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A Joint Communication and Computation

Framework for Digital Twin over Wireless Networks
Zhaohui Yang, Mingzhe Chen, Yuchen Liu, and Zhaoyang Zhang

Abstract—In this paper, the problem of low-latency communi-
cation and computation resource allocation for digital twin (DT)
over wireless networks is investigated. In the considered model,
multiple physical devices in the physical network (PN) needs
to frequently offload the computation task related data to the
digital network twin (DNT), which is generated and controlled by
the central server. Due to limited energy budget of the physical
devices, both computation accuracy and wireless transmission
power must be considered during the DT procedure. This joint
communication and computation problem is formulated as an
optimization problem whose goal is to minimize the overall
transmission delay of the system under total PN energy and
DNT model accuracy constraints. To solve this problem, an
alternating algorithm with iteratively solving device scheduling,
power control, and data offloading subproblems. For the device
scheduling subproblem, the optimal solution is obtained in closed
form through the dual method. For the special case with one
physical device, the optimal number of transmission times is
reveled. Based on the theoretical findings, the original problem
is transformed into a simplified problem and the optimal device
scheduling can be found. Numerical results verify that the
proposed algorithm can reduce the transmission delay of the
system by up to 51.2% compared to the conventional schemes.

Index Terms—Digital twin (DT), delay minimization, joint
communication and computation design.

I. INTRODUCTION

Metaverse, considered as a new generation of the Internet,

is envisioned to build a digital world where people can meet

and interact in real time via integrating various technologies,

such as extended reality (XR), digital twin (DT), holographic,

sensing, communication, and computing [1]–[8]. Recently,

DT technology is envisioned to act as an important role

for the modern communication society [9]–[13], in particular

for the future applications including Metaverse, as shown in

Fig. 1. DT is the process of using information technology to

digitally define and model physical entities. The core concept

is to realize feedback optimization of physical entities through

the simulation, control and prediction of DTs. Due to the

combination of digital and physical worlds, DT technology

has many advantages [14]–[21]. The core element of a DT is

data. It originates from physical entities, operating systems,
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sensors, etc. It covers simulation models, environmental data,

physical object design data, maintenance data, operation data,

etc., and runs through the entire operation of physical objects.

The DT is used as a data storage platform to collect various

raw data, perform data fusion processing, promote the dynamic

operation of each part of the simulation model, and effec-

tively reflect various business processes. Therefore, data is

the fundamental of DT applications, and without multivariate

fusion data, DT applications will lose momentum. Moreover,

the main body of a DT system is a data-driven model built on

the logic of physical entities and behavior. Twin data is the

basis for mapping between physical objects and digital world

model objects. It includes models, behavioral logic, business

processes, state changes, etc., to achieve comprehensive pre-

sentation, accurate expression and dynamic monitoring of the

state and behavior of physical entities in the digital world.

DT can be used to intelligently design decisions, using the

large amount of historical, real-time data in the DT, combined

with advanced algorithm models, to effectively reflect the state

and behavior of physical objects in the digital world. Thus,

the data scurity is important for DT [22]. At the same time,

through the simulation experiment and analysis and prediction

in the digital world, it provides a decision-making basis for

the instruction formulation of entity objects and the further

optimization of the process system, which greatly improves

the efficiency of analysis and decision-making [23]–[25].

Due to the above distinctive advantages, DT has many

emerging applications [10], [26]–[28]. Implementing DT re-

quires a joint design of the physical and application layer,

which can involve the multi-tier framework [27], [28]. With

the help of high-tech means such as geographic information

technology and three-dimensional virtualization, the smart DT

community restores the situation of community buildings and

traffic roads with high accuracy, integrates two-dimensional

models of each floor of the building, indoor and outdoor

integration, and displays the key data of the core operation

system of the community in real time from the scene display

of the three dimensions of smart operation and maintenance,

intelligent transportation, and digital life. Based on the visual

data, a city-level DT system can be built on the basis of fully

integrating the information resources of various fields of the

city, accurately reproducing the management elements of a

wide range of urban fields, and realizing all-round dynamic

perception of a wide range of urban operation from the global

perspective to the micro field.

Since the physical world and the digital world needs to

communicate, DT over wireless networks has attracted a lot of

attentions [1]. The survey of using the future sixth generation

http://arxiv.org/abs/2402.00381v1
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Fig. 1. The application scenario of DT based communication system.

(6G) communication techniques for DT was presented in [29].

