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The Nested Structure of Emergent Supply Networks

Alexandra Brintrup, Jose Barros, and Ashutosh Tiwari

Abstract—Inspired by studies in ecological networks, we look by individual companies attempting to maximize their gains
for a nested pattern in a large-scale data set describing the global through decision variables such as cost, quality, and flexibility.
automotive industry, including more than 18000 firms, their They link with other companies to produce and deliver a
clients, and products. Two bipartite networks are formed, namely, . -
supplier—product distribution and supplier—manufacturer rela- product and may b,e Coopergtlng or (_:ompgtlng .for common
tions. Both networks are found to be significantly nested. The resources. The environment is dynamic as links in the system
pattern means that suppliers produce proper subsets of what other are constantly reviewed and rewired by individual firms.
suppliers produce and rare products are produced only by those  Several tools for the study of CAS are available, such as
suppliers that already produce high numbers of product types.  gaistical mechanics, data anasysietwork science, and agent-

In addition, the manufacturers that procure from few suppliers . T . !

procure from those that supply to most other manufacturers in based modgllng and simulation. .

the network. Similarly, suppliers that supply to few supply tothose ~ The first line of attack for studying supply networks as CAS
manufacturers that procure from most others. A nested structure has been agent-based modeling, where researchers modeled
is more robust than a nonnested structure as disrupted suppliers system characteristics such as decentralized data, asynchronous
can be substituted, but nestedness also means that small SUpp"ersdecisions, and impartial knowledge to devise better planning

face more competition as their production can be redundant. Our o .
finding is contrary to conventional wisdom that associates large and coordination policies (e.g., [16], [25], [35]). Due to a

diversified firms with efficiency and small specialist firms with ~chronic lack of empirical studies on emergent supply networks,
rare products, showing that large-scale complex system analysis such models were typically small scale and carry simplistic
can lead to the discovery of important systemic characteristics, assumptions on emergent system structure.
which are obscured when viewed from local points of view. We | 5ok of data has become a bigger issue as manufacturers
then propose amultiagent_model that creates more realistic nested realized their vulnerability taisks cascading from suppliers
structures to study systemic outcomes influenced by topology. o y g PP
_ to whom they were indirectly connected. The Japanese earth-
Wolrrlldgxc Jﬁrmﬁﬁﬂf@ﬁ?!es?;?n””rfz;“s’i‘éger;ecs‘;mp'ex supply net- guake in 2011 and Thailand floods in 2013 halted production
' 9y g y ' ' lines of major original equipment manufacturers (OEMs) and
highlighted the importance of system structure. Following the
I. INTRODUCTION headlines, several OEMs, including Toyota, Jaguar Land Rover,
suobly network is composed of manv companies thg d Boeing, joined forces to map their networks with the help
A malfgyroducts necessapr for the del)i/ver gf the ﬁnoFthird—party supplier base management companies such as
P y tor y ot Achilles and supply chain data providers such as Bloomberg.
goods to the end customers. Suppliers are responsible for pro:

. . . "New found data made the use of network science, another
ducing products, assembling subsystems from other suppllzﬁ

and selling to a manufacturer, which assembles final goo 'S tool, applicable for the study of supply networks. Systemic
9 ' 9 dsﬁ'ta have shown what researchers have been suspecting all

Typically, the system is neither designed nor controlled blé ong: Supply networks are a type of CAS. Some of the first

emerges as a complex adaptive system (CAS) over time as

. . : . fge-scale studies identifiggipical complex network charac-
E:Zogr?p[ggies decide what to produce and with whom to link Hthristics such as community structures, exponential and power

law degree distributions, and assortative mixing [8], [17] and

A CAS is a system where local interactions of IndlV'dwlgssessed how these properties relate to system robustness [31].

result in self-organizing systemic behavior that cannot be pre—These initial studies have paved the way for better under-

dicted by observing individuals using a reductionist approacr}. ; . . i
: g . Standing of systemic properties; however, research of sup
Thus, studying the system at both individual and coIIectlvq networks as CAS is in its infancy. Extracti . |
y y. Extracting universal

levels is important to gain an understanding of its behavi Jfoperties of these systems can be informative to companies
A well-known example is the flocking of birds, which is notD P y P

. o qmbedded within and helps engineers that study their perfor-
a centrally controlled phenomenon, resulting from |nd|V|duz%nance by replacing structurassumotions with more accurate
birds that mimic the speed of neighboring birds and keep yrep 9 P

a
set distance from them. Similarly, supply networks are formghameworks.

