

σ2
i
q,

where σ2
i is the additive white Gaussian noise at AV i.

Additionally, the transmit power of AV i is represented by
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pi, and the uplink transmission rate can be calculated as
Rui,j “ Buj logp1 ` gi,jpi

σ2
j
q, where σ2

j is the additive white
Gaussian noise at RSU j.

C. Multi-task Digital Twin Model

In the multi-task digital twin model, the AVs update the DTs
in virtual space by performing multiple DT tasks for different
driving functions with heterogeneous levels of complexity and
level of urgency.

1) DT Task Execution: To maintain the digital represen-
tation with the vehicular MR Metaverse, physical entities,
i.e., AVs, generate and offload DT tasks to RSUs for remote
execution. Therefore, we consider the demands as tasks that
are required to be accomplished by RSUs. The transmission
latency tDT

i,n,j for AV i to upload its DT task ăsDT
i,n, e

DT
i,n, di,ną

to RSU j can be calculated as [4] tDT
i,n,j “

sDT
i,n

Ru
i,j
, where Rui,j

is the downlink transmission rate between AV i and RSU j.
After completing the upload of the DT task, RSU j uses its
computing resources fCj to execute the received DT tasks. The
computation latency in processing the DT task DTi of AV i for
RSU j can be calculated as lDT

i,n,j “
sDT
i,ne

DT
i,n

fC
j

. In the proposed
system, without loss of generality, we consider that each RSU
can allocate the virtual machines that have the capability to
accomplish DT tasks within its required deadline [4], i.e.,
TDTi,n,j “ tDT

i,n,j ` lDT
i,n,j ď di,n,@i P I, j P J , n “ 1, . . . , N .

In addition, virtual simulators can provide traffic and driving
simulation services to AVs with the remaining available com-
munication and computing resources of RSUs. After traffic
and driving simulation, virtual simulators send the simulation
results to AVs for further utilization.

D. Traffic and Driving Simulation Model

1) Generative AI-empowered Simulation: As depicted in
Fig. 4, the generative AI-based traffic and driving simulations
comprise training, fine-tuning, and inference stages. In the first
step, the low-resolution text-image model is fine-tuned using
input images paired with a text prompt containing a unique
identifier and the class name of the subject [23]. A class-
specific prior preservation loss is built in to take advantage
of the semantic prior the model has over the class and make
it create different instances belonging to the subject’s class.
In the second step, the super-resolution components of the
model are fine-tuned using low and high-resolution image

pairs from the input images. In this way, the model can
maintain high accuracy on small details of the subject while
creating different instances of the subject in different scenarios.
Therefore, this process of fine-tuning a text-image diffusion
model using data from a virtual simulator enables the creation
of more accurate and diverse driving simulations, helping to
improve the development and testing of AVs. In detail, virtual
simulators adopt the Prior-Preservation Loss proposed in [23]
to fine-tune the pre-trained models for customization of the
local traffic signs.

2) TSDreambooth: During the fine-tuning process of gen-
erative AI, virtual simulators use their original simulation
datasets as training inputs for the generative models. By
utilizing the knowledge of the driving simulation, such as the
class of traffic signs, the fine-tuned generative AI model for
vehicular networks can effectively extract the features of these
traffic signs. In this context, we propose the TSDreamBooth,
fine-tuned on the traffic sign datasets. In the driving simulation,
virtual simulators can use TSDreamBooth to generate a large
amount of synthetic driving data based on local traffic signs
using user preferences in AVs as input. In detail, RSUs
extract preferences from DTs of AVs, known as preference
caches. The preferences of AVs are collected by leveraging
some user analysis equipment, such as eye-tracking devices.
These preferences are then input into generative AI models
as text prompts to produce diverse and conditioned simulation
results. This enables virtual simulators to generate unlimited
AV training experiments based on AV requirements similar to
that are collected from realistic environments. As a result, the
number of driving experiences for offline training is no longer
limited to the hit preference caches [20]. However, due to the
limitations of generative AI models, some simulated driving
experiences may not meet expectations and can be identified
by trained validation models.

The models generated are based on probability distributions,
and thus the results produced by TSDreamBooth are not
deterministic. The results of TSDreamBooth may not be the
same every time that the model is run. Virtual simulators
have the potential to capture variability in results and provide
a better understanding of the uncertainties in the model’s
predictions by interrogating multiple results. Therefore, the
validation models indicate the quality of generative AI models
with generative score Gi,j,k P r0, 1s, as demonstrated in Fig. 4.
For each simulation result of virtual simulator k, the simulation
task can be represented by SIMk “ ăs

SIM
k , eSIM

k ą [38], where
sSIM
k is the data size of each simulation and eSIM

k is the required
GPU cycles per unit data for offline simulation. Therefore,
given the total number of virtual simulators K ` 1, the
match quality mi,k and hit preference caches hi,k are drawn
independently from a set of distributions mi,k “ hi,k „ Fi,k.
To explain further, given the AV ι, the traffic virtual simulators
k “ 1, . . . ,K can measure the match qualities mι,k of their
traffic simulation. However, the driving virtual simulator 0 that
provides driving simulation to the AV ι cannot immediately
measure its match quality mι,0. Therefore, asymmetric infor-
mation exists among virtual simulators that might result in
adverse selection [35].