A blockchain empowered federated learning framework for

DT was considered in [30], [31] to solve the edge association

problem through optimizing the DT association, training data

batch size, and bandwidth allocation. The interplay between

Terahertz and DT was considered in [32], where DT can

be utilized to predict and simulate the unique propagation

properties of Terahertz signals. Furthermore, a DT assisted

mobile edge computing network was considered in [33] for

Internet of vehicles. In [34], the combination of Bayesian

learning of DT was studied, where the DT trained a Bayesian

model to predict the epistemic uncertainty of the wireless

communication system. In [35], a DT system over wire-

less communication network was proposed to investigate the

tradeoff between the accuracy and delay of the DT system.

An weighted sum accuracy and system delay optimization

problem was formulated in [35], which was solved by using

the edge continual learning. However, the above works [29]–

[35] all ignored the joint communication and computation

resource allocation with considering energy budget of wireless

devices and model accuracy of the DT, even though the

wireless devices are usually energy constrained.

In this paper, we consider the delay-efficient communication

and computation resource allocation for a DT network with

considering energy budget of wireless devices and DT model

accuracy constraints. Our contributions are listed as follows.

• We investigate the performance of DT over wireless

networks, where multiple physical devices in the phys-

ical network (PN) transmit data to the digital network

twin (DNT) over multiple time slots. Due to limited

energy budget of the physical devices, both computation

accuracy and wireless transmission power are considered

during the DT procedure.

• This joint communication and computation problem is

formulated as an optimization problem whose goal is to

minimize the overall transmission delay of the system

under total PN energy and DNT model accuracy con-

straints. To solve this problem, an alternating algorithm

with iteratively solving device scheduling, power control,

and task offloading subproblems.

• For the special case with one physical device, we reveal

the optimal number of transmission times. The optimal

transmit power is derived in closed form and the original

problem is then transformed into a simplified problem.

• Numerical results show the superiority of the proposed

algorithm compared to the conventional schemes in terms

of transmission delay.

The rest of this paper is organized as below. Section II

presents the system model and problem formulation. The

algorithm design is presented in Section III, while simulation

results are given in Section IV. Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the DNTs that consist of a PN and its mapping

DNT generated and controlled by a central server, as shown

in Fig. 2. The total number of physical devices in the PN is

denoted by K . The physical devices such as base stations and

sensors need to transmit status data to the central server, which

utilizes the obtained data to generate DNT. We consider a long
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Fig. 2. The considered system model of DNTs.

time period T and the time can be divided into N time slots.

The duration of each time can be calculated as T0 =
T
N .

The channel gain between physical device k and the server

at time slot n is denoted by hnk. At time slot n, the physical

device k in PN will generate data Dnk. To guarantee synchro-

nization between the PN and the DNT, the physical device k
can choose to transmit data dnk to the server. The transmission

rate between the physical device k and the server is given by

rnk = B log2

(

1 +
pnkhnk

σ2

)

, (1)

where B is the bandwidth of the system, pnk is the transmit

power of the physical device k at time slot n, and σ2 is

the noise power. Considering the randomness of the wireless

channel, the received data at the server can contain error. The

error rate of the transmission at time slot n can be given by

[36]

enk(pnk) = 1− e
− mσ2

pnkhnk , (2)

with m being a waterfall threshold.

Since the transmitted data cannot be large than that of the

remaining data, we have

n
∑

i=1

dikcik(pik) ≤
n
∑

i=1

Dik, ∀n ∈ N , k ∈ K, (3)

where

cik(pik) =







1 with probability e
− mσ2

pikhik

0 with probability 1− e
− mσ2

pikhik

, (4)

N = {1, · · · , N}, and K = {1, · · · ,K}.

In each time slot, let xnk ∈ {0, 1} denote whether physical

device k in the PN transmits data to the server. The notation

xnk = 1 implies that physical device k transmits data to the

BS; otherwise we have xnk = 0. In this paper, frequency

division multiple access (FDMA) is considered for the uplink

transmission. Due to limited resource blocks of the commu-

nication system, the maximum number of associated users at

each time slot is limited, i.e.,

K
∑

k=1

xnk ≤ K0, ∀n ∈ N , (5)

where K0 is the maximum number of available resource

blocks for the communication system.

At each time slot n, the wireless transmission delay and

energy can be derived as

tnk =
dnk
rnk

. (6)

Since multiple users can simultaneously communicate with the

server, the transmission delay of the PN at time slot n can be

given by

tn = max
k∈K

xnktnk. (7)

Moreover, at each time slot n, the wireless transmission

energy can be given by

enk = tnkpnk. (8)

The accuracy of the DNT requires more data from the

PN, while large data can lead to high transmission delay and

energy. Thus, it is of importance to investigate the tradeoff

between the accuracy and the wireless cost of the PN including

delay and energy. The accuracy of each time slot n can be

modeled as

an = f

(

n
∑

i=1

K
∑

k=1

dikcik(pik),

n
∑

i=1

K
∑

k=1

Dik

)

, (9)

where function f(x, y) ∈ [0, 1] and f(x, y) increases with

x while decreases with y. The function of f(x, y) can be

obtained through simulations such as [35]. For example, we

can set f(x, y) =
(

x
y

)α

, where α > 0.