In this paper, we contribute to extant literature in two re-
spects. First, we discover an important systemic property called
Nestedness supply networks.
Manuscript received July 29, 2015; revised September 23, 2015; acceptecA n.eSted network in .ecol'ogy refers to the un'VerS_al self-
October 19, 2015. organized structure of bipartite networks. These could include,
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Il. LITERATURE REVIEW

The study of nestedness is grounded in two types of networks
in ecology. First of these is the analysis of mutualistic networks,
which are formed when interdons between two species are
mutually beneficial. Examples include pollinator—plant species,
where insect species feed from plants while pollinating them
[5]. It was long believed that mutualistic interactions between
species were highly specializeslhere two species would max-
imize their gains from the interaction through coevolution, with
the most famous example being Darwin’s Malagasy Orchid and
the long-tongued Spinghid Moth. However, most observations
of such mutualism have been rather small scale, which obscured
statistical features only observable at large scales. When large-
scale systemic properties were considered, “nested” patterns

Pollinator species

&:n were found to be prevalent [3].
G#f A nested pattern is analyzég creating an adjacency matrix
"‘ that records speciemteractions, the rows and columns of
Plant species which are ordered in decreasing degree. For example, in a

Fig. 1. lllustration of a nested plant-finator interaction pattern through a bi- plant—pollinator network, the rows of the matrix are ordered
nary matrix depicting the (black) presenand (white) absence of interactions.from the most genera”st po”inator Species (insects feeding
from many plants) to the most specialist (insects feeding from

