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Abstract – A set of software metrics for the 

evaluation of power management systems (PMSs) is 
presented. Such systems for managing power need to be 
autonomous, scalable, low in complexity, and comprised 
of portable algorithms in order to be well applied across 
the varying implementations that utilize power systems. 
Although similar metrics exist for software in general, 
their definitions do not readily lend themselves to the 
unique characteristics of power management systems or 
systems of similar architecture. 
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I. INTRODUCTION 
 
Power Management Systems (PMSs) are utilized in an 

ever-increasing variety of devices and missions. These 
systems are typically implemented in software and are 
responsible for keeping the power system operating reliably 
and efficiently. The varying missions of PMSs scale from 
portable devices and hybrid / electric vehicles, to power 
generating plants and large industrial processes. While there 
is much research in all these areas, algorithms developed 
for one mission are often not designed to be portable and 
scalable to another mission that is very different in size. 
Complexity is also an issue since small devices do not 
always have the available processing power and memory to 
accommodate a large power management footprint. 
Likewise, large industrial and power generating processes 
are often controlled by legacy hardware that may not 
provide sufficient functionality for complex algorithms. 
Finally, autonomy is a necessary characteristic as it is often 
impractical to have the end user perform power 
management functions, or when minimizing these user 
interactions is desirable. 

 
The software metrics presented evaluate intelligent 

PMS software across these characteristics of scalability, 
portability, complexity, and autonomy in order to compare 
algorithms and encourage cooperative development efforts 
across a wider span of implementations. 

 
A. Previous work 

Autonomy is a measure of the system’s ability to make 
decisions and perform the mission at hand with minimal 
human intervention. Clough [1] illustrates the problems of 
measuring autonomy in unmanned aerial vehicles (UAVs) 

using existing definitions and comes up with a new 
procedure. Sholes [2] further evolves the work of Clough, 
again on UAV control systems, with application to various 
implementations. Rushby and Crow [3] evaluated 
automated fault detection and recovery in expert systems 
for a manned maneuvering unit. Portability and scalability 
in PMSs are particularly difficult, yet important, because a 
broader range of application environments exist, ranging 
from ladder logic in PLCs to embedded-C on custom 
processors. Complexity is a well documented software 
metric as in decision points, e.g. McCabe’s cyclomatic 
complexity [5] and Henry and Selig’s structural complexity 
[6], and input and output counts, e.g. Henry and Kafura’s 
information flow [7]. However, it is important to gauge 
readability when considering management systems, e.g. as 
in rule-based expert systems by Chen and Suen [4]. Good 
readability will ensure the PMS is easily understood and 
maintained by personnel, which is critical in many control 
environments. 

 
B. Proposed solution 

New metrics for measuring portability, scalability, 
complexity, and autonomy are presented to characterize 
advanced power managements systems. These metrics 
complement the typical mission-level metrics utilized for a 
common PMS, e.g. power efficiency, power handling 
capability, etc. As power becomes an increasingly critical 
resource, good management is needed for optimal 
utilization and preservation. This leads to the development 
of software algorithms and, subsequently, the need for 
software metrics to evaluate these algorithms that are 
meaningful to the mission of power management. The use 
of these metrics encourages the development of PMSs 
whose software components are both more effectively 
utilized and more capable of being reused. The metrics are 
designed to be easily computable by non-software 
engineers and radar graphs are proposed to allow quick 
visualization of the resulting metrics. The visualization 
capabilities also enable software changes to be tracked by 
the metrics and compared among multiple PMS 
implementations. 

 
 

II. DEFINITION OF METRICS 
 
When evaluating the power management software, the 

code should be modularized, i.e. broken into fundamental 
modules, for a granular analysis. As appropriate for a given 
architecture, algorithms can be handled individually, or as 
modules such as rule sets, equation sets, and/or neural 
networks. 
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The metrics are defined here and will be applied and 

interpreted in Section III. 
 

A. Portability and scalability 
Portability P is a measure of the development effort 

required to move software among similar PMSs. This is a 
lateral or horizontal move but with similar functional scope. 
This is in contrast to scalability S, which seeks to measure 
the development effort required to add new scope and 
functionality to an individual PMS. Table 1 defines how 
individual modules can be assessed while (1) defines how 
portability would be summed for all modules in a PMS – 
likewise for scalability substituting S and s for P and p in 
(1). If appropriate, the evaluator can choose a value 
between two levels, e.g. 2.5, to improve the granularity of 
the classification. A weighting factor wi is included to 
increase the significance of individual modules if 
appropriate.  
 

