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Adaptive Policy Design to Reduce Carbon Emissions:
A System-of-Systems Perspective

Datu Buyung Agusdinata and Lars Dittmar

Abstract—This paper presents an adaptive policy design ap-
proach based on a system-of-systems (SoS) perspective. Using a
case of carbon emissions reduction in the residential sector, the
SoS perspective is used as a way to structure the policy issue into
interdependent relevant systems. This representation of the system
provides a framework to test a large number of hypotheses about
the evolution of the system’s performance using computational
experiments. In particular, in a situation where the realized emis-
sion level misses the intermediate target, policies can be adapted
to meet the policy target. Our approach shows the different policy
designs that decision-makers can envision to influence the overall
system performance.

Index Terms—Adaptive policy design, carbon emission reduc-
tion, household emissions, system-of-systems.

1. INTRODUCTION

N application areas such as environmental and energy
I systems, the increasingly complex and uncertain nature of
the problems under study can pose significant methodological
challenges for research. To address such challenges, a sys-
tems-level approach is urgently needed [1]. Two major shifts
are from system to system-of-systems thinking and from optimal
to adaptive.

In support of these challenges, a number of approaches
have been developed and tested with mixed success. In dealing
with complexity, professionals from the various domains are
typically trained to solve problems using methods and ideas
of relevance to their own domain. The engineering design
paradigm is one such example. This legacy is the source of
the often-used term ‘stovepipe’ in reference to narrow scope
thinking in a particular area of specialty. The real dynamics
of climate change issues, for example, can only be fully
understood ‘across’ stovepipes, spanning various domains
of knowledge. A holistic frame of reference is required for
such trans-domain applications. We argue in this paper that a
system-of-systems (SoS) perspective provides such a frame of
reference.
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In dealing with uncertainty, most analyses supporting the de-
sign of policy for carbon emissions reductions are still based on
a “predict-then-act approach” [2]. This approach may result in
an optimum policy that is based on best estimates of the states of
the system and future external developments or scenarios. Even
worse, this approach may lead to inaction when it is felt that the
uncertainties are too large to warrant any policy efforts [3]. This
predict-then-act approach has been successful when there is suf-
ficient knowledge and information about the system of interest,
usually in the form of probability distributions of the relevant
variables. But under conditions of deep uncertainty, it carries the
risk of significant prediction errors, which may lead the chosen
policy to fail.

This paper presents a SoS-oriented approach that addresses
complexity and uncertainty in policymaking. The approach is
described first, followed by a description of its application to a
case in the Dutch residential sector. The application illustrates
how the approach supports an adaptive policy design. The paper
concludes with implications for policy design.

II. TECHNICAL APPROACH

A. SoS Perspective

SoS Lexicon: To be able to provide a basis for the abstraction
and conceptualization of SoS for policymaking purposes, a lex-
icon has been developed. DeLaurentis and Callaway [4] define
a lexicon in terms of levels and categories, as shown in Table 1.
The categories highlight the presence of a heterogeneous mix of
engineered and human systems that together constitute the di-
mensions of the problem. For each category, there is a hierarchy
of components. To avoid confusion, the lexicon employs unam-
biguous Greek symbols to establish the hierarchy. Alpha («),
Beta (), Gamma (7), and Delta (§) indicate the relative posi-
tions within each category. The collection of « entities and their
connectivity determines the construct of a 3-level network and
likewise, a ~y-level network is an organized set of 3 networks.
Hence, the §-level can be described as a network comprised of
all of the lower level networks, whose constituents span the cat-
egory dimensions.

Through the use of the lexicon in understanding multilevel
relationships, decisions of one stakeholder may be appropriately
tailored in the context of the actions of others.

Actors and Artifacts: The above lexicon is operationalized
and tailored for policymaking purposes [5]. A SoS is considered
to constitute a network of actors and artifacts.

Fig. 1 depicts our definition of an actor and an artifact in a
SoS. Depending on the specific context at hand, an actor over-
sees a system of interest that comprises certain system state vari-
ables (.9). The actor can exert direct control using levers (L) to
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TABLE 1
SOS LEXICON

Category Description

The entities (systems) that give
manifestation to the system-of-systems

Resources physical

The individual/organizational entities that

intent to the SoS through values

give

Stakeholders

The institutional configuration and process that

Organizations . . .
& guide the interactions among stakeholders

The application of intent to direct the activity of

Operations .
P entity networks
Economics/ The monetary considerations that drive the operation
Financial of entity networks
. The functions that guide the operation of resource
Policies o
and stakeholder entities
Level Description
Base level of entities in each category, further
Alpha () ot e gory
decomposition will not take place
Collections of a-level systems (across categories),
Beta (B) C
organized in a network
Collections of B-level systems (across categories),
Gamma () . X B-level sy (ac & )
organized in a network
Collections of y-level systems (across categories
Delta () ons of ¥ 4 (acrc gories),

organized in a network

Source: adapted from [4]

affect the outcomes of interests (O), which are also dependent
on factors that are beyond the influence of the operator (exoge-
nous factors, X). The interactions among all these elements are
governed by relationships (R); that is

