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Abstract—Load management is being recognized as an important
option for active user participation in the energy market. Traditional
load management methods usually require a centralized powerful
control center and a two-way communication network between
the system operators and energy end-users. The increasing user
participation in smart grids may limit their applications. In this
paper, a distributed solution for load management in emerging smart
grids is proposed. The load management problem is formulated as a
constrained optimization problem aiming at maximizing the overall
utility of users while meeting the requirement for load reduction
requested by the system operator, and is solved by using a distributed
dynamic programming algorithm. The algorithm is implemented
via a distributed framework and thus can deliver a highly desired
distributed solution. It avoids the required use of a centralized
coordinator or control center, and can achieve satisfactory outcomes
for load management. Simulation results with various test systems
demonstrate its effectiveness.

Index Terms—Load Management, Distributed Algorithm, Dy-
namic Programming, Smart Grids

I. INTRODUCTION

Driven by economic and environmental concerns, the power

grid is demanding for transformation to an efficient, flexible,

reliable and sustainable energy grid [1], [2]. This is the frequently

mentioned ‘smart grid’. First, a smart grid is expected to ac-

commodate more and more renewable energy sources. Second,

it needs to accept more and more active participation from

energy end-users. This user participation can actively improve

the electricity market by reducing the overall cost of energy

supply, increasing the reserve margin, and assisting to maintain

the system reliability [3].

In recent years, load management (LM) program, also known as

demand response (DR), is introduced as one of impressive options
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for user participation. It refers to changes in electricity adjustment

by end-use customers in response to electricity price changes over

time, or in response to the incentive payments designed to lower

electricity consumption when the system capacity is stretched or

reliability is jeopardized [4]. EPRI estimates that DR has the

potential to reduce the peak demand by 45000 MW [5]. The

Battle Group claims that even with simple price mechanisms, DR

could provide annual benefits in tens of millions of dollars [6].

The U.S. Federal Energy Regulatory Commission has conducted a

benefit-cost analysis and shows that if LM is incorporated into the

regional energy market, over $60 billion saving could be achieved

[7].

LM programs take two forms, incentive-based programs (IBP)

and price-based programs (PBP) [8]. In the former, participants

are rewarded with money to reduce their electricity consumption

(load) when requested by the program sponsor, triggered by

high electricity prices or peak in demand. The earned incentives

depend on both the amount of load reduction required by the

program sponsor and corresponding incentives offered during

these critical periods. Many utilities or third-party organizations

in North America and around the globe have experiences with

IBP. California-based PG&E offers base interruptible program

and demand bidding program, and both belong to this class [9].

The emergency DR program used by Pennsylvania-New Jersey-

Maryland power market offers energy payments to customers who

reduce their load during system emergency, which also belongs

to IBP [10].

PBP gives customers dynamic pricing rates that reflect the

value and cost of electricity during different periods. The ultimate

objective of these programs is to flatten the demand curve by

offering high price during peak periods and low prices during

off-peak periods. The rates used by PBP include time-of-use rate,

critical peak pricing, extreme day pricing, real time pricing, etc.

[11]. In deregulated market, many utility companies are able to

provide PBP [12]. The PBP participants can benefit from an LM

program by saving electricity bills instead of receiving money

payment from the program sponsor directly.

Over the past few decades, both the manner in which LM

was applied and the market knowledge of its potential values

had improved. However, the experiences with LM receive mixed

reviews [13]. Overall, current LM programs are too clumsy to

some extent and inconvenient for continuous and repeated use.

The issues such as reliability drop due to frequent schedule ad-

justment, communication link loss or operating condition changes

http://arxiv.org/abs/1710.08592v1
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accompany the practice of LM. Program participants may also

experience comfort and business continuity concerns when they

fulfill their LM targets. To overcome these problems, a more

active, automated and integrated LM solution is highly demanded.

Some dissenters argued that the owners with LM capacity

were in unrelated businesses and the grid operator should not

count on them. However, large-scale LM has proven its value

in enhancing grid reliability and reducing the overall cost of

energy supply. The rollout of intermittent resources, such as

wind and solar, is increasing the relevance of LM as a top-tier

resource [14]. To integrate more LM resources into the system,

the LM control system tends to become more sophisticated with

parallel and multichannel communications among its elements. It

is well recognized that the traditional vertical-based, centralized

commanded LM solution is insufficient for this burdensome task.

It is known that centralized solutions are susceptible to single

point failures and may not be applicable under certain situations

[15]. The control center for centralized an LM solution needs

to collect all the information from energy users and a powerful

central controller is required to process a huge amount of data

[16]. Consequently, these solutions may fail to respond in a timely

manner, especially during the peak-load period when the power

grid is under high stress. Moreover, the applications of LM in

industrial or residential sectors have been limited due to the

lack of knowledge about the controllability of loads [17]. In the

existing LM or DR programs with such direct or interruptible

load control, the equipment of participants is required to have the

ability to be remotely shut down by utilities at a short notice.