Empowered by generative AI models, the match quality
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mi,k is no longer limited by the hit preference caches hi,k.
As generative AI can generate countless and diverse simulation
results based on user preferences and location datasets, virtual
simulators can utilize more computing resources and downlink
transmission resources during offline training. During the re-
manding time of DT execution, the total number of simulations
Qi,n,j,k can be calculated Qi,n,j,k “ pdi,n ´ TDT

i,n,jqR
SIM
i,j {s

SIM
k

for task n in DTi of AV i and its RSU j. Then, the marginal
generative AI-empowered match quality of AV i in simulator
k via RSU j can be measured as

mi,n,j,k “
log2p1`Gi,j,kQi,n,j,kqhi,k

θphi,kq
, (1)

where θphi,kq is relative accuracy among the original model
wi and the fine-tuned model wi,k for strongly convex objec-
tive [39], [40]. In detail, θp¨q “ 1 indicates no improvement
for training in simulation platforms, and θp¨q “ 0 indicates the
AI model is trained to be trained optimally.

3) Simulation and Offline Training Model: The effective
transmission latency in simulation and transmitting the driving
simulation SIMk to AV i for task n from RSU j can be
calculated as

tSIM
i,j,k “

Qi,n,j,ks
SIM
k

Rdi,j
, (2)

where Rdi,j is the downlink transmission rate between AV i
and RSU j. Moreover, the effective computation latency in
simulation the driving simulation SIMk can be calculated as

lSIM
i,j,k “

Qi,n,j,ks
SIM
k eSIM

k

fGj
, (3)

which depends on the simulation latency in GPUs of RSU
j. Eqs. (2) and (3) imply that the offline simulations in gen-
erative AI-empowered vehicular MR Metaverse can improve
the utilization of communication and computing resources in
autonomous driving systems.

In autonomous driving systems, RSUs can use their avail-
able computation and communication resources to provide
real-time physical-virtual services for AVs and virtual sim-
ulators. However, the total latency cannot exceed the required
deadline of AV i. Let gDT

i,j be the allocation variable that AV i
is allocated to RSU j and gSIM

i,j,k be the allocation variable that
virtual simulator k is allocated by RSU j to match AV i. The
total latency T total

i,j,k required by RSU j to process both the DT
task of AV i and the simulations of virtual simulator k should
be less than the required deadline, which can be expressed as

T total
i,n,j,k “ gDT

i,j ¨ pt
DT
i,n,j ` l

DT
i,n,jq

` gSIM
i,j,k ¨ pt

SIM
i,n,j,k ` l

SIM
i,n,j,kq ď di,n,

(4)

@i P I, j P J , k P K, n “ 1, . . . , N . The driving simulation
of virtual simulator k is running in the background of AV i
during the processing of DT tasks at RSU j, and thus the
expected duration of offline training can also be represented
by T total

i,n,j,k.

E. Problem Formulation

In the proposed system, a resource market, consisting of
the online and offline submarkets, is established to incentivize

RSUs to provide communication and computing resources for
traffic and driving simulation for AVs and virtual simulators.
Here, we consider participants in the market to be risk neutral,
and their surpluses are correlated positively. Therefore, the
mechanism is expected to map the DT values v “ pv1, . . . , vIq
and simulation values U “ pI1,0, . . . , UI,Kq to the payments
of AVs pDT “ ppDT

1 , . . . , pDT
I q and the payments of virtual

simulators pSIM “ ppSIM
1 , . . . , pSIM

K q with the allocation proba-
bilities gDT “ pgDT

1 , . . . , gDT
I q and gSIM “ pgSIM

0 , . . . , gSIM
K q. By

accomplishing DT tasks, the total expected surplus for RSUs
from AV i P I in the online submarket can be represented by
SDTpgDTq “ E

”

řI
i“1 Ri,jvig

DT
i,jpvq

ı

. Based on the optimal
reaction to the dominant strategies of the traffic virtual simu-
lators, the driving virtual simulator can motivate RSU with the
expected surplus of SSIM

D “ ErUi,0gSIM
i,n,j,0pQiqs. In addition,

the total expected surplus provided by traffic virtual simu-
lators is defined by SSIM

T pgSIMq “ Er
řK
k“1 Ui,kg

SIM
i,n,j,kpUiqs.

In addition, we consider a cost-per-time payment model for
simulation platforms, i.e., users pay a fee for each unit of
time they use the simulation platform, e.g., per minute or per
hour. Since AVs can only access the platforms provided by
virtual simulators for a limited time T while driving, the cost-
per-time payment model is a viable and flexible solution for
renting virtual simulation platforms. In conclusion, the social
surplus that RSU j can gain from the offline submarket can be
defined as SSIMpgSIMq “ T ¨pγSSIM

D pgSIMq`SSIM
P pgSIMqq, where

γ denotes the relative bargaining power of driving virtual
simulator 0.

