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Abstract—Smart grid is delay-sensitive and requires the tech- ~ There are many studies on smart grid security in the
niques that can identify and react on the abnormal changes |iterature. A framework for analyzing the impact of cyber-
(i.e. system fault, attacker, shortcut, etc.) in a timely maner. attacks in a smart grid was presented in [3], [4]. The work in

In this paper, we propose a real-time detection scheme agash
false data injection attack in smart grid networks. Unlike [5]-{7] formulated the attack that are able to evade from the

the classical detection test, the proposed algorithm is ablto conventional detection in smart grid. The false data inpest
tackle the unknown parameters with low complexity and proces is studied in [8]-[10] as one type of the cyber-attacks in

multiple measurements at once, leading to a shorter decisio the power system. Authors in [11] discovered the microgrid
time and better detection accuracy. The objective is to dets of vulnerability in the smarter power system under the falge da

adversary as quickly as possible while satisfy certain dettion . . . R .
error constraints. A Markov chain based analytical model is injection attack. In [12], the false data injection attadks

constructed to systematically analyze the proposed schem#ith ~ Shown to interrupt the energy routing process. In this paper
the analytical model, we are able to configure the system we like to focus on studying in the observable context with th

parameters for guaranteed performance in terms of false alam  proposed detection scheme that can be an interestingqahcti
rate, average detection delay, and missed detection rationder a contribution for smart grid networks

detection delay constraint. The Simulations are conductedvith To add the fal data iniecti ttacks in th ¢
MATPOWER 4.0 package for different IEEE test systems. 0 address 1ne false data Injection attacks in the smar

grid, EMS in the control center needs to be equipped with
the capability of real-time detection of malicious attacks
by analyzing the statistical behavior of the state estiomati

process. According to the quickest detection (QD) framé&wor

The smart grid has improved the robustness and efficieridl. the cumulative sum (CUSUM) based approach fits well
of traditional power grid networks by exploiting the moderf0 this type of detection problems because of its non-Bayesi
technologies. In particular, information exchange amoseys, Properties. Such a framework aims to determine a change
operators, and control devices significantly improves tifie e Of the observed statistics as quickly as possible based on
ciency in production, transmission, and distribution. téoer, online observations, the user-defined decision rules, had t
integration of intelligence into the power grid needs to aégquirement of detection accuracy. The decision rules Ishou
punctually on abnormal situations (i.e. system fault,ckisa be properly designed to optimize the tradeoff between the
shortcut, etc.) [1]. stopping time and decision accuracy.

Indeed, smart grid is delay-sensitive and requires the-tech The QD technique is normally combined with tstetistical
niques that can identify and react on the abnormal changedpotheses test (SHT) [14], [15]. The mechanism of SHT is
a timely manner. If the detection and responses are not mag@at the receiver classifies a sequence of observationsimgo
promptly, the grid may become unstable and further cau@bthe candidate hypotheses; a hypothesis normally repiese
the catastrophic failures over the entire network. For gdam & type of distributions. The QD and SHT have been applied to
in the control center of smart grid, an essential task of tifevariety of networks. The authors in [16] used the CUSUM
energy management system (EMS) is to estimate the syst@ﬂs as a collaborative QD for detecting a distributiomcjea

states by collecting data from remote meters periodicély. N @d hoc networks. The authors in [17] utilized the CUSUM
the adversaries are able to inject malicious data, EMS migpt to address the real-time backoff misbehavior problem i

produce the false state estimation, which potentiallyltesn EEE 802.11 based wireless networks. However, no much
wrong decisions on billing, power dispatch, erroneousyaial €XISting work has considered the unique environment of smar
and even blackout [2]. Thus, the smart grid network mu§fid networks. .
incorporate the protection mechanism, which has the chiyabi N this paper, a countermeasure strategy of the false data in
of detecting the abnormal change and then making the decisi§Cction attack is considered in the form of adversary deiact

as quickly as possible. Such an issue strongly motivates us'f'¢ Problem formulation of detecting the false data ingeti -
propose the quick detection based detection scheme. is based on the bad data detection (BDD) for the smart grid
state estimation. The proposed scheme is able to deterhéne t