For the energy users without remote control access, they cannot

be enrolled into the LM program even if they are willing to do

so. Thus, these centralized-based LM applications cannot fully

exploit the potential of LM programs.

To address the aforementioned issues caused by centralized

solutions, various distributed solutions have been proposed. In

[18], a distributed LM algorithm is proposed for a plug-in

electrical vehicle charging problem in a smart grid based on

a congestion price mechanism. However, the algorithm relies

on obtaining the unified price signal in a centralized way. In

[19], a distributed LM strategy based on the alternating direction

method of multipliers is developed. Yet, the proposed method

not only requires all energy users to report their loads to the

system operator but also needs the system operator to send the

control signals back to each user. This two-way communication

mechanism thereby requires a communication system to have high

transmission rate since the number of energy users participating

in an LM can be very large. The introduction of aggregators may

relieve the burden of the system operator for communication to

some extent. However, to render a reliable LM program, heavy

communication between the system operator/aggregator and users

should be avoided. To overcome these limitations with existing

LM/DR solutions, we need to develop a active and flexible

LM solution with a distributed framework and communication-

efficient mechanism.

This paper presents a distributed LM solution to reduce peak

load in smart grids. The proposed solution aims at maximizing

Fig. 1: Design of the proposed LM system

the total utility of all energy users where the LM problem is

formulated as an optimization problem. A distributed dynamic

programming (DDP) is employed to solve the problem in a

distributed way. In the proposed solution, each energy end-user

is represented by a load management agent (LMA). An LMA

can exchange information with its neighboring LMAs. During

LM, an LMA first receives the information of load settings and

incentive for an LM event that is broadcasted by the system

operator. Then the LMA participates in the optimization process

in cooperation with its neighboring agents to obtain an LM

solution. The obtained solution tends to maximize the total utility

of energy users while meeting the requirement for load reduction.

The rest of the paper is organized as follows. Section II

introduces the design of the proposed LM system and formulates

an LM problem. Section III presents a DDP algorithm for solving

the LM problem and discusses its implementation. Section IV

presents simulation results and Section VI concludes the paper.

II. SYSTEM DESIGN AND PROBLEM FORMULATION

A. System description

The designed LM system is depicted in Fig. 1. We adopt an

incentive-based mechanism as it can be used in a regulated or

deregulated energy market. Each user is assigned with an agent,

LMA, for LM. The load of a user can be physical devices or

virtual “load” that is aggregated through several physical devices,

such as gateways introduced in [20].

When an LM event is initiated during a peak-load period,

the system operator (utilities) first calculates the total loads for

all users after LM, PG, based on the current need for load

reduction, PR. PG is calculate as PG = PM −PR with PM being

the currently running load. Then the system operator broadcasts

the information of PG and Ic to each LMA. Here Ic is the

incentive. Once this information is obtained, the agents cooperate

with each other autonomously to achieve the LM target, without

a centralized controller or coordinator. Each LMA is designed

to receive information from the system operator, to exchange

information with its neighboring agents and to update its load

settings according to certain rules based on a DDP algorithm. The

topology of the communication network for information exchange

among these distributed agents can be designed to be the same

as that of the power network. However, other topologies may be

adopted [16].

The proposed LM solution needs communication links among

neighbors only. As two neighbors are usually close to each

other, communication infrastructure investment is thus small.

By utilizing some particular communication technology such as
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power line communication [21], this part of investment can be

reduced to the minimal. These agents act as a coalition to meet

the requirement for load reduction while maximizing their overall

energy-use utility by taking into account the comfort and business

continuity concerns. This problem is formulated as a constrained

optimization problem to be discussed in the next subsection.

B. Problem Formulation

It is assumed that there are n users available for an LM

program. Generally, the system operator does not have the right to

control the loads of users, and is only responsible for broadcasting

information of PG and IC to all users. The users cooperate with

each other autonomously to maximize their overall utility while

meeting the minimum requirement for load reduction requested

by the system operator to reduce the peak load.

Considering that a user can shed partial or all of its load, we

represent the status of a load sector by using a state variable xk
i

as:

xk
i =

{

1 if the kth load sector is on

0 if the kth load sector is off

where i = 1, 2, · · · , n, k = 1, 2, · · ·ni with ni being the number

of the load sectors of user i. For a user with ni load sectors, the

LM can control each load sector, thus resulting 2ni load reduction

settings. Accordingly, a user can shed a portion of its load by

setting xk
i properly.

Let P k
Li be the kth load sector of user i before an LM event.

Accordingly, the utility of user i during the LM event can be

defined as:

Ui =

ni
∑

k=1

xk
i W

k
i P

k
Li − Ic

ni
∑

k=1

xk
i P

k
Li (1)

where W k
i is a pre-defined weight factor for user i. It should be

noted that the weight factor can be defined based on either the

priority level of the load, which indicates the load preference, or

the production of unit power consumption [22]. The first right

term of (1) denotes the benefits of user i by consuming a certain

amount of power, and the second term denotes the incentives loss

if the corresponding loads are in effect.