interact with their @neralist counterparts constituting a highlyeW plants), and then the columns of the matrix are ordered
connected “core” (see Fig. 1). In addition, “specialists” (specié®M the most generalist plant species (plants that have many
with low number of connections) also tend to interact witRP€Cies feeding from it) to the most specialist (plants that have
generalists, rather than among themselves. Ecologists argue itSpecies feeding from it). A nested pattern results in most
the pattern is ideal for conserving biodiversity as rare speci@kthe interaction presences lgmbove a curve and interaction
are conserved within the highly connected core of the netwoAsences underneath it (see Fig. 1).
The disappearance of a random plant means that most insectEhe pattern points to the fact that specialist species tend to
still survive by feeding from other plants, and the disappearari§éeract with proper subsets of mutualistic partners of more
of a random insect means that most plants can be still pollina@@neralist species. That is, the set of interactions recorded
and reproduce. for any species is likely to be nested within the more gener-
We investigate nestedness in supply networks by coIIectiﬁQSt species interactions. From another perspective, general-
large-scale data from the automotive industry. We found tw®t animal species interact mostly with generalist plants, and
types of unambiguously nested bipartite networks coexisti§§ecialists also interact with generalists but not with other
in supply networks, namely, a supplier—product network andsgecialists.
supplier—-manufacturer interaction network. Generalist suppli-In addition to mutualistic interaction networks, the pattern
ers produce both ubiquitous and rare products, and specididé been observed in the distribution of species over island
suppliers produce products that most other suppliers produ@abitats. Here, the pattern refers to the fact that generalist is-
including those that are produced by generalists. General@ids host a larger number of species and specialist islands host
suppliers are also those that connect with most manufactur@smaller number of species, which constitute proper subsets of
including those manufacturers that procure from only a fegpecies residing in generalist islands. It is only the generalist
suppliers. This highly connected core means that the systigiands that host rarely found species. Islands that host only a
is robust to the disappearance of product demand or failufew species are most likely to host species that already exist
in suppliers. However, it also means that specialist suppligfsthe generalist islands. In other words, it is diversity that
and manufacturers are contipg with generalists and othergenerates diversity.
specialists. After the discovery of this universal pattern, ecologists
Our second contribution is the construction of a multisdebated how the pattern affects stability and persistence of
gent model that creates nested topologies. The model takpscies [6], [14], [24] and how suitable tools could be con-
inspiration from pollinator—Hant network dynamics and canstructed to quantify the degree of nestedness accurately [2],
be calibrated to experiment with different levels of nestedne$a2], [27], [28], [32]. Some recent studies investigate the rea-
The model is aimed at aiding researchers that would lilk®ns of nested pattern emergence, correlating it with species
to work with more realistic supply network structures wheabundance [1], and large-scale network connectance, debat-
investigating systemic outcomes. ing whether nestedness may be a reason or a consequence
In what follows, first, a literature review is presented, folef a truncated power law degree distribution and a modular
lowed by a description of data collection and methodologstructure [30].
Then, the results of the nestednassilysis are given, followed One of the major reasons of the interest in nestedness is
by the development of our model. ecological robustness and stability. In a nested network, most
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plants would continue reproducing after random perturbatioffat subsystem supplier could adopt a specialist strategy or
to insect species because most insects can still continuebtcome a generic entertainniesystem manufacturer with an
pollinate most other plants [15]. Similarly, most insects wouldutomotive division. These local decisions would create an
continue surviving if random pht species disappear becausemergent distribution of production over a chain of firms de-
they can feed from other planResearchers have modeled hoywendent on each other to produce the automobile.
nested structures allow the addition and deletion of species withThe resulting distribution would be important because re-
minimal disturbance to the rest of the network [6], whereakindancies in the SPN can create buffers against disruptions.
others argued this finding could be also dependent on ther the SPN to remain operational, production must continue
frequency of interactions and sensitivity to external changesémen when some of the firms that contribute to production do
the environment [1]. not. This requires that firms have at least partially overlapping
Although a vastly different type of complex system, therproduct portfolios so that firms can replace each other when dis-
are several reasons why investigating nestedness in suppigtions occur. A nested pattern could help understand where
chain networks makes sensedent studies have found supplyand how these buffers are distributed. In addition, the pattern
networks to exhibit complex network patterns such as trunan reveal the level of competition between producers. For
cated power laws and modularity [8], [13]. These patterrexample, distributions with an oversupply of products would
shape systemic robustness, which is a significant concern waiko affect the level of competition in the network, i.e., the more
far-reaching consequences ranging from financial stability fifms overlap in their portfolios, the more competition they
nations to socioeconomic performance in today’s globalizexbuld face. At the abstract system level, animals competing
industries [34]. Given recent studies on the correlation betweenfeed from same resources and thus creating redundancies
these patterns and the presence of nestedness in ecolodargblant reproduction are analogical to suppliers competing for
networks (e.g., [30]), it is plausible that a nested pattern camarket share of products and also creating redundancies for the
emerge in supply networks. Its analysis therefore could gefinal assembly of goods.
erate additional insight into the emergent structure with which A similar reasoning could be drawn for suppliers’ interac-
supply networks are structured and how the pattern or lacktadns with manufacturers. Manufacturers and suppliers form
it impacts the robustness of the overall system. Furthermonaytually beneficial relationships where manufacturers rely on
two previous works investigated ecological patterns in specifappliers to produce products necessary for assembling the final
supply networks. Saavedet al. [23] looked at interactions product. In SMN, if suppliers fail to deliver, manufacturers must
between producers and suppliers in the New York Garmertdntinue producing by sourcing from alternative suppliers, and
Industry, whereas Brintrupt al. [7] looked at the distribution if manufacturers do not produce demand, suppliers must find
of production over the supplier network of Toyota. Althouglalternative buyers.
nested patterns were hinted, neither of these studies investigatedestedness in both the SPN and SMN would create redun-
the coupling of both supplier—product network (hereafter SPNancies against disruptions. In SPN, generalist suppliers would
and supplier—manufacturer network (hereafter SMN) interacreate most product types, including rare products, and special-
tion in these networks. For robustness in a supply network, tis¢ suppliers would produce ubiquitously produced products.
two aspects cannot be separated because each node prodlitiesvould mean that, for the system to fail in delivering as-
one or more types of products and supplies them to other firnsgmblies, only production of a rare product from the generalist
eventually ending with the manufacturer, which assembles tha@pplier must halt, as most other suppliers could be replaced.
products. For a supply network to be functional, both SPM SMN, generalist suppliers would interact with most manu-
and SMN should be robust and contain redundancies at sfagturers, including manufacturers that buy from few suppliers,
tem level. Thus, we extend previous work on complexity iand specialist suppliers would interact with manufacturers that
supply networks by: 1) searching for a nested pattern, whiblay from many other suppliers. This would mean that, for the
has robustness implications at the systemic level; 2) couplisgstem to disconnect, either a generalist supplier or a generalist
the SPN and SMN to provide a complete picture of the sysranufacturer must become disrupted.
tem; and 3) creating a multiagent model that generates nestedlo analyze nestedness, we first collect data on a particular
topologies. supply network, i.e., that of the global automotive industry.
Consider the manufacturing of an automobile dashboard. Thata from the automotive industry are sufficiently large and
final assembly would contain several parts, including wiperspmprehensive enough to derive meaningful statistical analysis
headlight switches, and entertainment systems such as a radigarding both SPN and SMN. The industry has been a pioneer
Each of the parts may entail complex subassemblies and softsupply chain engineering, providing us with mature network
ware. All of these would be made from a variety of partstructures. The automotive industry is also one of the first
and raw materials, including adtic, metals, and ceramics.industries in which a network view has been adopted with
The assembler would decide on which parts to outsource asmmmercial supply chain solutions for design and optimization
which to produce in-house. A “generalist” strategy can be.g.,[20]). However, to dateery little has leen reported about
adopted, wherein the firm would maintain an extensive prodwgergent patterns in the industry and how emergence affects
portfolio and produce most of the dashboard itself, or follow systemic outcomes (few works on general network structure
“specialist” strategy by outsourcing the dashboard and focusimglude [7] and [18]. Next, we describe data collection and
on some other types of work. The supplier entrusted with pranalysis followed by the development of a multiagent-based
ducing the dashboard could source the entertainment systemodel for nested topology generation.
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I1l. DATA AND METHODS B. Analysis of Nestedness

