
Received Date: April 1, 2009 Revised Date: July 21, 2009 1

New Software Metrics for Evaluation and Comparison of Advanced Power
Management Systems

Dr. J. Chris Foreman Ph.D., Member IEEE, Dr. Rammohan K. Ragade Ph.D., Senior Member IEEE, and Dr. James H.

Graham Ph.D., Senior Member IEEE

Abstract – A set of software metrics for the

evaluation of power management systems (PMSs) is
presented. Such systems for managing power need to be
autonomous, scalable, low in complexity, and comprised
of portable algorithms in order to be well applied across
the varying implementations that utilize power systems.
Although similar metrics exist for software in general,
their definitions do not readily lend themselves to the
unique characteristics of power management systems or
systems of similar architecture.

Index Terms – Software, Power, Management,

Metrics, Portability, Scalability, Complexity, Autonomy,
Visualization

I. INTRODUCTION

Power Management Systems (PMSs) are utilized in an

ever-increasing variety of devices and missions. These
systems are typically implemented in software and are
responsible for keeping the power system operating reliably
and efficiently. The varying missions of PMSs scale from
portable devices and hybrid / electric vehicles, to power
generating plants and large industrial processes. While there
is much research in all these areas, algorithms developed
for one mission are often not designed to be portable and
scalable to another mission that is very different in size.
Complexity is also an issue since small devices do not
always have the available processing power and memory to
accommodate a large power management footprint.
Likewise, large industrial and power generating processes
are often controlled by legacy hardware that may not
provide sufficient functionality for complex algorithms.
Finally, autonomy is a necessary characteristic as it is often
impractical to have the end user perform power
management functions, or when minimizing these user
interactions is desirable.

The software metrics presented evaluate intelligent

PMS software across these characteristics of scalability,
portability, complexity, and autonomy in order to compare
algorithms and encourage cooperative development efforts
across a wider span of implementations.

A. Previous work

Autonomy is a measure of the system’s ability to make
decisions and perform the mission at hand with minimal
human intervention. Clough [1] illustrates the problems of
measuring autonomy in unmanned aerial vehicles (UAVs)

using existing definitions and comes up with a new
procedure. Sholes [2] further evolves the work of Clough,
again on UAV control systems, with application to various
implementations. Rushby and Crow [3] evaluated
automated fault detection and recovery in expert systems
for a manned maneuvering unit. Portability and scalability
in PMSs are particularly difficult, yet important, because a
broader range of application environments exist, ranging
from ladder logic in PLCs to embedded-C on custom
processors. Complexity is a well documented software
metric as in decision points, e.g. McCabe’s cyclomatic
complexity [5] and Henry and Selig’s structural complexity
[6], and input and output counts, e.g. Henry and Kafura’s
information flow [7]. However, it is important to gauge
readability when considering management systems, e.g. as
in rule-based expert systems by Chen and Suen [4]. Good
readability will ensure the PMS is easily understood and
maintained by personnel, which is critical in many control
environments.

B. Proposed solution

New metrics for measuring portability, scalability,
complexity, and autonomy are presented to characterize
advanced power managements systems. These metrics
complement the typical mission-level metrics utilized for a
common PMS, e.g. power efficiency, power handling
capability, etc. As power becomes an increasingly critical
resource, good management is needed for optimal
utilization and preservation. This leads to the development
of software algorithms and, subsequently, the need for
software metrics to evaluate these algorithms that are
meaningful to the mission of power management. The use
of these metrics encourages the development of PMSs
whose software components are both more effectively
utilized and more capable of being reused. The metrics are
designed to be easily computable by non-software
engineers and radar graphs are proposed to allow quick
visualization of the resulting metrics. The visualization
capabilities also enable software changes to be tracked by
the metrics and compared among multiple PMS
implementations.

II. DEFINITION OF METRICS

When evaluating the power management software, the

code should be modularized, i.e. broken into fundamental
modules, for a granular analysis. As appropriate for a given
architecture, algorithms can be handled individually, or as
modules such as rule sets, equation sets, and/or neural
networks.

Received Date: April 1, 2009 Revised Date: July 21, 2009 2

The metrics are defined here and will be applied and

interpreted in Section III.

