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Abstract—Given the growing popularity of the peer-to-peer
(P2P) network systems in the recent years, efficient query routing
under highly dynamic environments is still lacking in several
P2P network systems. In response to this challenge, this paper
proposes a new churn-resilient system to find alternative routing
paths for the purpose of balancing the query loads under higher
network churns and heavy workloads, ultimately to improve the
search efficiency. Two novel methods are devised to balance the
network query loads among both inter- and intra-group level
peers. Firstly, a resource grouping and a rewiring method is
proposed to spontaneously organize and cluster the peers having
same resources together. This strategy facilities the peers to evolve
the network into a cluster-like topology and balances the query
loads among the inter-group peers. Secondly, a collaborative Q-
Learning method is proposed to balance the query loads among
the intra-group peers in order to intelligently avoid queries being
forwarded to the congested peers in the network. Experiments
conducted under dynamic network scenarios demonstrate that
our proposed method achieves better search performances with
a more balanced network load than the existing methods, and
further exhibits higher robustness and adaptability under higher
network churns and heavy network loads.

Index Terms—Congestion control, load balancing, query rout-
ing, collaborative Q-learning, unstructured P2P systems

I. INTRODUCTION

P2P (Peer-to-Peer) networking systems are growing in
popularity and are being deployed in a wide range of

Internet applications [1], [2] such as content delivery, file
sharing and multimedia streaming etc. Based on their resource
utilization techniques and peer linking strategies, P2P systems
are classified into two broad categories such as structured
networks and unstructured networks. Query load balancing
is one of the most prevalent issues in both the two types.
Unstructured P2P networks are more vulnerable to the query
load effects since the peers in the network often lack a
complete knowledge of the network structure. This causes
peers to forward queries to distant and adjacent peers, and
such forwarding strategies often lead to load balancing issues
[3] in unstructured P2P networks.
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Recently, three different types of overlay topologies (as
shown in Fig.1) have been proposed [4], [5], [6] to be de-
ployed under various levels of query burdens in Unstructured
P2P networks. The star-like overlay topology functions as a
Client/Server (CS) model, which is more suitable for light-
level query workloads. But, the star topology loses efficiency
with increasing number of network queries, as the central peers
are usually overloaded by the immense query loads. Thus,
heavy query loads rapidly deteriorates the search efficiencies
of the star topology. The randomized overlay topology per-
forms better than the star topology under heavy workloads
(increasing queries) by effectively sharing the search respon-
sibilities among all the peers in the network. Though, locating
the required resources is still challenging in the randomized
topology, which insists the need for further improvements
in their search strategies. The cluster-like overlay topology
performs well under medium-level query workloads, but the
trade-off between search efficiency and load balancing among
the peers is not often satisfied. To this end, a number of
algorithms [4], [5], [6], [7], [8], [9], [10], [11] have been
proposed recently for the purpose of balancing the trade-
off between search efficiency and load balancing. A common
approach of most of these algorithms is to evolve the network
into a cluster-like topology from the randomized topology. But,
most of the existing approaches are focused on balancing the
query loads only among the inter-group level peers. In general,
ignoring the query loads among the intra-group level peers will
significantly affect the overall routing efficiencies of the peers
in the unstructured P2P networks.

With this in mind, this paper proposes a novel approach of
clustering the network peers both at the inter- and intra-group
levels based on the resources contained within the peers. The
characteristic features of our proposed system are described
as follows:

1. Achieving the network topology evolution through a
resource grouping and a rewiring strategy in order to
ensure optimum clustering of the network peers. Re-
source grouping strategy clusters the peers having the
same resources together. This allows the network peers
to establish reconnection with high capacity peers, so
that the evolved network will resemble a local cluster-
like topology in every formed cluster. By this evolution
technique, we balance the query loads among the inter-
group level peers and improve the efficiency of the
resource locating phase. In the meantime, the rewiring
strategy prevents overloading of the local clustered peers
by the way of disconnecting their links from the over-
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Fig. 1. Network topologies under different query workloads. (a)Star-like topology (light), (b)Randomized topology (heavy), (c)Cluster-like topology (medium),
(d) Our proposed topology.

loaded peers accordingly, as illustrated in Fig.1(d) (where
peers within circles represent the same group).

2. Controlled routing whilst balancing the query load a-
mong the intra-group peers is achieved by employing
a collaborative Q-Learning [12] technique among the
peers. This proposed collaborative Q-Learning effective-
ly learns the network parameters such as processing
capacity, the number of peer connections, and the number
of resources contained within the peers, along with their
state of congestion in the network. By this technique,
peers are avoided to forward queries to those congested
peers in the network. Thus, queries are always for-
warded to the balanced intra-group peers, as illustrated
in Fig.1(d) (where the arrows depict the forwarding
direction of the queries among the intra-group peers in
the right side circle).

Our simulation results demonstrate that the requested re-
sources are located more quickly whilst achieving query load
balancing in the entire network. Also, our method exhibits
more robustness and adaptability under both higher network
churns and heavy query workloads in comparison to the ran-
dom walk method and the DANTE system [6]. The simulation
results also illustrate that the proposed system achieves better
search performances than the DANTE system which is also
a self-organized evolving network. Through our simulation
results, we prove the significance of our proposed dynamic
overlay topology method in terms of scalability, robustness
and churn resilience.

The rest of the paper is organized as follows: Section II
presents the related recent research works of load balancing
algorithms in P2P networks. Section III formulates our pro-
posed method of load balanced routing based on congestion
control in P2P networks. Performance evaluations and our
simulation results are presented in section IV. Finally, we draw
conclusions in section V.