To maximize the total utility of all users, i.e., the utility of the

LM coalition, we have the objective function:

max

n
∑

i=1

Ui =

n
∑

i=1

(

ni
∑

k=1

xk
iW

k
i P

k
Li − Ic

ni
∑

k=1

xk
i P

k
Li) (2)

To satisfy the requirement for load reduction given by the

system operator, the total load of users needs to satisfy:

n
∑

i=1

ni
∑

k=1

xk
i P

k
Li = PG (3)

Since
n
∑

i=1

Ic
ni
∑

k=1

xk
i P

k
Li = Ic ∗ PG, the LM problem is formu-

lated as a constrained optimization problem as:














max
n
∑

i=1

ni
∑

k=1

xk
iW

k
i P

k
Li,

subject to
n
∑

i=1

ni
∑

k=1

xk
i P

k
Li = PG

(4)

The optimization problem formulated in (2)-(4) is one of the

practical LM programs that aims at maximizing the overall utility

of users while satisfying the load reduction requirement given by

the system operator [23]. It can be shown that this optimization

problem is actually a 0–1 knapsack or bin-packing problem, and

dynamic programming (DP) is one of the effective techniques to

solve this kind of problems.

To render an autonomous LM solution, traditional methods may

be insufficient as they usually demand centralized command based

structures. For centralized solutions, the communication traffic

and low-latency may not be an issue if only a small number

of users are participating in the LM program. However, when

more and more users with multiple load sectors (devices) are

enrolled into it, one has to consider the potential traffic jam since

the common control center has to collect all the data. Another

issue with centralized schemes is the control access of users’

load sectors. Generally, users are reluctant to allow the system

operator to control their devices, which may lead to unbearable

interruptions of their electricity supply. The redundant centralized

scheme seems to be an alternative solution, but neither users nor

utilities are willing to pay for this investment.

Nowadays, distributed intelligence is making headway in smart

grid applications. By a) creating a sensory network spread across

our transmission, distribution and local consumption systems and

b) integrating with communication networks, intelligent devices,

etc., the distributed control and optimization of the electric

power grid tend to drive the current power grid to be a more

reliable, more secure, more energy-efficient “smart grid” [24].

This motivates us to develop a distributed algorithm that can solve

an LM problem in a distributed way, leading to an autonomous

LM solution.

III. DISTRIBUTED DYNAMIC PROGRAMMING

A. Abstract Framework of Dynamic Programming (DP)

The abstract framework for DP, first introduced in [25], is used

to illustrate the proposed DDP.

Let S be the set of feasible states and its elements are defined

as state variables denoted by vector x. Let F be the set of all

extended real-valued functions J : S → [−∞,+∞] on S. ∀
J1, J2 ∈ F , the following notation is used for convenience:

{

J1 ≤ J2, if J1(x) ≤ J2(x) ∀x ∈ S

J1 = J2, if J1(x) = J2(x) ∀x ∈ S
(5)

Let H : S × F → [−∞,+∞] be the mapping which is

monotone in the sense that for all x ∈ S,

H(x, J1) ≤ H(x, J2), ∀J1, J2 ∈ F with J1 ≤ J2 (6)

The DP objective is to find a function J⋆ ∈ F such that

J⋆(x) = inf
x∈S

H(x, J⋆), ∀x ∈ S (7)

Define the mapping T : F → F as:

T (J)(x) = inf
x∈S

H(x, J) (8)

Here, T () is a serial of operation or computation procedures,

collectively defined as the operator to map the objective function

to its optimum. Accordingly, the problem can be stated as to find

the fixed point of T within F [26], such that:

J⋆ = T (J⋆) (9)
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For the LM problem given in (4), to maximize overall utility

of n users under the condition that the total generation is less

than PG, the DP process can be described as:







f⋆
k = min{f⋆

k−1 − xkWkPLk}, f⋆
0 = 0,

subject to
∑

i=1

xiWiPLi ≤ PG
(10)

where xk is the kth element of x, and k = 1, 2, · · · , n.

Define H and J as follows:
{

H(xk, J
⋆) = J⋆(x1, ...xk−1)− xkWkPLk (11a)

J⋆(x1, x2, ...xk−1) = f⋆
k−1 (11b)

Thus, the mapping T is then defined as:

T (J)(x1, · · · , xk) = inf
x∈S

H(xk, J
⋆) (12)

From the definition given above, one can see that the LM

problem can be generalized as a DP problem. It is worthy to point

out that the original utility maximization problem given in (4) is

translated to a minimization problem as shown in (10). Notice

that H defined in (11a) is monotone since J is nondecreasing

and xk,Wk and PLk are nonnegative.

B. Distributed Solution for Dynamic Programming Problem

For an LM problem, it is assumed that each load/user is

assigned with an agent for distributed computation. For a system

with n agents, the state space S is composed of n state variables,

x1, x2, · · · , and xn. Each agent is responsible for computing the

values of the solution function J⋆ at xi. Agent j is said to be a

neighbor of agent i if j 6= i and there exists a communication

link between i and j.