A. Portability and scalability
Portability P is a measure of the development effort

required to move software among similar PMSs. This is a
lateral or horizontal move but with similar functional scope.
This is in contrast to scalability S, which seeks to measure
the development effort required to add new scope and
functionality to an individual PMS. Table 1 defines how
individual modules can be assessed while (1) defines how
portability would be summed for all modules in a PMS –
likewise for scalability substituting S and s for P and p in
(1). If appropriate, the evaluator can choose a value
between two levels, e.g. 2.5, to improve the granularity of
the classification. A weighting factor wi is included to
increase the significance of individual modules if
appropriate.

Table 1. Portability and scalability factors.

Portability
factor pi

Scalability
factor si

Degree of software changes
required

3 3 No change
2 2 Parameter-level changes
1 1 Code-level changes
0 0 Not portable / scalable

€

P =

wipi
i

N

∑

wi
i

N

∑
 also with S,s for P,p (1)

Although portability and scalability differ as defined
above, together they represent the modularity and
modifiability of the PMS. These quantities can be drawn
together on a linear radar graph in opposing direction,
where total length is a measure of the modularity and
modifiability and the center location indicates the dominant
quantity between portability and scalability. An example of
this is illustrated in Fig. 1 where the center is shifted
towards scalability.

Figure 1. Portability and scalability graph.

B. Complexity

As previously noted, complexity is a well-defined
metric in software science but needs to include readability
and inputs and outputs (I/O) when applied to PMSs in
control system environments, and perhaps control systems

software in general. Complexity for an individual software
module is defined by (2). Readability r is defined in Table 2
according to how easily a human reader can understand the
code. As in portability and scalability, values between two
levels can be selected if appropriate to improve the
granularity, e.g. modules comprised of a combination of
equations and procedures for a readability of 2.5.
Readability is important because PMSs need to be
periodically maintained by several users, sometimes
spanning years between edits. Also, PMSs that automate an
operator’s actions may not get good buy-in or acceptance if
they and their actions are not well understood. The next
term, McCabe’s complexity [5] represented by m, is the
number of decision points plus 1. Fan-in fin and fan-out fout
are included to account for the field inputs typical in control
systems. Brooks [8] and Belady [9] have proposed squaring
of the product of fan-in and fan-out, however this can
quickly result in a very high number that obscures the
importance of the other factors of McCabe and readability.
Therefore, this term is left un-squared due to the nature of
PMSs of typically handling high I/O counts.

Table 2. Readability factor in complexity.

Readability
factor ri

Meaning

1 Natural language or simple rule statements
allowing straightforward interpretation of
meaning.

2 Computable equation that requires
computing equations to determine
meaning.

3 Procedural computation that requires
following a difficult procedure to
determine meaning.

€

ci = rimi(fin fout) (2)

The modular complexities defined by ci in (2) are
summed for the whole PMS as with portability and
scalability by (1). This complexity metric can be added to
the previous radar graph in Fig. 1 for portability and
scalability to form a surface plot for evaluation. Fig. 2
illustrates how these three metrics are quickly observed
with portability and scalability values stretching the quality
of the PMS upwards and complexity pulling the surface
downwards.

The values for ci and subsequently for the PMS’s
complexity can vary widely for dissimilar applications
since the specific algorithms and I/O counts affect these
dramatically. Therefore, complexity is best utilized when
comparing architectures within a given mission in
consideration of selecting candidate PMSs from a range of
possibilities.

Received Date: April 1, 2009 Revised Date: July 21, 2009 3

Figure 2. Complexity graph with portability and scalability.

C. Autonomy

Achieving autonomy frees the operator from control
tasks, handles trouble conditions automatically, allows
strategic decisions to be automated, and finally enables
cooperation with peer systems within the environment for a
coordinated solution. Unlike the previous metrics,
autonomy is measured on the whole PMS as opposed to
fundamental modules. In PMSs, the key parameters are:
• Operator independence – requiring minimal user

interaction, having automation.
• Self-preservation – the ability to handle trouble

conditions automatically, recover and continue the
mission, and fail in a safe manner.

• Strategy – the ability to enhance the control of the
power system and thus add to its capabilities.