A. Data Collection Several metrics have been proposed to compute nestedness
To maximize our chances of identifying clear patterns, wef bipartite networks (please see [33] for an excellent re-
collected supply network data from the automotive industry fafew). Although accuracy of each metric is debated [27], [33],
which a large sample size is available. This industry choigee most commonly accepted and used metrics include matrix
allows us to use network data from a single database manaéffperature (MT) by Atmar and Patterson [3] and nested over-
by an independent agentfhis database is comprehensive an@p and decreasing fill (NODF) by Almeida-Negt al. [2].
offers consistency when compiling data. These have been used to calculate the nestedness of empir-
Data were downloaded from the database during Octolédl sample and the multiagent model proposed in Section V.
2013-January 2014 and included firm identity, clients, Subl addition, we report on the morecent spectral radius metric
pliers, and products offered. Tée independent researcherffoposed by Staniczenlet al. [27] as we feel that this metric
have cross-validated data. After data codification, firms that #8ll become another standard. The main reasons for the selec-
not have outgoing links have been captured as manufactur&i@d) of these metrics are their availability in standard calculator
whereas all other downstredimms have been captured as supPackages and their popularity, which allows for comparison
pliers. As every supplier is coded with a unique identificatiof® Other nested complex networks reported in literature. In all
intertier linkages and supplier links to multiple clients could bBetrics, first, a packing procedure is applied, which reorders the
also identified. binary matrix according to row and column totals. Afterward,
Our construction of the SMN includes 18942 firms, ofhe metrics are calculated using the Nestedness for Dummies
which 16 468 are supplier firms and 2474 are manufacturety€D) package [28] .
with 103602 relationships among them. There are a total of ' "€ large sizes of the SMN and SPN meant that standard
934 product types in the network, produced by 16 468 Supp"fé@stedness calculators could not be used to .analyze the whole
firms, creating the SPN. network. Furthermore, a smaller network size would make
Please note that the term products, product categories, SR parison with ecological .reports of nestedness possible. We
product types are used interchangeably throughout the mi}erefore opted for a sampling approach, where we composed
uscript. A product refers to one of the product categories fifiacency matrices by sammirb0 suppliers and listed their
the network, which are generic automobile components aREPducts in SPN and the manufacturers they interact with in
subsystems, rather than model specific. These could inclugfdN- In addition, 1000 samples have been drawn for each
categories such as gearbox, air conditioner, and wiper swit@ SPN and SMN. The approach resulted in slightly different
Product categories are thus viesvas substitutable. Generid!Umbers of product types and manufacturers at each sampling,

processing capabilities such as forging and plastic moldiff§gSCIiPtive statistics of which are given in Table |I.

were ignored. Our view is that suppliers that create these’ brief overview O.f nestedn_ess metrics is given as follows.
MT: As the earliest metric to calculate nestedness, MT

generic product categories cdube substitutable as they have

the general capability and tools to produce a given product. first F:alculates aqucIme of perfe_ct nestedness (IPNof a
Furthermore, supply networks are dynamic construct@atrix of the same size. The algorithm then notes all expected

changing frequently; thus, efforts to map them, such as tRBservatlons and unexpected absences before and after the iso-

study we currently undertake, would only represent a croscé'-ne' The average residual from the isocline gives a nestedness
sectional reality in time. Conclusion should therefore be také%mperaturg, between 0 and 100, with 0 being a perfectly

as suggestive rather than definitive given the lack of nonauf?)piStecj matrix.

motive firms in the data and knowledge on what proportion of NODfF: Thedtemperr;ture mdet_rlc m|?ht overistlm_at_e th‘? de-

the network is composed of them. (ype-| satistical erer [33], The alternative measure of NODF.
Despite these shortcomings, the data set is the most com- S . ;

prehensive data set reported to date on automotive supply %’%Cks fqr tW(.) E)roper"fles_ thata nest”ed matrix _shou_ld _have, €.,
ecreasing fill” and “paired owtap.” Decreasing fill is the

\év:r:kbsé %nedn:fril:(ljyss shows that statistically significant patterarsadual reduction of the number of interactions from the most

Following data collection and validation, data analysis to&eneralist to the most specialist firms in the matrix, whereas
place. Analysis is divided into two main pa,rts paired overlap determines whether the number of interactions

) of a given species overlaps with those of the subsequent most
1) Standard metrics have been used to analyze the de%@ﬁeralist species.