II. RELATED WORK

In general, the load balancing mechanisms perform distinc-
tively in structured and unstructured P2P networks. Structured

P2P networks have a dedicated overlay network design and
uses DHTs to establish links between stored resources and
address of the peers. DHT search algorithms [1] in structured
networks such as Chord, CAN and Pastry perform efficient
resource discovery based on the knowledge of the hash keys.
But a notable shortcoming of such algorithms is their huge
communication costs incurred under higher network churn,
since the ID space of their DHTs is partitioned among the
peers and their resources. This causes structured P2P networks
to become smaller and inflexible.

In unstructured P2P networks, no such extra structure for
the space partition is required. This makes unstructured P2P
networks to be more flexible and extensible. But the short-
comings of the unstructured P2P networks are evident in their
complex resource locating strategies, as queries can only be
forwarded to geographically adjacent peers. Also, the network
topologies of some of the advance level resource searching
methods such as flooding [13] and random walk [14] often
lead to load balancing issues among the peers. Possible ways
to overcome such issues are to improve the efficiencies of a
notable search algorithm called random walk sampling [15],
and further by guiding the search methods through information
collections [16], [17].

Furthermore, load balancing methods can also be effectively
utilized to solve the issues of imbalanced workloads in un-
structured P2P networks. Some of the research works used
super peers [18], [19] to control the broadcasted queries over
the network. But this approach might suffer from single-point-
of-failure issues and the scalability of the network is limited
with the departure of these super peers [20]. Identifying the
free ridings of the uneven popular files over the peers could
transform a random network into a star topology [21], [22]
in flat networks, which would help to dynamically adapt
the desired network overlay topologies. Such strategies of
dynamically adapting the network topologies are found to be
deployed in some of the recent works. For instance, Merino
et al. [6] introduced the DANTE network, which employs a
self-organized reconnection mechanism to form a balanced
cluster overlay topology. Pournaras et al. [8] proposed the
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TABLE I
NOTATIONS AND DESCRIPTIONS

Notations Descriptions
Pi the initiator peer that initially sends a resource grouping message
CPi the set of candidate peers chosen for establishing reconnection with Pi

PRA Peer Resource Attractiveness, which is defined for the purpose of selecting the appropriate peers in CPi

Ci the maximum number of queries that Pi can process per micro-second
χ(i, kc) the degree of peer connectedness of Pi

CL Congestion Level, which is used to evaluate the congestion state of a peer
Qi(t) the number of queries waiting in the input queue of Pi at time t
U the threshold defined to predict the congestion caused by overloading the peers with more number of queries
mt the threshold used to control the number of reserved queries
Q(s, a) an action-value function, which is used to evaluate the effectiveness of the chosen action a under state s
R(s) the reward function of state s
APs the positive attractiveness of Ps

ERGO network with a rewiring strategy by utilizing virtual
servers to monitor the workload of the peers. When overloaded
peers are identified in the network, ERGO rewires some of
the incoming links of the overloaded peers to the under-
loaded peers. AVMON [9] is another network that monitors
the content discovery and collusion of the network peers.
Mashayekhi and Habibi [10] proposed a framework that main-
tains limited size routing indexes for combining search and
trust data, in order to forward queries to the most reputable
peers. LARD (Learning Automata-based Resource Discovery)
[11] is another unstructured P2P network in which each peer
chooses a communication link to route the query towards
resource providers. If the selected route is shorter than the
average length of the previously selected routes, this algorithm
rewards the selected route, otherwise the chosen route is
penalized. Thus, this algorithm converges to the route having
the minimum expected length. The strategies of using small-
world overlay topologies are introduced in the works of [7],
[23]. Merugu et al. [7] used two types of links such as the
short links for connecting closer peers and the long links for
connecting randomly chosen peers. Wu et al. [23] proposed
a similar mechanism to maintain a state-based shortcut list in
the peers. Efficient search is achieved in this method by using
either the links or the state information.

Based on above discussion, existing cluster-like topology
mechanisms are found to be focused at clustering only the
inter-group level peers based on the resources contained within
such peers. To this end, we propose a clustering approach
of clustering both inter- and intra-group level peers based
on their corresponding resources. The strategy of clustering
peers having same resources together at the inter-group levels
facilitates effective resource discovery and load balancing
among such peers. Furthermore, our approach also clusters
the peers at the intra-group level, which further increases the
effectiveness of the cluster-like topology structure. Among the
intra-group level peers, queries are always forwarded to the
balanced peers through a collaborative Q-Learning method,
which is a popular reinforcement learning (RL) method [24]
being employed to learn the network environments. In our
proposed approach, this RL technique is used to monitor
the state of the peers in the network, whilst achieving load
balancing among the intra-group level query loads.

III. CONGESTION CONTROL BASED LOAD BALANCED
ROUTING

In this section, we introduce our proposed churn-resilient
system for congestion control based on load balanced routing
in detail. In our proposed system, query routings are balanced
among both inter- and intra- group level peers. The first sub-
section details our approach of balancing the query loads a-
mong the inter-group level peers. While in the next subsection,
our novel query routing control strategy based on collaborative
Q-Learning among the intra-group level peers is introduced.
To ease the descriptions of the following subsections, we first
list several notations and their descriptions in Table I.

A. Resource grouping and rewiring

Resource grouping and rewiring strategies in our proposed
approach helps quickly locating the required resources in the
network. In the resource groping process, it is assumed that
peers with same resources may often have similar interests. In
some of the P2P applications such as file sharing and video
on-demand, peers those involved in the downloading process
of the same file or in the buffering process of the same video
might exhibit very similar interests on other resources in the
network. Peers maintaining close contacts with other peers that
have similar interests, will search resources quicker. Similar
strategy can be found in the BitTorrent protocol [25], which
applies the swarm technique for searching the target resources.
In our proposed network, no server is used and the resource
grouping is triggered periodically by the individual peers in
order to enable themselves to form a cluster-like topology.