This work is partially supported by US National Science Fiation CNS- eXiSte.nce of adver§ary as quickly as possible without tirada _
0953377, CNS-0905556, CNS-0910461, ECCS-1028782, and XIN%560. the given constraints such as a certain level of detection
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accuracy in terms of the false alarm rate and missed dettectioe The performance of the proposed algorithm is evaluated

rate. In [18], we studied some preliminary works that inesid
the basic mathematic derivation and numerical simulations
without loss of generality, one in conference version isimot
vated on the straightforward approach via directly evahgat
the likelihood of load for detection decision, instead of-fo
mulating the algorithm based on the likelihood of residual
in this paper, i.e., state estimation in power systems igdas
on measurement of residual, and therefore, the derivatidn a
result from this journal can be more accurate and practical
for real world applications. In additions, the conference o
measured a limited range of the unknown via utilizing one-
side Rao test for simplicity, while this paper considers the
guadratic equivalence of Rao test for solving the unknown.
Essentially, this journal focuses on the thorough exaridnat
for the proposed algorithm in terms of analytical model and
performance simulations. The development of an analytical
model in this paper for the proposed algorithm provides
theoretical guidance for quantitative performance ans|ysd

it further makes available the precious insight on system
parameters configuration for guaranteed performance inster
of fundamental performance metrics. The main contribion
are as follows:

o We develop a framework for real-time detection of false
data injection attacks in the smart grid network, under
certain detection quality constraints. While the conven-
tional state estimation [19], [20] for bad data detection
focuses on balancing between the false alarm rate and
missing detection ratio, our approach aims to minimize
the detection delay under the error probability constraint
In addition, the conventional approach makes decisions

based on snapshot measurements only, but the proposed ™

framework analyzes a sequence of samples for more

reliable decisions over time.
o The proposed algorithm is able to detect the presence of

false data attacks in that the probability density function

by both mathematic analysis and simulations. Notes that
simulations are conducted under MATPOWER 4.0 pack-
age [21] for different IEEE test systems to ensure the
experiment accuracy and proficiency.

Notation Description
EMS  energy management system
QD quickest detection

CUSUMcumulative sum

SHT  statistical hypothesis test

BDD bad data detection

AGC automatic generation control

OPF  optimal power flow

ARL  average run length

GLRT generalized likelihood ratio test
TPM transition probabilities matrix

FAR  false alarm rate

MDR misssed detection ratio

B number of buses in power system
C detection delay constraint

He hypothesise in SHT

Vy voltage measurement at the bys

Oq phase measurement at the laus

Xqr  reactance between bysandr

Mgy, power flow measurement from bysto r
My power injection measurement at bgs

h detection threshold, a function of error probability
n observation index

m total number of active power measurement

V4 a vector of power measurement/(,r,M, or both)

x the unknown state vector for state estimation

e a vector of measurement noise

H Jacobian matrix

Tp detection delay for the proposed algorithm

the moment when detector raises the alarm

the moment when adversary initializes the attack
Sh CUSUM statistic at observation index

the transition probability matrix for Markov chain

> the steady state probability that a detector starts
from a normal state

the steady state probability that a detector is

at state;

!

TABLE 1

THE DESCRIPTION OF SOME IMPORTANT SYMBOLS AND ABBREVIATIONS

of the post-change is unknown due to the unknown The remainder of this paper is organized as follows. Section
parameters. However, the classical CUSUM test assumggescribes the system model. Section Il resents and aealy
the perfect knowledge of the likelihood functions. Whilgpe newly proposed scheme, thgaptive CUSUM algorithm.

the existing generalized likelihood ratio test (GLRT)section IV develops the Markov chain based the analytical
approach can resolve the unknown parameters, it has higBdel. Section V presents extensive numerical and sinoumati
complexity. This paper proposes a new low complexityasylts for performance evaluation. Section VI gives the-co

approach with shorter decision delay and more accurgdgding remarks. Table | includes some important notations
decision, which is asymptotically equivalent to the GLRT;sed in this paper.

test.
o An analytical model for the proposed algorithm is devel-
oped, which provides the theoretical guidance for quan-

Il. PROBLEM FORMULATION

titative performance analysis. With the analytical model, Figure 1 illustrates the IEEE 4-buses test system with 2
it gives the insight on system parameters configurati@enerators; each bus has its corresponding voltagp gnd

for the on-line detection of false data injection attackphase angled(); the control center sends the power mea-
System parameters can also be computed for guaranteetement dataz(,) to the state estimator which generate an
performance in terms of three fundamental performanestimate of system state to be used in different functiooh su
metrics: the false alarm rate, average detection delay, aasl the automatic generation control (AGC), optimal power
missed detection ratio under a detection delay constraifiow (OPF), or EMS. The operator makes the final decision
In other words, our analytical model can guide us ton generator control and load management.

configure a detection system based on some detectiorAs an essential role in the power system, the state estimator
performance requirement. uses the steady-state system model to estimate the system



status (i.e. the voltages at all buses over the time) [22].
Speaking in general, state estimation with a totalBo&ctive
buses in a practical power system can be described as

