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Performance Analysis of Correlated Massive MIMO
Systems With Spatially Distributed Users

Sudip Biswas, Student Member, IEEE, Jiang Xue, Member, IEEE, Faheem A. Khan, Member, IEEE,
and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—In this paper, we analyze the performance of an up-
link large-scale multiple-input-multiple-output system with a sin-
gle base station (BS) serving spatially distributed multiantenna
user devices (UDs) within a fixed coverage area. Stochastic geome-
try is used to characterize the spatially distributed users while large
dimensional random matrix theory is used to achieve determinis-
tic approximations of the sum rate of the system. In particular, the
users in the vicinity of the BS are considered to follow a Poisson
point process within the fixed coverage area. The sum rate of this
system is analyzed with respect to different number of antennas
at the BS as well as the intensity of the users within the coverage
area of the cell. Closed-form approximations for the deterministic
rate at low and high signal-to-noise ratio regimes are derived that
have very low computational complexity. The deterministic rate
for a general kth ordered user is also derived. It is shown that
the deterministic approximations offer a reliable estimate of the
ergodic sum rate obtained by Monte Carlo simulations. We also
briefly touch on the growing issue of power consumption in wire-
less systems by analyzing the energy efficiency of the system using
a power consumption model, taking into consideration the circuit
power consumption, which is a function of the number of antennas
of the BS and UDs.

Index Terms—Energy efficiency, massive multiple-input
multiple-output (MIMO), multiuser MIMO, Poisson point process.

I. INTRODUCTION

IN RECENT years, the explosive growth of mobile data traffic
has led to an ever-growing demand for much higher capacity,

lower latency, and energy efficiency (EE) in wireless networks.
It has culminated in the development of the fifth generation (5G)
wireless communication systems, expected to be deployed by
the year 2020, with key goals of data rates in the range of Gbps,
billions of connected devices, lower latency, improved coverage
and reliability, and low-cost, energy efficient, and environment-
friendly operation.

Massive multiple-input multiple-output (MIMO) is a promis-
ing technology for 5G wireless networks that has recently re-
ceived significant attention to potentially provide a considerable
improvement in spectrum and EE [1]–[6]. In this approach,
a base station (BS) with very large antenna arrays is used
to eliminate intercell interference through highly directional
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beamforming. Using random matrix theory (RMT), it has been
shown that the effects of uncorrelated noise and small-scale
fading are eliminated due to very large number of antennas at
the BS and the required transmit energy per bit goes to zero as
the number of antennas approach to infinity [7]. Moreover, it
leads to the use of simpler linear signal processing techniques,
such as matched filter precoding/detection to achieve the above
advantages. Recently, there has been a flurry of research activ-
ities to find out the signal processing and information theoretic
limits of massive MIMO systems. In [8] and [9], it is shown
that every single-antenna user in a massive MIMO system can
scale down its transmit power proportional to the number of
antennas at the BS with perfect channel state information (CSI),
while the transmit power scales down proportional to the square
root of the number of BS antennas with imperfect CSI to get
the same performance as a corresponding single-input-single-
output (SISO) system. This results in significant improvements
in EE for future wireless networks [5], [6]. On the other hand,
massive MIMO systems could significantly extend the range of
operation compared with a single-antenna system if adequate
transmit power is available.

However, the presence of large number of antennas in the
system makes it difficult to carry out the exact performance
analysis of such a system due to the complexity of the resulting
analytical expressions. For this reason, large dimensional RMT
[10] has been recently used as a powerful tool to deal with mas-
sive MIMO systems. These techniques were first used in [11]
and [12] for the analysis of MIMO ergodic capacities. Capac-
ity expressions for infinite antennas with uncorrelated channels
were derived for code-division multiple-access codes in [13],
and for multiple-antenna systems in [14]. While the reliability
of large-scale MIMO systems was studied in [15], an infinite
antenna number capacity was calculated with spatially uncor-
related channels and uncorrelated interferers in [16]. In [17], a
method was developed to analytically calculate the capacity of
spatially correlated channels for large but finite antenna num-
bers. Furthermore, a deterministic equivalent of ergodic sum
rate and an algorithm for evaluating the capacity-achieving input
covariance matrices for the uplink large-scale MIMO antenna
channels were proposed in [18] and [19].

A stochastic geometry approach has recently gained signifi-
cant attention to develop tractable models to analyze the perfor-
mance of wireless networks [20]. In this approach, the wireless
network is abstracted to a convenient point process that is used to
capture the wireless network properties. A Poisson point process
(PPP) is the most popular and tractable point process to model
the locations of users and BSs in wireless networks. Inspired by
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the stochastic geometry approach to analyze the performance
of large-scale MIMO systems, we consider the uplink of such a
system with a single BS serving spatially distributed multiple-
antenna users within a fixed coverage area of a densely built up
urban environment. In such an environment, it is quite hard to
find dominant propagation of the signals along the line of sight
(LOS). Hence, it is quite reasonable in such a scenario to con-
sider a Rayleigh faded channel with no LOS. We consider the
stochastic geometry approach to characterize the spatially dis-
tributed users while large dimensional RMT is used to achieve
deterministic approximations of sum rate of the system. It is
assumed that the users in the cell follow a PPP. We then analyze
the sum rate of this system with respect to varying number of
antennas at the BS as well as the intensity of the users within
the coverage area of the cell. Closed-form expressions for the
low signal-to-noise ratio (SNR) and high SNR regimes are also
provided. At this point, we would like to note that our results
complement the contribution of [19]. However, we consider the
more general and realistic case in which the stochastic nature of
the users and their individual path losses are considered.

Furthermore, we briefly analyze the EE of such systems,
which is currently one of the primary design goals of any wire-
less communication system. EE of a communication link is
usually defined as the total energy required for transmission
in order to achieve a specific spectral efficiency [8], [21]. The
significance of the total power consumption in MIMO systems
has been emphasised in [22]. MIMO systems have been stated
to offer improved EE on account of array gains and diversity
effects [2]. Hence, the definition of EE can be quite delusive at
times especially when a massive MIMO scenario is considered
with the number of antennas increasing asymptotically leading
toward unbounded EE, which is quite improbable for practical
systems. In [23], the effect of the number of BS antennas on EE
has been discussed, while [24] discusses about designing opti-
mal EE for massive MIMO systems. In our analysis, we take into
consideration, the circuit power consumption of both the BS and
the user equipments (UEs) accordingly form an EE expression
that varies with the number of BS antennas and the users.

The main contributions of this paper can be summarized as
in the following points.

1) We have presented approximations of the sum rate of a
single-cell multiuser MIMO system with large number
of antennas at BS and multiple antennas at UEs. This is
adhering to the consideration that the users follow a PPP
within the cell.

2) We have considered correlated Rayleigh fading and uni-
formly distributed UEs within the cell and power-law path
loss. The path loss exponent determines the large-scale
fading of the users.

3) We have provided high and low SNR approximations of
the sum rate of the system that can be considered as good
low complexity approximations of the analytical capacity.

4) We have also provided the approximate sum rate for the
kth ordered user.