Let the initiator peer be Pi, which initiates a new resource
grouping process for searching resource j. Since Pi has n
different resources, it may belong to n different resource
groups. Now, Pi triggers a new grouping process by launching
a look-for-peer message for the purpose of collecting the list of
peers having same resources to that of Pi. This look-for-peer
message of Pi is a quad-tuple composed of {Pi, CPi, j, TTL},
where Pi is the initiator peer sending the message, CPi is the
set of candidate peers chosen for establishing reconnection
with Pi for searching resource j, and TTL is the Time-
to-Live parameter which is used to control the number of
hops that peers can traverse through the network. Initially
the candidate peer set Pi is empty when the look-for-peer
message is broadcasted over the network through the random
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walk method [14] in order to collect the list of candidate peers.
When a peer Pk receives a look-for-peer message, the value
of the TTL is decreased by 1 in the received message, and
Pk checks its resources for matching the resource request. If
Pk has the requested resource j, it appends itself to the set
of candidate peers CPi. Otherwise, Pk will not be added to
the set of candidate peers CPi. Pk then employs the random
walk method to select one of its neighbors in order to forward
the look-for-peer message. This neighbor then repeats the
above process and allows the look-for-peer message to be
broadcasted through the network till the value of the TTL
decreases to zero. Finally, the look-for-peer message is sent
back to the initiator peer Pi.

When Pi receives the set of candidate peers CPi whilst
searching for resource j, it chooses some of the peers in CPi

in order to establish links with them. Now, we introduce a
parameter named Peer Resource Attractiveness (PRA) for the
purpose of selecting the appropriate peers in CPi . This PRA
is a composite composed of peer degree, processing capacity
and the number of resources contained within a peer. PRA is
defined as follows:

PRAi = χ(i, kc)× Ci × ni

χ(i, kc) =

kc∑
h=1

N(i, h)

hσ

(1)

where, χ(i, kc) denotes the degree of the peer connectedness
of Pi, N(i, h) denotes that the counting degrees of the neigh-
boring peers are h hops away from Pi, and kc is the radius
parameter for counting Pi’s neighbor peers. The parameter
σ (used is to control the value of hσ) is a weight used to
control the peers at different hop distances away from Pi.
The higher the value of σ less is the impact of Pi on the
remote peers. The higher value of χ(i, kc) implies a higher
peer connectedness of Pi. Ci is the maximum number of
queries that Pi can process per micro-second. Ni is the number
of resources contained within pi. Ai denotes the effects of
the peer connectedness, processing capacity and the number
of resources contained within a peer. The larger value of Ai

reflects the higher processing capacity of the peers along with
its higher peer degrees. The higher the value of Ai higher is
the number of resources contained within the corresponding
peers. Obviously, the larger value of Ai insists the increased
attractiveness of Pi to be a reconnecting peer.

Guided by this PRA parameter, the reconnection process
of Pi with the selected peers in the set CPi is explained as
follows:

a. Pi chooses a reconnecting peer Pa (having the highest
value of PRA) from the set CPi, as defined in formula
1. Then Pa is removed from the set CPi;

b. Pi chooses one of its neighbor peers for the purpose of
disconnecting it. The peer link of this chosen neighbor
peer should be greater than 2, in order to prevent the peer
from becoming completely isolated. A neighbor peer is
chosen for disconnection only if the corresponding peer
does not own the resource j. If such a neighbor peer
does not exist, Pi then chooses its weakest neighbor for
disconnection. Now, the chosen peer is marked as Pd;

c. Pi then sends a connection request to Pa. Once Pa

accepts this connection request, Pi disconnects Pd and
connects Pa.

The above process is repeated until either the candidate
set CPi becomes empty or the PRA value of each peer in
CPi becomes weaker than the minimum PRA value of the
neighbor peers of Pi.

From formula 1, a peer with larger value of PRA can
process more forwarding queries and it is more likely to
be the local central peer owning more resources with higher
peer degrees. This makes the search process easier among the
inter-group level peers. Meanwhile, more number of peer-links
and increasing number of forwarding queries causes peers to
be vulnerable for network congestion. The rewiring strategy
is now applied to disconnect some of the neighbors of the
congested peers in the network. This strategy decreases the
number of query routings and helps the congested peers to
become normal in the network. Now, a parameter named Con-
gestion Level (CL) is introduced to evaluate the congestion
state of a peer. The value of CL of a peer Pi at time t is
computed as:

CLi(t) =
1 +Qi(t)

Ci
(2)

where, Qi(t) denotes the number of queries waiting in the
input queue of Pi at time t. When a peer is processing a query,
the forthcoming forwarding queries are usually put into the
waiting queue of that corresponding peer. Formula 2 implies
the waiting time that a query would spend if it is forwarded
to Pi. The higher the value of CLi(t) higher is the congestion
state of a peer. We use a threshold U to assert a peer to be
congested.

When CLi(t) is larger than U , the corresponding peer is
considered to be over-loaded. A time cycle is used to trigger
the rewiring strategy among the peers in the network. When
a peer reaches the overloaded state, it triggers rewiring. By
this rewiring technique, a given peer disconnects some of its
neighbors randomly and connects those disconnected peers
to other such peers having same resources. The number of
neighbor peers to be disconnected is computed using the
following rules.

When the peer Pi is overloaded, some of its neighbor links
are disconnected and so the number of queries forwarded to
Pi will decrease. Therefore, we believe that the number of
queries being forwarded to a peer is proportional to the number
of neighbor connections of that corresponding peer. Since U
is the threshold defined to predict the congestion caused by
overloading the peers with more number of queries, and Ci is
the maximum number of queries that Pi can process per micro-
second, the maximum number of queries that can be processed
by a peer without being regarded as overloaded in the waiting
queue is given by U × Ci − 1. After a peer disconnecting its
neighbors, mt×U×Ci−1 queries are assumed to be reserved
for that peer. mt is the threshold used to control the number of
reserved queries. In our experiments, we set the value of mt

as 0.8, which means that 80% queries should be reserved for
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a peer. The number of links to be disconnected Di is deduced
using the following equation.