of nestedness in the sample. Both the SMN and the SPNgR- gR is a recently proposed metric, which computes

have been found to be significantly nested. nestedness as the maximum eigenvalue of the adjacency matrix.
2) A multiagent model has been created for supply networkThe significance of a nested pattern is examined by com-

researchers to create benchmark nested topologies Will}ison to randomized null models. Two null models described
a minimal set of parameters for hypothesis testing. Th|o\ are used to assess significance. For a detailed review of
model was then calibrated using the original sample. 5nnropriate null models for testing nested patterns, please
Next, we describe the metrics used to identify nested pattegsse [33].
in the sample. EE (Equiprobable Row and Column Totalsyhis model
maintains the total number of species occurrences in the matrix
Iwww.marklines.com but allows both row and column totals to vary freely. In the
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TABLE |
NESTEDNESSMETRICS OFEMPIRICAL SPNAND SMN SAMPLES COMPAREDWITH ECOLOGICAL SAMPLES OF SIMILAR FILL RATE
N row N Niinks Fill rate NODF T SR
Supplier-Product Network 50 260 £3.08 978.80 £ 37.88 | 0.08 £0.002 17.88+£0.9 928 +£0.51 17.23 £ 0.42
Supplier-Manufacturer Network 50 58.03 £ 2.61 26438 + 13.47 0.09+0.004 | 1970+ 0.86 | 11.27 £0.58 8.89 + 0.46
Great Basin fish (Smith, 1978) 48 78 237 0.06 23.16 5.70 9.22
South Africa Sciobius weevil
(Morrone 1994) 21 47 124 0.13 2290 22.60 7.18
Desert scrub mice (Brown and
Kursius 1987) 140 27 460 0.12 29.132 18.32 12.77
o i Suppliers Suppliers
B W o -
g § b ’ 3 .‘l
w .
e & L n 5
o .
a 1
. " F - i
g = % Products Manufacturers
Sl RN (@) (b)
PRODUCTS

Fig. 3. Bipartite (a) SPN visualizatn. Suppliers are at the top, and products
Fig. 2. Typical nested ordering ofippliers and their products. (a) Randomlyare at the bottom. Most suppliers produce subsets of each other’s products,
organized matrix. (b) Packed matrix. making most products ubiquitously prazikd. A few rare products are produced

by those suppliers that produce most other products. The left-hand side of

. . . . the network has high density of connections, showing the generalist suppliers
case of SMN, this null model varies the number of interactioRgnnecting to ubiquitously produced products. A similar pattern is observed

between suppliers and manufa@rg while keeping their to- in the SMN: (b) SMN visualization with suppliers on top and manufacturers
tal number fixed. In the case of SPN, this null model varié%;‘ the bottom. Suppliers supply to §ubsets of each other’s buyers. The man-
. . . ufacturers that connect to few suppliers connect to those that supply to many
the number of products offered by suppliers while keeping th@\ers. The suppliers that supply tdew manufacturers supply to those that
total number of suppliers and products fixed. buy from many others. The generalisiso connect to specialist products.
CE (Proportional Row and Column Totals)Fhis model Sgt?]cisag?\lt—taca—gpse'\(/:lislist connectionage on the right-hand side is sparser in
assigns a probabilitpf occupation proportional to the corre- '
sponding row and column totals of each cell. The probability of
a presence in celt;;’s occupation is given as supply to subsets of each othersylers (i.e., manufacturers).
Manufacturers that procure from a few suppliers procure from
those that supply to many others. Similarly, suppliers that sell
to a few manufacturers sell to those that buy from everyone
) o , else. Table | reveals the formal results on the empirical sam-
whereR; is thE_’ number‘of presencesin rovC; is the number ples. Both SPN and SMN are significantly nested in all three
of presences in colump C'is the number of matrix columns,memCS studied (alp < 0.001, except one SMN case where
and R is the number of matrix rows. Hence, the mean row o o5y For comparison, we included nestedness metrics

(suppliers) and column (number of manufacturers in SMN gfo ) ecological samples reported in literature: These samples
products in SPN) totals are not biased and match to that of {18 o heen selected because @f similar fill rate and scale of

original matrix. This null model is considered the most realistig,q;y adjacency matrices.
because it is restrictive and can identify differences betweenThiS result is intriguing in terms of both cause and implica-
segregated and nested patterns [33]. tion. We discuss these next.