B. Problem Formulation

With the considered system model, our aim is minimize

the transmission delay of the system with both accuracy and

energy constraints. Mathematically, the optimization problem

can be formulated as:

min
x,d,p

N
∑

n=1

max
k∈K

xnktnk (10)

s.t. f

(

n
∑

i=1

K
∑

k=1

dikcik(pik),

n
∑

i=1

K
∑

k=1

Dik

)

≥ An, (10a)

∀n ∈ N , (10b)

N
∑

n=1

tnkpnk ≤ Qk, ∀k ∈ K, (10c)

n
∑

i=1

dikcik(pik) ≤
n
∑

i=1

Dik, ∀n ∈ N , k ∈ K, (10d)

n+τ
∑

i=n

xik ≥ βkτ, ∀n ∈ N , k ∈ K, (10e)

K
∑

k=1

xnk ≤ K0, ∀n ∈ N , (10f)

dnk ≥ 0, ∀n ∈ N , k ∈ K, (10g)

xnk ∈ {0, 1}, ∀n ∈ N , k ∈ K, (10h)

0 ≤ pnk ≤ Pk, ∀n ∈ N , k ∈ K, (10i)

0 ≤ tnk ≤ T0, ∀n ∈ N , k ∈ K, (10j)



4

where x = [x11, · · · , x1K , · · · , xNK ]T , d = [d11, · · · ,
d1K , · · · , dNK ]T , p = [p11, · · · , p1K , · · · , pNK ]T , Qk is

the maximum energy of physical device k, βk ∈ (0, 1] is a

parameter to ensure that the physical device k and the server

should have regular communication, τ is a constant parameter

to ensure that the each physical device and the server must

have at least one communication in τ time slots, and Pk is

the maximum transmit power of physical device k.

Problem (10) is mixed integer optimization problem, which

is generally hard to solve due to the following three difficulties.

The first difficulty is the complicated accuracy function (9),

of which the explicit expression is hard to obtain. The second

difficulty lies in the nonconvex objective function (10) and

constraints (10a)-(10c). The third difficulty lies in the integer

scheduling variable xnk. To solve problem (10), we propose

an iterative algorithm in the following section.

III. ALGORITHM DESIGN

In this section, we present the proposed alternating algo-

rithm to solve problem (10), which alternative solves three sub-

problems at each iteration., i.e., device scheduling subproblem,

power control subproblem, and data offloading subproblem.

A. Device Scheduling Subproblem

With given transmission power and data offloading variables

in problem (10), the device scheduling subproblem can be

given by

min
x

N
∑

n=1

max
k∈K

xnktnk (11)

s.t.

n+τ
∑

i=n

xik ≥ βkτ, ∀n ∈ N , k ∈ K, (11a)

K
∑

k=1

xnk ≤ K0, ∀n ∈ N , (11b)

xnk ∈ {0, 1}, ∀n ∈ N . (11c)

Problem (11) is a linear integer optimization problem. Relax-

ing the integer constraints and introducing slack variables y,

Problem (11) becomes,

min
x,y

N
∑

n=1

yn (12)

s.t.

n+τ
∑

i=n

xik ≥ βkτ, ∀n ∈ N , k ∈ K, (12a)

K
∑

k=1

xnk ≤ K0, ∀n ∈ N , (12b)

yn ≥ xnktnk, ∀n ∈ N , k ∈ K, (12c)

xnk ∈ {0, 1} ∀n ∈ N , (12d)

where y = [y1, · · · , yN ]T . Problem (12) is a linear integer

optimization problem, which is generally hard to obtain the

globally optimal solution. In the following, we use the dual

method to solve the relaxed problem of (12) with replacing

constraint (12d) with continuous constraint xnk ∈ [0, 1]. It

can be also proved that the obtained solution of the relaxed

problem automatically satisfies the integer constraint in (12d).

Through replacing replacing constraint (12d) with continuous

constraint xnk ∈ [0, 1], problem (12) can be transformed into

min
x,y

N
∑

n=1

yn (13)

s.t.

n+τ
∑

i=n

xik ≥ βkτ, ∀n ∈ N , k ∈ K, (13a)

K
∑

k=1

xnk ≤ K0, ∀n ∈ N , (13b)

yn ≥ xnktnk, ∀n ∈ N , k ∈ K, (13c)

xnk ∈ [0, 1] ∀n ∈ N . (13d)

Since both objective function and constraints of problem (13)

is convex, problem (13) is a convex problem and the optimal

solution can be obtained by using the dual method. To obtain

the optimal solution of problem (13), we provide the following

lemma.