Qi(t)

mt × U × Ci − 1
=

Ni

Ni −Di

Di = ⌈Ni × (Qi(t)− (mt × U × Ci − 1))

Qi(t)
⌉

(3)

where, Ni is the current number of connected neighbor links
of Pi. ⌈.⌉ is a ceiling function.

In this way, the overlay topology is updated in order to
enable peers to establish close connections with other such
peers having same resources. This resource grouping and
rewiring strategy balances the query loads among the inter-
group level peers and helps the evolution of the entire network
into a cluster-like topology from a randomized overlay topol-
ogy. Meanwhile, this system also drives the peers of higher
processing capacity to gain higher connection degrees than the
weaker peers within the same group. The peers with higher
connection degrees thus have higher congestion probabilities.
Therefore, it is necessary to maintain an optimum level of
query loads in every peer which will be dealt in the following
section. Our collaborative Q-Learning method is introduced in
the next subsection to achieve the intra-group load balancing.

B. Congestion control routing through collaborative Q-
learning

In order to identify the congested peers and to avoid queries
being forwarded to such congested peers, Q-Learning method
(which is a method of Reinforcement Learning) is applied
to monitor the state of the peers in the network. In this
approach of Reinforcement Learning (RL) [24], RL agents
learn by interacting with their environment and by observing
the outcomes of such interactions. Q-Learning [12] is an Off-
Policy algorithm of RL used for temporal difference learning.
It uses an action-value function Q to directly approximate the
optimal action-value for an arbitrary target policy. The one-
step Q-Learning model is defined as follows:

Qlocal(s, a) = R(s) + γmaxa′Q(s′, a′)

Qnew(s, a) = Q(s, a) + αQlocal(s, a)
(4)

where, Q(s, a) is an action-value function. R(s) is the reward.
α is the learning rate which is set between 0 and 1. γ is the
discount factor, also set between 0 and 1. This parameter of γ
considers that future rewards are worth less than the immediate
rewards. s is the current state and a is the action of the current
peer in s. s′ is the next state, and a′ is the reaction of the
peer in s′. In our network, state s contains the current peer
which transmits the routing messages to its neighbors. State
s′ will encompass one of the neighbors of the peer in s. This
neighbor will receive the messages from the peer in s. So,
a is the action of the current peer, which is selecting one of
the neighbors of the peer in s in order to transmit the routing
messages. Meanwhile, a′ is the action of the peer in s′, which
is selecting the neighbor peer of s′ to transmit the routing
messages. maxa′ is the maximum reward that can be achieved
in the next state s.

To evaluate the congestion state of the peers in the network,
state information relevant for the routing process such as
processing capacity, number of connections and number of
resources are monitored. The parameters encoded in the R(s)
function reflect the basic state of the peers in the network.
R(s) function is defined as follows:

R(s) =

∞∑
i=0

γiAPs

Ns

APs = Cs × χ(s, kc)

(5)

where, Cs and χ(s, kc) are defined in formula 1. χ(s, kc)
denotes the degree of the peer connectedness of Ps and
Cs is the maximum number of queries that Ps can process
per microsecond. By this way, APs denotes the positive
attractiveness of Ps. The large value of APs implies the
higher processing capacity of Ps along with its higher peer
degrees. Finally, Ns is the number of resources contained in
the peer Ps. Ns is a negative factor in the formula. More the
number of resources contained in Ps more is the number of
forwarding queries required to pass through. This implies that
the bandwidth allocation for a single resource is considerably
low.

From the above formula, it can be understood that more
number of rewards will provide larger values of APs to
the peers. Also peers having more number of neighbors and
connections can process more forwarding queries than others.
On the other hand, such peers with increased number of
connections can easily cause congestion in the network. In
order to balance this effect, we regularize the basic Q-Learning
model by adding the parameter of Congestion Level (CL),
which is defined in formula 2. The modified Q-Learning model
is described as follows:

Qnew(s, a) = Q(s, a) + αQlocal(s, a)+

β × I(U − CLs′(t))× CLs′(t)
(6)

where, I(x) =

{
+1, x > 0

−1, x ≤ 0
is an indicator function. This

function gives a positive sign when a peer is in normal state
and a negative sign when the peer is overloaded. Thus our
proposed model incorporates the effects of congestion state of
the peers whilst forwarding query loads to the peers in the
network.

From formula 6, it can be observed that the computation of
the Q-values of the peers considers the processing capacity,
number of connections and number of resources, along with
the congestion state of the peers. In this way, query routings
are controlled by the collaborative Q-Learning among the
intra-group level peers.

IV. PERFORMANCE EVALUATION

A. Simulation setup

Our simulation environment is composed of 10, 000 peers,
developed based on Gnutella in Python 2.6. Initially, every
peer in the network is assigned with 10 neighbors on average.
Assuming that there are n queries in the peer Pi, the amount
of time spent in processing n queries is n

Ci
, where Ci is the
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TABLE II
DISTRIBUTION OF PEER PROCESSING CAPACITY IN THE SIMULATED

NETWORK.