To maximize the social surplus in the market, the non-
cooperative game among AVs, virtual simulators, and RSUs
in the mechanism M “ pgDT ,gSIM ,pDT ,pSIM q can be
formulated as

max
M

SDT `

N
ÿ

n“1

T total
i,n,j,k ¨

`

γSSIM
D ` SSIM

T

˘

(5a)

s.t. T total
i,n,j,k ď di,n, (5b)

hi,k ď Ci, (5c)

0 ď bDT
i ď vDT

i , (5d)

0 ď pSIM
k ď U SIM

ι,k , (5e)
I
ÿ

i“1

gDT
i,j ď 1, (5f)

K
ÿ

k“0

gSIM
i,j,k ď 1, (5g)

gDT
i,j , g

SIM
i,j,k P t0, 1u, (5h)

@i P I, j P J , k P K, n “ 1, . . . , N . Constraint (5b) ensures
the reliability of each DT task that can be accomplished
within the required deadline. Constraint (5c) guarantees that
the number of hit preference caches is less than the size
of preference caches. Pricing constraints (5d) and (5e) are
listed to guarantee the individual rationality (IR) of traders.
Allocation constraints (5f), (5g), and (5h) guarantee that each
physical or virtual entity can be assigned by one and only one
RSU.
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In the simulation market, there exist two issues, i.e., exter-
nalities and asymmetric information, causing adverse selection
in the social surplus maximization problem formulated in
Eq. (5a). First, adverse selection, as described in [41] refers to
a market situation where participants with asymmetric infor-
mation are only willing to pay the average market price. This
can lead to an inefficient allocation and matching outcome in
the market. In the context of traffic and driving simulations
for autonomous driving, the physical and virtual entities (AVs
and virtual simulators) have positively correlated surpluses for
services. This means that the surplus of AVs in the online
submarket can impact the surplus of virtual simulators in
the offline submarket by affecting the common valuation of
driving simulations. This correlation introduces externalities
and asymmetric information for allocating physical and virtual
entities in the service market.
‚ Externalities: The externalities are introduced to the on-

line submarket from the offline submarket. The traffic
and driving simulation results of virtual simulators have
different match qualities for different physical AVs. How-
ever, during the allocation of AV in the physical market,
the virtual simulator is unknown for participants in the
online submarket, which might affect the total processing
latency in the online submarket. Therefore, AVs in the
online submarket prefer to demand RSU to set a prefixed
threshold of execution latency before allocating the AVs.

‚ Asymmetric Information: There is asymmetric informa-
tion among virtual simulators for their traffic and driv-
ing simulations. The traffic simulation (e.g., movement
predictions) can induce immediate responses from users.
In contrast, driving simulations (e.g., training the traffic
sign recognition models of AVs) cannot be measured by
virtual simulators immediately.

To ensure efficient allocation and pricing results, it is important
to consider the potential impact of this correlation and to find
ways to address asymmetric information and externalities in
the market.

IV. MULTI-TASK ENHANCED MECHANISM DESIGN

To tackle the multi-task DT offloading problem in au-
tonomous driving systems with traffic and driving simula-
tions empowered by generative AI, we propose the multi-
task enhanced second-score auction-based mechanism, named
MTEPViSA, based on the EPViSA proposed in [20]. Inte-
grating the multi-dimensional auction [42] and the enhanced
second-price auction [35], the MTEPViSA consists of four
components in the mechanism, including the bidding process,
the scoring rule, the allocation rules, and the pricing rules.

The MTEPViSA allocates and prices the winning AV in the
online submarket by calculating the scoring rule. Therefore,
we first define the AIGC-empowered scoring rule similar
to [43] as follows. To address the inefficiency issue of the
PViSA mechanism, we apply several advanced auction the-
ory techniques in auction theory [35], [44] to enhance the
auction-based mechanism by overcoming the externalities in
the online submarket and the asymmetric information in the
offline submarket described in Subsection IV-A. For the online

traffic simulation, AVs in the online submarket are allowed to
submit their prices and preferred deadlines of DT tasks to
the auctioneer. In addition, for the offline driving simulation,
the auctioneer, e.g., the proxy of the RSUs, can determine
the allocation rule according to the received bids from AVs
with the AIGC scoring rule. Moreover, for the offline driving
simulation, by adopting the price scaling factor α ě 1 in
the offline submarket, the auctioneer can capture a significant
fraction of the social surplus from both performance and brand
virtual simulators. Finally, we analyze the properties of the
MTEPViSA mechanism in Subsection IV-B.

A. Designing the MTEPViSA Mechanism

This subsection describes the workflow and property anal-
ysis of the multi-task enhanced second-score auction-based
mechanism. To begin with, the definition of the multi-task DT
scoring rule that is similar to [44] is provided as follows.