The set of all neighbors of i is denoted as N(i). Intuitively, j
is not a neighbor of i if the values of J on xj do not influence the

values of T (J) on xi. As a result, in order to compute T (J) on

xi, agent i needs to know only the values of J on xj , j ∈ N(i)
and, possibly, on xi.

The optimal LM solution is obtained via the cooperation of all

agents through a two-stage procedure, i.e., information discovery

stage and state update stage. Each agent i has two buffers per

neighbor j ∈ N(i) denoted as Jij and xij respectively. Jij stores

the latest estimates of solution function J⋆, from agent j and xij

stores the states corresponding to Jij .

In addition, agent i has buffers Jii and xii, which are used

to store its own estimates of the solution function J⋆ and corre-

sponding states. At each iteration, it first communicates with its

neighboring agents (j, j ∈ N(i)) to obtain theirs latest estimates

on the optimal solution and state variables during information

discovery stage. Then it computes its new estimate on the optimal

solution (J⋆) and states (x) at the state update stage.

The update rules for the DDP algorithm can be summarized as

follows:

Stage 1 Information discovery(ID):

{

Jij [t+ 1] = Jjj [t]

xij [t+ 1] = xjj [t]
(13)

Stage 2 State update(SU):






Jii[t+ 1] = inf
xi∈S

H(Jii[t], Jij [t+ 1], xi)

xii[t+ 1] = arg{ inf
x∈S

H(Jii[t], Jij [t+ 1], xi)}
(14)

According to [26], the converged values of J⋆ and x
⋆ can be

written as:






lim
t→∞

Jij [t] = Jii[t] = J⋆

lim
t→∞

xij [t] = xii[t] = x
⋆

(15)

The conditions for convergence are as follows:

1) There exists a positive scalar P such that, for every agent i,
every P steps of iteration contains at least one information

exchange stage for agent i to communicate with its neigh-

boring agents and at least one state update stage for agent

i [26]; and

2) There exist two functions J and J such that the set of all

functions J ∈ F with J ≤ J ≤ J belongs to F , and

J ≥ T (J), T (J) ≥ J (16)

and,






lim
t→∞

T t(J)(x) = J⋆(x) (17a)

lim
t→∞

T t(J)(x) = J⋆(x) (17b)

The first condition indicates that, both information exchange

and state update stages are necessary for the convergence. How-

ever, no other requirements are imposed on the timing, sequence

of the two iteration stages. Accordingly, the state update stage can

be conducted after the execution of serval information exchanges,

and vice versa. Thus, the algorithm can be easily implemented

by using an asynchronous communication protocol. The second

condition guarantees the existence of a fixed point for the LP

problem [27]. As can be seen that, agents exchange data with their

neighbors only at Stage 1 during the optimization. The message

transmitted includes two parts, namely the header information and

the optimization data. The first one contains the information of

agent ID, iteration number, which is 32-bit data and the latter is

determined by the dimension of the state variables. Jij is a scalar

number and xij is an n-dimensional vector, with n being the

number of the load sectors. Accordingly, the size of the exchanged

is data 32+ (n+1)×2 (assume double-type data is used to store

the optimization data).As can be seen that, the volume of data is

linearly proportional to the size of the system, hence can scale

well with the system size.

The complexity of the proposed DDP is determined by the

number of iterations required for each agent to reach its optimum.

The LM problem formulated in (4) is actual a 0 − 1 knapsack

problem which can also be translated to a shortest path problem

[28]. According to Dijkstra’s dynamic programming algorithm

[28], [29], its computation complexity is O(n) for centralized im-

plementation, with n being the number of the nodes (load sectors).

However, for distributed implementation, the computation efforts

are distributed to each node, thus the computation complexity is

scaled down by a factor of n. During optimization, each agent

communicates with its neighbors according to (13) (Stage 1) and

then updates its state according to (14) (Stage 2). Let ne
max denote
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the maximum number of neighbors an agent can have, then the

maximum computation needs for these two stages are bounded

by ne
max, corresponding to the computation complexity of O(1).

Thereby, the computation complexity of the proposed DDP is

O(n) instead of O(n2).
Theoretically, one can find the solution functions that satisfy

(16). However, in practice, it is hard to provide off-the-shell

formulae for them. Yet, the DDP can still converge to a fixed point

that is at least locally optimal solution since the LP problem is a

non-convex optimization problem. As a result, the DDP algorithm

realizes fast and distributed calculation without guaranteeing its

solution’s global optimality. In this paper, we define a perfor-

mance index to evaluate the proposed DDP algorithm as:

Ip =
f⋆
d

f⋆
g

×
tg
td

(18)

Here, f⋆
d and f⋆

c are the objective function values obtained by

the DDP and global centralized algorithm, respectively, and td
and tc are corresponding time consumed by these two algorithms.

Large Ip signifies the high performance of the algorithm. In the

simulation part, we will investigate the systems with different

sizes to evaluate the performance of DDP.