5) We also touch on the analysis of the EE of the whole
system considering a realistic power consumption model
that includes the circuit power consumption of the system.

Fig. 1. Illustration of a multiuser MIMO setup with multiple antennas both at
the BS and users. The users are uniformly distributed within the cell.

Notations: We use upper and lower case boldface to denote
matrices and vectors, respectively. R denotes the real plane,
while C the complex plane. The expectation operator is de-
noted by E{·} and the probability by P [·]. (·)∗ and (·)H denote
the transpose and Hermitian transpose of vectors/matrices, re-
spectively, while tr(·) and | · | denote the trace and determinant
of a matrix, respectively. A complex normal variable with mean
μ and variance σ2 is given as CN (μ, σ2). Last 〈A〉 returns
the submatrix of A obtained by extracting the elements of the
rows and columns with indices from

∑k−1
i=1 ni + 1 to

∑k
i=1 ni ,

and eig(A) returns the eigenvalues of the matrix A. All other
symbols will be explicitly mentioned wherever used.

The rest of the paper is organized as follows. Section II
describes the system model. The mathematical preliminaries
used in determining the closed-form approximations are
presented in Section III. Section IV provides the sum-rate
analysis. In Section V, low and high SNR approximations of
sum rate are derived. The capacity of the kth ordered user is
found in Section VI, while Section VII presents an analysis on
EE of the system. In Section VIII, we provide the numerical
analysis followed by the conclusion of the paper in Section IX.

II. SYSTEM MODEL

We consider the uplink of a single-cell multiuser MIMO Mul-
tiple Access Channel (MAC) system consisting of a BS with M
antennas, receiving signals from K users, each equipped with
n1 , . . . , nK antennas, respectively. A schematic illustration1 of
the system under consideration is given in Fig. 1. Considering a
separable correlation model for analytical tractability, we model
the M × nk channel, Wk between the BS and the kth user as

Wk = Hk ||xk ||−
α
2 , (1)

with

Hk = R
1
2
k GkT

1
2
k , (2)

1We consider a circular cell of radius r in R2 with an area of πr2 . A
hexagonal cell in R2 can also be considered. The radius of the cell, r can then
be considered from the center to the vertex and the area (considering a regular

hexagon with side b) is given as 3b
√

r − b2

4 .
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where R
1
2
k and T

1
2
k are M × M and nk × nk deterministic

receive and transmit correlation matrices, respectively. Here,
Gk ∈ CM ×nk consists of complex random identically inde-
pendently distributed (i.i.d) variables with zero mean and unit
variance that models independent fast fading. We assume that
the users do not have any LOS with the BS and hence, Gk

is Rayleigh-faded. The separable model allows us to keep the
correlation between any two transmitting antennas to be fixed
irrespective of the receiving antenna and vice versa. Moreover,
xk ∈ R2 denotes the physical location (distance between the UE
and the centre of the cell) of the kth user in meters and it is com-
puted with respect to the BS. The large-scale fading at a specific
user location is described by the function F(·) : R2 → R. Thus,
the average channel attenuation due to path loss and shadowing2

at user location xk can be represented byF(xk ). The large-scale
fading is assumed to be independent over M and also constant
over many coherence time intervals. This assumption is quite
reasonable due to the fact that the distances between the users
and the BS are much larger than the distance between the an-
tennas at the BS. Also, α in (1) denotes the path loss exponent
varying from 2 to 4, with 2 denoting a free space propagation
and 4 a relatively lossy environment.

Let r denote the radius of the circular cell and x = ||x||.
The user locations can be described by the probability density
function as

f(x) =

{
2x
r 2 , 0 ≤ x ≤ r

0, otherwise.
(3)

Furthermore, we model the large-scale fading as

F(x) = x− α
2 , for x > 0, (4)

which is then put together with the fast fading as shown in (1).
In this paper, considering a typical BS at the origin of the

cell, we use a homogeneous PPP, Φ(x) ⊂ R2 with intensity κ
to model the locations of the users on the plane. The number
of users, K is a function of κ. F(xk ) is a key requisite in all
our subsequent discussions throughout the paper. Assuming the
average transmitted power of each user to be equal, the M × 1
received vector at the BS can now be expressed as

y =
√

p
∑

k∈Φ(x)

Wkuk + z, (5)

where
√

puk is the nk × 1 vector of symbols transmitted by the
kth user, with p = P

K denoting the average transmitted power
of each user and z a vector of additive white Gaussian noise3

with zero mean and covariance σ2IM . P is the total transmitted
power of all the users and is considered to be fixed.

2The results in this paper can also be extended for more complicated fading
models while incorporating shadowing effects. For example, adding log-normal
shadowing to the corresponding results is straightforward and can be done by
modifying (1) as Wk = Hk βk /‖xk ‖

α
2 , where βk is a log-normal random

variable with standard deviation σshadow.
3We would like to note that in this work interference from adjacent cells are

not considered.

III. ASSUMPTIONS AND PRELIMINARIES

In this section, we state the necessary assumptions that will
be used throughout the paper.

1) Perfect Channel State Information: Throughout the pa-
per, we assume that the channel matrices {Wk}∀k are
perfectly known at the BS.

2) SNR: We assume for each transmission link Gkj i
that

E{|Gkj i
|2} = 1. When only transmit antenna i is active,

the instantaneous received SNR at the receiving antenna

j is
p |Gk j i

|2
σ 2 . Thus, the effective transmit SNR for the

communication link can be given as ρ = p
σ 2 . For analytical

convenience, we set the same noise level (σ2) at all the
antennas, though this is not mandatory. The performance
analyzes performed in the following sections will mostly
be as a function of ρ.

3) Rk and Tk are deterministic and nonnegative definite and
are normalized as

tr(Rk ) = M
tr(Tk ) = nk .

(6)

4) Empirical and limiting spectral distribution: Let AM �∑
k∈Φ(x) WkWH

k . Without loss of generality, the mutual
information of a MIMO channel can be associated with the
eigenvalues of the matrix AM [25]. According to RMT,
the empirical spectral distribution of the eigenvalues, λ of
AM can be given as

μAM
(λ) =

1
M

[number of eigenvalues of AM ≤ λ].
(7)

Before we proceed any further, it is worth mentioning the
contribution of [18] and [19]. A deterministic equivalent
of the ergodic mutual information for Rician faded
Kronecker MIMO channel was found by Zhang et al.
using the Shanon transform. This is better elucidated as
Lemma 2 in Appendix A. While it has been a constant
endeavor of researchers to study the limit of the empirical
distribution, also known as limiting spectral density
(LSD), μM of AM , [18] and [19] do that with the help of
Stieltjes transform of μAM

defined as

SAM
(z) �

[∫

R+

1
λ − z

dμAM
(λ)
]

∀z∈R+

=
1
M

tr(AM − zIM )−1 . (8)

Furthermore, with the help of Stieltjes transform it was
shown that

μAM
(λ) − μM (λ) a.s.−−→ 0, (9)

which was accordingly used to find a deterministic
equivalent of the ergodic mutual information. Let RAM

represent the ergodic sum rate of a MIMO MAC and
RM its deterministic equivalent. It was then shown that
RAM

−RM
a.s.−−→ 0.