O = R(X,S,L). (1)

The relationships R can be functional, correlational, and/or be-
havioral. Subject to uncertainties regarding the exogenous fac-
tors (X)), the actor will make decision L* that satisfies his value
system V, which is a function of his goals, interests, and prefer-
ences, hence

L* = Max,(0). )

An artifact, by contrast, only features a system that receives
inputs (i.e., exogenous factors, X) and produces outputs (i.e.,
outcomes of interests, O). An artifact cannot act on its own and
is acted upon by actors. An intelligent nonhuman system (such
as a programmed robot) should be considered an actor rather
than an artifact.

A Synthesis of the constructs above is a network of interde-
pendence systems across various levels (see Fig. 2).

B. Adaptive Policy Approach

In contrast to the predict-then-act optimal approach, the adap-
tive approach can be characterized in several ways [8]. First, it
does not require that all uncertainties be resolved before a policy
can be designed and implemented. Second, it also makes ex-
plicit the aspect of learning in resolving the uncertainties. Third,
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Fig. 1. Definition of (a) actor and (b) artifact in a SoS.

it uses a monitoring system that triggers calls for policy adapta-
tions. It has been demonstrated, for example, that adaptive poli-
cymaking can correct and therefore avoid costs as a result of the
failure of an optimal policy [9].

C. Exploratory Modeling (EM)

To support the design of an adaptive policy, we use the EM
method. EM involves exploring as broad a range of assumptions
and circumstances as are plausible given the resources available
for the analysis [10]. Exploratory modeling involves examining
a wide variety of scenarios, alternative model structures, states
of the system, and value systems. The exploration is carried out
using computational experiments. A single computational ex-
periment is a computer run for one set of assumptions (a plau-
sible hypothesis) regarding the external scenario, the system
model, and the value system. Exploratory modeling is applied
to “cover the space” of possibilities, namely the space created
by the uncertainty surrounding the many variables. Whether a
computational experiment is valid depends on whether the space
has been properly conceived and sampled, and the results inter-
preted properly [11].

We now illustrate the application of our approach to policy
measures to reduce carbon emissions in the Dutch residential
sector.

III. CASE STUDY: THE DUTCH RESIDENTIAL EMISSIONS

The Dutch Government aims to reduce carbon emissions by
60—-80% in 2050 compared to 1990 levels [12]. Residential en-
ergy use accounted for 17% of the national final energy con-
sumption in the year 2000 and 11% to the total energy related
CO,, emissions of the Netherlands [13]. Since 97% of all house-
holds are connected to the natural gas grid, residential space and
water heating demand is met almost exclusively by natural gas.

Ever since the first oil crises of 1973, the residential sector
has been the subject of a vast number of energy conservation
efforts and, more recently, carbon restraint policies [14]. In spite
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o heating Efficiency System |+ Efficiency of « Rate of Envelope System | Home heating
technologies heating u dwelling efficiency
+ Choice of + Heating technology |technology ™| retrofit e Heating installation |
development | stocks o State of thermal
methods * Learning factor insulation
Technology developers House owners/ occupants
- + Efforts/investments | + Commercial o Life style Individualistic
in innovation value e Investment in and social
+ Individual energy saving tech. [values
- drive
B + Incentives Technology o Weather conditions | Heat Consumption | Energy costs
J|* Regulations | Innovation System |+Research and e Incentives System
+ Demand for Development * Energy prices ® Energy demand for
product * Network effect (R&D) costs ¢ Disposable income |heating
- and return

Utility companies

Housing developers

- e [nvestment on o Profitability e [nvestment in o Profitability
network accessibility dwelling retrofit and social
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® Regulations Heating e [nvestment’s e Incentives and Housing Stock e [nvestment’s
® Market Infrastructure Net Present regulations for Investment System | payback period
demand System Value (NPV) energy savings
o States of heating ¢ Building codes * Housing stocks
- network ® Market demand
Ministry of energy and Ministry of Ministry of housing and Ministry of
environmental protection economic affairs
- e Incentives and | @ Protection of e Incentives and ® Energy security
Regulations for | the environment regulations forenergy | e Protection of the
development of savings environment
) energy efficiency o Building codes
+ Renewables Renewable o Share of e Energy | Built Environment |e Carbon
access to grid Energy System |rencwables consumption] Emission System |emissions
* Social preferences o Share of ¢ Population size e Policy costs

o Stock of
rencwables

energy efficient
technologies

* Technological
Lprogress

* Household size| ® Emission factor

|

Fig. 2. Specification of SoS for policymaking to reduce carbon emissions in the residential sector.

of these efforts, various studies indicate that the potential for
energy efficiency improvements within the built environmental
is still enormous, especially in the existing building stock [15],
[16]. One policy that has been implemented involves subsidy
schemes for energy-saving refurbishments of existing homes.