During an LM event, once the agent corresponding to a user

receives the information of incentive and total load (Ic and

PG), it first initializes its states with the feasible load settings,

then exchanges the information of the latest states and solution

function values with its neighboring agents, which corresponds

to the 1st stage update rule for DPP given in (13). At the 2nd

stage, the agent decides the current states of agents locally based

on the up-to-date information obtained from stage 1, as given in

(14). These two stages of information exchange and state update

are repeated by the agent until convergence.

During each step of iteration, an agent is only responsible

for exchanging information with its communication neighbors

and updating its own states. The proposed LM solution actually

distributes the computation among multiple agents. It neither

requires a powerful central controller to process a huge amount

of data nor a sophisticated communication network. In addition,

the distributed solution is flexible and able to automatically adapt

to changes of operating conditions, to be demonstrated later.

C. Numerical Example

For a simple system with three users, the total load reduction

required by the system operator is 30 MW for one hour, and

incentive is set to $0.50/kWh for qualifying load reduction. The

load baseline of the aggregator is set to 90 MW. Then, the total

load setting of the users aggregated by the aggregator for LM

is 60 MW. Assume load baselines for users #1, #2 and #3 are

20, 30(10,20) and 40 MW and weights of users are 2, 3, and

4, respectively. Here, user #2 has two load levels with load of

10 MW and 20 MW respectively. The communication network

topology for LMAs of users is shown in Fig. 2. Agents #1 and #3

can communicate agent #2 only, while agent #2 can communicate

Agent1 Agent2 Agent3

Fig. 2: Topology of communication network for agents
Table I: Initialization of agents

Agent States(xii\xij ) Utility(Jii\Jij )

1
x11 x12 − J11 J12 −

[1, (0 0), 0] [1, (0 0), 0] − 40 40 −

2
x21 x22 x23 J21 J22 J23

[0, (1 1), 0] [0, (1 1), 0] [0, (1 1), 0] 90 90 90

3
− x32 x33 − J32 J33

− [0, (0 0), 1] [0, (0 0), 1] − 160 160

with both of them. Therefore, agents #1’s only neighbor is agent

#2, agent #3’s only neighbor is also agent #2, while agent #2 has

two neighbors, i.e., agents #1 and #3.

First, each agent is initialized with feasible load settings (usu-

ally its load baseline). Notice that, the buffers for each agent to

store the estimated states (xii, or xij ) are vectors. The maximum

number of iterations is set to 10. One of the feasible solutions

for agent initialization is shown in Table I. It shows that buffer

x11 used to store agent #1’s states is initialized with a vector

[1 (0 0) 0], where the loads of agents #2 and #3 are initially

set to “off” since their states are unknown to agent #1 before

the optimization. Here, the states of agent #2 is initialized with

(0 0) as it has two load sectors. Buffer J11 used to store agent #1’s

estimate of the overall optimal utility is initialized with 40, which

is calculated based on the initial state, x11. Agent #1 has only

one neighbor, agent #2, and it has buffers x12 and J12 that are

used to store the latest states and corresponding solution function

of agent #2, and they are initialized as x12 = x11 and J12 = J11.

Buffers for agents #2 and #3 are initialized in a similar way.

Fig. 3 a) shows the update of utility for agents during optimiza-

tion. It can be observed that, the utility function corresponding

to the solution function J⋆ for each agent is monotonically non-

decreasing. This is because of the characteristics of the DP algo-

rithm. The converged utility is 220, which is the maximum utility

these agents can possibly achieve by satisfying the minimum load

reduction constraint.

Figs. 3 b) and c) show the update of load settings correspond-

ing to x
⋆s during optimization for agents #1 and #2, respectively.

Notice that, to meet the requirement of minimum load reduction,

user #2 has only 2nd load sector being switched on. It can also

be observed that the solutions of all agents converge to the same

solution when the algorithm converges. It can be easily verified

that the load of user #3 and the second load sector of user #2

should keep being switched on to maximize the overall utility of

the LM coalition. Thus, the converged solution is the optimal LM

solution and the payment for the load reduction of the coalition

will be $0.5 ∗ 30 ∗ 103 = $1500. In addition, for this test case

with three agents, the algorithm can converge within 3 iterations

only.

D. Implementation of the LM system

A typical implementation of the proposed LM system with

14 agents is shown in Fig. 4. The system operator broadcasts
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Fig. 3: LM optimization process with a 3-agent system

the information for the LM (PG and Ic) to all LMAs. Users

can decide whether to participate in the LM program, if not,

the corresponding LMA is set to the deactivated mode. The

communication between the system operator and LMAs can

be realized via general packet radio service (GPRS), which is

widely used for data service of the mobile phones and remote

meter reading. Once an LMA in the active mode receives the

information from the system operator it starts to search its

neighboring agents to initiate the LM program. The information

exchange among LMAs can be easily realized through off-the-

shelf wireless communication such as WiFi and ZigBee or wired

communication such as fiber optic or power line communication.

The wireless communication usually has limited transmission

range, and are suitable for the household level or community-

level LM applications. The wired communication can have longer

transmission range and can be used for the industry-level LM.

The software implementation can be developed by using JADE

(Java Agent DEvelopment Framework), which is a software

framework for multi-agent system implementation based on the

Java language. A JADE-based system can be distributed across

machines and the configuration can be controlled via a remote

GUI [30], [31].