More detailed explanation about the relation between Stielt-
jes and Shanon transforms can be found in [10]. However,
the analysis based on Stieltjes and Shanon transforms is not
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straightforward and can be quite complex. Hence, we find the
approximation of the ergodic sum rate for the case of correlated
Rayleigh faded channels, where we use stochastic geometry to
characterize the distribution of the users within the cell. We
will show that this approximation is indeed tight. As mentioned
previously, the users follow a PPP, Φ(x) with intensity κ. Fur-
thermore, we also provide two low complexity approximations
based on high and low SNRs.

IV. SUM-RATE ANALYSIS

For very large MIMO systems, when both M,K → ∞, it
becomes increasingly difficult to analyze the performance of
the system based on exact analytical expressions, as they are
often too complicated to evaluate. Even computer simulations
can be quite demanding for systems with such large dimen-
sions. In such cases, large RMT can help to develop approx-
imate analytical expressions, which substantially reduce the
computational complexity. Accordingly, in this section, we for-
mulate the approximate ergodic sum rate of the system under
consideration.

A. Deterministic Sum Rate

Let Ξk be the covariance matrix of the transmitted vectors,
uk of the kth user such that

E{uku∗
l } =

{
Ξk , if l = k
0, otherwise

(10)

and

Tk = T
1
2
k ΞkT

1
2
k . (11)

Ξk can be easily optimized for the case of Rayleigh i.i.d channel
as Ink

. This is due to the consideration that uk are independent
and have the same transmit power. The ergodic sum rate of such
a MIMO MAC can be given as4 [26], [27]

RAM
(ρ) ≡ 1

M
EH {log det (IM + ρAM )} , (12)

where ρ = p
σ 2 is the transmit SNR of the system as described

earlier and AM is as discussed in the previous section. Con-
sidering the properties of a PPP,

∑
k∈Φ(x) nk → ∞ for some

specific probability. Furthermore, we focus on a single BS re-
ceiver with multiple antennas such that M → ∞, which re-
ceives signals from multiple users. At this point, we stress
that while the original massive MIMO definition in [7] as-
sumed that M

K � 1, we consider the more general definition
from [3], where M

K can also be a small constant. Hence-

forth, we aim to show that RAM
−RM

a.s.−−→ 0, where RAM

is computed through simulations and RM through analytical
approximations, which is validated in Section VIII of numerical
results.

Lemma 1: For a single-cell massive MIMO system follow-
ing a PPP in R2 , the general probability of finding K users

4We assume a maximum likelihood sequence estimator at the BS to separate
different data streams.

within the coverage area of the cell can be given as [28]

P [Kusers in the cell] = exp{−κμ(A)} (κμ(A))K

K!
, (13)

where κ is the intensity and μ(A) is the standard Lebesgue
measure of a bounded Borel A ⊂ R2 , which is formed by the
topological space of the cell.

Now, leveraging the results of [19, sec. III.A], for the sys-
tem model in consideration, the capacity of the system can be
approximated as the following proposition.

Proposition 1: The ergodic sum rate of a massive MIMO
system based on LSD of AM can be approximated as

RM (ρ) =
1
M

log det

(

IM +
∞∑

k=0

ε̃k (ρ)Rk P (k)

)

+
2

αM ln 10

∞∑

k=0

nk∑

i=1

G2,2
3,3

(
rα

ψkλk i

∣
∣
∣
∣

1− 2
α , 0, 1

0, 0, − 2
α

)

×P (k) −
∞∑

k=0

εk (ρ)ε̃k (ρ) P (k) (14)

Here,

εk (ρ) =
1
M

tr

⎛

⎝ρRk

[

IM +
∞∑

k=0

ε̃k (ρ)Rk P (k)

]−1
⎞

⎠ , (15)

ε̃k (ρ)=
1
nk

tr

(

ρTk

〈

diag
[

Ink
+

Mεk (ρ)Tk

nk

]−1

∀k∈Φ(x)

〉)

,

(16)

Gm,n
p,q {·} is the hyper-geometric function also known as Mei-

jer G-function [29, eq. (9.301)] and λki = eig(Tk ). There is
a unique solution to (15) and (16) for ρ ∈ R+ , where εk (ρ) ∈
S(R+) and ε̃k (ρ) ∈ S(R+) for k ∈ Φ(x). Furthermore, S(R+)
can be interpreted as the class of all Stieltjes transforms of finite
positive measures carried over R+ and P (k) is obtained from
Lemma 1.

Proof: It is to be noted that, the number of users as men-
tioned before is decided based on a PPP and calculated with
respect to the probability given by Lemma 1 and the intensity of
the users, κ. Our aim now is to derive the closed form expression
of the deterministic ergodic sum rate as given in (14) and also to
show that there is a unique solution to (15) and (16). For better
understanding, we divide the proofs into two parts. The detailed
derivation of (14) is given in Appendix B, while the proof of
uniqueness of (15) and (16) is given in Appendix C. �

V. HIGH AND LOW SNR SUM-RATE APPROXIMATIONS

A. High SNR Regime

Fast fading channels have the same properties at high SNR as
time-invariant channels, irrespective of the knowledge of chan-
nel state information at transmitter. In this section, we analyze
the capacity in the high SNR regime, i.e., ρ → ∞.

Corollary 1: Let ψk = M
nk

εk (ρ). Then at relatively high SNR
(ρ → ∞) regime for correlated massive MIMO channels, RM
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approaches the exact sum rate and can be derived as

RMρ→∞(ρ) =
1
M

∞∑

k=0

log(tr(ε̃k (ρ)Rk ))P (k)

+
1
2

∞∑

k=0

nk∑

i=1

[
2 log(ψkλk i) +

(
2 log(r−α )

+α)]P (k)

−
∞∑

k=0

εk (ρ)ε̃k (ρ) P (k). (17)

Proof: Considering ρ to be large, (14) can be approximated
as

RMρ→∞(ρ) =
1
M

log det

( ∞∑

k=0

ε̃k (ρ)Rk

)

P (k)

+
2
r2

∞∑

k=0

(
nk∑

i=1

∫ r

0
log(ψkλk ix

−ρ)xdx

)

P (k)

−
∞∑

k=0

εk (ρ)ε̃k (ρ) P (k). (18)

Using integration by parts and substituting the limits of the
integral, we obtain (17). �

B. Low SNR Regime

When the SNR of the system is relatively low, the multiplex-
ing gains of the system are lost. In such a scenario when ρ → 0,
the sum rate can be approximated by the following corollary.

Corollary 2: At low SNR the sum rate can be approximated
as

RMρ→0 =
∞∑

k=0

[
1
M

tr(ε̃k (ρ)Rk )
log 10

+
2r1−α tr(ψkTk )
(2 − α)M log 10

]

P (k). (19)

Proof: This can be easily proved by using the approxima-
tion log2(1 + x) ≈ x/ log 2 for small x in (14). �

C. Complexity Analysis

In this section, we analyze the complexity of both the high and
low SNR approximations with respect to (14). We focus on the
complexity of calculation and running time for common mathe-
matical operations that are used in our algorithms. Complexity,
in this analysis refers to the time complexity of performing
computations with respect to a reference Turing machine [30].