IV. SOS SPECIFICATION FOR THE RESIDENTIAL SECTOR

For each SoS level (denoted by Greek symbols) and from
both the supply and demand side, the relevant systems and ac-
tors are specified (see Fig. 2). External forces (X') and decision
levers (L) act upon the system, whose structure is defined by its
system state variables (S) and relationships (R). The interac-
tions among such factors result in the outcome of interest (O),
whose desirability is determined by the decision-makers’ value
system (V). This specification is based on the work of Agusdi-
nata and DeLaurentis [17].

For the supply and demand side, each system across the SoS
levels is briefly described as follows:

a Level: On the supply side, the system is the heating tech-
nology efficiency system (i.e., an artifact) that describes the state

of heating technology stocks, whose outcome of interest is pri-
marily the efficiency of the heating technologies. On the de-
mand side, the system is the home’s thermal envelope system,
which comprises the state of heating installations and thermal
insulation.

(8 Level: On the supply side, the system is the heating
technology innovation system that describes private and public
technology developers’ attempts to produce more efficient
heating technology at affordable cost. On the demand side, we
can define a heat consumption system in which house occupants
decide how to consume energy for heating, consistent with their
lifestyles. The energy consumption, which results in energy
costs for occupants, also depends on weather conditions, energy
prices, and disposable income.

v Level: On the supply side is the heating infrastructure
system, in which utility companies invest in infrastructure. On
the demand side is the housing stock investment system, in
which housing developers and home owners invest in the state
of the housing stocks. For both systems, investment decisions
are based on profitability criteria (e.g., Net Present Value,
NPV, and payback periods). Investment decisions regarding
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energy/cost-saving technology are based on various factors
such as energy prices and incentives (e.g., subsidies).

& Level: On the supply side is the renewable energy system
for which policies are designed to influence the penetration of
renewables in the energy supply chain. On the demand side is the
built-environment emission system in which the main concern
is the level of CO5 emissions and the associated cost to achieve
the policy goal of reducing the emissions levels. Both systems
feature the Dutch government, divided into several respective
ministries, playing the role of controlling actor. To influence
the performance of the SoS, they use policy instruments such
as subsidies and regulation of building codes.

From the SoS perspective, each level requires a unique set of
policies and there exist interdependencies among the systems,
both across and between levels. For example, the technology in-
novation system, at the 3 level, depends on the regulatory and fi-
nancial support that comes from the decision-makers (i.e., actor)
at the 6 level. Another example is how the emissions factor (i.e.,
the S in the built environment emission system) is influenced
by other factors in the SoS. This factor accounts for the emis-
sions that are generated for each unit of energy produced. The
emissions factor is influenced by: i) the efficiency of heating
technologies (O at the « level); ii) building thermal efficiency
(O at the « level); and iii) the share of renewables in the heating
energy supply chain (O at the ¢ level). So, from a SoS perspec-
tive, policies and decisions can join towards a concerted effort
to influence the overall system performance (i.e., carbon emis-
sions levels).

A. Computer Model

For our computational experiments, we made use of the
Dutch Residential Energy Model (DREM) [18]. DREM sim-
ulates the evolution of the Dutch housing stock from 2000 to
2050, focusing on energy consumption, CO» emissions, and
technology dynamics. Based on 26 representative homes, the
model simulates changes over time through retirements, new
construction, refurbishment of existing homes, and initial as
well as replacement purchases of heatingequipment.

The aforementioned SoS framework is reflected within the
model structure through functional relationships and system
variables. The specification of the uncertainty space to be
explored is represented by a range of system variables (see
Table II). The range implies uniform distributions.

a Level: On the supply side, technological devolvement is
modeled by the well-known concept of technological experi-
ence curves [19], [20], describing cost reductions of technolo-
gies as a function of accumulated experience in the form of units
installed

Inv(k,t) = Io(k) - CU(k,t_y) LR (3)

where Iy are the initial investment costs, CU are cumulative in-
stalled units, and LR is the learning rate. Uncertainties are ex-
pressed through a range of LRs. Large values of LR indicate a
steep curve with a high learning rate. Technologies considered
for learning curves are solar thermal systems, electric driven
heat pumps, gas driven heat pumps, and micro- combined heat
and power (CHP) applications.
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TABLE II
SYSTEM VARIABLES AND THEIR PLAUSIBLE RANGES

Description and

Level System Variable symbol Range
LR1I: electricity -
driven heat pump
Learning rates for LRZE solar thermal [10%, 20%)]
o four technologies heating systems
LR3: micro-CHP
LR4: gas-driven heat
pumps
Annual growth in ~ GI (2000-2025) [2%, 4%]

B gas price G2 (2025-2050) [2%, 6%]
Annual growth in £/ (2000-2025) [1%, 3%]
electricity price E2 (2025-2050) [1%, 5%]
Discount rate DR [5%, 20%]
Parameter lambda LT [2,12]
technology
Demolition rate RET [0,4]