"/ Control .
- Center /"~ _
State Estimator

g EMS
<

LI— Operator

Z =h(x)+e, (1)

whereZ denotes the measurement datarepresents the un-
known state including the voltage levig] and the phase angel
6, of each busg € B, ande is the Gaussian measurement
noise with a zero mean and a covariance maiijx Noticing
that a nonlineah(x) is determined by the network topology,
the real power flow from bug to busr can be expressed as

j

My = VH3sq + 9ar) — VgV (gqr c0s 04 + bgp sinby,.),

My, = —V:f(bsq +bgr) — VgVi(ggr 0804 — byrsin 0, )(2)

where the admittance of the series branch between husesig. 1. Anillustration of the 4 bus power network, controhtar, a few main

andr is (qu 4 jbqr), and the admittance of the shunt brancfynctions (AGC, OPF, EMS), and the operator. Notes_ that “§Jresents as
the generators, the black dot represents available activersflow measure-

at bUSq i$ (9_511 + jbsq)- The formulatipns of reql and reaCtiVements, and the triangular on the bus represents the loaceaktion or the
power injection can be constructed in the similar way such as.

descnb(_ed n (_2)' ) L ) _ where$ is known as thdat matrix. Define the residue vector
For simplicity, the linear state estimation model is amblleas

in this paper. Notice that all shunt elements, bus, branch _ 5

and reactive power flow are neglected and the bus voltage _ _

magnitude is known [19]. The power flow and power injectiomhe expected value and the covariance of residalare

can be linearized and described as E(R,) =0 8)
0 yr
MqT = Xqr? and
My = e, Mor, 3) Tr=[I-HH'S'H)'H'= =, 9)

where M, is denoted to the power injectio, is the set of respectively. The system can perform BDD by analyZtyg
bus numbers that are directly connected to u,, is the [19]. _ o
reactance between bysand busr. Further, we can simplify In brief, the conventional state estimation for false data

(1) to injection detection uses only snapshot measurements, and
7, = Hx + e,, (4) theref_ore, we like to apply the online quickest detectipn
technique using a sequence of measurements for more eeliabl
where H is the constant Jacobian matrixZ,, = decisions.
(Zni, ++  Znm)T with m measurements at the observation
indexn € 1,2,3,---, andx = [fs,...,05]T. Notice that I11. ADAPTIVE CUSUM ALGORITHM

phase anglé, fqr bus 0 _is assumed known as a reference | this paper, we propose an adaptive CUSUM algorithm
angle, and the size d, is normally greater than that of. oy real-time detection of false data attacks in smart grades
[19], [23] One objective of (4) is to determine thewhich  ggtimation. The proposed scheme evaluates the measugement
can minimizé before the potential bad data is removed by BDD. The
(Z,, — Hx)'S-Y(Z,, — HX) detection syst_em formulati_on as presented ?n [13] [25] is no
longer useful in the scenario under our consideration, mxa
By applying the weighted least square, the estimated systanknown parameters exist in the post-change distributi@h a
statex is: may dynamically change over the detection process. Our main
. Pl leaT 1 motivation is to derive a detection model considering the
x=H 2 H) H XZ,. () existence of the unknown, and then develop an analytical

For BDD system, we compare the power-flow measurBlodel that can guide us configure the detection system for
ments Z,, with the estimated active power-flo,, by the guaranteed performance. The proposed scheme does not re-
phase angle estimate Z,, can be written as: quire the Maximum Likelihood (ML) estimate of the unknown,

. thereby making the computation process much simpler.
Z,=Hx=HMH'S'H)"'H'®]'Z, = 3Z,, (6) Under a false data injection attack, the false datais
maliciously injected into the power flow measurement vector
1The DC model is adopted due to practical security constraiittcommit- as
ment (SCUC) and market operations Most of the control centise linear

power model for state estimation because of two reasonst, Fire phase

differences are relatively small so that linear model caetgloyed. Second, Residual R b I . db G .
due to the complexity of computing AC model, the linear modelised for esidual vectoR., can be well approximated by a Gaussian

real-time analysis in the power system operation [24]. random variable because of Gaussian thermal measurement

Z, = Hx + b, + ey,. (10)



noise e, [26]. When there is no attack, the residual vectdseing the likelihood ratio function based on th& round of
R, follows Gaussian distributiooV' (0, Xg). Under attack, measurement denoted as the observation v&ip(R,, ;,1 €
R, follows N (a,,¥Rr), where 1,2,---,m). In (16), f1(R,) is the distribution associated
with the hypothesig{; with false data injection, angy(R.,)

an = Kby, (11) is the distribution associated with the hypothefg in the
where K = (I — ). Notice that a, = normal state. Therefore, the control center is able to decla
[an 1, an,2," - ,an_,m]T, € R™ is not known a priori(i.e., the the alarm when the accumulation crosses a certain threshold