Percentage of peers (%) Processing capacity Ci

20 0.1
45 1
30 10
4.9 100
0.1 1000

number of maximum queries that can be processed by the
peerPi per micro-second, as mentioned in formula 1. The
heterogeneity characteristics of the P2P networks in terms
of the processing capacity are presented in table II. This
distribution is obtained from the measure of Gnutella reported
in [26]. Since the network load is actually caused by the
resource queries launched by the peers, we assume that for
all the peers in the network, the time interval between two
successive queries is equal and is termed as the time between
searches (tbs). For instance, tbs = 5s reflects that 2, 000
queries are generated per second in the system on average.
1, 000 object resources are used in the network, with each

object having duplicates. The number of object duplicates is
determined by the popularity of the objects using a Zipf-like
distribution property [6]. We randomly distribute these objects
to different peers in the network. The replication factor of the
most popular object is 50%, implying that the object has 5, 000
duplicates in our system. On the other hand, the least popular
object has only a replication factor of 0.5%. Now, 5 random
walkers are dispatched for each query in the network to locate
the requested resources. The TTL of the query request is set
to 8 and the TTL of the look-for-peer message is set to 30.
This value is high enough to obtain a good sampling of the
network.

The parameter settings of our proposed formula are de-
scribed as follows: The two parameters kc and σ of formula 1
are set to 2 and 1, respectively. It is evident that the network
bandwidth consumption is attaining growth with an increasing
kc. The parameter mt used in formula 3 is set to 0.8, which
means that 20% connections are supposed to be disconnected
from an overloaded peer. The parameter U is set to 1.1,
implying that the peers are allowed to have 10% more queries
than their actual capacity of processing maximum number of
queries per micro-second. Regarding formula 4-6, γ is set to
0.3. α is set to 0.3 and β is set to 0.5 respectively.

Fig.2 shows the computing costs of random walk, DANTE
system and our proposed system, respectively. The real CPU
time is recorded in time steps of 3 hours in a stable network to
reflect the computing costs of the three methods. It is evident
from Fig.2 that the random walk method achieves the best
computing costs of 48 hours, since it do not incur any extra
costs for transmitting routing messages. The DANTE system
achieves the next better computing costs of 61 hours, since
it uses a time cycle to adjust the network periodically. Our
proposed system achieves worse computing costs of 68 hours
(11.5% extra CPU time than the DANTE system). This extra
CPU costs of our proposed system is because our system
updates the Q values of the peers.

 

Fig. 2. CPU time consumption.

In order to evaluate the performance of our proposed sys-
tem, we simulate the network under various network settings.
Further, we evaluate the efficiency of our proposed system
against the random walk method, which is a standard search
method in P2P networks, and the DANTE system [6], which
also dynamically adapts to the network overlay topology
for improving the search performances in P2P networks. In
subsection IV-B and IV-C, the network is simulated under
higher churns and heavy workloads in order to test the robust-
ness and adaptability of our proposed system. In subsection
IV-D, we design a more realistic simulation environment with
a combination of higher churns and heavy workloads. We
evaluate our proposed system against the DANTE system to
test the efficiencies of our proposed method in such a realistic
scenario.

B. Network performance evaluation under higher churns

In this subsection, network performances under higher
churns are evaluated. In order to observe the network perfor-
mances under higher churns, peers with a processing capacity
of 1, 000 are set to leave the network since they have the
best processing capacity with more links and forwarding
queries. Thus, such peers are more likely to become congested
under higher network churns. Therefore, in our simulation
settings, all the peers of processing capacity 1, 000 leave the
network at the 60th minute simultaneously and their links are
redirected randomly to establish connections with other peers
in the network. All these peers re-enter the network again at
the 120th minute. Between 60th minute and 120th minute,
network performances under higher churns are observed.

Firstly, the search performances based on the average num-
ber of hops and the average search time are evaluated. Fig.3
shows the timely behavior of the network search performances
of our proposed system, the DANTE system and the random
walk method from the 10th minute to the 190th minute
respectively. Fig.3(a) depicts the average number of hops of
our proposed system, the DANTE system and the random walk
method respectively. During the first 60 minutes, the network
is static, i.e. no peers enter or depart the network. It is observed
from the Fig.3 that the average number of hops among all the
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Fig. 3. Timely behavior of the network search performances of our proposed
system, the DANTE system and the random walk method under higher churns.
(a)Average number of hops, (b)Average search time.

three system is decreasing, and this decrease is sharper in our
proposed system for the first 60 minutes. This demonstrates
that our network system effectively evolves into a cluster-
like topology and facilitates balanced routing by employing
resource grouping and collaborative Q-Learning methods in
such a stable network.

Between 60th minute and 120th minute, the network is
subjected with higher churns and the peers of processing
capacity 1, 000 leave the network simultaneously at the 60th

minute and they re-enter later at the 120th minute. Between
60th minute and 70th minute, the average number of hops
in all the three system is observed to be increasing, and this
increase in our system is observed to be more than both the
DANTE system and the random walk method. This is because
the peers of higher processing capacity are subjected to be
clustered in our system, and such clustered peers have greater
impact on the forwarding queries. While, the random walk
method shows a little increase in the average number of hops
since the forwarding queries are sent randomly. This implies
that our system dynamically adapts the network topology when

 

Fig. 4. Timely behavior of hit-rates of our proposed system, the DANTE
system and the random walk method under higher churns.

the peers of higher processing capacity leave the network.
While between 70th minute and 120th minute, the average
number of hops of all the three methods is observed to be
decreasing again. When the peers of processing capacity 1, 000
enter the network again at 120th minute, we observe continues
decrease in the average number of hops of both the other two
methods. This is because when the network becomes stable
again, and our proposed system effectively learns this change
in the network topology and decreases the average number of
hops to a lower level of 2.3, than those of the DANTE system
and the random walk method. Fig.3(a) demonstrates that our
proposed system effectively adapts to higher network churns
when the peers of higher processing capacity leave the network
rapidly. The average number of hops of our proposed system
is less than those of the DANTE system and the random walk
method under higher network churns, during the time between
60th minute and 120th minute.

Fig.3(b) illustrates the average search time performances of
our proposed system, the DANTE system and the random walk
method, between when the peers of processing capacity 1, 000
leave the network simultaneously at 60th minute and enter
the network again at 120th minute. It can be observed that
under higher network churns, our proposed system exhibits
better adaptability to the changes in the network topology.
The average search time of our proposed system is achieved
quicker than the DANTE system and the random walk method
at all times.