Y Acceptable
payback PB [5, 10] years
Parameter lambda
refurbishment LF (2, 6]

SUBI (2000-2025) 20 €/ton CO,
Subsidy level 70,50 and
, 50, an
SUB2 (2025-2050) 70 €/ton CO,

5 Building code CODE [2.5%, 5%)]
Growth rate of 17 [-0.4%, -
household size 0.2%]

Rate of

. -0.5%,
population pPoP E) 50 ]0
orowth )

[ Level: Market shares of competing heating technologies
are simulated by a logit market sharing function [21], [22],
which assumes that energy users face a set of heating tech-
nologies that follow a Weibull cost distribution with a shape
parameter (LT'), common to all technologies. The market share
of a technology is equal to the probability that this technology
is of lower cost than any of the competing options. The closed
form of the logit sharing function is given by

E( k! ) —LT
>k c(k)=rT
where MS(k') is the market share of technology k', ¢(k) are
the “intrinsic costs” [22] of the kth technology, and LT is the
Weibull shape parameter. The Weibull shape parameter mea-
sures the variance in the market. A low LT implies that tech-
nology market shares are distributed relatively uniformly among
all competing technologies, even if their costs differ signifi-
cantly. For high values of LT, by contrast, the lowest cost tech-
nologies gain 100% market share with the smallest of cost dif-
ferentials (see Fig. 3).

The logit function allocates market shares based on the annual
cost equivalents of energy supply, which include annualized in-

MS(K) = )
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100%
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Relative Costs (Tech A/ Tech B)

Fig. 3. Market share function based on LT

TABLE III
U-VALUES FOR VARIOUS REFURBISHMENT OPTIONS

Standard (s7)

Component (i) 1 2 3 4
. W]

Windows — 2.0 1.60 1.20 0.70
m”-K |
T

Walls 3 0.77 0.4 0.33 0.25
Lm K |
T

Roof 3 0.40 0.33 0.25 0.20
Lm - K|
T ]

Floor 3 0.50 0.40 0.33 0.25
m” - K |

vestment costs, operation and maintenance costs, fuel costs for
space heating and domestic hot water, and, finally, the benefits
from cogeneration technologies in the form of a reduced need
to purchase electricity and the opportunity to sell surplus elec-
tricity. We consider the time preference of capital investment
in the form of the discount rate (DR), which is used to annu-
alize all investment costs. A value range of 5%—-20% is chosen
to represent the discount rate. This range is designed to capture
the high ‘implicit’ discount rates (or real hurdle rates), shown in
consumer energy-efficiency investments, which are higher than
conventional discount rates [23].

Energy price uncertainties are captured in terms of annual
price growth multipliers (G for natural gas and F for elec-
tricity), over two periods: 2000-2025 and 2025-2050. The
changes in energy prices are modeled by a compound annual
growth rate.

~ Level: We model four energy efficiency refurbishments,
namely improved thermal performances of roof, walls, floor and
glazing. For each dwelling component, four competing perfor-
mance standards of the respective dwelling home are defined in
terms of their u-values (see Table III). The u-value is a measure
of the rate of heat loss through a component, such that the lower
the u-value is, the lower the heat loss will be.

In DREM, both the rate of refurbishment in each period and
the market share of different insulation standards are modeled
endogenously. While a payback acceptance curve (PAC) is used
to simulate the rate of refurbishment, market shares for insula-
tion standards are obtained by a logit function. The PAC de-
scribes the percentage of consumers who would adopt a refur-

bishment standard if it yielded an acceptable critical payback.
The simple payback time is given by
AI(i,st)

PB(i,st) = RGP, ()

where P B(i,st) = simple payback time of refurbishment stan-
dard st for dwelling component ¢, AT = additional investment
costs related to the refurbishment standard sz, AFE = resulting
energy savings, and P, = energy price.

The logit function allocates market share based on the com-
parison of the paybacks, implying that the market share of a par-
ticular refurbishment standard is equal to the probability that
this standard yields lower payback than any of the competing
options

PB(st)~LF

where MS(st’) is the market share of standard st’, PB(st) is
the “intrinsic payback” of the standard st, and LF is the Weibull
shape parameter. The interpretation of the shape parameter, LF,
is analogous to the shape parameter LT in (4). For high values of
LF, the standards with lowest payback gain the greatest market
share, while for low values of LF the market shares are relatively
evenly distributed.

We use the mean of the minimum payback distribution, ob-
tained from the logit, and estimate these using the rate of refur-
bishment in a PAC. The mean of the minimum payback distri-
bution is given as [21], [22]

1
F

PB v (i) = ZPB(@st)LF] (7)
st

where P B 5y is the mean payback of component ¢ across stan-
dard st, PB is the intrinsic payback of the standard sz, and LF
is the Weibull distribution’s shape parameter.