It is worthy to point out that the system operator only broad-

casts the load reduction requirement to load sectors. It does not

need to know the quality as well as the controllability of the load.

Each agent corresponding to load sector(s) makes its decisions

locally, and also cooperates with other agents to achieve the load

reduction target. Notice that, during this process, the agent does

not send any information to the operator or receive any control

action signal from the operator and vice versa. Therefore, the

problem of lack of knowledge about the controllability of loads

is avoided.

Communication range

Agent1

Agent4

Agent2

Agent5

Agent3

Agent10

Agent7

Agent6

Agent9

Communication range

Communication range

Transmission/Distribution 

System operator

Agent8

Agent12

Agent11

Agent13 Agent14

GPRS

Fig. 4: Implementation of the proposed LM system

Fig. 5: Network topology of IEEE 14-bus system

IV. SIMULATION STUDIES

In this section, first a test case with IEEE 14-bus system is

used to demonstrate the proposed DDP, then test cases with larger

systems with more agents are also investigated to evaluate the

performance of the proposed LM approach.

A. Test with IEEE 14-bus System

The parameters of loads for the IEEE 14-bus system are taken

from [32], with each bus representing a user. The load reduction

requirement from the system operator is 140 MW for an hour, and

the incentive is given as $0.50/kWh for qualified load reduction.

The load baseline for all users are shown in Table II. Notice that

users #4 and user #11 have two and three load sectors respectively.

As shown in the table, the total load baselines for all the users

are 760 MW, resulting in the total power setting of 620 MW for

the LM event. The communication network topology for agent

communication is the same as that of the physical power network,

as shown in Fig 5.

1) Normal Operating Conditions: The update of utility for

agents during an optimization process is shown in Fig. 6. It

shows that the algorithm can converge within 14 iterations and

the converged utility is 7120. The earned incentive is $0.5∗140∗
103 = $70, 000 for an hour. The optimized states of the loads are

shown in Table III.

The update of selected load settings (loads #4, #10, #11, and

#14) at two selected agents (agents #10 and #11) are shown in

Tab. II: Data of IEEE 14-bus system

No. Neig. Base. Weig. No. Neig. Base. Weig.

1 2,5 0 20 5 1,2,4,6 60 10
2 1,3,4,5 0 20 7 4,8,9 70 10
3 2,4 0 20 12 6,13 80 10
6 5,11,12,13 0 20 13 6,12,14 90 10
8 7 0 20 10 9,11 100 1
4 2,3,5,7,9 50(10,15,25) 20 11 6,10 120(40,80) 1
9 4,7,10,14 150 20 14 9,13 40 1



7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1000
2000
3000
4000
5000
6000
7000
8000

Number of iterations

U
til

iti
y

 

 ← converged

Agt.1
Agt.2

Agt.3

Agt.4

Agt.5
Agt.6

Agt.7

Agt.8

Agt.9

Agt.10

Agt.11

Agt.12

Agt.13

Agt.14
7120

Fig. 6: Update of utility for agents during optimization

Table III: Optimized states of loads

Load 1 2 3 4 5 6 7

Status ON ON ON (ON,ON,ON) ON ON ON

Load 8 9 10 11 12 13 14

Status ON ON OFF (ON,ON,ON) ON ON OFF

Figs. 7 a) and b), respectively. The optimized load settings for

users #10, #11, and #14 are 50MW, 0 MW, 120 MW and 0 MW,

respectively. It should be noted that, each agent is initialized with

its load baseline. When the algorithm converges, the optimized

states at all agents are the same. Thus the algorithm can ensure

the consistency of the obtained solution at each agent.

2) Abnormal Operating Conditions: To test the robustness

of the proposed solution, three abnormal operating conditions

during optimization are tested. The abnormal operating conditions

include loss of communication link, disconnection of load, and

loss of agent, which would produce detrimental effects if a

centralized method were used.

a) Loss of Communication Link: In this scenario, it is

assumed the communication links between agents #9 and #14,

and agents #12 and #13 are malfunctioning after the 5th iteration.

As seen in Fig. 5, the communication network topology with loss

of communication links is still connected, which means that it

still satisfies condition 2) for convergence introduced previously.

The update of utility for agents is shown in Fig. 8. The

converged utility is 7120, which is the same as that without loss of

communication links. The algorithm takes only one more iteration

that the prior normal case, totally 15 iterations to converge. The

update of load settings at agent #14 is shown in Fig. 9. It can be

Fig. 7: Update of load settings during optimization

Fig. 8: Update of utility for agents with loss of communication links
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Fig. 9: Comparison of load settings at bus #14

seen that with loss of communication links, the load setting of

agent #14 changes at the 14th iteration, while this change occurs

at the 13th iteration with the original communication network.

Thus, the loss of communication links does slow down the overall

converging speed slightly. However, the DDP is still able to find

the feasible solution as long as the graph corresponding to the

topology of the communication network is connected.

b) Disconnection of Load: The event of disconnection of

load occurs at the 5th iteration. It is assumed that the load at bus

#10 is disconnected.