The emergence of a nested pattern in SPN contradicts classi-
cal management thinking that piet$ either niche or generalist

Fig. 2 shows a typical sample and how a nested pattguroductionin cooperative organizational ecosystems (e.g., [11]).
is revealed after reorderinghe figure depicts the IPN andOn the other hand, conventional supply chain management
how sample data show clustering of presences above the ItPiking would suggest that an idealized cooperative supply
and absences below. Another visualization can be observedéatwork matrix would have a block-diagonal structure, with all
Fig. 3, which illustrates the bipartite graphs associated wiluppliers producing specialized products and each sharing re-
SMN and SPN. It appears that most suppliers produce subsgisnsibility in the final assembly. A purely competitive market,
of each other’s products, whereas few specialized products arethe other hand, could aggregate in communities producing
produced by those suppliers that produce most other produsimilar goods (e.g., [12]). In the samples studied, “specialists”
The same pattern is observed in the SMN. Most suppliease not specialists in the conventional sense at all, in that

=l Q=

IV. NESTEDNESSANALYSIS
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TABLE Il

EXTREME GENERALISTS AND SPECIALISTS

Most generalist products
(products supplied by highest number of suppliers)

Most specialist products
(random selection of products supplied by least number of suppliers)

Elemental components: bush / seal, pipes, spring, bearing,
gear, shaft, pin, valve, etc.

Engine main structural part: crank shaft, piston, drive plate,
con rod

Brake parts

Interior trims :door trim, roof trim, carpet

Drive train: Multiple Disc and Viscous LSD
Drive train: Power take off
Alternate fuel system: LPG and CNG
Current collector for nickel metal hybrid battery
Anode current collector for lithium ion battery
Heater solenoid valve

Most generalist suppliers in SPN
(suppliers offering highest number of products)

Most specialist suppliers in SPN
(random selection of suppliers producing least number of product types)

Magna International

Denso Corporation

Robert Bosch LLC

TRW Automotive Holdings Corporation
Delphi Automotive PLC
Aisin Seiki
Hitachi Automotive Systems
Dongfeng motor parts

Valeo S.A.

Continental AG

Huari Paint
Shenyang Tim-High Material Development Co., Ltd.
Rayconnect Inc.
Beijing National Battery Technology Co. Ltd.
Shin Etsu Magnetics Inc.
Malaysian Sheet Glass Bhd

Most generalist suppliers in SMN
(suppliers linking to highest number of manufacturers)

Most specialist suppliers in SMN
(random selection of suppliers linked to least number of manufacturers)

Magna International
Denso Corporation
Robert Bosch LLC
TRW Automotive Holdings Corporation
Delphi Automotive PLC
Aisin Seiki
BorgWarner BERU Systems Inc.
Johnson Controls
ZF Friedrichshafen AG

LEONI Automotive
Tianjin Toyotsu Otsuka Textile Co. Ltd
Eikoh Plating Co.

Most generalist manufacturers
(manufacturers linking to highest number of suppliers)

Most specialist manufacturers
(random selection of manufacturers linked to least number of suppliers)

Ford
Toyota
Honda

General Motors
Nissan
Volkswagen

Dorsey Trailers
Norinco
Yunding FAW
Sumimoto Construction Machinery
Guilin Daewoo
The London Taxi Company

they produce redundant products and serve companies thatthey are produced or the volume with which they are demanded
served by others. It is the “generalists” that are at the sarnmethe market. Further longitudinal analysis would be necessary
time specialists, in that they produce rare products and seteainderstand the extent to which these two dynamics affect the
to manufacturers that buy from only a few. evolution of the product portfolio.

Several alternative hypotheses might support the formationThe pattern has two implications in terms of robustness of
of a nested pattern in SPN. Looking at the suppliers atite SPN system. First, if suppliers fail to deliver their products,
products at the extreme ends of the matrix reveals some hititen there is sufficient redundancy in the network to procure
(see Table II). The most generalized suppliers have an averégen other suppliers. Second is that rare, complex, and high-
of 126 666 employees, with amaual revenue d$2.7 billionin  value products are produced by large suppliers who might be
2014. They are bigger firms compared with specialized suppiitore stable. Hence, rare products being produced by generalists
ers. It is also apparent that the least ubiquitous products are¢could make the system more stable. On the other hand, small
general, more complex and higher value than most ubiquitouslyppliers seem to produce products that can be procured from
produced product types. An explanation as to why only largdsewhere, making them compete with both small and large
suppliers produce these product types could be that they requ@u@pliers, possibly making them more vulnerable to changes
higher investments in production, which only these companigsdemand and other market conditions. Turning our attention
can afford. Another non-mutually exclusive reason could ie SMN, we notice another side of the story embedded in
that these companies acquire newer more complex technoltigg structure. In SMN, both generalist suppliers and gener-
as they have had more mergers and acquisitions in the pastaést manufacturers are on average, bigger, and have higher
years (average of 4.7). Howey&vhile this reasoning explains revenues compared with specialist suppliers and manufacturers
why complex products are produced by generalist suppliers(see Table II). Generalist manufacturers that depend on a few
does not explain why these firms do not let go of the productisappliers depend on those generalist suppliers that sell to
of simpler product types. It could be that these products stihtany other manufacturers. Suppliers that sell to a few man-
offer value to the supplier through the efficiency with whiclufacturers sell to those that buy from many. Most generalist
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manufacturers buying from many suppliers include well-know
automotive producers, whereagsfalist manufacturers occupy
niche positions. For example, Dorsey Trailers is a USA-basg
trailer manufacturer, Norinco produces defense vehicles f
China, Sumitomo Construction is specialized in constructio
vehicles, London Taxi Company manufactures black cabs f
London, and Guilin Daewoo is a bus and coach producer
China. Similar to generalist mafacturers, these manufacturerg
also tend to buy from the most generalist automotive supplie
in the network. As such, specialist manufacturers are competi
over the same resources with generalist manufacturers, wh
could include products, producticapabilities, or administra-
tive teams that handle procurement.