We consider the upper bound of the operation time such that
for a sufficiently large number n, the limiting behavior of a
function f(n) is denoted by O (g(n)), where the function f
is bounded above by the function g. Let the complexity of εk

and ε̃k be denoted by O(φ1) and O(φ2). Then, following the
complexity of some basic mathematical calculations as given
in [31], for a single iteration under Φ(x), the complexity of
the approximation in Proposition 1, Corollary 1 and Corollary

2 can be approximated as O(n3 log n + n2(log n)2 + φ1φ2),
O(n2 log n + log n + φ1φ2), and O(n2), respectively. Hence,
it can be stated that the high and low SNR approximations have
low computational complexities when compared to the sum-rate
approximation given in Proposition 1. Later, in the numerical
section of the paper, we show that these two approximations
are quite tight and can be used appropriately in the respective
regimes.

VI. GENERAL USER CAPACITY

We have so far focused our discussion based on the total
number of users, K, within the coverage area of the BS. We
now order the users based on their distances from the BS as
||x1 || < ||x2 || < ||x3 || < . . . < ||xk∈Φ(x) || < · · · . In this sec-
tion, we discuss the capacity of the kth order user selected from
the PPP based on the probability, P and intensity, κ.

Proposition 2: Considering the order of the users as de-
scribed, the distribution of the location of the kth ordered user
with respect to the BS can be given as

f(||xk ||) = exp(−κπr2)
2(κπr2)k

rΓ(k)
. (20)

The ergodic rate for this user can now be approximated as

Rk
M (ρ) =

1
M

log det (IM + ε̃k (ρ)Rk )

+
∞∑

n=0

2(−1)n (
√

κπ)(2n+k)r(2(n+k)+1)

αn!Γ(k)

×
nk∑

i=1

G2,2
3,3

⎛

⎝ rα

ψkλk i

∣
∣
∣
∣

1− 2 (n + k )+ 1
α , 0, 1

0, 0, −
2(n + k) + 1

α

⎞

⎠

−εk (ρ)ε̃k (ρ), (21)

where n ∈ R and 0 ≤ n ≤ ∞.
Proof: To prove this, we build on our previous proof of (14)

and consider any one particular user. The detailed derivation is
given in Appendix D.

Corollary 3: Considering the order of the users as described,
the distribution of the first user in the order can be given as

f(||x1 ||) = 2 exp(−κπr2)κπr, (22)

Accordingly, the rate for this user can be approximated as

R1
M (ρ) =

1
M

log det (IM + ε̃1(ρ)R1)

+
∞∑

n=0

2(−1)n (
√

κπ)(2n+1)r(2(n+1))

αn!

×
nk∑

i=1

G2,2
3,3

⎛

⎝ rα

ψ1λ1 i

∣
∣
∣
∣

1− 2 (n + 1 )
α , 0, 1

0, 0, −
2(n + 2)

α

⎞

⎠

−ε1(ρ)ε̃1(ρ). (23)
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VII. ENERGY EFFICIENCY

The EE of a communication link is the ratio of the achievable
sum rate to the total power consumed and is given in bits/joule
[8], [21]. The corresponding EE as studied in many existing
works is thus given as [8], [24], [32]

ξ =
RM

pPA + pRF
(24)

where pPA is the power consumed by the power amplifiers and
pRF is the power consumed by the RF components of both BS
and UEs.

A. Power Amplifiers

The average power in watt consumed by the power amplifiers
during uplink can be approximated as [24], [26]

pPA = P (α + 1) (25)

where α = ζ
η − 1 with ζ being the modulation-dependent peak

to average power ratios for uplink, while η is the power amplifier
efficiency and P is the total transmitted power of all users as
described earlier.

B. RF Chains

The average power in watt consumed in the RF chains for a
typical MIMO transmitter–receiver set can be given as [21]

pRF = MpBS + KpUE (26)

where pBS is the power required at the BS to run the circuit
components and pUE is the power associated with the UEs.
They are further defined as follows:

pBS = pBS
mix + pBS

filt + pBS
ADC + pBS

DAC + pBS
OSC (27)

pUE = pUE
mix + pUE

filt + pUE
ADC + pUE

DAC + pUE
OSC (28)

where pmix , pfilt , pADC, pDAC, and pOSC denote the power
consumed by the mixers, filters, analog-to-digital converters,
digital-to-analog converters, and local oscillator, respectively.5

Most existing works consider the total power consumed in the
RF cicuits of the system to be fixed. This consideration can be
very detrimental in the analysis of a large-scale MIMO system,
like ours, where both M, K → ∞, which eventually leads to
unbounded EE. This outcome is the consequence of disregarding
the fact that dedicated circuit components with nonzero power
consumption are required for each antenna at the BS. As a
matter of fact, EE does not always increase with M or K.
The simulation results in Section VIII validate this theory and
provide further valuable insights into this. In this regard, it is
worth mentioning that for our case, we have considered the
transmission to be i.i.d, which reduces the requirement of high-
complexity optimization of the transmitted power. Furthermore,
we have previously assumed that the average power transmitted
by all the users is equal. Nevertheless the optimization of power

5The components considered in this paper may vary from setups used in
practical scenarios. Any other components used can easily be included in the
expressions of pBS and pUE while the ones that are not used may be removed.

Fig. 2. Simulation and analytical sum rate versus SNR for different number
of antennas, M at the BS. κ = 0.01, α = 2.2.

to attain better EE is of paramount importance. While in this
paper we have tried to give an appropriate model for pRF and
validate our assumptions with simulations, the optimization of
the power and other parameters such as M and K to attain a
energy efficient system are left for future work.

VIII. NUMERICAL RESULTS

This section validates the system model and also verifies our
result in Proposition 1 and the resulting corollaries by making
comparisons between the ergodic sum rate and the approximate
sum rate. We analyze the behavior of the system model un-
der consideration with respect to increasing SNR while varying
other significant system parameters. In general, the computation
of the ergodic sum rate is done through Monte Carlo simulations,
which is then used to validate the simulation of the analytical
results. Unless stated otherwise, most of the values of the pa-
rameters used are inspired from the literature mentioned in the
references. For the system guidelines, we consider a circular
cell as stated earlier with a radius of r = 1000 m. The users are
uniformly distributed within the coverage area of the cell and
their numbers are governed by Poisson distribution with inten-
sity κ and probability given by (13) in Lemma 1. Hereinafter,
we consider all the users in the system to be equipped with two
antennas and examine the validity of our approximations with
respect to simulations. While Fig. 2 shows the uplink sum rate
versus SNR for various antenna configurations at the BS, Fig. 3
shows the uplink sum rate versus SNR for different user intensi-
ties, κ inside the coverage area of the cell. Specifically, these two
figures attempt at validating Proposition 1. In other words, we
intend to see how well RM (ρ) in (14) approximates to RAM (ρ)
in (12). Here, we choose the path loss exponent, α = 2.2 and
the intensity of the users, κ = 0.01. In Fig. 1, understandably,
the sum-rate increases as we increase the average SNR. But
what is notable is that, as we increase the number of antennas
from 8 to 150, the analytic curve tends to converge tightly to-
ward the simulation. This implies that RM (ρ) −RAM (ρ) → 0,
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Fig. 3. Simulation and analytical sum rate versus SNR for different intensities,
κ of the users within the cell. M = 100, α = 2.2.

