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Abstract—Smart grid is delay-sensitive and requires the tech-
niques that can identify and react on the abnormal changes
(i.e. system fault, attacker, shortcut, etc.) in a timely manner.
In this paper, we propose a real-time detection scheme against
false data injection attack in smart grid networks. Unlike
the classical detection test, the proposed algorithm is able to
tackle the unknown parameters with low complexity and process
multiple measurements at once, leading to a shorter decision
time and better detection accuracy. The objective is to detect of
adversary as quickly as possible while satisfy certain detection
error constraints. A Markov chain based analytical model is
constructed to systematically analyze the proposed scheme. With
the analytical model, we are able to configure the system
parameters for guaranteed performance in terms of false alarm
rate, average detection delay, and missed detection ratio under a
detection delay constraint. The Simulations are conductedwith
MATPOWER 4.0 package for different IEEE test systems.

I. I NTRODUCTION

The smart grid has improved the robustness and efficiency
of traditional power grid networks by exploiting the modern
technologies. In particular, information exchange among users,
operators, and control devices significantly improves the effi-
ciency in production, transmission, and distribution. However,
integration of intelligence into the power grid needs to act
punctually on abnormal situations (i.e. system fault, attacks,
shortcut, etc.) [1].

Indeed, smart grid is delay-sensitive and requires the tech-
niques that can identify and react on the abnormal changes in
a timely manner. If the detection and responses are not made
promptly, the grid may become unstable and further cause
the catastrophic failures over the entire network. For example,
in the control center of smart grid, an essential task of the
energy management system (EMS) is to estimate the system
states by collecting data from remote meters periodically.If
the adversaries are able to inject malicious data, EMS may
produce the false state estimation, which potentially results in
wrong decisions on billing, power dispatch, erroneous analysis
and even blackout [2]. Thus, the smart grid network must
incorporate the protection mechanism, which has the capability
of detecting the abnormal change and then making the decision
as quickly as possible. Such an issue strongly motivates us to
propose the quick detection based detection scheme.

This work is partially supported by US National Science Foundation CNS-
0953377, CNS-0905556, CNS-0910461, ECCS-1028782, and CNS1117560.

There are many studies on smart grid security in the
literature. A framework for analyzing the impact of cyber-
attacks in a smart grid was presented in [3], [4]. The work in
[5]–[7] formulated the attack that are able to evade from the
conventional detection in smart grid. The false data injections
is studied in [8]–[10] as one type of the cyber-attacks in
the power system. Authors in [11] discovered the microgrid
vulnerability in the smarter power system under the false data
injection attack. In [12], the false data injection attacksis
shown to interrupt the energy routing process. In this paper,
we like to focus on studying in the observable context with the
proposed detection scheme that can be an interesting practical
contribution for smart grid networks.

To address the false data injection attacks in the smart
grid, EMS in the control center needs to be equipped with
the capability of real-time detection of malicious attacks
by analyzing the statistical behavior of the state estimation
process. According to the quickest detection (QD) framework
[13], the cumulative sum (CUSUM) based approach fits well
to this type of detection problems because of its non-Bayesian
properties. Such a framework aims to determine a change
of the observed statistics as quickly as possible based on
online observations, the user-defined decision rules, and the
requirement of detection accuracy. The decision rules should
be properly designed to optimize the tradeoff between the
stopping time and decision accuracy.

The QD technique is normally combined with thestatistical
hypotheses test (SHT) [14], [15]. The mechanism of SHT is
that the receiver classifies a sequence of observations intoone
of the candidate hypotheses; a hypothesis normally represents
a type of distributions. The QD and SHT have been applied to
a variety of networks. The authors in [16] used the CUSUM
tests as a collaborative QD for detecting a distribution change
in ad hoc networks. The authors in [17] utilized the CUSUM
test to address the real-time backoff misbehavior problem in
IEEE 802.11 based wireless networks. However, no much
existing work has considered the unique environment of smart
grid networks.

In this paper, a countermeasure strategy of the false data in-
jection attack is considered in the form of adversary detection.
The problem formulation of detecting the false data injection
is based on the bad data detection (BDD) for the smart grid
state estimation. The proposed scheme is able to determine the
existence of adversary as quickly as possible without violating
the given constraints such as a certain level of detection
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accuracy in terms of the false alarm rate and missed detection
rate. In [18], we studied some preliminary works that includes
the basic mathematic derivation and numerical simulations;
without loss of generality, one in conference version is moti-
vated on the straightforward approach via directly evaluating
the likelihood of load for detection decision, instead of for-
mulating the algorithm based on the likelihood of residual
in this paper, i.e., state estimation in power systems is based
on measurement of residual, and therefore, the derivation and
result from this journal can be more accurate and practical
for real world applications. In additions, the conference one
measured a limited range of the unknown via utilizing one-
side Rao test for simplicity, while this paper considers the
quadratic equivalence of Rao test for solving the unknown.
Essentially, this journal focuses on the thorough examination
for the proposed algorithm in terms of analytical model and
performance simulations. The development of an analytical
model in this paper for the proposed algorithm provides
theoretical guidance for quantitative performance analysis, and
it further makes available the precious insight on system
parameters configuration for guaranteed performance in terms
of fundamental performance metrics. The main contributions
are as follows:

• We develop a framework for real-time detection of false
data injection attacks in the smart grid network, under
certain detection quality constraints. While the conven-
tional state estimation [19], [20] for bad data detection
focuses on balancing between the false alarm rate and
missing detection ratio, our approach aims to minimize
the detection delay under the error probability constraint.
In addition, the conventional approach makes decisions
based on snapshot measurements only, but the proposed
framework analyzes a sequence of samples for more
reliable decisions over time.

• The proposed algorithm is able to detect the presence of
false data attacks in that the probability density function
of the post-change is unknown due to the unknown
parameters. However, the classical CUSUM test assumes
the perfect knowledge of the likelihood functions. While
the existing generalized likelihood ratio test (GLRT)
approach can resolve the unknown parameters, it has high
complexity. This paper proposes a new low complexity
approach with shorter decision delay and more accurate
decision, which is asymptotically equivalent to the GLRT
test.

• An analytical model for the proposed algorithm is devel-
oped, which provides the theoretical guidance for quan-
titative performance analysis. With the analytical model,
it gives the insight on system parameters configuration
for the on-line detection of false data injection attack.
System parameters can also be computed for guaranteed
performance in terms of three fundamental performance
metrics: the false alarm rate, average detection delay, and
missed detection ratio under a detection delay constraint.
In other words, our analytical model can guide us to
configure a detection system based on some detection
performance requirement.

• The performance of the proposed algorithm is evaluated
by both mathematic analysis and simulations. Notes that
simulations are conducted under MATPOWER 4.0 pack-
age [21] for different IEEE test systems to ensure the
experiment accuracy and proficiency.

Notation Description
EMS energy management system
QD quickest detection
CUSUMcumulative sum
SHT statistical hypothesis test
BDD bad data detection
AGC automatic generation control
OPF optimal power flow
ARL average run length
GLRT generalized likelihood ratio test
TPM transition probabilities matrix
FAR false alarm rate
MDR misssed detection ratio
B number of buses in power system
C detection delay constraint
He hypothesise in SHT
Vq voltage measurement at the busq
θq phase measurement at the busq
Xqr reactance between busq andr
Mqr power flow measurement from busq to r
Mq power injection measurement at busq
h detection threshold, a function of error probability
n observation index
m total number of active power measurement
Z a vector of power measurement (Mqr,Mq, or both)
x the unknown state vector for state estimation
e a vector of measurement noise
H Jacobian matrix
TD detection delay for the proposed algorithm
Th the moment when detector raises the alarm
τ the moment when adversary initializes the attack
Sn CUSUM statistic at observation indexn
P the transition probability matrix for Markov chain
π0

i the steady state probability that a detector starts
from a normal statei

πi the steady state probability that a detector is
at statei

TABLE I
THE DESCRIPTION OF SOME IMPORTANT SYMBOLS AND ABBREVIATIONS.

The remainder of this paper is organized as follows. Section
II describes the system model. Section III resents and analyzes
the newly proposed scheme, theadaptive CUSUM algorithm.
Section IV develops the Markov chain based the analytical
model. Section V presents extensive numerical and simulation
results for performance evaluation. Section VI gives the con-
cluding remarks. Table I includes some important notations
used in this paper.

II. PROBLEM FORMULATION

Figure 1 illustrates the IEEE 4-buses test system with 2
generators; each bus has its corresponding voltage (Vq) and
phase angle (θq); the control center sends the power mea-
surement data (zqr) to the state estimator which generate an
estimate of system state to be used in different functions such
as the automatic generation control (AGC), optimal power
flow (OPF), or EMS. The operator makes the final decision
on generator control and load management.

As an essential role in the power system, the state estimator
uses the steady-state system model to estimate the system
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status (i.e. the voltages at all buses over the time) [22].
Speaking in general, state estimation with a total ofB active
buses in a practical power system can be described as

Z = h(x) + e, (1)

whereZ denotes the measurement data,x represents the un-
known state including the voltage levelVq and the phase angel
θq of each busq ∈ B, and e is the Gaussian measurement
noise with a zero mean and a covariance matrixΣe. Noticing
that a nonlinearh(x) is determined by the network topology,
the real power flow from busq to busr can be expressed as

Mqr = V 2
q (gsq + gqr)− VqVr(gqr cos θqr + bqr sin θqr),

M̃qr = −V 2
q (bsq + bqr)− VqVr(gqr cos θqr − bqr sin θqr),(2)

where the admittance of the series branch between busesq

andr is (gqr + jbqr), and the admittance of the shunt branch
at busq is (gsq + jbsq). The formulations of real and reactive
power injection can be constructed in the similar way such as
described in (2).