The PAC is assumed to be a standard logistic function

. . 1
RR(#) = RRumax (i) {1 T 14 —(PBav()-PB) } ®)

where RR = rate of refurbishment of dwelling component
1, RRnax = technical refurbishment potential of component
i, PBay = minimum mean payback, and PB = acceptable
payback. For each component, the rate of refurbishment rep-
resents the technical potential multiplied by the percentage of
customers who would accept the payback. The PAC is defined
such that in 50% of all cases refurbishment will be undertaken,
subject to the condition that the payback period equals the ac-
ceptable value (PB) (see Fig. 4).

Finally, uncertainty about the rate of housing demolition
(RET) is explored using four empirically established survival
functions of Dutch housing stock, describing the demolition
of homes as a function of their age [24]-[26]. These survival
functions differ in the rate of demolition: for RET = 0 the
demolition rate is the highest and for RET = 4 the lowest.

0 Level: We test a subsidy arrangement to stimulate energy
efficiency refurbishments in households. This subsidy directly
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Fig. 5. Sensitivity of the system variables to the 2050 emissions.

influences the payback time of the respective refurbishment
measures, i.e.

AI(i,st) — SUB - ACOs (i, st)
AE(i,st) - P,

PB(i,st) = ©)]
where P B(i,st) = simple payback time of refurbishment stan-
dard st for dwelling component 7, SUB = subsidies, ACOy =
CO4 emissions avoided over the lifetime of the insulation stan-
dard st, AI = additional investment costs related to the re-
furbishment standard st, AE = resulting energy savings, and
P. = energy price. From (9), increasing the subsidy decreases
the payback time, which in turn leads to higher investment and
hence to less COs.

Furthermore, different building codes (CODE) are imposed
on the construction of new homes. Tightening of building codes
in the period 1996-2006 caused a reduction of energy use for
space heating and hot water production for new homes of about
5% per year on average [27]. We assume a range of 2.5% to 5%
in average annual reductions achieved in new dwellings as result
of different scenarios related to future building codes. Lastly, oc-
cupation density is analyzed using the lifestyle variable house-
hold average size (HZ) and uncertainty about the future activity
of the sector as expressed using a population growth multiplier
(POP).

Fig. 5 shows the results of the sensitivity analysis for the emis-
sions levels in 2050, obtained from 50 000 model runs with sub-
sidies set to 20 €/CO.. The tornado diagram illustrates the im-
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Carbon Emission Reduction Trajectories
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Fig. 6. Assumed trajectories of carbon emissions reductions.

pact of the respective variables on the outcome of interest. The
diagram shows the effect size and direction of the individual
input variables given the model results based on standardized
regression coefficients. Population dynamics (POP) have the
greatest impact on the model outcomes, followed by gas prices
(G1 and G2), the demolition of dwellings (RET) and the pay-
back acceptance for refurbishment measures (PB). While, for
example, an increase in the standard deviation of population
growth has a positive effect on the model results, i.e., emissions
will increase, an increase in the standard deviation of gas prices
or payback acceptance leads to emission reductions.

B. Computational Experiments and Sampling

Computational experiments were carried out across the un-
certainty space defined in the previous section. We used Com-
puter Assisted Reasoning System (CARS) Software to perform
our experiments [28]. The software treats a model (in this case a
spreadsheet) as a black box, and maps model inputs to outputs,
creating a database of model runs. A set of inputs is created
by Latin-Hypercube sampling (LHS). LHS is most beneficial
for long-running models [29], [30]. LHS forces the specified
sample size, n, to cover the whole experimental space. Sam-
pling without replacement is performed so that with n samples
every segment is sampled once. Compared to random sampling,
LHS produces a sample that is random but that is relatively uni-
formly distributed over each dimension. We take 50 000 sam-
ples of data sets across the uncertainty space over the 50-year
period. The choice of this number of samples is explained in the
Appendix.

V. ADAPTIVE POLICY DESIGN

A. Trajectories of Carbon Emission Reduction

Based on the policy target information in Section III, we es-
tablish several trajectories for carbon emissions reductions (see
Fig. 6). As a policy target, the carbon emission level should be
reduced to around 15 Mton in 2025, which corresponds to a re-
duction of about 30% compared to 1990 levels. Furthermore,
the emissions should be brought down to 10 Mton in 2050 (i.e.,
a 55% reduction from the 1990 level). A policy can be consid-
ered successful when the resulting emission level in 2050 is less
than or equal to 10 Mton.
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Suppose, for example, that a subsidy of 20 €per ton CO2
avoided has been implemented for the 2000-2025 period. The
circumstances turn out to be such that the target of 15 Mton
in 2025 cannot be met. Instead, the trajectory goes off-target at
around 16 Mton. Such a path, which coincides with a long-term
scenario study recently carried out in the Netherlands [31], and
depicted as the “realized (assumed) trajectory” in Fig. 6. The
question under such circumstances is, having missed the target
of 2025, what conditions are required to bring the emissions
levels back in line to hit the target for 2050 (i.e., the “policy
adaptation trajectory” in Fig. 6).