The update of utility under the load disconnection is shown

in Fig. 10. The converged utility under this scenario decrease to

7000, compared to 7120 in the case with no load disconnection.

On one hand, since the load bus #10 is disconnected, its utility

(100) is not counted in the total utility, resulting in the decrease

of the utility. On the other hand, after the algorithm converges,

the total load to be shed is set to 160 MW (20 MW more than

the required), which also decreases the overall utility.

The profiles of load settings at agents #10 and #11 are shown

in Figs. 11 a) and b), respectively. It can be seen that after the

disconnection of load #10, the load setting for load #10 is clamped

at a virtual value of 100 MW, which means that load #10 is

excluded from any further demand response. After the algorithm

converges, the load at bus #11 instead of the original bus #10,

is shed to meet the requirement of LM. It should be pointed out

that with the disconnection of the load the proposed LM system

can still operate without any difficulties.

c) Loss of Agent: The scenario of losing an agent is simu-

lated to further test the performance of the proposed solution. It

is assumed that agent #10 is disabled after the 5th iteration.

It should be noted the communication between agent #10 and

its neighboring agents becomes unavailable after agent #10 is

disabled. Thus, agent #10 does not participate in the optimization

process anymore, and the load setting of agent #10 is set to be

unchanged at 100 MW after the 5th iteration. Since the rest of

the agents still work properly, the optimization process proceeds
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Fig. 10: Update of utility for agents with disconnection of load

Fig. 11: Update of Load settings for agents with disconnection of load

with the remaining agents. Notice that the optimization results in

this scenario are similar to that with load disconnection, as shown

in Figs. 12 and 13.

From the above simulation results, one can see that the pro-

posed algorithm can still obtain the optimal LM solution even

with loss of communication links provided that the topology for

communication network is still connected. After load disconnec-

tion, the proposed solution can still achieve some optima as the

disconnected load does not participate in LM program.

3) With Dynamic Incentives: To test the proposed solution

under consecutive LM events, the dynamic incentives case is

tested here. The incentive provided by the system operator is

given as Ic = Ic⋆ + 0.15 ∗ ∆P , which is estimated based on

an industrial DR program [10]. Here, Ic⋆ is the incentive trigger

point, which is set at $75/MWh, and ∆P is part of load reduction

which is higher than 75 MW. The load reduction command and

Fig. 12: Update of utility for agents with loss of agent

Fig. 13: Update of load settings for agents with loss of agent

Fig. 14: LM events in a similar day

corresponding incentives in a similar day in five consecutive hours

(10:00AM-3:00PM) are shown in Fig. 14 a). The system operator

sends an LM event to users every other hour. The utility and

earned payment of this LM coalition during LM events are shown

in Fig. 14 b). The earned payment for this coalition increases as

the required load reduction from the system operator increases,

and meanwhile the overall utility decreases. In practice, users

can always assign low-preference-load or no-vital-load with low

weights to participate in the LM program to earn payment while

maximizing their utility. As shown in Fig. 14 b), the received

payment of this coalition during 12:00 PM-1:00PM reaches as

high as $18,750 considering that only 200 MW power is reduced

for this LM event.

B. Large test Systems

In this subsection, three systems with different sizes are tested

to evaluate the proposed distributed solution approach. The con-

figurations of the test systems are summarized in Tab. IV, where
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Table IV: Configuration of test systems

Test system nc ncp PG (MW) PR (MW) Ic ($\ MWh)

14-agent 20 1.43 760 140 500

162-agent 284 1.75 15,387 1,585 750

590-agent 908 1.54 18,707 1,169 750

1062-agent 1,635 1.54 34,053 1,651 750

Table V: Comparison between centralized and distributed solutions

System Utility
Time/Iter.(ms)

Iter. Total(ms) IpID SU

14-agent
Cen. 7,120 - 31 1 31 1
Dis. 7,120 3 <1 14 77 0.49

162-agent
Cen. 33,768 - 7,920 1 7,920 1
Dis. 32,663 3 <1 82 320 23.94

590-agent
Cen. 101,700 - 34,897 1 34,897 1
Dis. 91,950 3 2 640 3,200 9.86

1062-agent
Cen. 203,386 - 107,874 1 107,874 1
Dis. 191,174 3 3 1, 470 9,050 11.23

nc is the total number of the communication links, and ncp is the

number of average communication links per agent.

The converged utility for the three systems are shown in Fig.

15, and the test results are summarized in Tab. V. The average

time for one round of agent communication based on JADE is

about 3 ms [33]. The communication time for the centralized

method is neglected. It can be seen that, the objective function

values obtained by the distributed solution are very close to that

obtained by the centralized solution, with the deviation being

less than 10%, which is satisfactory and acceptable for industrial

practice. However, the time consumed for the centralized scheme

increases significantly as the size of the system increases. As

shown in the Tab. V, for the small test system such as the 14-agent

system, the proposed solution does not outperform the centralized

algorithm as the performance index is only 0.49. However, for the

larger test system, 162-agent or larger, the proposed algorithm has

higher performance index (9.86 or higher). For the proposed algo-

rithm, no control center is required to collect all information from

the distributed agents, instead, each agent communicates with its

neighboring agents via asynchronous communication protocols.