Secondly, the success of hit rates in the resource locating
process are evaluated under higher network churns. Fig.4
shows the timely behavior of the hit-rates of our proposed
system, the DANTE system and the random walk method
respectively. For the first 60 minutes, no peers depart the
network and the hit rates are observed to be increasing in
all the three methods, especially in our proposed system.
Between 60th minute and 120th minute, when the peers of
processing capacity 1, 000 leave the network simultaneously,
the hit rates of both the other two methods are observed to
be decreasing until the 70th minute and increasing thereafter.
During this time, the hit rates of our proposed system are
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Fig. 5. Timely behavior of congestion rates of the peers of our proposed
system, the DANTE system and the random walk method under higher churns.

observed to be higher than those of the DANTE system and
the random walk method. This demonstrates that our proposed
system can rapidly adapt the changes in the network topology
in order to form a clustered network again. Thereby, the
success of hit rates in our proposed system is higher than
those of the random walk method and the DANTE system.
Meanwhile our proposed system has the ability to achieve
balanced routing by employing the collaborative Q-Learning
method among the intra-group level peers. Our system also
outperforms the DANTE system which evolves into a clustered
network without learning the network.

Finally, the congestion rate of the peers in the entire network
is evaluated, as shown in Fig.5. When the peers of processing
capacity 1, 000 leave the network simultaneously at 60th

minute, the peer congestion rates of all the three methods
are observed to be increasing between 60th minute and 70th

minute. This implies that the peers of higher processing
capacity have greater impacts on the forwarding queries. Since
our proposed system and the DANTE system evolves into
clustered networks, the higher processing capacity peers have
a greater impact on the forwarding queries in both the systems
than in the random walk method. This can be asserted from
the higher peaks evident between 60th minute and 70th minute
in our proposed system and the DANTE system. After 70th

minute, the peer congestion rates of all the three methods
are observed to be decreasing, especially in our proposed
method. This illustrates that our proposed method effectively
adapts to the changes in the network topology by employing
the resource grouping and rewiring methods. Our routing
control method by collaborative Q-Learning reduces the peer
congestion rates more than those of the DANTE system
and the random walk method. Thus in our system, routing
messages are increasingly forwarded to the un-congested peers
in the network.

C. Network performance evaluation under heavy workloads

In this subsection, network performances under heavy work-
loads are evaluated. In our simulation settings, query work-
loads in the network are increased at the 60th minute and the

 

(a)

 

(b)

Fig. 6. Timely behavior of the network search performances of our proposed
system, the DANTE system and the random walk method under heavy
workloads. (a)Average number of hops, (b)Average search time.

workloads are set to normal again at the 120th minute. Now,
the network performances under heavy workloads are observed
between 60th minute and 120th minute. In our simulations, the
heavy workloads are generated in the network by setting the
parameter tbs = 0.5, which means that the network generates
10 times more queries in the network than that of the normal
workload condition where the tbs is 5.

Firstly, the search performances based on both the average
number of hops and the average search time under heavy
workloads are evaluated, as shown in Fig.6. During the first
60 minutes, both the average hops and the average search time
are observed to be decreasing in all the three methods, as there
are no heavy workloads in the network during this time. At
the 60th minute, our proposed system achieves lower average
hops and average search time than both the DANTE system
and the random walk method respectively. When queries are
imposed ten times more in the network at the 60th minute, both
the average hops and the average search time are observed to
be increasing in all the three methods until the 70th minute
and decreasing thereafter. During this time, both the average
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hops and the average search time of our proposed system are
observed to be recovering more quickly and are lower than
those of the DANTE system and the random walk method.
Fig.6 illustrates that our proposed system can achieve better
search performances under heavy workloads by employing
routing control among both inter- and intra- group level peers.

Secondly, the success of the hit rates in the resource locating
process is evaluated under heavy workloads. Fig.7 depicts
the timely behavior of the hit-rates of our proposed system,
the DANTE system and the random walk method under
heavy workloads respectively. The hit rates are observed to
be increasing in both the other two methods during the first
60 minutes, as there are no heavy workloads in the network.
At the 60th minute, our proposed system achieves higher hit
rates than both the DANTE system and the random walk
method, which demonstrates the efficiencies of our proposed
system in a stable network. When queries are imposed ten
times more in the network at the 60th minute, the hit rates
of both the other two methods are observed to be decreasing
until the 70th minute and increasing thereafter. During this
time, the hit rates of our proposed system are observed
to be recovering more quickly and are higher than those
of the DANTE system and the random walk method. This
change in the hit rate demonstrates that our proposed system
effectively adapts the network topology rapidly to form a
clustered network again, and so the hit rates of our proposed
system are higher than those of the random walk method and
the DANTE system. Thus, our proposed system can achieve
effective balanced routings among the intra-group level peers
through the collaborative Q-Learning method under heavy
workloads, outperforms the DANTE system which evolves
into a clustered network without learning the network.

Finally, the congestion rates of the peers in the entire
network are evaluated, as shown in Fig.8. The congestion rates
of the peers are observed to be decreasing in both the other
two methods during the first 60 minutes, as there are no heavy
workloads in the network. When the network suffers heavy
workloads at the 60th minute, the congestion rates of both the
methods are observed to be increasing until the 70th minute
and decreasing thereafter. The congestion rates of our proposed
system are observed to be recovering more quickly and are
higher than those of the DANTE system and the random walk
method. This is because that our proposed system not only
adjusts the network topology dynamically, but also guides
queries to be forwarded to those un-congested peers of the
same group through the Q-Learning method.