Definition 1 (Multi-task DT Scoring Rule). Let bDT
1 be any

offered bidding price of AV i, the multi-task DT scoring rule
ΦpbDT

i ,diq under deadline requirement di for each task n “
1, . . . , Ni is defined as

ΦpbDT
i ,diq “ bDT

i `

N1
ÿ

n“1

φpdi,nq, (6)

where di “ pdi,1, . . . , di,Ni
q contains the submitted deadlines

of AV i’s DT tasks and φp¨q is a non-decreasing function and
φp0q “ 0.

The scoring rule defined in Eq. (6) involves the deadlines
of DT tasks and one element in the price vector. Therefore,
for each AV i, N scores are calculated. Based on these scores,
the marginal score sequence χi “ tχi,1, χi,2, . . . , χi,Ni

u can
be calculated for each AV i. The marginal score indicates the
AV i’s score increase when the total number of executed tasks
increases. In addition, the n marginal score of AV i can be
defined as

χi,n “

#

ΦpbDT
i ,di,1q n “ 1,

ΦpbDT
i ,di,nq ´ ΦpbDT

i ,di,n´1q 2 ď n ď Ni,
(7)

where di,n “ pdi,1, . . . , di,nq. Then, we have the assumption
on the property of marginal scores as follows [42].

Assumption 1 (Marginal Score). For any AV i P I, the
marginal score sequence χi is non-negative and non-increasing
in n, i.e., χi,n ě χi,n`1, n “ 1, 2, . . . , Ni ´ 1.

The meaning of Assumption 1 is that performing additional
simulations provides a higher score and the score is non-
increasing with the performed simulations.

The auctioneer can calculate the scoring rule based on
previous transaction results and current submitted bids and
deadlines. In the online submarket, AVs submit their multi-
dimensional bids bDT “ ppbDT

1 , . . . , bDT
I q,d “ pd1, . . . ,dIqq

to the auctioneer. The auctioneer computes the scores Φ “

ΦpbDT,dq “ pΦ1pb
DT
1 ,d1q, . . . ,ΦIpb

DT
I ,dIqq to the auctioneer.

Then, the auctioneer determines the winning AV in the online
submarket for providing online simulations services according
to the calculated scores. The auctioneer allocates the trader
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with the highest score as the winning physical entity, as
follows:

gDT
i pΦq “ 1tΦiąmaxtΦ´iuu. (8)

In addition, the payment that the winning AV needs to pay is
the bidding price of the second highest score, i.e.,

pDT
i pΦq “ gDT

i pΦq ¨ b
DT
arg maxtΦ´iu

. (9)

In the offline submarket, virtual simulators submit their
bids bSIM “ pbSIM

0 , bSIM
1 , . . . , bSIM

K q to the auctioneer. In the
MTEPViSA mechanism, the price scaling factor α ě 1 is
utilized. First, the auctioneer determines the allocation proba-
bilities for traffic virtual simulators as gSIM

k pbSIMq “ 1bSIM
k ąαbSIM

´k
.

Then, the allocation probability of the virtual simulator is
calculated as gSIM

0 pbSIMq ď 1´
řK
k“1 g

SIM
k pbSIMq. Based on the

price scaling factor α, the winning virtual simulator is required
to pay

pSIM
k pbSIMq “ gSIM

k pbSIMq ¨ ρSIM
k , (10)

where

ρSIM
k “

#

T total
i,n,j,0b

SIM
0 , k “ 0,

T total
i,n,j,kαmaxtbSIM

´k u, k “ 1, . . . ,K.
(11)

By introducing the price scaling factor in the pricing rule in
the offline submarket, the MTEPViSA mechanism can increase
the expected social surplus of RSUs by providing offline
simulations services compared with the traditional second-
price auction. We then analyze the strategy-proofness of the
MTEPViSA mechanism in Theorem 1.

These allocation and pricing rules are effective and efficient
when the efficient scoring rule exists [42] and the price scaling
factor is selected as αι “ max p1, γrQι,0s{ErQι,p2qsq [35],
where ι is the winning AV in the online submarket. Finally,
under the cost-per-time payment model of traffic and driving
simulations and the efficient multi-task DT scoring rule, the
MTEPViSA is fully strategy-proof and adverse-selection-free.

B. Property Analysis

To maximize its utility, each AV i can choose the deadlines
that can maximize its valuation vi and externalities φpdi,nq for
the offline submarket. In Proposition 1, each AV can choose
the optimal set of deadlines to maximize its expected payoff.