adversary’s statistical model, attack patterns, or mattiead the cumulative process is terminated, and average runhengt
distributions can not be known in advance. This issue WilARL) is equivalent to7}.
be addressed later in this section.) Then, we have the binanAs the value ofa,, in (11) is unknown, the author in [27]

hypothesis as proposed to implement the generalized likelihood ratid tes
. R, ~N(0.3 (GLRT) in the Page’'s CUSUM algorithm with the unknown.
{ Z(l) SR~ %Ea’ ;li’) (12) The idea is to apply likelihood ratio test (LRT) by replacing

o ) the unknown with the ML estimation. The GLRT approach is
and assumes the false data injection becomes active atmandgsymptotically minimax, and can be written as

time momentr. In other words, a change of the distribution
from N(0,XR) to N(a,,Xr) at 7. Notes that we process ) I f1(Rilay)
the measurement data before a BDD removes the potential Sn = 1enin, Hﬁleog Ry (17)
residual. o =n
We denoteT}, as the stopping time for declaring the besin other words, we minimize the effect of the unknown while
arm under current observation.is a change time. In other considering the worst case situation (i.e. the second miaaim
words, it is the switch point from one distribution belongs ttion in (17)). Thus, by applying GLRT in the CUSUM algo-
the normal state to another distribution under the attaelsel rithm, we can ensure a certain level of detection accuracy fo
on the Lorden’s formulation [13], we minimize the worst cas®D, while minimizing the potential effect from the unknown
of detection delay, which can be described as: in the system. However, the recursive expression of (17) for
_ the CUSUM test is no longer available as shown in (15). It
Tp = infr,e7 SUp esssUE: [(Th — 7+ 1)*|Fr-1],  (13) is because GLRT needs tg compute every unknown (ele)ment
which 7 > 1, F, denotes the smallest-field with respect of a,, based on samples up to the current observatiom
to the observations7 is the set of all stopping time with other words, GLRT approach requires storing the estimated
respect taF,, and E, is the expectation that the change timéata and ML-estimating the unknown at every point. Thus, in
is 7. However, most CUSUM-based models assume the perfeeactice, the GLRT is too difficult from the view points of
knowledge of the likelihood functions [25]. In the scenasio hardware and software implementation. Moreover, the work
intrusion detection in smart grid state estimation, theage in [28] states that Rao test might be more robust but less
from the?{, distribution cannot be completely defined becausgwmplex than the GLRT real operating situations. In [29],
of the unknown. The detection also needs to address the istig performance of Rao test based detectors performs better
that multiple measurements are correlated each togethertian GLRT in parameter estimation and handling trainireg-fr
a single online observation. Thus, we need to employ tiseenario.
technique to solve the issues for real-time detection ofefal For the multi-thread CUSUM algorithm, the desired ap-
data injection in smart grid networks. proach is to solve the unknown recursively, avoiding ML
The proposed quickest detection algorithm is recursive @stimation. Thus, we consider the Rao test [30], which is
nature, and each recursion comprises two interleaved:sjepsisymptotically equivalent to the GLRT. The derivation of
unknown variable solver based on Rao test and ii) multisttireRao test is similar to the locally most powerful (LMP) test
CUSUM test. The proposed CUSUM algorithm updates kut much simpler. The Rao test has the straight-forward
likelihood ratio term based on a series of power measuresnegtlculation by taking derivative of,, with respect to the
with a stopping timel},, describes as: unknown evaluated around the region of interests. In ow,cas
) we analyze the case where the region is around zero due to
Ty = inf{n > 1|Sn > h}, 19 the hypo)ihesigio has zero mean. Thge statistic [30] of the Rao
where the detection thresholdis a function of false alarm test for detection can be modified and rewritten as follows at
rate (FAR), and its value is determined numerically. We wilbbservation.:

discuss how to determine the value/oin Section IV. At the oL |7 oL
n'", the cumulative statisti®,, can be solved recursively and  Z(R,,) = — {J_l(an) } - . (18)
described as: Oan |a, -0 a,=0l 08n |a, o

S, = max [0, Sp_1 + Ln], (15) whereJ is the Fisher information matrix [31]. By inspecting

(18) and evaluating (11)-(12), we notice that the compaitati
where theS,, returns to zero for statistical accuracy if its valuef the inverse Fisher information matrix can be simplified an
is negative,Sy = 0 initially, and equivalent to the covariance of residual.

fi(Ry) Based on (12), we can write the binary hypothésis, #, }
Ln =log Fo(Rn)’ (16) by expanding the multivariate normal distributions. Nexg




apply (18) to (16) by taking its derivative with respectdp state; = S,, at observatiom only depends on the previous
evaluated at,, = 0. Finally, by recursion, the multi-threadstatei = S,,_; atn — 1, but not on the past history [34].
CUSUM-based statistic can be described as follows: The transition probabilities of the Markov chain for the
proposed scheme from stateat (n — 1) to statej at n can