Table 1. Portability and scalability factors. 
 

Portability 
factor pi 

Scalability 
factor si 

Degree of software changes 
required 

3 3 No change 
2 2 Parameter-level changes 
1 1 Code-level changes 
0 0 Not portable / scalable  
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Although portability and scalability differ as defined 
above, together they represent the modularity and 
modifiability of the PMS. These quantities can be drawn 
together on a linear radar graph in opposing direction, 
where total length is a measure of the modularity and 
modifiability and the center location indicates the dominant 
quantity between portability and scalability. An example of 
this is illustrated in Fig. 1 where the center is shifted 
towards scalability. 
 
 
 
 
 
 
 
Figure 1. Portability and scalability graph. 
 
B. Complexity 

As previously noted, complexity is a well-defined 
metric in software science but needs to include readability 
and inputs and outputs (I/O) when applied to PMSs in 
control system environments, and perhaps control systems 

software in general. Complexity for an individual software 
module is defined by (2). Readability r is defined in Table 2 
according to how easily a human reader can understand the 
code. As in portability and scalability, values between two 
levels can be selected if appropriate to improve the 
granularity, e.g. modules comprised of a combination of 
equations and procedures for a readability of 2.5. 
Readability is important because PMSs need to be 
periodically maintained by several users, sometimes 
spanning years between edits. Also, PMSs that automate an 
operator’s actions may not get good buy-in or acceptance if 
they and their actions are not well understood. The next 
term, McCabe’s complexity [5] represented by m, is the 
number of decision points plus 1. Fan-in fin and fan-out fout 
are included to account for the field inputs typical in control 
systems. Brooks [8] and Belady [9] have proposed squaring 
of the product of fan-in and fan-out, however this can 
quickly result in a very high number that obscures the 
importance of the other factors of McCabe and readability. 
Therefore, this term is left un-squared due to the nature of 
PMSs of typically handling high I/O counts. 
 

Table 2. Readability factor in complexity. 
 

Readability 
factor ri 

Meaning 

1 Natural language or simple rule statements 
allowing straightforward interpretation of 
meaning. 

2 Computable equation that requires 
computing equations to determine 
meaning. 

3 Procedural computation that requires 
following a difficult procedure to 
determine meaning.  

 

€ 

ci = rimi( fin fout )     (2) 

The modular complexities defined by ci in (2) are 
summed for the whole PMS as with portability and 
scalability by (1). This complexity metric can be added to 
the previous radar graph in Fig. 1 for portability and 
scalability to form a surface plot for evaluation. Fig. 2 
illustrates how these three metrics are quickly observed 
with portability and scalability values stretching the quality 
of the PMS upwards and complexity pulling the surface 
downwards. 
 

The values for ci and subsequently for the PMS’s 
complexity can vary widely for dissimilar applications 
since the specific algorithms and I/O counts affect these 
dramatically. Therefore, complexity is best utilized when 
comparing architectures within a given mission in 
consideration of selecting candidate PMSs from a range of 
possibilities. 
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Figure 2. Complexity graph with portability and scalability. 
 
C. Autonomy 

Achieving autonomy frees the operator from control 
tasks, handles trouble conditions automatically, allows 
strategic decisions to be automated, and finally enables 
cooperation with peer systems within the environment for a 
coordinated solution. Unlike the previous metrics, 
autonomy is measured on the whole PMS as opposed to 
fundamental modules. In PMSs, the key parameters are: 
• Operator independence – requiring minimal user 

interaction, having automation. 
• Self-preservation – the ability to handle trouble 

conditions automatically, recover and continue the 
mission, and fail in a safe manner. 

• Strategy – the ability to enhance the control of the 
power system and thus add to its capabilities. 

• Coordination – the ability to cooperate with other users 
and PMSs. 

Operator independence AI is determined by measuring 
the percentage of manual tasks previously performed by the 
operator that will be now performed by the PMS as in (3). 