In network terms, both in SPN and SMN, high degree nodd

(1) Initialise plant habitats with P number of plants in randomly distributed
positions.
(2) Assign same nectar level N, to each plant
(3) Initialise B number of insects at the centre of the habitat with energy Ej
drawn from a uniform distribution. Each insect needs to drink N nectar level
when it visits a plant
(4) For each bee:
If : By = Energy threshold, find plant P with max(N,) within radius R
Else: move to nearest plant with highest nectar
Lose a unit of energy at each move
When on plant p, add p to set of plants Py: {} visited by b
Drink nectar from p
E, = Ey + Ejp = Fy, where Fy, is efficiency of insect
1Py
Fb = —PE'
(5) For each plant;
If: N, > N, give nectar to the next insect that visits. N, = N,,
Else: Wait [ iterations for nectar replenishment

—-N

of one type connect to high degree nodes of another, and Id
degree nodes connect to high degree nodes of either type. Ejges. aigorithm for the multiagent model.
pattern would suggest a connected core, where only the failure
of large degree nodes would fail the system. A simple pref- :.
erential attachment dynamicg@lied to bipatite convention >
could explain this formation [30]. Ecological studies of nested
networks prove that these networks are robust as a whole [6],
[14], [24] yet also caution that they are so, at the expense
of vulnerability of species that contribute most to the nested
architecture as they face more competition over resources [24].
Nestedness in both types of networks occurring in supply
networks necessitates us to revisit our assumptions on topology.
Manufacturing engineering has long modeled supply networks
as simple chain-like local structures, to which the reality
does not match. These models have been used to optimize
operational performance and robustness to uncertainties. The
reason for this has been the lack of data and understanding of
emergence at systemic levels, resulting in an assumption that
supply networks are designed at the local level and do not have
predictable CAS patterns. Using topologies based on real life [
would help inform existing models and create more accurate =
assessments of system performance.

‘i

ff“‘

1‘}*

L
L.

Fig. 5. Multiagent model simulating insect nectar-harvesting behavior. Col-
ored patches are plants that provide nectar harvested by insects. Insects start
from the same position and travel through patches as they extract more energy.

V. MULTIAGENT-BASED MODEL FOR

nectar stabilizes. The main steps of the model are presented in
SuPPLY NETWORK FORMATION

Fig. 4, and a visualization of the habitat is presented in Fig. 5.

Our analysis showed that both SMN interactions and theAlthough inspired by insect behavior, the model itself is
distribution of production among supplier firms show nestegkeneric, in that it can be calibrated to create nested topologies
patterns. With this motivation, we create and test a model ffor any kind of network, be it plant—pollinator networks or
researchers to create benchmark topologies with a minimal sepply networks. The model is then calibrated to represent the
of parameters for hypothesis testing. SPNs and SMNs and validated bgmparing to nestedness val-

The model is inspired by the feeding behavior of insectaes in the automotive network samples reported in Section IV.
A number of insects are created at the same position in a habi@iir model success criterion is thus a close match in nestedness
which contains a number of plants. The plants are randomly dis- values obtained from the real-life supply network system
tributed over the habitat. The insects drink nectar from planstudied in this paper.
which gives them energy to move around the habitat. The nectain order to facilitate comparison with empirical data, insects
of plants decreases as insects forage; however, the nectar re¢eiy:, suppliers) are not allowed to go extinct even if their
erates after a set amount of time. The more energy insects harergy level becomes zero. Thigans that existing species are
the more they can travel to discover plants that have nectar. Tgreserved and members of neither species can be deleted.
diversity of feeding resources gives insects a slightly higher The model is coded using the multiagent simulation package
efficiency in the amount of energy they can harvest per tinNetLogo (see Fig. 5). Model calibration is then carried out
period. All insects and plants start off with the same levels ¢ include same levels of insects (e.g., suppliers) and plants
energy and nectar. The simulation continues until the amount(efg., products or manufacturers) and links between them.
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Fig. 6. Comparison of nestedness of the agent-basmdkl with empirical (a) SPN sample and (b) SMN sample.
40 5 VI. CONCLUDING REMARKS
3 Inspired by studies on ecological networks, we looked for
30 I I :[ a nested pattern in two types of coexisting bipartite supply
251 § 1 networks, namely, the SPNs and the SMNs. Our analysis on
g 20 1 the automotive industry highlighted a systematic relationship
15 12 between firm-level procurement decisions and the resultant
10 - system structure. Using three metrics and large-scale data from
5 - the automotive industry, it was shown that both networks are
" . . . . . nested. Firms that produce rare products are those that are
0 1000 2000 3000 4000 5000 s000  highly diversified (generalist firms), and firms with small port-
Oléemivns o001 folios produce products that are common in the market. This
ep=0. *p=<0.