Lemma 1. The optimal solution of problem (13) is

x∗
nk =

{

1 if λ2n + λ3nk −
∑n

i=max{n−τ,1} λ1ik < 0

0 else
, (14)

and

y∗n = max
k∈K

x∗
nktnk, (15)

where λ1nk ≥ 0, λ2n ≥ 0, and 0 ≤ λ3nk ≤ 1 are

the corresponding dual variables associated with constraints

(13a)-(13c).

Proof. The dual function of problem (13) can be formulated

by

L1(x,y,λ1,λ2,λ3)

=

N
∑

n=1

yn +

N
∑

n=1

K
∑

k=1

λ1nk

(

βkτ −
n+τ
∑

i=n

xik

)

+

K
∑

k=1

λ2n

(

K
∑

k=1

xnk −K0

)

+

N
∑

n=1

K
∑

k=1

λ3nk (xnktnk − yn) ,

where λ1 = [λ111, · · · , λ1NK ]T , λ2 = [λ21, · · · , λ2N ]T , and

λ3 = [λ311, · · · , λ3NK ]T . Considering constraint (13d) and

L1(x,y,λ1,λ2,λ3) is a linear function with respect to x,

the optimal solution of x can be derived as (14). Further

considering that yn only has lower bound as shown in (13c),

the dual function L1(x,y,λ1,λ2,λ3) is unbounded unless

1 − λ3nk ≥ 0. Thus, we always have 1 − λ3nk ≥ 0 and the

optimal solution of y∗n should be the minimum value satisfying

(13c), as shown in (15).

According to Lemma 1, the optimal solution of x and y

can be obtained with given dual variables. Besides, the value

of xnk is always zero or one, which automatically satisfies the

integer constraint (12d). With obtained x and y, the values of
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the dual variables can be updated with the sub-gradient method

[37]:

λ1nk(t+ 1) =

[

λ1nk(t) + κ(t)

(

βkτ −
n+τ
∑

i=n

xik

)]+

, (16)

λ2n(t+ 1) =

[

λ2n(t) + κ(t)

(

K
∑

k=1

xnk −K0

)]+

, (17)

λ3nk(t+ 1) = (λ3nk(t) + κ(t) (xnktnk − yn))|
1
0 , (18)

where (t) denotes the value of variable in the t-th iteration,

κ(t) is the dynamatic stepsize of the dual method, [x]+ =
max{x, 0}, and xb

a = max{min{x, a}, b}. Through iteratively

updating the value of x and y with the dual variables, the

optimal solution is obtained.

B. Power Control Subproblem

With given device scheduling and data offloading variables

in problem (10), the power control subproblem can be formu-

lated as

min
p

N
∑

n=1

max
k∈K

xnktnk (19)

s.t. an ≥ An, ∀n ∈ N , (19a)

N
∑

n=1

tnkpnk ≤ Qk, ∀k ∈ K, (19b)

n
∑

i=1

dikcik(pik) ≤
n
∑

i=1

Dik, ∀n ∈ N , k ∈ K, (19c)

0 ≤ pnk ≤ Pk, ∀n ∈ N , (19d)

0 ≤ tnk ≤ T0, ∀n ∈ N . (19e)

Problem (19) is hard to solve due to the complicated

constraints (19a)-(19c). In order to handle constraint (19c),

we use the expect value of cik(pik) to represent the value of

cik(pik), i.e., we have

cik(pik) = e
− mσ2

pikhik . (20)

Without loss of generality, we consider the expression of

accuracy function f(x, y) =
(

x
y

)α

with α being the constant

to be determined in the simulations in the following analysis.

Further substituting the expressions of tnk = dnk

rnk
and rnk =

B log2

(

1 + pnkhnk

σ2

)

as well as introducing slack variables

tnk and zn, problem (19) can be equivalent to

min
p,t,z

N
∑

n=1

zn (21)

s.t. zn ≥ xnktnk, ∀n ∈ N , k ∈ K, (21a)

tnk ≥
dnk

B log2

(

1 + pnkhnk

σ2

) , ∀n ∈ N , k ∈ K,

(21b)

n
∑

i=1

K
∑

k=1

dike
− mσ2

pikhik ≥ A1/α
n

n
∑

i=1

K
∑

k=1

Dnk, ∀n ∈ N ,

(21c)