 

€ 

Ak =
tasksauto∑
taskstotal∑

•100%   where k = I, P, S, C (3) 

Likewise with self-preservation AP, the number of 
trouble conditions or alarms now automatically handled by 
the PMS is measured as a percentage of the total system 
alarms or total number of failure modes. This is calculated 
similarly to AI as in (3). 
 

Strategic capability is a qualitative measure of how 
well the PMS enhances the whole system’s ability to handle 
power efficiently and effectively. Table 3 outlines a guide 
for assigning a value for AS where 0% is no effort to 
enhance and 100% is the theoretical limit for the given 
PMS. Within each meaning, a range is given to allow the 
evaluator to score the performance of the specific system.  
 

Table 3. Strategy. 
 

Strategy AS Meaning 
75% - 100% Many new goals or strategies 

applied to enhance the PMS 
capabilities to the theoretical limit 

50% - 75% Multiple new goals or strategies 
applied to enhance the PMS 
capabilities, multi-goal optimization 

0% - 25% One new goal or strategy applied to 
enhance the PMS capabilities, 
single-goal optimization 

0% No enhancement 

 
 

Similarly to AS coordination is also a qualitative 
quantity that measures how well the PMS interacts with its 
environment. As before, a range is given to allow the 
evaluator to score the performance of the specific system. 
Table 4 defines how the value for AC is assigned. 
 

Table 4. Coordination. 
 

Coordination AC Meaning 
75% - 100% Full cooperation with all entities, 

intuitive to theoretical limit. 
50% - 75% Limited coordination with other 

systems and/or coordination of the 
influence of multiple users. 

0% - 25% Aware of other systems but little or 
no coordination. May recognize 
multiple users. 

0% Unaware of other systems. Only 
operator-level control by one user 
at a time.  

 
Once the above four sub-metrics for autonomy are 

determined, they can be plotted on a radar graph for 
analysis and comparison. This allows a quick graphical 
interpretation of autonomy in the PMS where height and 
width correspond to automation and intelligence and the 
total area is the total autonomy metric. Indeed, a good 
definition of autonomy could be described generally by (4) 
where the multidimensional quantities of automation and 
intelligence are combined to characterize autonomy. The 
metrics defined in this paper relevant to these are 
demonstrated in Fig. 3. 

€ 

Autonomy = Automation × Intelligence (4) 
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Figure 3. Autonomy. 
 
 

III. APPLICATION OF METRICS 
 

Determination of the portability, scalability, and 
complexity metrics are done on a module-by-module basis 
and summed according to the equations in Section II. For 
PMSs that are likely to be implemented in process control 
systems, the typical program structure includes rules, 
equations, and simple glue code, as well as model-based 
elements such as neural networks. 
 
A. Portability and scalability metrics example 

Portability and scalability will likely be a qualitative 
decision by a software developer according to the 
guidelines in Table 1. Therefore, it is advantageous to break 
the PMS into the simplest modules practical. Modules can 
be assessed fractional values between those of Table 1 if 
deemed appropriate, e.g. level 2.5 for very minor parameter 
changes and 0.5 for very significant codes changes. Table 5 
demonstrates the assessment of a set of modules. 
 

Table 5. Portability and scalability metric application. 
 

Module 
(assumed 
equal 
weight) 

Portability to another 
instance of a similar 
PMS 

Scalability to add new 
scope to an existing PMS 

1 Changed very few 
parameters, level 2.5 

No changes, level 3 

2 Changed parameters and 
some minor code 
changes, level 1.5 

Changed parameters and 
several lines of code, level 1 

3 No changes, level 3 New module needed to be 
added to handle new scope, 
level 0 

4 Changed parameters, 
level 2 

Changed very few 
parameters, level 2.5 

Total by 
(1) 

2.25 1.625 
 
 
B. Complexity metric example 

Rules are typically in the form of IF-THEN or 
SWITCH-CASE type formats, especially in legacy 
industrial systems and limited capability micro-systems. 
Rules therefore take the form of: 

IF A<K1 THEN SET X=10 ELSE X=B; 
F(A) = A * SIN (K3*T) + K2 
IF F(A)>K4 THEN SET C=TRUE ELSE SET C=FALSE; 