For simplicity, the linear state estimation model is applied
in this paper. Notice that all shunt elements, bus, branch
and reactive power flow are neglected and the bus voltage
magnitude is known [19]. The power flow and power injection
can be linearized and described as

Mqr =
θqr
Xqr

,

Mq =
∑

r∈Bq
Mqr, (3)

whereMq is denoted to the power injection,Bq is the set of
bus numbers that are directly connected to busq, Xqr is the
reactance between busq and busr. Further, we can simplify1

(1) to
Zn = Hx+ en, (4)

where H is the constant Jacobian matrix,Zn =
[Zn,1, · · · , Zn,m]T with m measurements at the observation
index n ∈ 1, 2, 3, · · ·, and x = [θ2, . . . , θB]

T . Notice that
phase angleθ0 for bus 0 is assumed known as a reference
angle, and the size ofZn is normally greater than that ofx.
[19], [23] One objective of (4) is to determine thêx which
can minimize

(Zn −Hx̂)TΣ−1
e (Zn −Hx̂)

By applying the weighted least square, the estimated system
statex̂ is:

x̂ = (HT
Σ

−1
e H)−1

H
T
Σ

−1
e Zn. (5)

For BDD system, we compare the power-flow measure-
mentsZn with the estimated active power-floŵZn by the
phase angle estimatêx. Ẑn can be written as:

Ẑn = Hx̂ = H(HT
Σ

−1
e H)−1

H
T
Σ

−1
e Zn = ℑZn, (6)

1The DC model is adopted due to practical security constraintunit commit-
ment (SCUC) and market operations Most of the control centers use linear
power model for state estimation because of two reasons. First, the phase
differences are relatively small so that linear model can beemployed. Second,
due to the complexity of computing AC model, the linear modelis used for
real-time analysis in the power system operation [24].
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Fig. 1. An illustration of the 4 bus power network, control center, a few main
functions (AGC, OPF, EMS), and the operator. Notes that “G” represents as
the generators, the black dot represents available active power-flow measure-
ments, and the triangular on the bus represents the load of the region or the
city.

whereℑ is known as thehat matrix. Define the residue vector
as

Rn = Zn − Ẑn. (7)

The expected value and the covariance of residualRn are

E(Rn) = 0, (8)

and
ΣR = [I−H(HT

Σ
−1
e H)−1

H
T
Σ

−1
e ]Σe, (9)

respectively. The system can perform BDD by analyzingRn

[19].
In brief, the conventional state estimation for false data

injection detection uses only snapshot measurements, and
therefore, we like to apply the online quickest detection
technique using a sequence of measurements for more reliable
decisions.

III. A DAPTIVE CUSUM ALGORITHM

In this paper, we propose an adaptive CUSUM algorithm
for real-time detection of false data attacks in smart grid state
estimation. The proposed scheme evaluates the measurements
before the potential bad data is removed by BDD. The
detection system formulation as presented in [13] [25] is no
longer useful in the scenario under our consideration, because
unknown parameters exist in the post-change distribution and
may dynamically change over the detection process. Our main
motivation is to derive a detection model considering the
existence of the unknown, and then develop an analytical
model that can guide us configure the detection system for
guaranteed performance. The proposed scheme does not re-
quire the Maximum Likelihood (ML) estimate of the unknown,
thereby making the computation process much simpler.

Under a false data injection attack, the false databn is
maliciously injected into the power flow measurement vector
as

Zn = Hx+ bn + en. (10)

Residual vectorRn can be well approximated by a Gaussian
random variable because of Gaussian thermal measurement
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noise en [26]. When there is no attack, the residual vector
Rn follows Gaussian distributionN (0,ΣR). Under attack,
Rn follows N (an,ΣR), where

an = Kbn, (11)

where K = (I − ℑ). Notice that an =
[an,1, an,2, · · · , an,m]T ,∈ R

m is not known a priori(i.e., the
adversary’s statistical model, attack patterns, or mathematical
distributions can not be known in advance. This issue will
be addressed later in this section.) Then, we have the binary
hypothesis as

{

H0 : Rn ∼ N (0,ΣR),
H1 : Rn ∼ N (an,ΣR),

(12)

and assumes the false data injection becomes active at random-
time momentτ . In other words, a change of the distribution
from N (0,ΣR) to N (an,ΣR) at τ . Notes that we process
the measurement data before a BDD removes the potential
residual.