Sn = max {O’ Sn-1+ I(R”)} (19) be described as
_ _ T _
WhereI(Rn) - [(Rzle)T'i_ERan} Xr [(Rzle)T'i_ P” = P(Sn = len—l = i), underHO;
¥r'R,]. Notice that the cumulative statistic is now indepen- . (20)

dent from the unknown variable, and (19) becomes a scalar Pij = P(Sn = j|Sn-1 = 1), under#,.

quantity once it is computed. In summary, the control centflote that The Markov chain based analytical model for the
observes actual power-flow measurements and generatespifegosed scheme involves two different transition prolitédsi
vector of residual fromn measurement samples taken in thenatrix (TPM): one is under the normal state environment; and
n'" round of observation. The proposed scheme composgke other one is under the false data attack. The normal TPM
with two interleaved steps: the unknown variable solver angn help determining the initial state as well as false alarm
multi-thread CUSUM test. The control center will monitokate. With the initial states, the average detection delay a
the CUSUM statistic in (19) against the threshold to detegktection delay can be analyzed by using the TPM under
the false data injection attacks. The alarm rises when thgack. We can calculate TPM® and P with the size of
CUSUM statistic S,, exceeds the threshold. The frameworkF + 1) x (F +1), under the hypothesi, and?#, according

of the adaptive CUSUM algorithm of the proposed schemets f,(R,,) and f;(R,,), respectively. Here, we assume that

shown in Algorithm 1. the attacker’s strategy is stationary. If the attackersickt has
i i i zero mean but nonzero variance, the hypothesis test problem
Algorithm 1 Adaptive CUSUM algorithm becomes detecting the different variances with vs. without
n<(1,2,3--) . attack. If the attackers’ attack has nonzero mean and nonzer
R, « compute the difference betwe@andZ. variance, the hypothesis test has two dimensions (mean and
repeat variance). Both cases can be investigated by a similar way
Update of: n < n +1 to our current analysis (attacker have nonzero mean and zero
continues the observation variance). Due to page limit, we leave this for the futureigtu
Unknown Solver based on Rao Test: The initial steady state probability of the Markov chain,
eliminatea,, by taking derivative ofL,, with respecta,, which the process starts from a normal state, can be deter-
evaluated aD mined as:
Multi-thread CUSUM test: -
compute recursivel,, for all m measurements at current 7, = —~—, given j € {0,U1,--- ,Up_1}, (21)
n as shown in (19) 2o T
until 73, = inf{n > 1|5, > h} is determined and the steady-state probability can be determined:
Terminate the adaptive CUSUM process h
Report the determined hypothesis and ARL = ZPijm (22)
=0

IV. M ARKOV CHAIN BASED ANALYTICAL MODEL

In this section, we develop the Markov chain based analytithere;j € {0,Uy,--- ,Ur} and Z;;o m; = 1.

cal model to systematically examine the proposed scheme foNext, based on the Markov chain model, we study the

the false data injection attack. The Markov chain based modleeoretical performance analysis of detection delaygfalarm

produces quantitative performance analysis, and provites rate and missed detection ratio expectations, respegtivel

oretical guidance on the system configuration for perforreanthe following subsections.

guarantee in terms of three fundamental performance raetric

the expectation of false-alarm rate, the expectation oimg . .

detectﬁ)n rate, and the expectation of detrt)action delaylrmgs B. The Expectation of Detection Delay
To determine the expectatio’f [7p]) of detection delay,

A. Analysis Model we utilize the weighted average of the expected number of

transitions from every initial stater{,7?, -, 7% _,, 7% ;)

to statel/» based orP. We setQ,r, g € {0, U1, ,Ur_1}

as the expected number of transitions for siate stateUr.

Following the derivation from [34], the numerical value of

;r can be determined as follows:

For analysis purpose, we discreti#g" |0 into the finite
sets{Uy, - ,Up_1,Ur}, whereU; = 0, andUy is the set
whose value is greater than or equahtdn other words}' is
the total number of transition from to the state that has the
value greater than or equal to There are several approacheg2
for dis_cretiz_ation [32] [33]. In this_ paper, we_emp_loy ur_r'rﬁm Qip =1+ Z pnggF’ (23)
sampling without loss of generality. Alternative disczation oy
methods can also be employed like {lxdaw or A-law in the
pulse-code modulation. Moreover, from (19), we know thathere the transition probabilitﬁ-g € P is from statei to
the sequence exhibits the Markov property, which the ctirrestate g. The expectation of detection delay can be obtained



from the results of (21) and (23):
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C. The Expectation of False Alarm Rate