SWITCH (X) { 
CASE X<=0: SET MOTOR=OFF; 
CASE X<=10: SET MOTOR=LOW; 
CASE X>10: SET MOTOR=HI; 
DEFAULT: SET MOTOR=ERROR; 

} 

If the code block above represented a module to be 
evaluated for complexity, the results would be: 2 IF-THEN 
statements and 3 switch-case decisions for 5 decisions total; 
and 1 equation. 

r = 1.25; 75% level 1 and 25% level 2 readability 
m = 6; #decision points + 1 
fin = 2; inputs A,B (K’s are constants) 
fout = 2; outputs C,MOTOR (X internal variable) 
c = 30; per equation (2) 

 
Neural networks and other black-box elements are 

measured based only on their I/O count and difficulty with 
internal readability. For a neural network, readability is r=3 
by Table 2 since the only way to determine the output a 
neural network is to provide an input. There are no decision 
points, i.e. the input pattern always flows through to 
subsequent the output pattern, therefore m=1. For a small 
neural network of 10 inputs and 4 outputs, the resulting 
complexity becomes c=3*1*10*4=120. 
 
C. Autonomy metric example 

The autonomy metric is applied to the whole PMS 
based on the definitions outlined in Section II. An example 
application to an existing PMS is the software-agent-based 
approach by Foreman and Ragade [10] at a hydro-
generating plant. The plant is a run-of-the-river, Kaplan 
turbine design with three units rated 25MW each at full 
load. The software agents negotiated water flow among the 
units and automated several operator tasks. 
 

Table 6 demonstrates this metric application and Fig. 4 
illustrates the autonomy metric radar graph and area 
calculation by (4). 
 

Table 6. Autonomy metric for the hydro PMS. 
 

 Evaluation Value 

AI By handling the two main operator inputs to control a 
unit, being Kaplan blade tilt and wicket gate position, 
the units are theoretically fully automated by the 
PMS. 

100% 

AP Outside of extraordinary trouble conditions, the 
typical conditions handled by the operator were 
cavitation, vibration, and generator temperature 
excursions. These are fully handled by the PMS. 

100% 

AS The PMS implements a few strategies for operating 
optimization but there is room for additional 
strategies. Assessed by Table 3. 

75% 

AC The PMS is designed to handle multiple users and be 
aware of the other units. There is some room for more 
intuitive interaction with other units and even units at 
other plants, e.g. river-level coordination. Assessed 
by Table 4. 

75% 

 Total by (4) 3.0  
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Figure 4. Autonomy in the hydro PMS. 
 
D. Visualization of PMS changes and comparisons 

Once a graphical representation of these metrics is 
developed, both proposed changes to an existing PMS and 
comparison with a peer PMS can be performed visually. 
This enables a clear interpretation of differences across a 
wider audience and facilitates good participation in system 
planning. Fig. 5 illustrates how a modification to an 
existing PMS that changes autonomy can be visualized. In 
this figure, the self-preservation metric has been improved 
from the first PMS to the second PMS, viewing from left to 
right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Autonomy changes during PMS modification. 
 

Fig. 6 illustrates how multiple PMSs can be visually 
compared together. In this figure, autonomy is again 
compared across three candidate PMSs to determine which 
has the desired profile for the current mission, viewing from 
left to right. The second PMS improves cooperation at the 
expense of operator independence compared to the first 
PMS. The third PMS has somewhat less improved 
cooperation and improved self-preservation without a loss 
in the other metrics compared with the first PMS. 
 

 
 
 
 

 
 
 
 
 
Figure 6. Autonomy metrics for three competing PMSs. 
 
 

IV. CONCLUSIONS 
 

The metrics defined for power management systems 
provide a framework for evaluating the performance and 
maintainability of such systems. They are designed such 
that individuals can apply and interpret them with little 
software science experience. This encourages PMS 
designers to include these metrics in their PMS proposals 
and research due to the relatively small additional work 
required for their incorporation. In particular, the radar 
graph visualization allows quick understanding by lay 
people for presentation purposes. These metrics are 
valuable in their application to power management systems 
due to the lack of specialized metrics in this area and the 
difficulty in applying incompatible metrics, e.g. the 
autonomy metrics mentioned in Section I for UAVs that 
focus on mobility.  
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