B. Analysis of the Impact of Policy Instruments

Under this condition, relevant decision-makers across SoS
levels are faced with two broad types of factors: those over
which they have direct influence and the rest. Decision-makers
at delta level (e.g., ministry of economic affairs), for instance,
have little influence on demographic factors such as popula-
tion growth and household size, and therefore would like to be
protected against variability involving these factors. Given such
uncertainty, it is desirable to pursue a robust policy [32]. One
means to achieve this robustness is to do parametric analysis for
factors under the influence of DM and probabilistic analysis for
factors beyond the influence of decision-makers [33].

As part of a parametric analysis, three cases of subsidy ar-
rangements are tested. The first arrangement is a subsidy of 20
€per ton CO,maintained for the period 2025-2050, whereas the
second and third are a subsidy of 50 €and 70 €per ton CO,,
respectively (i.e., SUB2 =20€ 50 €] and 70 €). These three
subsidy levels represent one instrument that decision-makers at
delta level can exercise to influence the performance of the SoS.

To represent the actual emissions level of 16 Mton in 2025, we
take a range of 15.5 to 16.5 Mton in order to collect sufficient
data sets from the database of model runs, resulting in 18 596
data sets. One data set features an LHS sample of the uncer-
tainty space in Table II with associated emission level trajecto-
ries. The data sets that support either policy success or failure
are counted to establish the probability of success and failure.
This procedure is similar to that used to establish the strength of
a decision rule by counting the number of data sets supporting
a particular rule [34].

Fig. 7 shows the result for a 50 €subsidy level. Due to path de-
pendency, the resulting emission trajectories from 2025 to 2050

TABLE IV
SUBSIDY INFLUENCE ON OVERALL SYSTEM PERFORMANCE
Subsidy level (2025-2050) 20€ 50€ 70€
Psuccess 0.644 0.724 0.748
Psaiture 0.356 0.276 0.262

are bounded (some of the sampled trajectory regions are high-
lighted). The shaded area bounds all trajectories from 2000 to
2050. 72.4% of the 18 596 trajectories end up at or below the
2050 target of 10 Mton, yielding a probability of success or
failure of 0.724 and 0.276, respectively.

Complete performance data for the three subsidies is given in
Table IV. According to the model, increasing the subsidy from
20 to 50 to 70 will increase the probability of success from 0.644
to 0.724 to 0.748. This result shows the diminishing returns of
the system in response to increasing subsidy level.

C. CART Analysis to Inform Policy Adaptation

To inform policy adaptation, the pattern of system behavior is
derived using a pattern recognition process called Classification
and Regression Tree (CART) analysis [35]. We apply a nonpara-
metric classification algorithm, which consists of a sequence of
binary split mechanism, to the database of model runs. As a re-
sult, we obtain a classification tree of input variables with end
nodes of model output categories. For the input variables, each
level of split determines the importance of the variables in the
classification process: the higher the hierarchy of the split, the
more important the variable is in influencing the output variable.
In this way, CART can be considered a global sensitivity anal-
ysis technique.

Fig. 8 shows the CART result for the 50 €subsidy policy with
two end node categories (category S = policy success and cat-
egory F = policy failure). The way to “read” a CART decision
rule is to follow the inequality condition given at a certain CART
branch (e.g., LT < 6.05). If the condition is satisfied, the rule
proceeds to the left of the split (otherwise to the right of the split)
and so on until an end node is reached.

From the resulting CART, five main factors appear to exert
the greatest impact on system performance. In decreasing order
of importance these are: LT, G2, POP, CODE, and E2. A policy
success mode with the highest likelihood (p = 0.55, Branch 1)
involves a combination of a set of high range LT values and high
G2. This combination is a favorable one. High LT values rep-
resent a large market share for cost-effective heating technolo-
gies and high G2 values incentivize homes to invest in more en-
ergy-efficient heating technologies by yielding higher cost sav-
ings and a faster payback period. On the other hand, the opposite
scenario (i.e., low LT and low G2) with high population growth
(unfavorable combination) will lead to a failure mode with the
highest likelihood (p = 0.053, Branch 2).

The above results highlight a useful CART feature. When a
split takes place at one level that defines S and F, a higher value
makes the variable at a lower level irrelevant. So in this case
(G2 is medium to high value (i.e., G2 > 3.15% regardless of the
realization values of the rest of the variables. CART not only in-
forms which variables are important but also when they matters.

Also, CART highlights the boundary line between failure and
success. A metaphor of “land mines” or “fault lines” is often
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Fig. 8. CART result as a basis for policy adaptation.

used to describe these kind of combinations [36]. By following
the decision rules suggested by Branch 3 and Branch 4, we
can establish that, ceteris paribus, whether the policy target is
achieved is determined by whether the E2 is in the low range
value (success) or medium and high range value (failure). In this
situation, once the variable is headed towards the failure mode
range, one needs to climb the CART hierarchy in order to guard
against a failure mode. If E2 rises above 2.45%, one needs to
increase the CODE variable to more than 4.05% to avoid failure
and achieve policy success (Branch 5).