The expectationKp [FAR]) of false alarm rate is the prob-
ability that the proposed CUSUM statisti;, reaches to the
stateUr when there is no attacker in the network. As describe
in [34], Ep[FAR] is equivalent to the probability th&t, stays 3
at stateUr (i.e. exceeding threshold) under hypothesig{. 2

According to [34], it states the transition probability mat
P always has a special eigenvector with only one eigenval
A =1 and the rest is zero. Thus, we can obtain the solutic
by re-elaborating the equation (22) into the matrix form as:

CUSUM Statistic S
(%))
T

Malicious data
attack initialized

. . .
7 8 9 10
Observation index

Poo —1 Foy o Por 0 0 Fig. 2. The simulation of the adaptive CUSUM algorithm. Thexis is the
P Py—-1 - Por T 0 observation indexr{), and y-axis is the recursive CUSUM statisticSy().
. . . . 1 . (25) Case 1 with FAR of 1% corresponds tch;, and Case2 with FAR of
: : . : T 0.1% corresponds tdo. The proposed algorithm signals the alarm and then
Prg Pri oo Ppp—1 0 terminates the process &}, = 7 andS8, respectively.
TF
1 1 cee 1 1
By least squares estimation, the average false alarm rate ca V. PERFORMANCE ANALYSIS
be determined b . . : .
y In this section, we present the analytical and numerical

simulations to demonstrate the performance of the proposed
scheme. This section is composed by two main sub-sections.
D. The Expectation of missed detection ratio The first sub-section demonstrates the performance of the
We define the missing detection probability as the probBIoPosed scheme from the simulated data. In other words, we
bility that the detection delay is greater than or equal to Reuristically configure the parameter and analyze the defec
detection delay constrairtt. The expectationf[MDRY]) of performance. The second sub-section involves both analyti
the missing detection probability is, starting from thetiadi @nd numerical results under the realistic power test system
state, the summation of probabilities th&t stays at a state Py MATPOWER 4.0 package [21]. Without loss of generality,
other than staté&/y at timeC'. Let p;(s) denote the probability We assumes that the simulation has normalized samplé rate

of the state variable at timeand at state. We set the initial and the static systeNote that the adversary is able to inject
condition for the transition probabilities as the false power flow measurement at the random time.

pi(0) = 7, (27)

wherei € {0, Uy, -+, Ur-1} andpp(0) = 0. By the iteration, Figure 2 illustrates the relation between the detectioamar
at egchs, the state p.robablhty.vector IS updated by thee g S, h) and performance metrics (FARp). The number
previous state probability vector in a matrix form as: of measurements:, = 4. On the detector side, the detector

A. Smulation Results with Smulated Data

T 1 1" has no information about the adversary statistical model,
po(s) Po(s ) o .
1) distribution, or any unknown. The adversary manipulates an
p1(s) p1(s - . .
B ) p 28 injects the false data into the system at the random time. As
: - : ’ (28) shown in Figure 2, we consider that Casewith FAR of
pr-1(s) pr-1(s —1) 0.01 and Case with FAR of 0.0001. The adversary becomes
pr(s) pr(s—1) active and injects the false datasat= 6. In other words, a
and change distribution is at = 6 from A/(0, ¥r) to N (a,, Xr),
pr(s) =0, se{0,C—1}. (29)

2Since the measured noise is white Gaussian (independent tiove),

. the performance of the quickest detection is depended omtimeber of
Here thepF(S) at everys of state Ur is reset to zero for observations. In other words, the decision time is relatedhe sampling

the next iteration since we only concern the missing deiactirate, and the decision time is equivalent to the number oéwation divided
case only. The expectation of missed detection ratio uriker y the sampling rate.

; ; ; 3The reason we have a steady state or quasi-steady statensigsthat
given delay constraint’ can be obtained as our algorithm can converge in very short time. For the PIMvagk, it is
Fo1 able to have state estimation for measurement of more th@@ BOses per
o ) minute [24]. From the simulation, we can see our algorithmveoges around
E?[MDR] - Z pl(C)' (30) 100 samples. In other words, our algorithm can convergeinwvihcouple of
1=0 seconds, during which the states can be considered at leasi-sfeady.
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wherea,, is unknown. For both cases, the curve of adapti
CUSUM statistic §,,) shows the sudden increase right afte.
a change of distributions. The proposed algorithm quickly
responses the abnormal event by signaling an alarm w#hen Fig. 4. The expectatiod[T5] of detection delay for different IEEE Bus test
passing the threshold. At the observation indgthe threshold Systems.

parameters:; and h, are corresponded to Casdeand Case

2, respectively. As a resully; is less thams, because of the ) . .