It is interesting to observe that the characteristic changes
of our proposed system are sharper under higher churns than
under heavy workloads. This implies that when the peers of
higher processing capacity leave the network, higher churn
rates influence the dynamic characteristics of our proposed
system more than the heavy workload rates. From the experi-
ments conducted under higher churns and heavy workloads, it
can be concluded that our proposed system effectively adapts
to both higher churns and heavy workloads by dynamically
changing the network topology through resource grouping,
thereby achieving balanced routing among the intra-group
level peers. Our experiment results prove that the search

 

Fig. 7. Timely behavior of hit-rates of our proposed system, the DANTE
system and the random walk method under heavy workloads.

 

Fig. 8. Timely behavior of congestion rates of the peers of our proposed
system, the DANTE system and the random walk method under heavy
workloads.

performances of our proposed system are better than those of
the DANTE system and the random walk method. Also, our
routing control method by collaborative Q-Learning exhibits
more effective congestion control than those of the DANTE
system and the random walk method.

D. Comparison with DANTE under higher churns and heavy
workloads

In the last subsection, we compare the efficiencies of our
system with the DANTE system which is also capable of
dynamically adapting the changes in the network topology.
In a realistic network environment setting, both our proposed
system and the DANTE system are subjected to both higher
churns and heavy workloads under two different simulation
scenarios. Firstly, the systems are simulated under a moderate
network with a churn rate of 0.05 and tbs set to 5. In this
scenario, peers enter and leave the network at a rate of 5% per
30 minutes and process 2, 000 queries per second. Secondly,
the systems are simulated under an extreme network condition
with a churn rate of 0.1 and the tbs set to 0.5. This extreme
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(d)

Fig. 9. Timely behavior of the network search performances of our proposed system and the DANTE system under higher churns and heavy workloads.
(a)Average number of hops with a churn rate of 0.05 and tbs = 5, (b)Average number of hops with a churn rate of 0.1 and tbs = 0.5, (c)Average search
time with a churn rate of 0.05 and tbs = 5, (d)Average search time with a churn rate of 0.1 and tbs = 0.5 .

network scenario exhibits more dynamic characteristics with
the peers leaving and entering the network at a rate of
10% per 30 minutes and process 20, 000 queries per second
accordingly.

Fig.9 illustrates the timely behavior of the search perfor-
mances of our proposed system and the DANTE system under
the scenarios of moderate and extreme network conditions
accordingly. Fig.9(a) and Fig.9(b) illustrate the timely changes
of the average number of hops under the two networks
conditions. Fig.9(c) and Fig.9(d) illustrate the timely changes
of the average search time under the two network conditions
accordingly. As shown in the four figures, both the average
hops and the average search time are observed to be decreasing
as time elapses. The network churn is triggered every 30
minutes under both the network conditions. Both the systems
experience an increase in average hops and average search
time for a shorter time after the occurrence of the churns and
decreases thereafter. This demonstrates that both our proposed
system and the DANTE system are capable of adapting their
topologies to dynamic network environments. Also, for a given

time period both the number of average hops and the average
search time are higher in the extreme network than that of the
moderate network. From the observed results, our proposed
system performs better than the DANTE system in terms
of both the average hops and the average search time, as
shown in Fig.9, thereby proving the search effectiveness of
our proposed system. This is because that our proposed system
achieves balanced routing among both inter- and intra- group
peers while the DANTE system achieves balanced routing only
among the inter-group peers.

Fig.10 illustrates the success of the hit rates in the resource
locating process of our proposed system and the DANTE sys-
tem under the two dynamic network environments respectively.
It is observed that both the two systems achieve an increase in
their respective hit rates as time elapses under the two dynamic
networks. Again, both the systems exhibit a decrease in the
hit rates for a short time after the occurrence of the network
churns and increases thereafter. This demonstrates that both the
systems are capable of adapting their topologies to dynamic
network environments. Though, our system exhibits a better
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(a)

 

(b)

Fig. 10. Timely behavior of success of the hit rates in our proposed system
and the Dante system under higher churns and heavy workloads. (a)Hit rates
with a churn rate of 0.05 and tbs = 5, (b) Hit rates with a churn rate of 0.1
and tbs = 0.5.

performance in hit rates, as the curve of our proposed system is
witnessed at 0.15 and 0.1 (in Fig.10) higher than the DANTE
system for extreme and moderate networks respectively. This
demonstrates that our proposed system achieves better hit rates
than the DANTE system under dynamic networks, especially
in extreme network conditions.

Finally, Fig.11 illustrates the timely changes in the con-
gestion rates of the peers in our proposed system and in the
DANTE system under the two dynamic network environments
respectively. Congestion rates of the peers are observed to be
higher in the extreme network than the moderate network for
both the systems. For instance, the values of the congestion
rates of the peers in our proposed system and the DANTE
system in moderate network are found to be 0.21 and 0.27 at
the 120th minute, respectively. And the same is found to be
0.33 and 0.41 for the extreme network accordingly. Observing
these values, we conclude that our proposed system achieves
a lower congestion rate of the peers than that of the DANTE
system. This demonstrates the efficiency of our proposed
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(b)

Fig. 11. Timely behavior of congestion rates of the peers of our proposed sys-
tem and the DANTE system under high and heavy workloads. (a)Congestion
rates of the peers with a churn rate of 0.05 and tbs = 5, (b)Congestion rates
of the peers with a churn rate of 0.1 and tbs = 0.5.

system in congestion control routing through collaborative Q-
Learning.