Proposition 1 (Optimal Deadline). The optimal deadline
bidding strategy for task n of the AV i is given by

d˚i,n “ arg max
dPp0,di,ns

pvi `
Ni
ÿ

n“1

φpdqq. (12)

Proof. For any given multi-dimensional bid pb̄DT
i , d̄iq of AV i,

there is always another bid pb̂DT
i , d̂iq that can be made to an

expected utility for AV i. This results in an expected utility
for the physical bidder i that is at least as high as the utility
obtained from the original bid pb̄DT

i , d̄iq. First, the deadline d̂i
can be obtained from Eq. (12). Second, the deadline for the
new bid b̂DT

i can be determined by Φpb̂DT
i , d̂iq “ Φpb̄DT

i , d̄iq,
indicating that both bids result in the same score and allocation
probability. If the bidder loses, their utility will be zero if they
achieve this score. Moreover, if the bidder wins, the new bid

pb̂DT
i , d̂iq will yield the utility higher than or equal to the utility

obtained from submitting other bids, i.e.,

vi ´ b̂
DT
i ´pmaxtΦI{tiuu `

Ni
ÿ

n“1

φpd̂i,nqq ě

vi ´ b̄
DT
i ´ pmaxtΦI{tiuu `

Ni
ÿ

n“1

φpd̄i,nqq,

(13)

where ΦI{tiu consists of the scores
pΦpbDT

1 ,d1q, . . . ,Φpb
DT
i´1,di´1q,Φpb

DT
i`1,di`1q, . . . ,Φpb

DT
I ,dIqq

This proposition holds true because the deadline is determined
through the calculation of Eq. (12).

For the optimality of the selection of quality, a similar
proof of Proposition 1 can be found in [42]. Based on the
bids submitted by AVs and the chosen optimal deadline, the
auctioneer can maintain an efficient scoring rule, which can
maximize social surplus, to guide the allocation decisions in
the online submarket, as follows. Then, the efficient multi-task
DT scoring rule can be defined as follows.

Definition 2 (Efficient Multi-task DT Scoring Rule). An
efficient multi-task DT scoring rule can be expressed as

ΦpbDT,d˚q “ bDT ` T pd˚qrγSSIM
D pMq ` SSIM

T pMqs, (14)

where T pd˚qrγSSIM
D pMq ` SSIM

T pMqs is the social surplus of
virtual simulators by providing simulations and T pd˚q is the
realized duration of AV training.

For a mechanism, strategy-proofness indicates that partici-
pants will not get a higher utility by changing their truthful
bids. A mechanism is considered strategy-proof if and only
if it can be described by a critical payment function ψ, such
that a bidder n is deemed the winner if and only if their bid
bn exceeds the threshold price ψpb´nq when compared to the
other competing bids b´n. Once bidder n has won the auction,
the payment charged by the auctioneer is the critical payment
ψ. Adverse-selection free indicates that if the existence of mar-
ket externalities and asymmetric information is independent
of bidders’ valuations, then under this mechanism, the factors
of market externalities and asymmetric information are also
independent of the allocation rules of the mechanisms. As
a consequence, it should be highlighted that the MTEPViSA
mechanism is fully strategy-proof and adverse-selection free,
as demonstrated in the following theorem.

Theorem 1. The MTEPViSA mechanism is fully strategy-proof
and adverse-selection-free in the market with the efficient
multi-task DT scoring rule and the cost-per-time model of
simulations.

Proof. To demonstrate that the MTEPViSA mechanism is
fully strategy-proof, we must identify the critical payment
functions for traders in both the online and offline submarkets
to satisfy the conditions for a strategy-proof auction. To
begin with, we show that there is a critical payment function
ψonpbDT

´iq for the MTEPViSA mechanism in the online sub-
market. If a bidder i in the online submarket submits a truthful
bid, their score can be determined by the function ΦpbDTi ,diq,
given any deadlines di. It is necessary to demonstrate that
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bidder i cannot increase their benefit by altering their bid.
If the bidder were to submit a false bid b1i ‰ bDT

i , and did
not win the auction, their reward would be zero, regardless
of the specified deadline di or the score calculation function
ΦpbDTi ,diq. However, if bidder i were to win the auction
by submitting a false bid, their expected reward can be
represented as follows:

SDT
i “ vi ´ b

1
i

“ vi ´ pmaxtΦ´iu `
Ni
ÿ

n“1

φpdi,nqq

“ Φi ´maxtΦ´iu,

(15)

where max Φ´i represents the highest score excluding the bid
of bidder i. Hence, regardless of whether the bidder wins or
loses under either Φ1 or Φi, the utilities that they receive
will always be lower than or equal to the utility that they
would receive if they submitted the truthful bid. The critical
payment function in the online submarket can be represented
as ψonpbDT

i ,diq “ maxtΦ´iu `
řNi

n“1 φpdi,nq. Additionally,
the auctioneer must compute the synchronization scores for
bidders in the online submarket. As a result, all bidders in the
online submarket are protected against false-name bidding.