finding is in contrast to the conventional wisdom, which pre-
Fig. 7. MT value becomes significant as insects discover their habitat. ~ Scribes market segmentation with specialized firms producing
a small number of rare products and generalist firms producing
Fig. 6(a) and (b) shows that results obtained from the modatge portfolios with standard products. The most ubiquitous
closely match results from the ginical data on all nestednessproducts are standardized lower value goods, whereas the rare
metrics used in the empirical sample. A comparison betweproducts are those that are more complex to produce and are of
the level of nestedness obtained from the empirical samples, tigher value. Generalist suppliers tend to supply products that
multiagent model, and a randomized network based on the @& supplied by other generalist firms; nondiversified firms tend
(proportional row and columrotals) null model is also illus- to supply what all other firms supply. This means diversified
trated. Thep values for all runs for the random model have be€firms have more rare products ineih portfolios, in addition
p > 0.5, whereas for the multiagent model, the values have ubiquitous products. An evolutionary stance could suggest
beenp < 0.001. Fig. 7 shows the change in MT as insects mouwhat, as suppliers grow, they become more diversified and add
around the habitat. In addition, 100 runs were repeated. Afteore niche products to their portfolio while keeping to their
initial random distribution, the MT value gradually stabilize®ld products; however, we would need longitudinal studies
and becomes more significafpt < 0.001). to confirm this hypothesis. In the automotive industry sam-
The simple set of rules given above creates a “rich-ggiled, large firms such as Bosch or Denso produce innovative
richer” phenomenon. Over time, some insects get better pbducts, whereas small supplier firms produce standard parts
harvesting nectar and feed from a more diverse set of plargech as fasteners and plastic molding parts. Thus, the pattern
Other insects never have the chance to travel as they néetes us to redefine generalist and specialist firms in supply
to wait at the same location farectar replenishment due tonetworks because “generalist’fis are the companies that tend
their lack of energy. Most insects fall somewhere in betweea produce niche products in the network, and “specialist” firms
in their energy and feeding diversity levels. While most insectsnd not to produce them.
ubiquitously feed on the nectar of central plants, insects thatMost generalist suppliers are involved in a higher number of
manage to outcompete other insects and feed more from ubitgrgers and acquisitions, which makes vertical integration one
uitously harvested plants can go on to discover new plants wjibssible explanation. This, in turn, might mean that companies
more nectar. This dynamic is analogous to suppliers adding néhat only produce rare products are more likely to be integrated
products and clients to their portfolio as their production anslith other companies, creating larger suppliers with diverse
investment capabilities grow if they succeed in competition. product portfolios. In addition, we observe that generalist
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suppliers have higher revenues and therefore higher capabilitrgeraction is known, its extent is not. Studying the amount of
for larger investments in production. Since it appears that ttrade between suppliers and manufacturers and the volume of
rare products tend to be more complex and are of higher valpepducts produced by suppliers would make the analysis more
they may require higher investments in production, which onlgformative and help overcome any erroneous interpretation.
generalist suppliers can afford. A recent metric proposed by Staniczenko [27] enables the
The question remains as to whgeneralist suppliers hold on detection of nestedness on quantitative matrices and highlights
to the ubiquitously produced products. One explanation coulie need for further study. Second, we have used standard null
be that there is more demand for these products and produaingdels from the field of ecology. The creation of specific null
them is still profitable. Another explanation could be capacitypodels for supply networks could help compare results to more
constraints on ubiquitous products, which increases demamedlistic structures. This inevitably depends on the gathering
for them. of more empirical data on large-scale supply networks from
Specialist suppliers compete within the ubiquitous produdifferent industries. Recent advances in traceability technology
space, which means that they face more competitors in thier promise in this respect. Furthermore, longitudinal data
market, including large diversified suppliers. Of course, theyould help detect the extent tohich nested patterns result
might be able to handle the competition because of logistidabm evolutionary processes.
advantages or because there is enough demand in the market for
ubiquitous products. One could also imagine that their product
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