D. Tradeoffs Among SoS Actors

In addition to general insights regarding overall system be-
havior, it may be useful to look at specific trade-offs that can
be made between SoS actors. Within an SoS, multiple solutions
(toward achieving a policy target) can be obtained from multiple
sets of variable values, such that each of the variables is under
the control of different actors. To illustrate, we take three data
sets that belong to Branch1 and plot them as a spider chart (see
Fig. 9). The trade-offs among system variables in affecting the
carbon emissions level are informed by the sensitivity analysis
depicted in Fig. 5. A system variable that affects emissions in
a positive direction can be compensated to a certain extent by a
realization of another variable with a negative direction effect.

The chart in Fig. 9 clearly shows, for example, that in Trade-
offl, given a high value of building refurbishment LF, value
(under the control of housing developers) is compensated for by
the high growth of gas prices, G2 (under the control of utility
companies). However both can withstand a high payback re-
quirement (under the control of housing developers). In con-
trast, Trade-off3 requires a high value for building codes (under
the control of ministry of housing) and technology diffusion LT
(under the control of housing owner) to compensate for a low
value of G2. This combination, in effect, can withstand a high
value of the discount rate DR (under the control of the owner).

Policy failure

Trade-off 1
m—— Trade-off 2
== g | Trade-off 3

POP
x 1/1000

Fig. 9. Some possible tradeoffs among SoS actors.

E. Implications for Adaptive Policy Design

The implication for adaptive policy design is that decision-
makers should focus on and choose a policy set based on the
probability of success as well as the chance that it can influence
relevant system variables. The resulting CART in the form of
‘if-then’ decision rules becomes the basis to inform adaptive
policy design.

There exist certain value combinations of the system vari-
ables that are most likely to achieve the policy target. Our
analysis reveals the two most influential variables: gas price
and technology diffusion parameter. As long as the gas price
is high and provided that cost-effective heating technologies
gain a solid market share, the policy target can be achieved.
Under this condition, achieving the policy target is insensitive
to realizing other variables. Decision-makers can influence
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the price of gas, by taxation for instance, and can influence
technology diffusion by offering subsidies.

Besides the probability of success, there is an issue of feasi-
bility. Using taxation to influence the price of gas might be less
feasible (due to political concerns) than influencing investment
in better technology by granting a subsidy. So, from a SoS per-
spective, besides the price of gas, G2 and technology diffusion
at the (3 level, other policy options should also be considered.
We especially recommend influencing the demolition rate, RET
(7 level). Alternatively, one could influence the standard of a
building’s energy performance, CODE (6 level). Other policy
alternatives might include an awareness campaign to break
down the barriers to technology investment represented by the
high discount rate DR (3 level). Some reductions in rental rates
might help so that housing developers can pursue a more ag-
gressive refurbishment plan, LF (v level). Our SoS perspective
provides a conceptual framework to structure the complexity of
policymaking, taking into account the interactions and possible
tradeoffs among the SoS levels.

The insights into the trade-offs among actors can inform de-
cision-makers about the compromises they can make to achieve
their policy goals. Since the policy target can be reached by
shifting the burdens between actors, a kind of burden-sharing
scheme based on equity principles can be established (see e.g.,
(37D

Lastly, often ambitious targets are established without a clear
idea of what would be required to achieve them. For instance,
some of our findings suggest that for a certain set of future goals,
a zero or negative population growth is required to achieve the
policy target. When the population actually increases, the target
will be out of reach, requiring further changes to system con-
straints (e.g., higher growth rates for gas price) or additional
policies that promote the use of lower- or zero-carbon fuels. The
approach we propose can be used to test the achievability of any
policy target.

VI. CONCLUDING REMARKS

In a complex and uncertain world, decision-makers need to
know how each policy option will perform given uncertainty.
Our approach can help. Our paper analyzes a special case where
the intermediate target is missed. In contrast to an optimal ap-
proach, we have demonstrated how the adaptive policy approach
can be applied under conditions of uncertainty, enabling a policy
to be adapted as some of the uncertainties are resolved. Inte-
gral to our approach is the exploratory modeling and analysis
method which leads to insights that can be used to support the
design of an adaptive policy.

Exploratory modeling and the CART method offer insights
into the boundaries between policy success and failure. Further
analysis reveals the tradeoff among SoS variables and possible
pathways for policy adaptation. This high level of policy insight
is arguably more useful than a very detailed model at the initial
stages of policy analysis [17]. Policy design should focus on
factors that decision-makers can feasibly influence with a high
probability of success. The System-of-Systems perspective, in
this case, provides the problem definition commensurate with
the complexities of the issue at hand, allowing us to identify
and specify different kinds of systems at various levels.