• Coordination – the ability to cooperate with other users
and PMSs.

Operator independence AI is determined by measuring
the percentage of manual tasks previously performed by the
operator that will be now performed by the PMS as in (3).

€

Ak =
tasksauto∑
taskstotal∑

•100% where k = I, P, S, C (3)

Likewise with self-preservation AP, the number of
trouble conditions or alarms now automatically handled by
the PMS is measured as a percentage of the total system
alarms or total number of failure modes. This is calculated
similarly to AI as in (3).

Strategic capability is a qualitative measure of how
well the PMS enhances the whole system’s ability to handle
power efficiently and effectively. Table 3 outlines a guide
for assigning a value for AS where 0% is no effort to
enhance and 100% is the theoretical limit for the given
PMS. Within each meaning, a range is given to allow the
evaluator to score the performance of the specific system.

Table 3. Strategy.

Strategy AS Meaning
75% - 100% Many new goals or strategies

applied to enhance the PMS
capabilities to the theoretical limit

50% - 75% Multiple new goals or strategies
applied to enhance the PMS
capabilities, multi-goal optimization

0% - 25% One new goal or strategy applied to
enhance the PMS capabilities,
single-goal optimization

0% No enhancement

Similarly to AS coordination is also a qualitative
quantity that measures how well the PMS interacts with its
environment. As before, a range is given to allow the
evaluator to score the performance of the specific system.
Table 4 defines how the value for AC is assigned.

Table 4. Coordination.

Coordination AC Meaning
75% - 100% Full cooperation with all entities,

intuitive to theoretical limit.
50% - 75% Limited coordination with other

systems and/or coordination of the
influence of multiple users.

0% - 25% Aware of other systems but little or
no coordination. May recognize
multiple users.

0% Unaware of other systems. Only
operator-level control by one user
at a time.

Once the above four sub-metrics for autonomy are

determined, they can be plotted on a radar graph for
analysis and comparison. This allows a quick graphical
interpretation of autonomy in the PMS where height and
width correspond to automation and intelligence and the
total area is the total autonomy metric. Indeed, a good
definition of autonomy could be described generally by (4)
where the multidimensional quantities of automation and
intelligence are combined to characterize autonomy. The
metrics defined in this paper relevant to these are
demonstrated in Fig. 3.

€

Autonomy = Automation × Intelligence (4)

Received Date: April 1, 2009 Revised Date: July 21, 2009 4

Figure 3. Autonomy.

III. APPLICATION OF METRICS

Determination of the portability, scalability, and
complexity metrics are done on a module-by-module basis
and summed according to the equations in Section II. For
PMSs that are likely to be implemented in process control
systems, the typical program structure includes rules,
equations, and simple glue code, as well as model-based
elements such as neural networks.

A. Portability and scalability metrics example

Portability and scalability will likely be a qualitative
decision by a software developer according to the
guidelines in Table 1. Therefore, it is advantageous to break
the PMS into the simplest modules practical. Modules can
be assessed fractional values between those of Table 1 if
deemed appropriate, e.g. level 2.5 for very minor parameter
changes and 0.5 for very significant codes changes. Table 5
demonstrates the assessment of a set of modules.

Table 5. Portability and scalability metric application.

Module
(assumed
equal
weight)

Portability to another
instance of a similar
PMS

Scalability to add new
scope to an existing PMS

1 Changed very few
parameters, level 2.5

No changes, level 3

2 Changed parameters and
some minor code
changes, level 1.5

Changed parameters and
several lines of code, level 1

3 No changes, level 3 New module needed to be
added to handle new scope,
level 0

4 Changed parameters,
level 2

Changed very few
parameters, level 2.5

Total by
(1)

2.25 1.625

B. Complexity metric example

Rules are typically in the form of IF-THEN or
SWITCH-CASE type formats, especially in legacy
industrial systems and limited capability micro-systems.
Rules therefore take the form of:

IF A<K1 THEN SET X=10 ELSE X=B;
F(A) = A * SIN (K3*T) + K2
IF F(A)>K4 THEN SET C=TRUE ELSE SET C=FALSE;