We denoteTh as the stopping time for declaring the best
arm under current observation.τ is a change time. In other
words, it is the switch point from one distribution belongs to
the normal state to another distribution under the attack. Based
on the Lorden’s formulation [13], we minimize the worst case
of detection delay, which can be described as:

TD = infTh∈T sup esssupEτ [(Th − τ + 1)+|Fτ−1], (13)

which τ > 1, Fτ denotes the smallestα-field with respect
to the observations,T is the set of all stopping time with
respect toFτ , andEτ is the expectation that the change time
is τ . However, most CUSUM-based models assume the perfect
knowledge of the likelihood functions [25]. In the scenarioof
intrusion detection in smart grid state estimation, the variable
from theH1 distribution cannot be completely defined because
of the unknown. The detection also needs to address the issue
that multiple measurements are correlated each together in
a single online observation. Thus, we need to employ the
technique to solve the issues for real-time detection of false
data injection in smart grid networks.

The proposed quickest detection algorithm is recursive in
nature, and each recursion comprises two interleaved steps: i)
unknown variable solver based on Rao test and ii) multi-thread
CUSUM test. The proposed CUSUM algorithm updates a
likelihood ratio term based on a series of power measurements
with a stopping timeTh, describes as:

Th = inf{n ≥ 1|Sn > h}, (14)

where the detection thresholdh is a function of false alarm
rate (FAR), and its value is determined numerically. We will
discuss how to determine the value ofh in Section IV. At the
nth, the cumulative statisticSn can be solved recursively and
described as:

Sn = max
[

0, Sn−1 + Ln

]

, (15)

where theSn returns to zero for statistical accuracy if its value
is negative,S0 = 0 initially, and

Ln = log
f1(Rn)

f0(Rn)
, (16)

being the likelihood ratio function based on thenth round of
measurement denoted as the observation vectorRn (Rn,l, l ∈
1, 2, · · · ,m). In (16), f1(Rn) is the distribution associated
with the hypothesisH1 with false data injection, andf0(Rn)
is the distribution associated with the hypothesisH0 in the
normal state. Therefore, the control center is able to declare
the alarm when the accumulation crosses a certain thresholdh,
the cumulative process is terminated, and average run length
(ARL) is equivalent toTh.

As the value ofan in (11) is unknown, the author in [27]
proposed to implement the generalized likelihood ratio test
(GLRT) in the Page’s CUSUM algorithm with the unknown.
The idea is to apply likelihood ratio test (LRT) by replacing
the unknown with the ML estimation. The GLRT approach is
asymptotically minimax, and can be written as

Sn = min
1≤n≤Th

max
an

Th
∑

i=n

log
f1(Ri|ai)

f0(Ri)
. (17)

In other words, we minimize the effect of the unknown while
considering the worst case situation (i.e. the second maximiza-
tion in (17)). Thus, by applying GLRT in the CUSUM algo-
rithm, we can ensure a certain level of detection accuracy for
QD, while minimizing the potential effect from the unknown
in the system. However, the recursive expression of (17) for
the CUSUM test is no longer available as shown in (15). It
is because GLRT needs to compute every unknown element
of an based on samples up to the current observationn. In
other words, GLRT approach requires storing the estimated
data and ML-estimating the unknown at every point. Thus, in
practice, the GLRT is too difficult from the view points of
hardware and software implementation. Moreover, the work
in [28] states that Rao test might be more robust but less
complex than the GLRT real operating situations. In [29],
the performance of Rao test based detectors performs better
than GLRT in parameter estimation and handling training-free
scenario.

For the multi-thread CUSUM algorithm, the desired ap-
proach is to solve the unknown recursively, avoiding ML
estimation. Thus, we consider the Rao test [30], which is
asymptotically equivalent to the GLRT. The derivation of
Rao test is similar to the locally most powerful (LMP) test
but much simpler. The Rao test has the straight-forward
calculation by taking derivative ofLn with respect to the
unknown evaluated around the region of interests. In our case,
we analyze the case where the region is around zero due to
the hypothesisH0 has zero mean. The statistic [30] of the Rao
test for detection can be modified and rewritten as follows at
observationn:

I(Rn) =
∂Ln

∂an

∣

∣

∣

∣

T

an=0

[

J
−1(an)

∣

∣

∣

∣

an=0

]

∂Ln

∂an

∣

∣

∣

∣

an=0

, (18)

whereJ is the Fisher information matrix [31]. By inspecting
(18) and evaluating (11)-(12), we notice that the computation
of the inverse Fisher information matrix can be simplified and
equivalent to the covariance of residual.

Based on (12), we can write the binary hypothesis{H0,H1}
by expanding the multivariate normal distributions. Next,we
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apply (18) to (16) by taking its derivative with respect toan
evaluated atan = 0. Finally, by recursion, the multi-thread
CUSUM-based statistic can be described as follows:

Sn = max
{

0, Sn−1 + I(Rn)
}

(19)

whereI(Rn) =
[

(RT
nΣ

−1

R
)T +Σ

−1

R
Rn

]T
ΣR

[

(RT
nΣ

−1

R
)T +

Σ
−1

R
Rn

]

. Notice that the cumulative statistic is now indepen-
dent from the unknown variable, and (19) becomes a scalar
quantity once it is computed. In summary, the control center
observes actual power-flow measurements and generates the
vector of residual fromm measurement samples taken in the
nth round of observation. The proposed scheme composes
with two interleaved steps: the unknown variable solver and
multi-thread CUSUM test. The control center will monitor
the CUSUM statistic in (19) against the threshold to detect
the false data injection attacks. The alarm rises when the
CUSUM statisticSn exceeds the threshold. The framework
of the adaptive CUSUM algorithm of the proposed scheme is
shown in Algorithm 1.