The critical payment function for the MTEPViSA mecha-
nism in the offline submarket is ψoffpb

SIM
´k q “ αmaxtbSIM

´k u,
where α ě 1. With this critical payment function in place, the
top-performing bidder can win by ensuring that ψoffpb

SIM
´k q ě

maxtbSIM
´k u. Furthermore, the mechanism is proof against

false-name bidding in the offline submarket if ψoffpb
SIM
´k q “

ψoffpmaxtbSIM
´k uq. Consider a set of bids bSIMk that result in

ψoffpb
SIM
´k q ‰ ψoffpmaxtbSIM

´k uq, and let there be two bidders
in the offline submarket. If one bidder has a higher valuation
than ψoffpb´kq and the other has a valuation of maxtbSIM

´k u,
and ψoffpb

SIM
´k q ă ψoffpmaxtbSIM

´k uq, then the first bidder could
submit a lower price while keeping the other bids in the set
b´k. This means that the mechanism is not winner false-
name proof. Conversely, if ψoffpb

SIM
´k q ą ψoffpmaxtbSIM

´k uq,
the losing bidder in the offline submarket could submit a
higher bid compared to the winner’s bid while maintaining
the other bids in the set bSIM

´k . As a result, the mechanism in
the offline submarket is loser false-name proof.

To show that the mechanism is free from adverse selec-
tion, the critical payment function in the online submarket
is quasi-linear and the critical payment function in the of-
fline submarket is homogeneous of degree one [35]. In the
online submarket, we consider two types of external effects
from the offline submarket, d P t0,8u, with a probability
of Prpφ “ 0q P p0, 1q while keeping the other bidding
prices v´i constant. If φ “ 0, there are no external effects
from the offline submarket, and we have gDT

i pv ` φp0qq “
gDT
i pvq “ 1tviąmax v´iu “ 1tviąψonpv´i,0qu. If φ “ 8, then
gDT
i pv ` φp0qq “ gDTipv ` 8q “ 1tviąψonpv´i,φp8qqu “ 0,

meaning no bidder can win in the online submarket. Thus,
the proposed mechanism in the online submarket is free
from adverse selection. In the offline submarket, suppose that
v P 1, c with a probability of PrpC “ 1q P p0, 1q while keeping
the vehicular MR Metaverse simulation qualities constant.
It can be shown that gSIM

0 pvmq “ 1tv“cu. When v “ 1,

gSIM
k pvmq “ gSIM

k pvmq “ 1tmiąψoff pm´iqu “ 1, and therefore
gSIM

0 pcmq “ 0. When v “ c, gSIM
k pcmq “ 1tcmiąφoff pcm´iqu “

0, meaning no top-performing bidder can win the auction,
and then gSIM

0 pcmq “ 1. In conclusion, we have shown that
the MTEPViSA mechanism is both strategy-proof for bidders
in the online and offline submarkets and free from adverse
selection by utilizing the efficient multi-task DT scoring rule
and cost-per-time model.

From Theorem 1, we can conclude that the proposed
mechanism for AVs and virtual simulators is fully strategy-
proof. That is, AVs and virtual simulators cannot manipulate
their bids to achieve higher utility. Although we introduce
the scoring rule and price scaling factors to eliminate the
externalities and asymmetric information, these additional
components may not provide additional information to AVs
and virtual simulators when they develop their own strategy.
In the MTEPViSA mechanism, the optimal strategy for AVs
in the online submarket and virtual simulators in the offline
submarket is to tell the truth. Moreover, due to the interaction
of two submarkets leading to externalities and asymmetric
information for traders, the proposed mechanism is free from
adverse selection as all participants have sufficient motivation
to join the market. Therefore, the social surplus achieved by
the MTEPViSA mechanism is still efficient enough to avoid
market failure.

Finally, we consider the implementation overhead of the
proposed auction-based mechanism, where a centralized auc-
tioneer collects bids, computes scoring rules, and determines
allocation and pricing results. To begin with, I AVs and K
virtual simulators submit their bids to the auctioneers. Let N
be the number of DT tasks of each AV, the computation com-
plexity to compute the scores is OpIK logpKqpNqq. Then, the
computation complexity to sort the scores of AVs in the online
market is OpI logpIqq. Finally, the computation complexity of
the determination and pricing of the winning virtual simulator
is OpKq. Overall, the computation complexity of the proposed
MTEPViSA is OpIKN logpKq ` I logpIq `Kq.

V. EXPERIMENTAL RESULTS

In this section, we implement the generative AI-empowered
autonomous driving simulation system for the vehicular MR
Metaverse and the proposed mechanism. First, we demon-
strate the performance of the DT-assisted movement prediction
model in Subsection V-A1 and the generative AI-empowered
traffic and driving simulation model in Subsection V-B. Then,
we evaluate the performance of the proposed mechanism
under different market parameters and system settings in
Subsection V-C.

A. Experimental Setups

In the simulation of the vehicular MR Metaverse, we
consider an autonomous driving system with 30 AVs, 30
virtual simulators, and 1 RSU by default. For each RSU, 20
MHz uplink and 20 MHz downlink channels are allocated
for DT task uploading and AR recommendation streaming,
respectively. In addition, the CPU frequency of RSU is set
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(a) Trajectories 1, R2 score=0.9972. (b) Trajectories 2, R2 score=0.9939. (c) Trajectories 3, R2 score=0.9984. (d) Trajectories 4, R2 score=0.9983.