SWITCH (X) {
CASE X<=0: SET MOTOR=OFF;
CASE X<=10: SET MOTOR=LOW;
CASE X>10: SET MOTOR=HI;
DEFAULT: SET MOTOR=ERROR;

}

If the code block above represented a module to be
evaluated for complexity, the results would be: 2 IF-THEN
statements and 3 switch-case decisions for 5 decisions total;
and 1 equation.

r = 1.25; 75% level 1 and 25% level 2 readability
m = 6; #decision points + 1
fin = 2; inputs A,B (K’s are constants)
fout = 2; outputs C,MOTOR (X internal variable)
c = 30; per equation (2)

Neural networks and other black-box elements are

measured based only on their I/O count and difficulty with
internal readability. For a neural network, readability is r=3
by Table 2 since the only way to determine the output a
neural network is to provide an input. There are no decision
points, i.e. the input pattern always flows through to
subsequent the output pattern, therefore m=1. For a small
neural network of 10 inputs and 4 outputs, the resulting
complexity becomes c=3*1*10*4=120.

C. Autonomy metric example

The autonomy metric is applied to the whole PMS
based on the definitions outlined in Section II. An example
application to an existing PMS is the software-agent-based
approach by Foreman and Ragade [10] at a hydro-
generating plant. The plant is a run-of-the-river, Kaplan
turbine design with three units rated 25MW each at full
load. The software agents negotiated water flow among the
units and automated several operator tasks.

Table 6 demonstrates this metric application and Fig. 4
illustrates the autonomy metric radar graph and area
calculation by (4).

Table 6. Autonomy metric for the hydro PMS.

 Evaluation Value

AI By handling the two main operator inputs to control a
unit, being Kaplan blade tilt and wicket gate position,
the units are theoretically fully automated by the
PMS.

100%

AP Outside of extraordinary trouble conditions, the
typical conditions handled by the operator were
cavitation, vibration, and generator temperature
excursions. These are fully handled by the PMS.

100%

AS The PMS implements a few strategies for operating
optimization but there is room for additional
strategies. Assessed by Table 3.

75%

AC The PMS is designed to handle multiple users and be
aware of the other units. There is some room for more
intuitive interaction with other units and even units at
other plants, e.g. river-level coordination. Assessed
by Table 4.

75%

 Total by (4) 3.0

Received Date: April 1, 2009 Revised Date: July 21, 2009 5

Figure 4. Autonomy in the hydro PMS.

D. Visualization of PMS changes and comparisons

Once a graphical representation of these metrics is
developed, both proposed changes to an existing PMS and
comparison with a peer PMS can be performed visually.
This enables a clear interpretation of differences across a
wider audience and facilitates good participation in system
planning. Fig. 5 illustrates how a modification to an
existing PMS that changes autonomy can be visualized. In
this figure, the self-preservation metric has been improved
from the first PMS to the second PMS, viewing from left to
right.

Figure 5. Autonomy changes during PMS modification.

Fig. 6 illustrates how multiple PMSs can be visually
compared together. In this figure, autonomy is again
compared across three candidate PMSs to determine which
has the desired profile for the current mission, viewing from
left to right. The second PMS improves cooperation at the
expense of operator independence compared to the first
PMS. The third PMS has somewhat less improved
cooperation and improved self-preservation without a loss
in the other metrics compared with the first PMS.

Figure 6. Autonomy metrics for three competing PMSs.

IV. CONCLUSIONS

The metrics defined for power management systems
provide a framework for evaluating the performance and
maintainability of such systems. They are designed such
that individuals can apply and interpret them with little
software science experience. This encourages PMS
designers to include these metrics in their PMS proposals
and research due to the relatively small additional work
required for their incorporation. In particular, the radar
graph visualization allows quick understanding by lay
people for presentation purposes. These metrics are
valuable in their application to power management systems
due to the lack of specialized metrics in this area and the
difficulty in applying incompatible metrics, e.g. the
autonomy metrics mentioned in Section I for UAVs that
focus on mobility.

REFERENCES

[1] B. T. Clough, "Metrics, Schmetrics! How The
Heck Do You Determine A UAV’s Autonomy
Anyway?," in 2002 PerMIS Conference
Proceedings, 2002.