which proves the validity of our approximation for large MIMO
systems. Nevertheless, it is also important to see how the ana-
lytical approximation fares when the system dimension is not
so large. In this regard, we see that the approximation also holds
true for fewer number of antennas as can be seen for the cases of
M = 8, 12, 20, 50 but with error of a few bits. Hence, it is cru-
cial to investigate the scenarios when the number of antennas is
not a very large number, which we concentrate on in our subse-
quent analyzes. In addition, as we increase M , the ergodic sum
rate also increases. For the case of Fig. 3, we choose M = 100
and α = 2.2. We vary κ from 0.01 to 0.02 in steps of 0.005.
Our approximation holds good for all the three cases and hence,
we can assert the convergence of our analytic approximation
for a massive MIMO scenario. Furthermore, the sum rate of the
system increases owing to the increase in κ that in turn increases
K, thus increasing the transmit antennas. The increase in sum
rate follows a similar pattern as Fig. 2 with the scaling more pro-
nounced when increasing from κ = 0.01 to 0.015 than 0.015 to
0.02.

Hereinafter, based on the results of Fig. 2, we also focus
on the regimes when the system dimension may not be very
large. In Fig. 4, the approximate sum rate for the high SNR
regime from Corollary 1 is plotted versus the average SNR for
different combinations of M . M is varied while κ is kept at 0.01
and α at 2.2. It is quite evident from the figure that at high SNR
regime the path loss fluctuations are negated due to high transmit
power of the users, thus producing very high sum rates. Also it
can be seen that the simulations and approximations converge
at relatively high SNR, which validates our analysis. As can
be expected, M = 8 yields the maximum sum rate followed
by other combinations. Furthermore, the slopes of the curves
become steeper with the increase in M and the approximations
converge with the simulations at very high SNR, thus validating
our result.

In Fig. 5, we show the sum-rate approximation in the low
SNR regime from Corollary 2. We consider similar settings as
in Fig. 4 with the exception of the SNR range. Both simulations

Fig. 4. High SNR approximation of sum rate versus SNR for different number
of antennas, M at the BS. κ = 0.01, α = 2.2.

Fig. 5. Low SNR approximation of sum rate versus SNR for different number
of antennas, M at the BS. κ = 0.01, α = 2.2.

and analytic expression considering various M are plotted. The
approximations effectively converge with the simulations for
very low SNR while they diverge from the simulations in the
moderately low SNR region. Moreover, it can be seen that the
gap in performance when the number of antennas are increased
is quite minimal. This is due to the fact that the multiplexing
gains are lost in the low SNR regime.

At this point, it is worth mentioning the fact that the high
and low SNR approximations are quite tight and considerably
reduce the computation complexity of the sum rate of the system.
From a system design point of view, they can be quite easy
for engineers to implement in terms of computation time and
complexity. Next, we analyze the EE of our system model with
respect to a reference EE. We define this EE as relative EE.
First, we calculate the EE of a reference system model and
then simulate the EE of our system by normalizing it with the
reference system model. We start by considering a SISO system
with the single user equipped with a single-antenna transmitting
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Fig. 6. Relative EE versus number of BS antennas, M with respect to a refer-
ence system (M = 1, K = 1, nk = 1), for different SNR and user intensities.
α = 2.2.

to the BS equipped with one antenna only. We consider P BS =
1W , pUE = 0.1 W, and p = 10 dB. Thus from (24) we have

ξref =
RM ref

pref + MpBS + KpUE
. (29)

Numerically, we calculate RM ref = 0.6 bits/transmission for
M = 1 and K = 1. Hence from (29), we get ξref = 0.054 bits/J.
The following EE discussion will be based on relative EE, de-
fined as ξ

ξr e f
= ξ

0.054 . Since it is a ratio, it is dimensionless. Fig. 6
illustrates the relative EE of the system with respect to M for
different user intensities and transmit powers. For a particular
transmit power, as we increase the number of antennas at the
BS, the EE increases for a while, attains a local maximum, and
then starts descending. This is an expected result as we consider
a power consumption model, which is a function of M and K
with respect to the circuit power consumption. Moreover, for
a particular user intensity, with varying transmit power, the EE
also increases in the beginning, attains a local maximum, and
then starts decreasing. For example, for the case of κ = 0.02,
the EE curves for SNR 25 and 30 dBs start falling between 100
and 150 antennas. This implies that a certain level of maximized
EE can be achieved in such systems by increasing the number of
BS antennas but with the important discrepancy of not requiring
to increase the transmit power. In a nutshell, the EE curve is a
quasi-concave function of M , which does not always increase
with M in large MIMO systems.

At this point, it is worth mentioning the fact that the simu-
lations results presented in this paper are comparable to recent
massive MIMO literature. The sum-rate curves follow similar
trend as seen in [8], [19], and [33]. The EE curves are also
analogous to the ones presented in[2], [8], [23], and [33].

IX. CONCLUSION

The uplink performance of a massive MIMO system was
analyzed. We use stochastic geometry to characterize the spa-
tially distributed users while large dimensional RMT was used

to achieve deterministic approximations of the sum rate of the
system. We analyzed the sum rate of such a system both by
means of simulations and analytical expressions. In particular,
the BS along with the users were considered to follow a PPP.
Approximations for the analytical sum rate were provided along
with closed-form expressions at the low and high SNR regimes.
The approximations were further validated with Monte Carlo
simulations. The performances were evaluated with respect to
the number of antennas at the BS and the intensity of the users.
Analytical approximation for the rate of the general kth ordered
user based on a PPP was derived. We also provided an analysis
of the EE of the system by taking into consideration the circuit
power consumption, which was shown to be a function of the
number of antennas and the users. The relative EE of the system
was plotted with respect to varying BS antennas for different
SNR range. It was shown that the EE is a quasi-concave func-
tion of the number of BS antennas and does not always increase
linearly with it.

Furthermore, the current work focuses on systems with sim-
plified path loss models. In future, we will consider more com-
plicated path loss models to get an even better analysis from
a practical system implementation point of view. To meet the
growing demands for data traffic, however, future cellular net-
works will be a mixture of high power macro base stations and
lower power micro cells that will involve technologies such as
mmWave. In such a scenario, it would be obligatory to consider
LOS components. Thus, another direction for future work is to
extend the current analysis for Rician faded channels. Moreover,
to keep the analysis tractable, in this paper, we do not consider
any complex detection techniques at the BS to separate the data
streams. In future, we will consider complex detection tech-
niques, such as zero forcing and minimum mean squared error
at the BS on top of the current analysis.