Therefore, the time needed for communication is significantly

reduced. In addition, the DDP algorithm distributes computation

efforts among agents, which greatly reduces the computation time.

As show in the simulation, even for the large test system, e.g., a

1062-bus system, the algorithm only takes less than 10 seconds to

converge whereas the centralized algorithm demands more than

100 seconds without counting in the communication time. Thus,

it is safe to conclude that the proposed solution is able to respond

in a timely manner.

C. Variable Renewable Generation

In this test case, the fast changing wind power output is simu-

lated to evaluate the performance of the proposed distributed LM

solution. It is assumed that the 1062-bus system is under stress

condition with the spinning reserve of conventional generators

being running out. And the LM is resorted to support the system

within a dispatch interval of 15 minutes, where the power shortage

is 15,707 MW before the LM reduction. The wind generation

can compensate part of the power shortage, however it varies

violently. The profiles of the power shortage and wind power

are shown in Fig. 16 a). The load reduction profiles for both

centralized and distributed LM solution are shown in Fig. 16 b).

Fig. 15: Utility update process for agents with large test systems

It can be seen that the centralized solution failed to respond in a

timely manner as it can not track the power shortage fast enough.

Consequently, the frequency of system under this circumstance

reaches as low as 59.79 Hz, which is in under frequency zone,

while the highest frequency is 60.16 Hz, being very close to the

over frequency zone [34], as shown in Fig. 16 c).

In contrast, the frequency deviation with the distributed solution

is within the normal range (±0.05Hz) as the distributed solution

can fully deploy the load reduction within 10 seconds. It should

be pointed out that he convergence of the proposed algorithm

does not depend on variation of the renewable generation, to wit,

wind generation in this case. However, the change of renewable

resources does affect the update frequency for LM reduction

requirement from the system operator. The faster change of

power output of these resources requires the system operator to

update LM reduction requirement more frequently. As shown

in the figure, the proposed LM solution can track the LM

demand in a timely manner (less than 10 seconds even for the

large 1062 system), leading to decent frequency response of the

system. Thus, the fast response characteristics of the proposed LM

solution can ensure its applicability under fast operating condition

changes.

D. With Time-delay/Packet Loss

The test cases with packet-loss are also provided to demonstrate

the performance of the proposed DDP algorithm. Here the simula-

tion is conducted under the assumption that, during each iteration,

each agent has the packet-loss with the probability of 0.45. The
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Fig. 16: Centralized/Distributed LM with variable wind generation

test results are shown in Fig. 17. As shown in the figure, the

algorithm converges without difficulties since the algorithm can

be implemented by using asynchronous communication protocols.

However, the packet loss does increase the number of iterations

required for convergence, resulting in the increase of the total

converging time. Another advantage for DDP algorithm is that

it does not require the communication topology to be always

connected, which is helpful during abnormal conditions when the

graph corresponding to the communication topology undergoes

disconnectivity.

It should be noted that the time-delay of the communication

channels also increases the total converging time as the time

used for one iteration under this circumstance will increase.

Fig. 18 shows converging time of the DDP algorithm with the

1062 bus system under different scenarios. As can be seen that,

without communication delay or packet loss, the converging time

is 9050 ms, while the converging time are 9700 ms with an

average communication delay being 0.5 ms. For the scenario with

the probability of packet-loss being 0.45, it takes 10850 ms to

converge. For all of these cases, the DDP algorithm is able to

converge without any difficulty.

V. CONCLUSION AND DISCUSSION

In this paper, a distributed LM solution is proposed for user

participation in smart grids. The proposed solution is implemented

with a distributed framework based on a DDP algorithm which

is never seen in the existing studies to the best knowledge of the

authors. Based on the proposed solution, the system operator only

Fig. 17: The process of utility update for agents with packet losses

Fig. 18: Converging time of different scenarios with 1062-bus system
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needs to broadcast the information of load reduction requirement

and LM incentives to the distributed agents corresponding to

users. An agent only exchanges information with its neighboring

agents and does not need to send any data back to the system

operator. Thus, heavily communication traffic over the commu-

nication network between the system operator and users can be

avoid. In addition, the proposed algorithm distributes computation

among multiple agents, and does not need a centralized powerful

processor. Simulation studies with different size of test systems

show that the proposed solution is flexible, and robust against

certain abnormal operating conditions owing to its outstanding

feature of the distributed communication and computation, while

such abnormal conditions may disable a centralized solution.

This paper focuses on the development of a distributed LM

algorithm. Future work intends to evaluate the proposed LM

solution by using real-time (or hardware-in-the-loop) simulation.

In addition, LM can also cooperate with other resources such as

energy storages or PVs to enhance the performance of the power

grid. Therefore, an interesting study is to develop a distributed

control strategy to coordinate these resources.
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