[2] E. Sholes, "Evolution of a UAV Autonomy
Classification Taxonomy," in Aerospace
Conference, 2007 IEEE, 2007, pp. 1-16.

[3] J. Rushby and J. Crow, "Evaluation of an Expert
System for Fault Detection, Isolation, and
Recovery in the Manned Maneuvering Unit,"
NASA Contractor Report CR-187466, SRI
International, 1990.

[4] Z. Chen and C. Y. Suen, "Evaluating expert
systems by formal metrics," in Electrical and
Computer Engineering, 1993. Canadian
Conference on, 1993, pp. 763-766 vol.2.

[5] T. J. McCabe, "A Complexity Measure," Software
Engineering, IEEE Transactions on, vol. SE-2, pp.
308-320, 1976.

[6] S. Henry and C. Selig, "Predicting source-code
complexity at the design stage," Software, IEEE,
vol. 7, pp. 36-44, 1990.

[7] S. Henry and D. Kafura, "Software Structure
Metrics Based on Information Flow," Software

Received Date: April 1, 2009 Revised Date: July 21, 2009 6

Engineering, IEEE Transactions on, vol. SE-7, pp.
510-518, 1981.

[8] F. P. Brooks, The Mythical Man-Month: Essays on
Software Engineering. Reading, MA: Addison-
Wesley, 1975.

[9] L. A. Belady and C. J. Evangelisti, "System
Partitioning and its Measure," IBM Res. Rep., vol.
RC7560, 1979.

[10] C. Foreman and R. K. Ragade, "Coordinated
Optimization at a Hydro-Generating Plant by
Software Agents," Control Systems Technology,
IEEE Transactions on, vol. 17, pp. 89-97, 2009.

BIOs

J. Chris Foreman (Ph.D. Computer Science and
Engineering degree, University of Louisville, 2008) is a
member of IEEE, the Power and Energy Society, and also
holds both B.S. (1990) and M.Eng. (1996) degrees in
Electrical Engineering from the University of Louisville.
He is a postdoctoral associate at the University of
Louisville in Louisville, KY and performs research in
SCADA security, renewable energy systems, and smart
power grids. He has worked primarily in the power
generation industry, among others, in industrial process
control since 1993. Specializing in advanced control
techniques and processes, he has managed several projects
to improve production, efficiency, and reduce emissions.
He has worked for companies such as Westinghouse
Process Control Division (now Emerson Process
Management), Cinergy (now Duke Energy), and Alcoa Inc.

Rammohan K. Ragade (Ph.D., I. I. T. Kanpur, India
(1968)) is a Professor of Computer Engineering and
Computer Science at the University of Louisville. He holds
a B.E. degree in Electrical Power Engineering from I. I. Sc.
Bangalore, India (1964). He served as the Coordinator for
the Ph.D. Program in Computer Science and Engineering
from 1999-2005. He has written well over 100 papers,
including journal articles, refereed conference papers,
chapter contributions to books and is the co-editor of four
books. He is a senior member of IEEE. He is a member of
the ACM. He has taught graduate courses in Software
Engineering and Advanced Software Engineering, Software
Design, Computer Security, Knowledge Engineering,
Computer Architecture, and Simulation Modeling. His
research interests include agent technologies, object
oriented methodologies, real-time modeling, human
computer interaction, knowledge engineering and rule-
based expert systems, and system simulation. He has held
and participated in several funded research grants and
contracts.

James H. Graham (Ph.D. degree, Purdue University,
1980) is the Henry Vogt Professor and the Chair of
Electrical and Computer Engineering at the University of
Louisville in Louisville, KY. He also received his
Bachelor’s degree in Electrical Engineering from the Rose-
Hulman Institute of Technology and the M.S. degree from

Purdue University in 1978. He is a senior member of the
Institute of Electrical and Electronics Engineers (IEEE) and
a registered professional engineer. He has over thirty years
of experience in the computer engineering and electrical
engineering fields. Prof. Graham has served as a faculty
member at Rensselaer Polytechnic Institute and as a product
engineer with General Motors Corporation. His research
interests involve information security, algorithms for
computational science, intelligent systems, distributed
computing, computer simulation, and intelligent energy
systems.