APPENDIX A
USEFUL LEMMAS

Lemma 2: Let Υk = M
nk

and M,nk → ∞, such that 0 <
min

k
lim inf

M
Υk < max

k
lim sup

M
Υk < ∞. Then, the determinis-

tic equivalent of the uplink ergodic sum rate for a large antenna
MIMO system consisting of M antennas and K users based on
the Stieltjes and Shannon transform can be given as [19]

R̄M (ρ) =
1
M

log det

(
Γ−1(ρ)

ρ

)

+
1
M

K∑

k=1

log det

(
Δ̃−1(ρ)

ρ

)

−ρ

K∑

k=1

εk (ρ)ε̃k (ρ), (30)

where

Γ(ρ) =
(
Δ(ρ)−1 − ρH̃Δ̃(ρ)H̃H

)−1
, (31)

Γ̃(ρ) =
(
Δ̃(ρ)−1 − ρH̃Δ(ρ)H̃H

)−1
, (32)

Δ(ρ) =
1
ρ

(

IM +
K∑

k=1

ε̃k (ρ)Rk

)

, (33)
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Δ̃(ρ) =
1
ρ
diag (Ink

+ Υk εk (ρ)Tk )∀k , (34)

εk (ρ) =
1
M

tr(RkΓ(ρ))∀k , (35)

ε̃k (ρ) =
1
nk

tr(Tk〈Γ̃(ρ)〉k)∀k , (36)

with H̃k being the LOS channel between the BS and the user k
and ρ the total SNR of the system.

Lemma 3: [34] A continuous function f(x) converges if it
is a contraction. Moreover, the continuous function f(x) is a
contraction if the absolute value of its first-order derivative is
always less than 1.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: For the case of Rayleigh faded channels with no
LOS, Lemma 2 can be modified as

R̂M (ρ)=
1
M

log det

(
Λ−1(ρ)

ρ

)

+
1
M

K∑

k=1

log det

(
Λ̃−1(ρ)

ρ

)

−ρ

K∑

k=1

ek (ρ)ẽk (ρ), (37)

where

Λ(ρ) =
1
ρ

(

IM +
K∑

k=1

ε̃k (ρ)Rk

)

, (38)

Λ̃(ρ) =
1
ρ

diag

(

Ink
+

M

nk
εk (ρ)Tk

)

∀k

, (39)

ek (ρ) =
1
M

tr(RkΛ(ρ))∀k , (40)

ẽk (ρ) =
1
nk

tr(Tk〈Λ̃(ρ)〉k)∀k , (41)

Therefore, simplifying (37)–(41) and incorporating the path
losses for the users, which follow a PPP within the cell, the
sum rate of a MIMO system can be approximated as

RM (ρ) =
1
M

log det

⎛

⎝IM +
∑

k∈Φ(x)

ε̃k (ρ)Rk

⎞

⎠

+Ex

⎧
⎨

⎩

1
M

∑

k∈Φ(x)

log det

(

Ink
+

M

nk
F(x)εk

× (ρ)Tk

)
⎫
⎬

⎭

− ρ
∑

k∈Φ(x)

εk (ρ)ε̃k (ρ), (42)

where εk (ρ) and ε̃k (ρ) are as described in (15) and (16) and F
denotes the large-scale fading as described before. Our aim now

is to derive a closed form expression for the second term on the
right-hand side of (42).

Let ψk = M
nk

εk (ρ). Then

Ex {log det(Ink
+ F(x)ψkTk )}

=
2
r2

∫ r

0
log det(Ink

+ ψkTkx−α )xdx (43)

=
2
r2

∫ r

0
log

nk∏

i=1

(1 + ψkλk ix
−α )xdx

=
2
r2

∫ r

0

nk∑

i=1

log(1 + ψkλk ix
−α )xdx

=
2

r2 ln 10

nk∑

i=1

∫ r

0
ln(1 + ψkλk ix

−α )xdx

=
2

r2 ln 10

nk∑

i=1

∫ r

0
G1,2

2,2

(
ψkλk i x−α

∣
∣ 1,1

1,0

)
xdx

=
2

r2 ln 10

nk∑

i=1

∫ r

0
G2,1

2,2

(
1

ψkλk i
xα

∣
∣
∣
∣

0, 1

0, 0

)

xdx. (44)

Substituting y with xα and changing the limits of integration,
(44) becomes

2
r2 ln 10

nk∑

i=1

∫ rα

0
G2,1

2,2

(
1

ψkλk i
y

∣
∣
∣
∣

0, 1

0, 0

)
1
α

y( 2
α −1)dy. (45)

Again, substituting z with y
rα and changing the corresponding

limits of integration, we have

Ex {log det(Ink
+ l(x)ψkTk )}

=
2

r2 ln 10

nk∑

i=1

∫ 1

0
G2,1

2,2

(
rα

ψkλk i
z

∣
∣
∣
∣

0, 1

0, 0

)

× 1
α

(zrα )( 2
α −1) rα dz

=
2

α ln 10

nk∑

i=1

∫ 1

0
G2,1

2,2

(
(r)α

ψkλk i
z

∣
∣
∣
∣

0, 1

0, 0

)

z( 1
α −1)dz

=
2

α ln 10

nk∑

i=1

Γ(1)G2,2
3,3

(
(r)α

ψkλk i

∣
∣
∣
∣

1− 2
α , 0, 1

0, 0, − 2
α

)

. (46)

Plugging (46) in (42) and summing for k users (using
Lemma 1), (14) is obtained. �

APPENDIX C
PROOF OF UNIQUENESS OF (15) AND (16)

In order to prove that εk (ρ) and ε̃k (ρ) have unique solu-
tions, it is sufficient to show that after a single update or
an iteration, εk (ρ) and ε̃k (ρ) converge. We will use the con-
traction principle [34] to show that εt+1

k (ρ) − εt
k (ρ) → 0 and

ε̃t+1
k (ρ) − ε̃t

k (ρ) −→ 0, where t is any instant. Now at instant
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t + 1, (15) and (16) can be given as

εt+1
k (ρ)=

1
M

tr

⎛

⎝ρRk

[

IM +
∞∑

k=0

ε̃t
k (ρ)Rk P (k)

]−1
⎞

⎠ (47)

ε̃t+1
k (ρ)=

1
nk

tr

(

ρTk

〈

diag

[

Ink
+

Mεt
k (ρ)Tk

nk

]−1

∀k∈Φ(x)

〉)

.