Algorithm 1 Adaptive CUSUM algorithm

n← (1, 2, 3 · · · )
Rn ← compute the difference between̂Z andZ.
repeat

Update of: n← n+ 1
continues the observation
Unknown Solver based on Rao Test:
eliminatean by taking derivative ofLn with respectan
evaluated at0
Multi-thread CUSUM test:
compute recursivelySn for all m measurements at current
n as shown in (19)

until Th = inf{n ≥ 1|Sn > h} is determined
Terminate the adaptive CUSUM process
Report the determined hypothesis and ARL

IV. M ARKOV CHAIN BASED ANALYTICAL MODEL

In this section, we develop the Markov chain based analyti-
cal model to systematically examine the proposed scheme for
the false data injection attack. The Markov chain based model
produces quantitative performance analysis, and providesthe-
oretical guidance on the system configuration for performance
guarantee in terms of three fundamental performance metrics:
the expectation of false-alarm rate, the expectation of missing-
detection rate, and the expectation of detection delay.

A. Analysis Model

For analysis purpose, we discretizeR+
⋃

0 into the finite
sets{U1, · · · , UF−1, UF }, whereU1 = 0, andUF is the set
whose value is greater than or equal toh. In other words,F is
the total number of transition from0 to the state that has the
value greater than or equal toh. There are several approaches
for discretization [32] [33]. In this paper, we employ uniform
sampling without loss of generality. Alternative discretization
methods can also be employed like theµ-law or A-law in the
pulse-code modulation. Moreover, from (19), we know that
the sequence exhibits the Markov property, which the current

statej = Sn at observationn only depends on the previous
statei = Sn−1 at n− 1, but not on the past history [34].

The transition probabilities of the Markov chain for the
proposed scheme from statei at (n − 1) to statej at n can
be described as

Pij = P (Sn = j|Sn−1 = i), underH0;

P̂ij = P (Sn = j|Sn−1 = i), underH1.
(20)

Note that The Markov chain based analytical model for the
proposed scheme involves two different transition probabilities
matrix (TPM): one is under the normal state environment; and
the other one is under the false data attack. The normal TPM
can help determining the initial state as well as false alarm
rate. With the initial states, the average detection delay and
detection delay can be analyzed by using the TPM under
attack. We can calculate TPMs:P and P̂ with the size of
(F +1)× (F +1), under the hypothesisH0 andH1 according
to f0(Rn) and f1(Rn), respectively. Here, we assume that
the attacker’s strategy is stationary. If the attackers’ attack has
zero mean but nonzero variance, the hypothesis test problem
becomes detecting the different variances with vs. without
attack. If the attackers’ attack has nonzero mean and nonzero
variance, the hypothesis test has two dimensions (mean and
variance). Both cases can be investigated by a similar way
to our current analysis (attacker have nonzero mean and zero
variance). Due to page limit, we leave this for the future study.

The initial steady state probability of the Markov chain,
which the process starts from a normal state, can be deter-
mined as:

π0
j =

πj
∑F−1

i=0
πj

, given j ∈ {0, U1, · · · , UF−1}, (21)

and the steady-state probability can be determined:

πj =

F
∑

i=0

Pijπi, (22)

wherej ∈ {0, U1, · · · , UF } and
∑F

j=0
πj = 1.

Next, based on the Markov chain model, we study the
theoretical performance analysis of detection delay, false alarm
rate and missed detection ratio expectations, respectively, in
the following subsections.

B. The Expectation of Detection Delay

To determine the expectation (E
P̂
[TD]) of detection delay,

we utilize the weighted average of the expected number of
transitions from every initial state (π0

0 , π
0
1 , · · · , π

0
F−2, π

0
F−1)

to stateUF based on̂P. We setΩgF , g ∈ {0, U1, · · · , UF−1}
as the expected number of transitions for stateg to stateUF .
Following the derivation from [34], the numerical value of
ΩiF can be determined as follows:

ΩiF = 1 +
∑

g 6=F

P̂igΩgF , (23)

where the transition probabilitŷPig ∈ P̂ is from statei to
stateg. The expectation of detection delay can be obtained
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from the results of (21) and (23):

E
P̂
[TD] =

F−1
∑

i=0

π0
iΩiF . (24)

C. The Expectation of False Alarm Rate

The expectation (EP[FAR]) of false alarm rate is the prob-
ability that the proposed CUSUM statisticSn reaches to the
stateUF when there is no attacker in the network. As described
in [34], EP[FAR] is equivalent to the probability thatSn stays
at stateUF (i.e. exceeding thresholdh) under hypothesisH0.