N
∑

n=1

tnkpnk ≤ Qk, ∀k ∈ K, (21d)

n
∑

i=1

dike
− mσ2

pikhik ≤
n
∑

i=1

Dik, ∀n ∈ N , k ∈ K, (21e)

0 ≤ pnk ≤ Pk, ∀n ∈ N , (21f)

0 ≤ tnk ≤ T0, ∀n ∈ N , (21g)

where z = [z1, · · · , zN ]T . Problem (21) is nonconvex due to

constraints (21b)-(21e). To handle the nonconvexity of (21b)

and (21d), we use variable substitution. Introducing a new

variable qnk = tnkpnk and replacing pnk with qnk, problem

(21) becomes

min
q,t,z

N
∑

n=1

zn (22)

s.t. (21a), (21f), (21g)

tnkB log2

(

1 +
qnkhnk

σ2tnk

)

≥ dnk, ∀n ∈ N , k ∈ K,

(22a)

n
∑

i=1

K
∑

k=1

dike
−

mσ2tik
qikhik ≥ A1/α

n

n
∑

i=1

K
∑

k=1

Dik, ∀n ∈ N ,

(22b)

N
∑

n=1

qnk ≤ Qk, ∀k ∈ K, (22c)

n
∑

i=1

dike
−

mσ2tik
qikhik ≤

n
∑

i=1

Dik, ∀n ∈ N , k ∈ K,

(22d)

where both constraints (22a) and (22c) are convex now. As a

result, it remains to solve the complex exponential expressions

in constraints (22b) and (22d).

In order to handle the non-convexity of constraints (22b)

and (22d), we use the first-order Taylor series to approximate

e
−

mσ2tik
qikhik , which can be given by

n
∑

i=1

K
∑

k=1

dike
−

mσ2t
(m)
ik

q
(m)
ik

hik

(

1−
mσ2

q
(m)
ik hik

(tik − t
(m)
ik )

+
mσ2t

(m)
ik

(q
(m)
ik )2hik

(qik − q
(m)
ik )

)

≥ A1/α
n

n
∑

i=1

K
∑

k=1

Dik (23)
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and

n
∑

i=1

dike
−

mσ2t
(m)
ik

q
(m)
ik

hik

(

1−
mσ2

q
(m)
ik hik

(tik − t
(m)
ik )

+
mσ2t

(m)
ik

(q
(m)
ik )2hik

(qik − q
(m)
ik )

)

≤
n
∑

i=1

Dik, (24)

where q
(m)
ik and t

(m)
ik are respectively the values of qik and tik

in the m-th iteration. According to (23) and (24), the convex

linear inequality constraints are obtained.

Through replacing constraints (22b) and (22d) with (23) and

(24) respectively, problem (22) becomes the following convex

problem:

min
q,t,z

N
∑

n=1

zn (25)

s.t. (21a), (21f), (21g)

tnkB log2

(

1 +
qnkhnk

σ2tnk

)

≥ dnk, ∀n ∈ N , k ∈ K,

(25a)

n
∑

i=1

K
∑

k=1

dike
−

mσ2t
(m)
ik

q
(m)
ik

hik

(

1−
mσ2

q
(m)
ik hik

(tik − t
(m)
ik )

+
mσ2t

(m)
ik

(q
(m)
ik )2hik

(qik − q
(m)
ik )

)

≥ A1/α
n

n
∑

i=1

K
∑

k=1

Dik, ∀n ∈ N , (25b)

N
∑

n=1

qnk ≤ Qk, ∀k ∈ K, (25c)

n
∑

i=1

dike
−

mσ2t
(m)
ik

q
(m)
ik

hik

(

1−
mσ2

q
(m)
ik hik

(tik − t
(m)
ik )

+
mσ2t

(m)
ik

(q
(m)
ik )2hik

(qik − q
(m)
ik )

)

≤
n
∑

i=1

Dik, , k ∈ K, (25d)

which can be effectively solved through using the existing

convex optimization algorithms. Trough solving problem 25,

the solution of the original problem (19) can be effectively

obtained.

C. Data Offloading Subproblem

With given device scheduling and power control variables in

problem (10), the data offloading subproblem can be rewritten

Algorithm 1 : Alternating Algorithm

1: Initialize a feasible solution (x(0),d(0),p(0) of problem

(10) and set l = 0.

2: repeat

3: With given (d(l),p(l)), obtain the solution x(l+1) of

problem (11).

4: With given (x(l+1),d(l)), obtain the solution p(l+1) of

problem (19).

5: With given (x(l+1),p(l+1)), obtain the solution d(l+1)

of problem (26).

6: Set l = l + 1.