APPENDIX

The objective of this section is to explore the appropriate
number of samples for computational experiments. We examine
the effect of 10000, 50 000 and 75 000 samples on the perfor-
mance of CART. The results are listed in Table IV. The mea-
sures include: misclassification error rate, no. of terminal nodes,
running time, and result bounds.

There are two kinds of misclassification errors. The first is a
so-called resubstitution error. This measures how well the re-
sulting tree classifies all the sampled data. However, the resub-
stitution error is typically lower than the “true error” (namely
the error when the tree is used to classify data excluded from
sampling). Ideally, the tree should be tested with a completely
new data set. However, since we failed to use a second data set,
cross validation can be employed, hence the second type of mis-
classification error [35]. A new data set is created by removing
10% of the data, constructing a tree using the remaining 90%,
and using the resulting tree to classify the missing 10%. This
process is repeated by removing each of ten subsets one at a
time.

The error rates of the classification tree (CART) against the
CART size (i.e., the number of terminal nodes) can be plotted
to identify behaviors of interest (see Fig. 10). First, the resub-
stitution error decreases as the tree gets bigger (i.e., the number
of terminal nodes increases). Second, the cross-validation error
reveals an optimal size of the classification tree that produces
a minimum misclassification error. One can simply choose the
tree with the smallest cross-validation error. While this may
be satisfactory, one might prefer to use a simpler tree if it is
about as good as a more complex tree. So, here we take the sim-
plest tree that is within one standard error of the minimum (i.e.,
marked as “best choice” in Fig. 10). Beyond this optimal size,
the cross-validation error increases as the tree gets bigger. Thus,
a large tree may be good at classifying existing data but can be
weak at classifying data that is excluded from the sampling. As
a result, a smaller tree with the optimum size should be used.

Table V shows that for 10 000 samples, the best size of classi-
fication tree features 142 terminal nodes. This size corresponds
with the minimum misclassification error (i.e., cross-validation)
of around 28.1%. This means that for the 10000 samples of
data, 2810 data elements are misclassified by the resulting
classification tree. The misclassification error figures are 24.4%
and 23.4% for 50 000 and 75 000 samples. Thus, the higher the
number of samples, the lower the minimum cross-validation
error.

A bigger number of samples also increases the size of the
“best” classification tree. The best size is the classification tree
(a so-called “pruned tree”) with 142, 572, and 952 terminal
nodes for 10 000, 50 000, and 75 000 samples, respectively.

A higher number of samples produces a lower misclassifica-
tion error. However, larger numbers of samples result in a bigger
‘best’ classification tree, which can be less comprehensible than
a smaller tree. Furthermore, a larger number of samples also re-
quires more running time. A balance needs to be found in this
respect.

The 10000 samples require (on a 3 MHz Pentium 4 pro-
cessor) about 14 100 s computational time (3.9 h). The 50 000
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TABLE V
SUMMARY OF CART PERFORMANCE MEASURES
No. Misclassification error No. of terminal Running Result bounds (Emission level
samples rate nodes time 2050, Mton)
Best choice Best choice (seconds) Lower Upper
10,000 0.2806 142 14,100 6.47 16.91
50,000 0.2436 572 77,700 6.48 16.77
75,000 0.2341 952 111,300 6.41 16.81
0.7 T T T T T T T Error rate and running time in a normalized scale
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Min + 1 std. er.
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and 75 000 samples require around 5.5 and 7.9 times more com-
. . . 0
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To assess the result boundaries, we define CART coverage as Change in the number of samples
the range that captures the lower and upper bound of total emis- (b)
sion level in 2050 across all three sample sets. Here the focus
is to assess whether the different sample numbers avoid the ex-  Fig. 11. Gain-cost ratio for the number of extra samples.

treme/fringe regions of the outcomes space. At the lower bound,
the relative difference between the maximum (6.48 Mton) and
minimum value (6.41 Mton) of emissions levels is about 0.9%.
Toward the upper bound, the difference is about 0.8%. The dif-
ferences appear to be not significant given the number of sam-
ples. CART coverage alone cannot be used as a determinant of
best sample size.

In summary, we conclude that to determine the best sample
size for the household heating case, we can safely use only mis-
classification error and running time. To select a proper number
of samples, it is important to choose a balance between benefit
and cost. Benefit is defined in terms of a reduction in misclas-
sification errors, whereas cost is defined in terms of increased
computational time.

To establish an appropriate number of samples, we normal-
ized each measure [Fig. 11(a)]. On the gain side, we chose the
value of 0 for the error rate in the case of 10000 samples and
100 for 75 000 samples. We applied the reverse for the cost side.
Fig. 11(b) shows the gain-cost ratio for three cases: going from
10000 to 50000 and 75000, and 50000 to 75000. We con-
clude that going from 10000 to 50 000 samples produces the
highest gain-cost ratio [Fig. 11(b)]. Therefore, assuming that

the marginal resources required and the error rate have an equal
weight in terms of importance, the 50 000 samples appear to be
appropriate.
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