(48)

We assume that λi(A) is the ith eigenvalue of the matrix A.
Without loss of generality, the λi(A)s are sorted in nonincreas-
ing order as λ1(A) ≥ λ2(A) ≥ λ3(A) ≥ · · · . Herein, (47) and
(48) are equivalent to [35]

εt+1
k (ρ) =

1
M

M∑

i=1

λi(ρR)
1 + λi (

∑∞
k=0 ε̃t

k (ρ)R)P (k)
(49)

ε̃t+1
k (ρ) =

1
nk

nk∑

i=1

λi(ρTk )

1 + λi

(
M εt

k (ρ)
nk

Tk

) . (50)

It should be noted that, in our model, we assume the corre-
lation matrices at the BS, Rk s to be all the same and hence
without loss of generality, we write Rk = R. Furthermore, let

Ψt
k =

1
nk

(

1 +
1

εt
k (ρ)

nk∑

i=1

1
λi(Tk )

)

. (51)

Then, the eigenvalues of matrix Tk is given by

λi(Tk ) =
(
Ψt

kλi(Tk ) −
(
εt
k (ρ)

)−1
)

+
, (52)

where (A)+ is the element-wise positive part of matrix (A),
while for scalar (x)+ � max{0, x}. With the help of (51) and

(52), ε̃t+1
k (ρ) can now be rewritten as

ε̃t+1
k (ρ) =

ρ

nk

nk∑

i=1

Ψt
kλi(Tk ) − (εt

k (ρ))−1

M
nk

εt
k (ρ)Ψt

kλi(Tk )

=
ρ

εt
k (ρ)Ψt

kM

=
ρnk

M

εt
k (ρ) +

∑nk

i=1
1

λi (Tk )

. (53)

Letting vt
k = ln (ε̃t

k (ρ)), the convergence problem of εt+1
k (ρ)

and ε̃t+1
k (ρ) is equivalent to the convergence problem of the

following function:

vt+1
k = f(vt−1

k ), (54)

where f(vt−1
k ) can be written as (55), shown at the bottom of

this page.
In the following, we will proof that the function f(vt−1

k ) con-
vergences. First, we note that the function f(vt−1

k ) is obviously
continuous. Second, we compute the first derivative of f(vt−1

k ),
which is given by (56), shown at the bottom of this page.

At this point, it is obvious that

evt−1
k

1
λi (R) +

∑∞
j=0, j �=k ε̃t−1

j (ρ)P (j) + evt−1
k

≤ 1. (57)

Accordingly, we derive (58), shown at the top of the next page,
from (56) and (57).

It is easy to show that the first derivative of f(vt−1
k ) is also

positive, which means that the absolute value of f
′
(vt−1

k ) is
smaller than 1. Hence, using Lemma 3, we can state that f(vt−1

k )
is a contraction, which implies that it converges. This concludes
the proof of uniqueness of (15) and (16).6

6For the special case, when a single user is considered, a similar proof of
convergence was shown in [35].

f(vt−1
k ) = ln

(ρnk

M

)
− ln

(
1
M

M∑

i=1

λi(ρR)
1 + λi

(∑∞
k=0 ε̃t−1

k (ρ)R P (k)
) +

nk∑

i=1

1
λi(Tk )

)

= ln
(ρnk

M

)
− ln

(
1
M

M∑

i=1

λi(ρR)
1 +
∑∞

j=0, j �=k ε̃t−1
j (ρ)λi (R) P (j) + evt−1

k λi (R)
+

nk∑

i=1

1
λi(Tk )

)

= ln
(ρnk

M

)
− ln

(
1
M

M∑

i=1

ρ
1

λi (R) +
∑∞

j=0, j �=k ε̃t−1
j (ρ) P (j) + evt−1

k

+
nk∑

i=1

1
λi(Tk )

)

(55)

f
′
(vt−1

k ) =

∑M
i=1

ρevt−1
k

⎛

⎝ 1
λi(R)

+
∞∑

j=0, j �=k

ε̃t−1
j (ρ) P (j) + evt−1

k

⎞

⎠

2

∑M
i=1

ρ

1
λi(R)

+
∞∑

j=0, j �=k

ε̃t−1
j (ρ) P (j) + evt−1

k

+ M

nk∑

i=1

1
λi(Tk )

(56)
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f
′
(vt−1

k ) ≤

∑M
i=1

ρ

1
λi(R)

+
∞∑

j=0, j �=k

ε̃t−1
j (ρ) P (j) + evt−1

k

∑M
i=1

ρ

1
λi(R)

+
∞∑

j=0, j �=k

ε̃t−1
j (ρ) P (j) + evt−1

k

+ M

nk∑

i=1

1
λi(Tk )

≤ 1 (58)

APPENDIX D
PROOF OF PROPOSITION 2

Proof: Let ψk = M
nk

εk (ρ). Then using (20)

Ex {log det(Ink
+ F(xk )ψkTk )}

=
2κπ

Γ(k)

nk∑

i=1

∫ r

0
log(1 + ψkλk ix

−α ) exp(−κπx2)x2k dx

=
2κπ

Γ(k)

nk∑

i=1

∫ r

0
G2,1

2,2

(
1

ψkλk i
xα

∣
∣
∣
∣

0, 1

0, 0

)

exp(−κπx2)x2k dx.

(59)

Substituting y with x
√

κπ and changing the limits of integration,
(59) becomes

2
Γ(k)

nk∑

i=1

∫ r
√

κπ

0
G2,1

2,2

(
1

(κπ)
α
2 ψkλk i

yα

∣
∣
∣
∣

0, 1

0, 0

)

× exp(−y2)
y2k

(
√

κπ)(k+1) dy. (60)

Now, expanding exp(−y2) with the help of Taylor’s series ex-
pansion, we have

exp(−y2) =
∞∑

n=0

(−1)n y2n

n!
. (61)

Furthermore, using (61) in (34), we have

2
∑∞

n=0(−1)n

n!Γ(k)(
√

κπ)(k+1)

nk∑

i=1

∫ r
√

κπ

0
G2,1

2,2

·
(

1
(κπ)

α
2 ψkλk i

yα

∣
∣
∣
∣

0, 1

0, 0

)

y2(n+k)dy. (62)

Substituting z with y√
κπr

and changing the limits of integration,
(62) becomes

2
∑∞

n=0(−1)n (
√

κπ)(2n+k)r(2(n+k)+1)

n!Γ(1)

×
nk∑

i=1

∫ 1

0
G2,1

2,2

(
rα

ψkλk i
zα

∣
∣
∣
∣

0, 1

0, 0

)

z2(n+k)dz. (63)

Simplifying (63) we get

2
∑∞

n=0(−1)n (
√

κπ)(2n+k)r(2(n+k)+1)

αn!Γ(k)

×
nk∑

i=1

∫ 1

0
G2,1

2,2

(
rα

ψkλk i
zα

∣
∣
∣
∣

0, 1

0, 0

)

p( 2 (n + k )+ 1
α −1)dp. (64)

From (64), we have ρ = 2(n+k)+1
α , σ = 1, and χ = rα

λk i
. Hence

(64) can be approximated as

2
∑∞

n=0(−1)n (
√

κπ)(2n+k)r(2(n+k)+1)

αn!Γ(k)

×Γ(1)
nk∑

i=1

G2,2
3,3

(
rα

ψkλk i

∣
∣
∣
∣

1− 2 (n + k )+ 1
α , 0, 1

0, 0, − 2 (n + k )+ 1
α

)

. (65)

Plugging (65) into (42) for the kth user, we get (21). �

REFERENCES

[1] V. Jungnickel et al., “The role of small cells, coordinated multipoint, and
massive MIMO in 5G,” IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51,
May 2014.