According to [34], it states the transition probability matrix
P always has a special eigenvector with only one eigenvalue
λ = 1 and the rest is zero. Thus, we can obtain the solution
by re-elaborating the equation (22) into the matrix form as:














P00 − 1 P01 · · · P0F

P10 P11 − 1 · · · P0F

...
...

. . .
...

PF0 PF1 · · · PFF − 1
1 1 · · · 1

























π0

π1

...
πF











=















0
0
...
0
1















. (25)

By least squares estimation, the average false alarm rate can
be determined by

EP[FAR] = πF . (26)

D. The Expectation of missed detection ratio

We define the missing detection probability as the proba-
bility that the detection delay is greater than or equal to a
detection delay constraintC. The expectation (E

P̂
[MDR]) of

the missing detection probability is, starting from the initial
state, the summation of probabilities thatSn stays at a state
other than stateUF at timeC. Let pi(s) denote the probability
of the state variable at times and at statei. We set the initial
condition for the transition probabilities as

pi(0) = π0
i , (27)

wherei ∈ {0, U1, · · · , UF−1} andpF (0) = 0. By the iteration,
at each s, the state probability vector is updated by the
previous state probability vector in a matrix form as:















p0(s)
p1(s)

...
pF−1(s)
pF (s)















T

=















p0(s− 1)
p1(s− 1)

...
pF−1(s− 1)
pF (s− 1)















T

P̂, (28)

and
pF (s) = 0, s ∈ {0, C − 1}. (29)

Here thepF (s) at everys of stateUF is reset to zero for
the next iteration since we only concern the missing detection
case only. The expectation of missed detection ratio under the
given delay constraintC can be obtained as

E
P̂
[MDR] =

F−1
∑

i=0

pi(C). (30)
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Fig. 2. The simulation of the adaptive CUSUM algorithm. Thex-axis is the
observation index (n), and y-axis is the recursive CUSUM statistic (Sn).
Case 1 with FAR of 1% corresponds toh1, and Case2 with FAR of
0.1% corresponds toh2. The proposed algorithm signals the alarm and then
terminates the process atTh = 7 and8, respectively.

V. PERFORMANCE ANALYSIS

In this section, we present the analytical and numerical
simulations to demonstrate the performance of the proposed
scheme. This section is composed by two main sub-sections.
The first sub-section demonstrates the performance of the
proposed scheme from the simulated data. In other words, we
heuristically configure the parameter and analyze the detection
performance. The second sub-section involves both analytical
and numerical results under the realistic power test systems
by MATPOWER 4.0 package [21]. Without loss of generality,
we assumes that the simulation has normalized sample rate2

and the static system3, Note that the adversary is able to inject
the false power flow measurement at the random time.

A. Simulation Results with Simulated Data

Figure 2 illustrates the relation between the detection param-
eters (Sn, h) and performance metrics (FAR,TD). The number
of measurementsm = 4. On the detector side, the detector
has no information about the adversary statistical model,
distribution, or any unknown. The adversary manipulates and
injects the false data into the system at the random time. As
shown in Figure 2, we consider that Case1 with FAR of
0.01 and Case2 with FAR of 0.0001. The adversary becomes
active and injects the false data atn = 6. In other words, a
change distribution is atτ = 6 fromN (0,ΣR) toN (an,ΣR),

2Since the measured noise is white Gaussian (independent over time),
the performance of the quickest detection is depended on thenumber of
observations. In other words, the decision time is related to the sampling
rate, and the decision time is equivalent to the number of observation divided
by the sampling rate.

3The reason we have a steady state or quasi-steady state system is that
our algorithm can converge in very short time. For the PJM network, it is
able to have state estimation for measurement of more than 2000 buses per
minute [24]. From the simulation, we can see our algorithm converges around
100 samples. In other words, our algorithm can converge within a couple of
seconds, during which the states can be considered at least quasi-steady.
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Fig. 3. The performance analysis of the adaptive CUSUM algorithm in
comparison with CUSUM GLRT.

wherean is unknown. For both cases, the curve of adaptive
CUSUM statistic (Sn) shows the sudden increase right after
a change of distributions. The proposed algorithm quickly
responses the abnormal event by signaling an alarm whenSn

passing the threshold. At the observation index7, the threshold
parametersh1 and h2 are corresponded to Case1 and Case
2, respectively. As a result,h1 is less thanh2, because of the
different FARs. For the smaller FAR, the stricter constraint
that causes increasing the threshold; the higher requirement
for system to declare the decision. ARL (Th) of the adaptive
CUSUM algorithm is7 and 8 at Sn of 6.07 (Case1) with
h = 5.97 and9.11 (Case2) with h = 8.19, respectively. ARL
(TD) of detection delay is1 for cases1 and 2 for the Case
2 in this simulation. The proposed algorithm is able to signal
the alarm and terminates the process after the active false date
attack.