different FARs. For the smaller FAR, the stricter constlrainB' Simulation Resuits with MATPOWER 4.0

that causes increasing the threshold; the higher requiteme For the experiment setup of this subsection, we first apply
for system to declare the decision. ARL}) of the adaptive the analytical model to theoretically analyze the perfaroea
CUSUM algorithm is7 and 8 at S,, of 6.07 (Casel) with of the detection system for guiding the system parameter
h = 5.97 and9.11 (Case2) with i = 8.19, respectively. ARL configuration. Then, we use the parameter from the theatetic
(Tp) of detection delay id for casesl and?2 for the Case analysis to confirm the accuracy of the analysis in the firt ha
2 in this simulation. The proposed algorithm is able to sign&f the subsection, and then demonstrate the performanbe of t

the alarm and terminates the process after the active fatse d¢letection system in the second half of the subsection.
attack. 1) Accuracy of the analytical model: In this section, the

power flow data for all simulations are generated by MAT-

Figure 3 shows the characteristics of the proposed algoritiPOWER 4.0 instead of random independent variables in the
by varying FAR for the accuracy rate and expectB@I{5]) of previous subsection. MATPOWER 4.0 is a Matlab simulation
detection delay in comparison to that of the CUSUM GLRTool for solving power flow and optimal power flow problems.
We run 5000 realizations for the simulation. FAR is vart provides realistic power flow data and test systems thes us
from 10~ '° to 1072, The false data injection is begun at thevidely in research-oriented study as well as in practice. We
6th observation index. The accuracy rate in Figure 3(Rightpnsider 4 popular IEEE test systems from the MATPOWER
represents the ratio of successful detection that the ithgor 4.0 package. Case 1 is the IEEE 4-bus test system, which
terminates the process and declares the existence of adverbas 2 generators for 4 measurements; Case 2 is the IEEE 57-
after the 6th observation index (the actual attack index). Aus test system, which has 7 generators for 80 measurements;
shown in the figure for both proposed scheme and the CUSUBAse 3 is the IEEE 118-bus test system, which has 54
GLRT, the stricter FAR is, the greater expected detectidayde generators for 186 measurements; and Case 4 is the IEEE
and higher detection accuracy we have. The expected datec2383-bus test system, which has 326 generators for 2896
delay of CUSUM GLRT seems to increase exponentially whilmeasurements. The analytical performance measures and the
that of proposed scheme steady raises as FAR decreasesulation results are compared under same setting and inpu
E[Tp] of the proposed scheme has the average 50% less tdate to examine. Hence, by using power flow data sets with 4
that of CUSUM GLRT. We also obtain the better accuraagyifferent study cases from MATPOWER 4.0, the performance
rate as FAR decreases. By giving the sufficiently low FARndices F[FAR], E[MDR|, E[Tp]) comparisons between the
the proposed scheme is able to reach the accuracy &6wve analytical and simulation result can be conducted. Withpidee
while CUSUM GLRT struggles it below3%. Therefore, the rameter from the theoretical analysis, the performanceésd
proposed scheme outperforms the CUSUM GLRT in ternase simulated so that we can properly configure the proposed
of shorter decision time and higher detection accuracy. Th&gorithm for the guaranteed performance. Notice that both
simulation result also shows the tradeoff between the tletec theoretical analysis and simulation are plotted togetiver t
delay, false alarm and accuracy rate. The smaller FAR causesfirm accuracy of analysis and demonstrate the perforenanc
higher delay but better accuracy, i.e., the system needetals
more observations for making a decision. Figure 4 gives us an insight of the relationship between
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Fig. 5. The expectatiorE’[FAR] of false alarm rate for different IEEE Bus Fig. 6. The expectatio®?[MDR] of missed detection ratio for different IEEE
test systems. Bus test systems.