7: until objective value (10) converges

as

min
d

N
∑

n=1

max
k∈K

xnktnk (26)

s.t. an ≥ An, ∀n ∈ N , (26a)

N
∑

n=1

tnkpnk ≤ Qk, ∀k ∈ K, (26b)

n
∑

i=1

dikcik(pik) ≤
n
∑

i=1

Dik, ∀n ∈ N , k ∈ K, (26c)

dnk ≥ 0, ∀n ∈ N , (26d)

0 ≤ tnk ≤ T0, n ∈ N . (26e)

Substituting (6) and (9) into problem (26) yields

min
d

N
∑

n=1

max
k∈K

xnkdnk
rnk

(27)

s.t.

n
∑

i=1

K
∑

k=1

dike
− mσ2

pikhik ≥ A1/α
n

n
∑

i=1

K
∑

k=1

Dik, ∀n ∈ N ,

(27a)

N
∑

n=1

pnkdnk
rnk

≤ Qk, ∀k ∈ K, (27b)

n
∑

i=1

dikcik(pik) ≤
n
∑

i=1

Dik, ∀n ∈ N , k ∈ K, (27c)

dnk ≥ 0, ∀n ∈ N , (27d)

0 ≤ tnk ≤ T0, n ∈ N , (27e)

which is a linear programming problem and can be effectively

solved by using the simplex method.

D. Algorithm Analysis

Through alternatively solving subproblems (11), (19), and

(26), the overall procedure to obtain a solution of problem (10)

can be shown in Algorithm 1. Since the objective value (10) is

nonincreasing and the objective value (10) has a limited lower

bound (i.e., zero), Algorithm 1 always converges.

The main complexity of Algorithm 1 lies in solving sub-

problems (11), (19), and (26). To solve subproblem (11),

the optimal solution can be obtained through Lemma 1 with

complexity O(NKτ) for given dual variables. Thus, the
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complexity of solving subproblem (11) is O(I1NKτ), where

I1 is the total number of iterations of using the dual method.

To solve subproblem (19), the total complexity is O(I1N
3K3)

through solving a series of convex subproblems (25), where

I2 is the total number of iterations using the successive

convex approximation method. To solve subproblem (26),

the total complexity is O(N2.5K2.5) through the simplex

method. As a result, the total complexity of Algorithm 1 is

O(I0I1NKτ + I0I1N
3K3+ I0N

2.5K2.5), where N0 denotes

the total number of outer iterations.

IV. OPTIMIZATION WITH ONE PHYSICAL DEVICE

In this section, we consider the case that the DT system

only has one physical device. In the following of this paper,

we omit the subscript k without loss of generality since we

only consider one physical device. For the case that K = 1,

problem (10) can be formulated as

min
x,d,p

N
∑

n=1

xntn (28)

s.t. f

(

n
∑

i=1

dici(pi),
n
∑

i=1

Di

)

≥ An, ∀n ∈ N , (28a)

N
∑

n=1

tnpn ≤ Q, (28b)

n
∑

i=1

dici(pi) ≤
n
∑

i=1

Di, ∀n ∈ N , (28c)

n+τ
∑

i=n

xi ≥ βτ, ∀n ∈ N , (28d)

dn ≥ 0, ∀n ∈ N , (28e)

xn ∈ {0, 1}, ∀n ∈ N , (28f)

0 ≤ pn ≤ P, ∀n ∈ N , (28g)

0 ≤ tn ≤ T, ∀n ∈ N , (28h)

wherex = [x1, · · · , xN ]T , d = [d1, · · · , dN ]T , and p =
[p1, · · · , pN ]T .

It is generally hard to solve problem (28) due to the

following two main difficulties. The first difficulty is that

problem (28) includes both integer and continuous variables,

which introduces non-smoothness. The second difficulty lies

in that the non-convexity constraints in (28a)-(28c). Due to

the above two difficulties, the joint optimization design is

challenging.

In the following, we solve problem (28) in an online manner.

According to (28d), the physical device needs to transmit

information at least ⌈βτ⌉ times in every τ + 1 time slots.

For the sake of analysis, we consider the case that ⌈βτ⌉ = 1
and the physical device needs to transmit at least once during

every τ + 1 time slots. Based on this finding, we optimize

the location of transmission time, i.e., xn = 1 in an inductive

scheme. The proposed inductive scheme includes two phases:

initial phase and recursion phase.