Figure 3 shows the characteristics of the proposed algorithm
by varying FAR for the accuracy rate and expected (E[TD]) of
detection delay in comparison to that of the CUSUM GLRT.
We run 5000 realizations for the simulation. FAR is vary
from 10−10 to 10−2. The false data injection is begun at the
6th observation index. The accuracy rate in Figure 3(Right)
represents the ratio of successful detection that the algorithm
terminates the process and declares the existence of adversary
after the 6th observation index (the actual attack index). As
shown in the figure for both proposed scheme and the CUSUM
GLRT, the stricter FAR is, the greater expected detection delay
and higher detection accuracy we have. The expected detection
delay of CUSUM GLRT seems to increase exponentially while
that of proposed scheme steady raises as FAR decreases.
E[TD] of the proposed scheme has the average 50% less than
that of CUSUM GLRT. We also obtain the better accuracy
rate as FAR decreases. By giving the sufficiently low FAR,
the proposed scheme is able to reach the accuracy above95%
while CUSUM GLRT struggles it below83%. Therefore, the
proposed scheme outperforms the CUSUM GLRT in terms
of shorter decision time and higher detection accuracy. The
simulation result also shows the tradeoff between the detection
delay, false alarm and accuracy rate. The smaller FAR causes
higher delay but better accuracy, i.e., the system needs to spend
more observations for making a decision.
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Fig. 4. The expectationE[TD] of detection delay for different IEEE Bus test
systems.

B. Simulation Results with MATPOWER 4.0

For the experiment setup of this subsection, we first apply
the analytical model to theoretically analyze the performance
of the detection system for guiding the system parameter
configuration. Then, we use the parameter from the theoretical
analysis to confirm the accuracy of the analysis in the first half
of the subsection, and then demonstrate the performance of the
detection system in the second half of the subsection.

1) Accuracy of the analytical model: In this section, the
power flow data for all simulations are generated by MAT-
POWER 4.0 instead of random independent variables in the
previous subsection. MATPOWER 4.0 is a Matlab simulation
tool for solving power flow and optimal power flow problems.
It provides realistic power flow data and test systems that uses
widely in research-oriented study as well as in practice. We
consider 4 popular IEEE test systems from the MATPOWER
4.0 package. Case 1 is the IEEE 4-bus test system, which
has 2 generators for 4 measurements; Case 2 is the IEEE 57-
bus test system, which has 7 generators for 80 measurements;
Case 3 is the IEEE 118-bus test system, which has 54
generators for 186 measurements; and Case 4 is the IEEE
2383-bus test system, which has 326 generators for 2896
measurements. The analytical performance measures and the
simulation results are compared under same setting and input
data to examine. Hence, by using power flow data sets with 4
different study cases from MATPOWER 4.0, the performance
indices (E[FAR], E[MDR], E[TD]) comparisons between the
analytical and simulation result can be conducted. With thepa-
rameter from the theoretical analysis, the performance indices
are simulated so that we can properly configure the proposed
algorithm for the guaranteed performance. Notice that both
theoretical analysis and simulation are plotted together to
confirm accuracy of analysis and demonstrate the performance.

Figure 4 gives us an insight of the relationship between
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Fig. 5. The expectationE[FAR] of false alarm rate for different IEEE Bus
test systems.

the system parametersh and the detection delayE[TD] of
the proposed scheme. The higher the threshold, the larger the
delay. Also shown in Figure 4, both analytical and simulation
results are matched closely in all IEEE 4-bus, 57-bus, 118-bus
test systems. The maximum difference between the analysis
and simulation is around 2% in the case of IEEE 2383-bus
test system.

The numerically examination is presented for understanding
the impact of the fundamental performance metric FAR on sys-
tem parametersh of the proposed scheme. As shown in Figure
5, the analytical and simulation result are close. Notes that the
logarithmic scale is used in the figure for the vertical axis.In
cases of IEEE 4-bus and 57-bus test systems, the difference
percentage between the analysis and simulation is very small
and near zero. However, as the number of bus increases (total
number of active power flow measurement increases, too), the
maximum difference percentage is about 8% in IEEE 2383-bus
test system. More measurements can cause the larger variance
when we try to calculate the covariance for computingR.
From the figure, we also can observe that a largerh yields a
smaller false alarm rate as expected.