the system parameteis and the detection delay[Tp] of the maximum difference percentage is obtained around 10%.
the proposed scheme. The higher the threshold, the larger khore measurements can cause the larger variance when we
delay. Also shown in Figure 4, both analytical and simulatiotry to calculate the covariance for computiRy In addition,
results are matched closely in all IEEE 4-bus, 57-bus, 1i8-kthe smaller: is, the better the expectation of missed detection
test systems. The maximum difference between the analysitio that corresponds to the result of expected false ataten
and simulation is around 2% in the case of IEEE 2383-bus Figure 5 as the tradeoff.
test system. 2) Detection with performance guarantee: From Figure
The numerically examination is presented for understandid-6, we demonstrate the performance metrics with different
the impact of the fundamental performance metric FAR on syk- It also helps us to configure the system paramétdor
tem parameterk of the proposed scheme. As shown in Figurguaranteed performance under three fundamental metiacs. F
5, the analytical and simulation result are close. Notesttiea each different IEEE test system, we can select the proper con
logarithmic scale is used in the figure for the vertical akis. figuration ofh from the reasonable range to satisfy the desired
cases of IEEE 4-bus and 57-bus test systems, the differepeeformance constraints. For examples, the configurafign o
percentage between the analysis and simulation is veryl sniglset to135 for IEEE 57-bus test system; the analytical model
and near zero. However, as the number of bus increases (tofahe proposed scheme shows that the expectation of the fals
number of active power flow measurement increases, too), tilarm rate 0f0.001, the expectation of detection delay 24,
maximum difference percentage is about 8% in IEEE 2383-band the expectation of missed detection rati6.0H)005 under
test system. More measurements can cause the larger varidhe delay constrain€ = 18. In addition, if we wish to have
when we try to calculate the covariance for computiRg a certain level of detection probability, we can compute the
From the figure, we also can observe that a lafggields a numerical value of detection probability from Figure 4; hwit
smaller false alarm rate as expected. its corresponding, we can explicitly determine the cost of
The analytical result ofE[MDR] is demonstrated underdetection delay from Figure 4 and the tradeoff for the false
2 scenarios of the delay constraints, in whi€ch= 7 and alarm rate from Figure 5. The above analysis can be extended
C = 18. The result is shown in Figure 6 that helps u$o other IEEE power systems in a similar way.
study the impact of the missed detection ratio /orof the In Figure 7, we show the CUSUM statisticS, over
proposed scheme. The logarithmic scale is used in the figuteservation indexn for the IEEE 4-bus, 57-bus, and 118-
for the vertical axis. From the figure, the larger constraitius test systems. For the simulation setup, we considets tha
C results smaller expectation of missed detection ratio #¥e false alarm rate of 0.01 is presented, and the active fals
expected. In other words, the probability of detection sisalata injection attack is initialized after the observatiodex
if we allow to increase the cost of longer delay. We alsb5. For the simulation results, in the IEEE 4-bus test system,
compute the mean of expected missed detection ratio as the system is alarmed the aft@d observations with the
base line, in comparison with the analytical results for dorresponding detection threshold3df51; the detection delay
different IEEE test systems. The trend of analysis folloles tis 9. In the IEEE 57-bus test system, the system is alarmed
base line closely. However, as the number of active powttre after 37 observations with the corresponding detection
flow measurement increases, the gap between them becothesshold o0f133.52 and the detection delay df2. In the
obvious, especially, in case of IEEE 2383-bus test systetBEE 118-bus test system, the system is alarmed the after
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model that can guide us configure the detection system for
performance guarantee based on the fundamental detection
requirements. Our proposed scheme for smart grid state es-
timation composes two interleaved steps: i) introduces the
unknown variable solver technique based on Rao Test, and
ii) applies the multi-thread CUSUM algorithm for deternmigi
the possible existence of adversary as quickly as possitite w
out violating the given constraints. Furthermore, we depel
the Markov chain based analytical model to characterize the
behavior of our proposed scheme. We can quantitativelyystud
the system parameters to achieve the guaranteed detection
performance in term of three fundamental metrié§RAR],
E[MDR], and E[Tp]). The analytical and numerical simula-
tion results have shown that the proposed scheme is efficient
in terms of detection accuracy and minimum detection delay.
Overall, the proposed scheme is able to achieve the imgortan
objectives of smart grid security in terms of real-time @ien
and security requirement.

In future work, we further investigate the optimality of
a joint attack detection and state estimation in smart grid.
When an attacker occurs in the power network, the ultimate
objective of the network operator is beyond a reliable daiac
of the attack. In fact, detecting the attack will be used as an
intermediate step towards obtaining a reliable estimataiab
the injected false data, which in turn facilitates elimingtthe
disruptive effects of the false data. Assuring good estonat
performance is the core of estimation and detection problem
in the smart grid networks. To account for the significance of
estimation quality, we can define an estimation performaifce
measure and seek to the optimize it while ensuring satwsfiact
of the detection performance. The objective is to minimize
the estimation-related cost subject to appropriate caimss
on the tolerable levels of detection errors. This approaah ¢
provide the operator with the freedom to strike desiredrzda
between estimation and detection qualities. Other futurekw
can include the analysis of load/generation disruptionjaimd
consideration with PMU.

Fig. 7. The detection simulation of the adaptve CUSUM athan with
MATPOWER 4.0 power-flow measurements for the IEEE 4-bus ggstem,
IEEE 57-bus test system, and IEEE 118-bus test system.x¥dnds is the
observation %), and y-axis is the recursive CUSUM statisticS,{). The
proposed algorithm signals the alarm and then terminatesptiocess at

Ty, = 24, 37, and45, respectively. (1]

(2]

45 observations with the corresponding detection thresholg)
of 283.14; the detection delay in this test system3i8. As

expected, the simulation also shows that the detector ne%i
more observations to make the decision, when the number
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