A. Initial Phase

In the initial phase, the aim is to find the fist transmission

time and the corresponding optimization problem can be

formulated as

min
{xn,dn,pn}

τ
∑

n=1

xntn (29)

s.t. f

(

τ+1
∑

i=1

dici(pi),
n
∑

i=1

Di

)

≥ An,

∀n = 1, · · · , τ + 1, (29a)

τ+1
∑

n=1

tnpn ≤
(τ + 1)Q

N
, (29b)

τ+1
∑

i=1

xi ≥ 1, ∀n = 1, · · · , τ + 1, (29c)

dn ≥ 0, ∀n = 1, · · · , τ + 1, (29d)

xn ∈ {0, 1}, ∀n = 1, · · · , τ + 1, (29e)

0 ≤ pn ≤ P, ∀n = 1, · · · , τ + 1, (29f)

0 ≤ tn ≤ T, ∀n = 1, · · · , τ + 1, (29g)

where constraint (28c) is omitted since the accuracy constraint

(28a) also reflects the minimum number of transmitted in-

formation requirement. To analyze the optimal solution of

problem (28), we have the following lemma.

Lemma 2. For the optimal solution (x∗
n, d

∗
n, p

∗
n) of problem

(28), we always have
∑τ+1

i=1 x∗
i = 1.

Lemma 2 can be proved by using the contradiction method.

If the optimal solution of problem (28) satisfying
∑τ+1

i=1 x∗
i >

1, we can always construct a new solution that
∑τ+1

i=1 x∗
i = 1

and x∗
m = 1, m = argi=1,··· ,τ+1 hi, with lower objective

value, which contradicts that the solution is optimal.

According to Lemma 2, one can always obtain the optimal

transmission time slot, i.e., the time slot with the highest

channel gain. However, the original optimization problem (28)

requires finding the transmission time for many τ + 1 time

slots. Although the solution x∗
m = 1 is the optimal solution in

the fist τ + 1 time slots, this does not guarantee that x∗
m = 1

is optimal considering the whole N time slots. As a result, we

need to conduct the recursion phase to capture the relationship

between multiple time slots.

B. Recursion Phase

Assume that the previous transmission time is m, i.e., xm =
1. In the recursion phase, our aim is to obtain the objective

value if the next transmission time is xq = 1, m+1 ≤ q ≤ m+
τ +1, i.e., the delay minimization problem can be formulated
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as

min
{dn,pn}

tq (30)

s.t. f

(

dqcq(pq),
n
∑

i=1

Di

)

≥ An, ∀n = 1, · · · , τ + 1,

(30a)

tqpq ≤
(τ + 1)Q

N −m
, (30b)

dq ≥ 0, ∀n = 1, · · · , τ + 1, (30c)

0 ≤ pq ≤ P, ∀n = 1, · · · , τ + 1, (30d)

0 ≤ tq ≤ T, ∀n = 1, · · · , τ + 1. (30e)

According to (1), (6) and (30d), we have

tq ≥
dq

B log2

(

1 +
Phq

σ2

) . (31)

Based on (1), (6) and (30d), we further have

tq ≥
Q

p̄q
, (32)

where
dq p̄q

B log2

(

1 +
p̄qhq

σ2

) =
(τ + 1)Q

N −m
. (33)

Solving (33) with Lambert W function yields

p̄q =
σ2

hq

(

BhqQ(τ + 1)

− ln 2dqσ2(N −m)
W (− ln 2)− 1

)

. (34)

Based on (31) to (35)

t∗q =max







dq

B log2

(

1 +
Phq

σ2

) , (35)

Q

σ2

hq

(

BhqQ(τ+1)
− ln 2dqσ2(N−m)W (− ln 2)− 1

)







, Tmq. (36)

C. Overall Phase

Based on (35), we show that the optimal delay is Tmqif

the previous transmission time slot is m and the current

transmission slot is q. Based on the expression of Tmq, we

can obtain

N
∑

n=1

xntn =

N
∑

n=1

xn

min{N,n+τ+1}
∑

m=n+1

xmTnm. (37)

As a result, the original optimization problem (28) can be

reformulated as

min
x,d

N
∑

n=1

xn

min{N,n+τ+1}
∑

m=n+1

xmTnm (38)

s.t. f

(

n
∑

i=1

dici(pi),

n
∑

i=1

Di

)

≥ An, ∀n ∈ N , (38a)

n+τ
∑

i=n

xi ≥ 1, ∀n ∈ N , (38b)

dn ≥ 0, ∀n ∈ N , (38c)

xn ∈ {0, 1}, ∀n ∈ N . (38d)
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Fig. 3. The transmission delay versus the maximum transmit power of each
physical device with K = 14.

With given data offloading, the device scheduling belongs

to the classic assignment problem, which can be effec-

tively solved using the Hungarian algorithm. With given user

scheduling, the data offloading problem can be solved by using

the successive convex approximation algorithm.