The analytical result ofE[MDR] is demonstrated under
2 scenarios of the delay constraints, in whichC = 7 and
C = 18. The result is shown in Figure 6 that helps us
study the impact of the missed detection ratio onh of the
proposed scheme. The logarithmic scale is used in the figure
for the vertical axis. From the figure, the larger constraint
C results smaller expectation of missed detection ratio as
expected. In other words, the probability of detection rises
if we allow to increase the cost of longer delay. We also
compute the mean of expected missed detection ratio as the
base line, in comparison with the analytical results for 4
different IEEE test systems. The trend of analysis follows the
base line closely. However, as the number of active power
flow measurement increases, the gap between them becomes
obvious, especially, in case of IEEE 2383-bus test system,
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Fig. 6. The expectationE[MDR] of missed detection ratio for different IEEE
Bus test systems.

the maximum difference percentage is obtained around 10%.
More measurements can cause the larger variance when we
try to calculate the covariance for computingR. In addition,
the smallerh is, the better the expectation of missed detection
ratio that corresponds to the result of expected false alarmrate
in Figure 5 as the tradeoff.

2) Detection with performance guarantee: From Figure
4-6, we demonstrate the performance metrics with different
h. It also helps us to configure the system parameterh for
guaranteed performance under three fundamental metrics. For
each different IEEE test system, we can select the proper con-
figuration ofh from the reasonable range to satisfy the desired
performance constraints. For examples, the configuration of h
is set to135 for IEEE 57-bus test system; the analytical model
of the proposed scheme shows that the expectation of the false
alarm rate of0.001, the expectation of detection delay of20,
and the expectation of missed detection ratio of0.00005 under
the delay constraintC = 18. In addition, if we wish to have
a certain level of detection probability, we can compute the
numerical value of detection probability from Figure 4; with
its correspondingh, we can explicitly determine the cost of
detection delay from Figure 4 and the tradeoff for the false
alarm rate from Figure 5. The above analysis can be extended
to other IEEE power systems in a similar way.

In Figure 7, we show the CUSUM statisticsSn over
observation indexn for the IEEE 4-bus, 57-bus, and 118-
bus test systems. For the simulation setup, we considers that
the false alarm rate of 0.01 is presented, and the active false
data injection attack is initialized after the observationindex
15. For the simulation results, in the IEEE 4-bus test system,
the system is alarmed the after24 observations with the
corresponding detection threshold of34.51; the detection delay
is 9. In the IEEE 57-bus test system, the system is alarmed
the after 37 observations with the corresponding detection
threshold of133.52 and the detection delay of22. In the
IEEE 118-bus test system, the system is alarmed the after
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Fig. 7. The detection simulation of the adaptive CUSUM algorithm with
MATPOWER 4.0 power-flow measurements for the IEEE 4-bus testsystem,
IEEE 57-bus test system, and IEEE 118-bus test system. Thex-axis is the
observation (n), and y-axis is the recursive CUSUM statistic (Sn). The
proposed algorithm signals the alarm and then terminates the process at
Th = 24, 37, and45, respectively.

45 observations with the corresponding detection threshold
of 283.14; the detection delay in this test system is30. As
expected, the simulation also shows that the detector need
more observations to make the decision, when the number
of the power-flow measurements and buses increases. Notices
that the numerical results of each IEEE test system in Figure7
is corresponded to our analytical results, which are presented
in Figure 4-6.

VI. CONCLUSION

In this paper, we propose the adaptive CUSUM algorithm
for defending false data injection attack in smart grid networks.
We successfully derive a detection model with considering
the existence of the unknown, and then develop an analytical

model that can guide us configure the detection system for
performance guarantee based on the fundamental detection
requirements. Our proposed scheme for smart grid state es-
timation composes two interleaved steps: i) introduces the
unknown variable solver technique based on Rao Test, and
ii) applies the multi-thread CUSUM algorithm for determining
the possible existence of adversary as quickly as possible with-
out violating the given constraints. Furthermore, we develop
the Markov chain based analytical model to characterize the
behavior of our proposed scheme. We can quantitatively study
the system parameters to achieve the guaranteed detection
performance in term of three fundamental metrics (E[FAR],
E[MDR], andE[TD]). The analytical and numerical simula-
tion results have shown that the proposed scheme is efficient
in terms of detection accuracy and minimum detection delay.
Overall, the proposed scheme is able to achieve the important
objectives of smart grid security in terms of real-time operation
and security requirement.

In future work, we further investigate the optimality of
a joint attack detection and state estimation in smart grid.
When an attacker occurs in the power network, the ultimate
objective of the network operator is beyond a reliable detection
of the attack. In fact, detecting the attack will be used as an
intermediate step towards obtaining a reliable estimate about
the injected false data, which in turn facilitates eliminating the
disruptive effects of the false data. Assuring good estimation
performance is the core of estimation and detection problem
in the smart grid networks. To account for the significance of
estimation quality, we can define an estimation performanceof
measure and seek to the optimize it while ensuring satisfactory
of the detection performance. The objective is to minimize
the estimation-related cost subject to appropriate constraints
on the tolerable levels of detection errors. This approach can
provide the operator with the freedom to strike desired balance
between estimation and detection qualities. Other future work
can include the analysis of load/generation disruption andjoint
consideration with PMU.
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