As shown in Fig.2, where CPU time consumptions of the
three methods are compared, our proposed system achieves
11.5% extra CPU time than the DANTE system and 50%
extra CPU time than the random walk method respectively.
This CPU time consumption is measured by simulating the
three systems in stable networks. The Q-learning employed in
our method causes an extra CPU time consumption whilst
computing the states of the neighbor peers for avoiding
congestion in the network. It is worth to add that all our
simulations are conducted in a distributed environment, and
so we believe that the performance of our method will not be
deteriorated by the increase in the CPU time consumptions.
All our experiment results demonstrate that our proposed sys-
tem can achieve better search performance and exhibit better
robustness and adaptability than the DANTE system, since our
proposed system achieves balanced routing among both inter-
and intra- group peers while the DANTE system achieves
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balanced routing only among the inter-group peers. Thus our
proposed system can achieve efficient search performances
with a moderate extra CPU time and bandwidth consumption.

V. CONCLUSION

P2P networks are being witnessed in many applications
in the past few decades. Load balancing and decentralized
resource locating approaches in such networks still suffer
various limitations. In this paper, a new churn resilient system
is proposed to assure alternative routing path for balancing
the query loads among the peers under higher network churns.
Our proposed system uses two strategies to achieve query load
balancing among both inter- and intra-group peers. Firstly,
a resource grouping and a rewiring mechanism is proposed
to periodically cluster the peers having same resources. This
strategy helps to quickly locate the requested resources in
the network and enables the network to balance the query
loads among the inter-group peers. Furthermore, it helps the
network overlay topology to evolve from a random network
into a clustered network. On the other hand, load balanced
routing among the intra-group peers is achieved by employing
a collaborative Q-Learning method among the peers. Our
proposed collaborative Q-Learning method not only learns the
network parameters such as processing capacity, number of
connections and the number of resources in the peers, but also
learns the congestion states of the peers. By this technique,
queries are guided to avoid being forwarded to the congested
peers in the network. Thus, query routings are forwarded
to un-congested peers and further balanced among the intra-
group level peers. Our simulation results show that the desired
resources are located more quickly and query loads in the
entire network are balanced by our proposed system. Also, our
proposed method exhibits more robustness and adaptability
under network attacks, heavy query workloads, and higher
network churns than that of the random walk method and the
DANTE system.

ACKNOWLEDGEMENTS

This work was funded in part by the National Natural Sci-
ence Foundation of China(No.61572240,61502209,61472392),
Natural Science Foundation of Jiangsu Province
(BK20130528), and the Open Project Program of the National
Laboratory of Pattern Recognition(NLPR)(No.201600005).
Xiang-Jun Shen and Lu Liu are the corresponding authors of
the paper.

We thank the reviewers for his/her thorough review and
highly appreciate the comments and suggestions, which signif-
icantly contributed to improving the quality of the publication.

REFERENCES

[1] J. Risson and T. Moors, “Survey of research towards robust peer-to-
peer networks: search methods,” Computer networks, vol. 50, no. 17,
pp. 3485–3521, 2006.

[2] L. Liu, N. Antonopoulos, M.H. Zheng, Y.Z. Zhan, and Z.J. Ding, “A
socio-ecological model for advanced service discovery in machine-to-
machine communication networks,” ACM Transactions on Embedded
Computing, vol. 15, no. 2, pp. 38:1–38:26, 2016.

[3] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “Survey
of research towards robust peer-to-peer networks: search methods,”
Communications Surveys & Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[4] H. Chen, H. Jin, J. Sun, D. Deng, and X. Liao, “Analysis of large-scale
topological properties for peer-to-peer networks,” in IEEE International
Symposium on Cluster Computing and the Grid, 2004, pp. 27–34.

[5] S.L. Mirtaheri, and M. Sharifi, “An efficient resource discovery frame-
work for pure unstructured peer-to-peer systems,” Computer Networks,
vol. 59, pp. 213–226, 2014.

[6] L. R. Merino, A. F. Anta, L. Lópze, and V. Cholvi, “Self-managed
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[17] R. L. Pereira, T. Vazäo, and R. Rodrigues, “Adaptive search radius -
using hop count to reduce p2p traffic,” Computer Networks, vol. 56,
no. 2, pp. 642–660, 2012.

[18] A. Kurve, C. Griffin, D. J. Miller, and G. Kesidis, “Optimizing cluster
formation in super-peer networks via local incentive design,” Peer-to-
Peer Networking and Applications, vol. 8, no. 1, pp. 1–21, 2015.

[19] J.-S. Li, and C.-H. Chao, “An efficient super-peer overlay construction
and broadcasting scheme based on perfect difference graph,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 5, pp.
594–606, 2010.

[20] G. J. Fakasa, and B. Karakostas, “An efficient super-peer overlay con-
struction and broadcasting scheme based on perfect difference graph,”
Information and Software Technology, vol. 46, no. 6, pp. 423–431, 2004.

[21] Z. Xu, and L. N. Bhuyan, “Effective load balancing in p2p systems,”
in IEEE International Symposium on Cluster Computing and the Grid
, 2006, pp. 81–88.

[22] G. Sreenu, P. M. Dhanya, and Sabu M. Thampi, “Enhancement of
bartercast using reinforcement learning to effectively manage freeriders,”
in Advances in Computing and Communications, 2011, pp. 126–136.

[23] K. Wu, C. Wu, and L. Liu, “State-based search strategy in unstruc-
tured p2p,” in Proceedings of 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing,
2010, pp. 381–386.

[24] H. V. Hasselt, “Reinforcement learning in continuous state and action
spaces,” in Reinforcement Learning: State-of-the-Art, ser. Adaptation,
Learning, and Optimization. Springer, 2012, vol. 12, ch. 7, pp. 207–
251.

[25] J. Luo, B. Xiao, K. Bu, and S. Zhou, “Understanding and Improving
Piece-Related Algorithms in the BitTorrent Protocol,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 12, pp. 2526–2537,
2013.

[26] S. Sarolu, P. K. Gummadi, abd S. D. Gribble, “A measurement study
of peer-to-peer file sharing systems,” in Proceedings of Multimedia
Computing and Networking, 2002.