Fig. 5: Difference between the real-world trajectories and DT-assisted predicted trajectories.
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Fig. 6: Synthesized traffic signs generated by TSDreambooth
for background color modification and re-contextualization.

to 3.6 GHz, and the GPU frequency is set to 19 GHz. The
channel gain between RSUs and AVs is randomly sampled
from U r0, 1s, where U denotes the uniform distribution. The
transmit power of AVs is randomly sampled from U r0, 1s mW
and the transmit power of RSUs is randomly sampled from
U r0, 5s mW. The additive white Gaussian noise at AVs and
RSUs is randomly sampled from N p0, 1q, where N denotes
the normal distribution. For each DT task generated by AV, the
data size is randomly sampled from U r0, 0.5sMB, the required
CPU cycles per unit data are randomly sampled from r0, 2s
Gcycles/MB, and the required deadline is randomly sampled
from U r1, 1.5s seconds. For each simulation, the data size
is randomly sampled from U r0, 2.5s MB and the required
GPU cycles per unit data are randomly sampled from U r0, 5s
Gcycles/MB. The valuation of AVs for accomplishing the DT
tasks is randomly sampled from U r0, 1s and the number of
preferences of AVs is sampled from Zipfp2q, where Zipf
denotes the Zipf distribution. The relative bargaining power
of the offline virtual simulator is set to 1 while the default
accuracy is 0.5. For digital twin-assisted vehicular movement
prediction, we set the past P steps to 60 and the future F
steps to 5. In addition, we set epoch e to 500, batch size to
40, and dropout to 0.05. The default local relative accuracy is
set to 0.53 [39] and the default generative score is sampled
from U r0.4, 0.6s.

The simulation environment for the vehicular MR Metaverse
was created using a 3D model of a few city blocks in New
York City. Geopipe, Inc. developed the model by utilizing AI
to build a digital replica from photographs captured throughout
the city. The simulation involves an autonomous car navigating
through a road, surrounded by artificially placed highway
advertisements. Eye-tracking data was collected from human
participants who were immersed in the simulation using the
HMD Eyes addon from Pupil Labs. Following the simulation,

the participants completed a survey to assess their subjective
opinion level of interest in each simulation.

1) Digital Twin-assisted Vehicular Movement Prediction:
Through continuously updating DTs in the virtual space,
AVs can leverage the results of online traffic simulations for
improving driving safety and traffic efficiency. Specifically,
we use the historical trajectory data of AVs in DT to predict
their future movements to make the concept of DT-assisted
autonomous driving more concrete. Let the location of i at
time slot t be pti “ pxti, y

t
iq, where xti and yti are longitude

and latitude of AV i, respectively. The historical trajectory
of AV i consists of the last P locations can be represented
as τ past

i ptq “ ppt´Pi , . . . , pt´1
i , ptiq. When RSUs leverage AI

models to predict the future movement of AVs that can be
represented as Aj for RSU j. Then, the past trajectories
input into the AI model of RSU j predicts the movement
τ pre
i ptq “ Ajpτ

past
i ptqq “ ppt`1

i , pt`2
i , . . . , pt`Fi q in the future

F steps of the vehicles and simulate the movements in the
virtual space. In the training module, the AI model is evaluated
by the mean squared error (MSE), i.e., the training loss is
calculated as Eτ past

i ptq,τ true
i „DTi

pτ pre
i ptq ´ τ true

i ptqq2. Finally, the
running performance is evaluated by the R2 score Ri,j , which
is 1 when the predicted movements are perfectly correlated
with the true movements.

As shown in Fig. 5, we use four trajectory collections
sampled from the dataset in [45] to demonstrate the effec-
tiveness of movement prediction of AVs based on the current
location and historical routes. We select the LSTM model
as the movement prediction model. We use the R2 score
to evaluate the performance of the movement prediction AI
model. R2 is commonly understood as using the mean as
the error benchmark to see if the prediction error is greater
or less than the mean benchmark error. When R2 score = 1,
the predicted and true values in the sample are exactly equal
without any error, indicating that the better the independent
variable explains the dependent variable in the regression
analysis. Based on this experiment, we collect the results of the
prediction in the system to calculate the simulation accuracy
in the virtual space.