V. SIMULATION RESULTS

In this section, we provide the simulation results of the

proposed algorithm. We consider a PN with K physical

devices uniformly distributed in a square area with size

200m × 200m. The path loss model is 128.1 + 37.6 log10 d
(d is in km) and the standard deviation of shadow fading is 8
dB [38]. The bandwidth is B = 1MHz and the noise power

spectral density is N0 = −174 dBm/Hz. Unless otherwise

specified, we set the number of physical devices K = 10,

the total number of time slots N = 10, equal accuracy

requirement A1 = · · · = An = 0.6, equal arriving data

D11 = · · · = DNK = 300 kbits, parameter τ = 3, K0 = 5,

equal constant β1 = · · · = βK = 1/3, and equal maximum

transmit power P1 = · · · = PK = 1dBm.

To show the effectiveness of the proposed algorithm, we

consider the following two baselines: the random device selec-

tion algorithm (labeled as ‘Random’), where the power control

and data offloading are optimized by using the proposed

algorithm, and the adaptive edge association algorithm in

[31] (labeled as ‘AEA’), where the device selection and data

offloading are solved by using the proposed algorithm.

In Figs. 3 and 4, we show the transmission delay versus

the maximum transmit power of each physical device with

various number of physical devices. From both figures, it can

be observed that the total transmission delay of all algorithms

decreases with the maximum transmit power and the decreas-

ing speed is decreasing. The reason is that large maximum

transmit power can allow the physical device to transmit with

high power, thus reducing the transmission delay. Compared

with AEA in [31], the proposed algorithm can yield lower
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Fig. 4. The transmission delay versus the maximum transmit power of each
physical device with K = 10.
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Fig. 5. The transmission delay versus the number of physical devices with
maximum transmit power 2 dBm.

transmission delay expecially when the maximum transmit

power is small. The reason is that the proposed algorithm

jointly optimizes multiple time slots, while the resource is not

cooperatively scheduled in AEA.

The transmission delay versus the number of physical

devices with different maximum transmit power is depicted

in Figs. 5 and 6. It can be found that the proposed algorithm

always achieve the best performance. With the increase of

number of physical devices, the total transmission delay of

both the proposed and AEA algorithms slightly increases,

while the total transmission delay of random algorithm dy-

namically increases.

In the following Figs. 7 to 9, we also compare the per-

formance of the proposed algorithm with the equal power

allocation scheme. Fig. 7 shows the transmission delay versus
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Fig. 6. The transmission delay versus the number of physical devices with
maximum transmit power 1 dBm.
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Fig. 7. The transmission delay versus the maximum transmit power of each
physical device.

the maximum transmit power of each physical device. Accord-

ing to this figure, it is observed that the proposed algorithm

always achieve the best performance among all algorithms.

Compare to random device scheduling algorithm, the other

two algorithms can great reduce the transmission delay, which

indicates the superiority of device scheduling optimization.

Compared to equal power allocation algorithm, the proposed

algorithm can decrease the transmission delay by up to 51.2%

especially when the maximum transmission power is high. The

reason is that the proposed algorithm can dynamically allocate

different power for each user based on the wireless channel

gains to increase the overall transmission rate, thus leading to

low transmission delay.

The trend of transmission delay verses the number of

physical devices is presented in Fig. 8. It is found that all
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Fig. 8. The transmission delay versus the number of physical devices.
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Fig. 9. The transmission delay versus the number of resource blocks.

algorithm increases with the number of physical devices. This

is because more physical devices means more data to offload,

which can cause high transmission delay. In this figure, we

also can observe that both the proposed algorithm and equal

power allocation algorithm can greatly reduce the transmission

delay compared the random device scheduling algorithm.

Fig. 8 illustrates the delay performance changes as the

number of resource blocks. From this figure, the transmission

delay of all algorithms decreases with the number of resource

blocks. This is because more resource blocks ensure more

devices to upload the data at each time slot, which can

decrease the overall transmission time slots and result in low

transmission delay. It is shown in Fig. 4 that the proposed

algorithm is superior over the equal power allocation algorithm

especially for small number of resource blocks.

VI. CONCLUSIONS

In this paper, we have investigated the delay performance of

DT over wireless networks. We have formulated a joint com-

munication and computation problem so as to minimize the

total transmission delay of the network with considering both

transmission energy and computation accuracy constraints. To

solve this problem, we have proposed an alternating algorithm

with solving three subproblems iteratively. Numerical results

have illustrated that the superiority of the proposed algorithm

compared to the conventional schemes in terms of transmission

delay, especially for large maximum transmit power and small

resource blocks.
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