B. Traffic Sign Synthesizing in Generative AI-empowered Sim-
ulation

Generative AI based on large text-to-image models, such as
stable diffusion [46] and Dreambooth [23], will have a game-
changing impact on content creation in the MR Metaverse.
Dreambooth is a personalized diffusion model that learns to
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Fig. 7: The generative score of the TSBreamBooth fine-tuned on the BelgiumTS dataset.
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Fig. 8: Performance evaluation under different sizes of the market and generative scores.
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Fig. 9: Performance evaluation of simulated experiments under different generative scores and numbers of tasks.

preserve the features of the specific subject and then generates
new images based on this subject. To demonstrate the ability
to generate diverse and high-quality images for the vehicular
MR Metaverse. As illustrated in Fig. 6, we experiment with
modifying background color and re-contextualization for traf-
fic signs, which is the iconic task for transportation systems.
We first use the training set in BelgiumTS dataset [24] to fine-
tune the Dreambooth to the TSDreambooth. Then, we train a
validation model based on the pre-trained GoogLeNet to fit the
BelgiumTS dataset. The learning rate of the validation model
is set to 0.1 and the number of epochs is set to 10. After op-
timizing via cross-entropy loss, the final recognition accuracy
is 96% on testing sets. Finally, we generate new images based
on the testing set in BelgiumTS and evaluate the generative
score using the validation model. We summarize the obtained

generative score in Fig. 7 from the above experiments. As we
can observe, the validation model performs almost perfectly
in the real test dataset. However, for the generated dataset,
the validation model can only recognize around 80% of the
images generated by TSDreambooth. Then, the synthesized
datasets are leveraged for fine-tuning the validation model.
During the fine-tuning, the batch size is set to 30 for one
iteration. Finally, we obtain the local relative accuracy for
the whole generated dataset (θ “ 0.82), the background
modification dataset (θ “ 0.42), and the recontextualization
dataset (θ “ 0.85).

C. Performance Evaluation of Auction-based Mechanisms

Then, we evaluate the performance of the proposed mech-
anism under different system settings compared with the
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Fig. 10: Performance evaluation of experiments under different datasets generated by TSDreamBooth and numbers of tasks.

PViSA and the EPViSA proposed in [20]. From Fig. 9(b),
we can understand the reason for the inefficiency of the
PViSA. The PViSA mechanism always selects the AV with
the highest valuation in the online submarket to synchronize
while ignoring the potential surplus in the offline submarket.

1) Performance Evaluation under Different System Param-
eters: By setting the number of tasks to 1, the achieved
surplus in the system under different market parameters is
demonstrated in Fig. 8. As the market size becomes larger,
both the number of buyers in Fig. 8(a) and the number of
sellers in Fig. 8(b), the surplus achieved by the proposed
framework becomes increasingly higher. A larger market size
will lead to more competition among traders in the market,
resulting in a higher surplus for RSUs in providing services.
As we can observe, the generative AI-empowered simulations
can increase surplus by at least 150% compared with the
simulations without generative AI. In addition, the proposed
MTEPViSA mechanism can improve more than half of the
surplus compared with the PViSA mechanism. Furthermore,
the generative score also has a substantial impact on the
surplus in the simulation of the system, as shown in Fig. 8(c).
Therefore, the mechanism can not only select AVs and virtual
simulators with a high valuation but also fine-tune the AI
models of AVs for higher accuracy.

2) Performance Evaluation under Different System Settings:
In Fig. 9, we evaluate the performance of the proposed mecha-
nism under different system settings. As illustrated in Fig. 9(a),
the total revenue of the virtual simulator finally increases
as the number of tasks increases. The proposed MTEPViSA
can double the surplus compared with the PViSA. As the
number of tasks becomes higher, the performance gap between
the proposed METPViSA and the EPViSA becomes larger.
From Fig. 9(c), we can observe that the growth points of the
surplus mainly rely on the surplus obtained from provisioning
traffic simulation results. From Fig. 9(b), we can understand
the reason for the inefficiency of the PViSA. The PViSA
mechanism always selects the AV with the highest valuation in
the online submarket to synchronize while ignoring the poten-
tial surplus in the offline submarket. Finally, the MTEPViSA
mechanism and the PViSA mechanism can achieve a higher
surplus in provisioning driving simulations by addressing the
asymmetric information in the offline submarket. As illustrated
in Fig. 10, using the synthesized datasets of TSDreambooth,
we obtain the total, DT, traffic simulation, driving simulations
surpluses for the generated, background modification, and re-

contextualization datasets. We can see that the growth trend
of the surplus for each mechanism in the figure is similar
to that in the simulation. However, since the quality of the
data set in the real experiment is not as good as in the
simulation, the distribution of the results in the experiment is
relatively uneven. This can be seen most clearly in Fig. 10(a)
and Fig. 10(c). These results also show that although the
generated datasets improve the performance of AI models in
AVs compared to the original datasets, the improvement is not
homogeneous depending on the datasets generated by different
preferences.

VI. CONCLUSION

In this paper, we have proposed a generative AI-empowered
autonomous driving architecture for the vehicular Metaverse.
In this architecture, we have proposed the multi-task DT
offloading model for reliably executing AVs’ DT tasks with
different requirements at RSUs. In addition, we have leveraged
the generative AI models to synthesize diverse and conditioned
driving simulation datasets for AVs’ offline training. Finally,
we have devised the multi-task enhanced auction-based mech-
anism to incentivize RSUs to support the simulation systems
for autonomous driving systems. The property analysis has
validated that the proposed mechanism is strategy-proof and
adverse-selection free. The experimental results have demon-
strated that the proposed mechanism can increase the social
surplus by around 150%.
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