[2] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 186–195, Feb. 2014.

[3] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of
cellular networks: How many antennas do we need?” IEEE J. Sel. Areas
Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[4] L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview
of massive MIMO: Benefits and challenges,” IEEE J. Sel. Topics Signal
Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[5] F. Rusek et al., “Scaling up MIMO: Opportunities and challenges with
very large arrays,” IEEE Commun. Mag., vol. 30, no. 1, pp. 40–60, Jan.
2013.

[6] F. Boccardi, R. Heath, A. Lozano, T. Marzetta, and P. Popovski, “Five
disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 74–80, Feb. 2014.

[7] T. Marzetta, “Noncooperative cellular wireless with unlimited numbers
of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11,
pp. 3590–3600, Nov. 2010.

[8] H. Q. Ngo, E. Larsson, and T. Marzetta, “Energy and spectral efficiency
of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61,
no. 4, pp. 1436–1449, Apr. 2013.

[9] H. Q. Ngo, E. Larsson, and T. Marzettat, “Uplink power efficiency of
multiuser MIMO with very large antenna arrays,” in Proc. Annu. Allerton
Conf. Commun. Control, Comput., Sep. 2011, pp. 1272–1279.

[10] A. M. Tulino and S. Verdu, “Random matrix theory and wireless commu-
nications,” Found. Trends Commun. Inf. Theory, vol. 1, no. 1, pp. 1–182,
2004.

[11] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennas,” Wireless Pers.
Commun., vol. 6, pp. 311–335, 1998.

[12] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, 1999.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE SYSTEMS JOURNAL

[13] S. Verdu and S. Shamai, “Spectral efficiency of CDMA with ran-
dom spreading,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 622–640,
Mar. 1999.

[14] P. Rapajic and D. Popescu, “Information capacity of a random signature
multiple-input multiple-output channel,” IEEE Trans. Commun., vol. 48,
no. 8, pp. 1245–1248, Aug. 2000.

[15] J. Xue, T. Ratnarajah, C. Zhong, and C. Wen, “Reliability analysis for
large MIMO systems,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 553–556, Dec. 2014.

[16] A. Lozano and A. Tulino, “Capacity of multiple-transmit multiple-receive
antenna architectures,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp. 3117–
3128, Dec. 2002.

[17] C.-N. Chuah, D. Tse, J. Kahn, and R. Valenzuela, “Capacity scaling in
MIMO wireless systems under correlated fading,” IEEE Trans. Inf. Theory,
vol. 48, no. 3, pp. 637–650, Mar. 2002.

[18] R. Couillet, M. Debbah, and J. Silverstein, “A deterministic equivalent for
the analysis of correlated MIMO multiple access channels,” IEEE Trans.
Inf. Theory, vol. 57, no. 6, pp. 3493–3514, Jun. 2011.

[19] J. Zhang, C.-K. Wen, S. Jin, X. Gao, and K.-K. Wong, “On capac-
ity of large-scale MIMO multiple access channels with distributed sets
of correlated antennas,” IEEE J. Sel. Areas Commun., vol. 31, no. 2,
pp. 133–148, Feb. 2013.

[20] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic geometry for mod-
eling, analysis, and design of multi-tier and cognitive cellular wire-
less networks: A survey,” IEEE Commun. Surveys Tut., vol. 15, no. 3,
pp. 996–1019, Mar. 2013.

[21] S. Cui, A. Goldsmith, and A. Bahai, “Energy-efficiency of MIMO and
cooperative MIMO techniques in sensor networks,” IEEE Trans. Sel. Areas
Commun., vol. 22, no. 6, pp. 1089–1098, Aug. 2004.

[22] S. Tombaz, A. Vastberg, and J. Zander, “Energy and cost-efficient ultra-
high-capacity wireless access,” IEEE Trans. Wireless Commun., vol. 18,
no. 5, pp. 18–24, Oct. 2011.

[23] D. Ha, K. Lee, and J. Kang, “Energy efficiency analysis with circuit power
consumption in massive MIMO systems,” in Proc. IEEE Int. Symp. Per.
Indoor Mobile Radio Commun., Sep. 2013, pp. 938–942.

[24] E. Bjornson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Designing multi-
user MIMO for energy efficiency: When is massive MIMO the answer?”
in Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2014, pp. 242–247.

[25] T. Ratnarajah and R. Vaillancourt, “Quadratic forms on complex random
matrices and multiple-antenna systems,” IEEE Trans. Inf. Theory, vol. 51,
no. 8, pp. 2976–2984, Aug. 2005.

[26] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity lim-
its of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5,
pp. 684–702, Jun. 2003.

[27] A. L. Moustakas, S. H. Simon, and A. M. Sengupta, “MIMO capacity
through correlated channels in the presence of correlated interferers and
noise: A (not so) large N analysis,” IEEE Trans. Inf. Theory, vol. 49,
no. 10, pp. 2545–2561, Oct. 2003.

[28] M. Haenggi, “On distances in uniformly random networks,” IEEE Trans.
Inf. Theory, vol. 51, no. 10, pp. 3584–3586, Oct. 2005.

[29] A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products, 6th
ed. San Diego, CA, USA: Academic, 2000.

[30] E. V. A. Schönhage and A.F.W. Grotefeld, Fast Algorithms—A Mul-
titape Turing Machine Implementation. Mannheim, Germany: B.I.
Wissenschafts-Verlag, 1994.

[31] P. B. B. Jonathan and M. Borwein, A Study in Analytic Number Theory
and Computational Complexity. New York, NY, USA: Wiley, 1998.

[32] Y. Chen, S. Zhang, S. Xu, and G. Li, “Fundamental trade-offs on green
wireless networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 30–37,
Jun. 2011.

[33] S. Biswas, C. Masouros, and T. Ratnarajah, “Performance analysis of large
multi-user MIMO systems with space-constrained 2D antenna arrays,”
IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3492–3505, May 2016.
doi: 10.1109/TWC.2016.2522419.

[34] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York, NY,
USA: McGraw-Hill, 1976.

[35] G. Taricco and E. Riegler, “On the ergodic capacity of correlated Ri-
cian fading MIMO channels with interference,” IEEE Trans. Inf. Theory,
vol. 57, no. 7, pp. 4123–4137, Jul. 2011.

Sudip Biswas (S’16) received the B.Tech. degree
in electronics and communication engineering from
the Sikkim Manipal Institute of Technology, Sikkim,
India, in 2010, and the M.Sc. degree in signal pro-
cessing and communications from the University of
Edinburgh, Edinburgh, U.K., in 2013. He is currently
working toward the Ph.D. degree in digital communi-
cations at the Institute for Digital Communications,
University of Edinburgh, Edinburgh, U.K.

His research interests include various topics in
wireless communications and network information

theory with particular focus on stochastic geometry and possible 5G technolo-
gies such as massive MIMO, mmWave, and full-duplex.

Jiang Xue (S’09–M’13) received the B.S. degree in
information and computing science from Xi’an Jiao-
tong University, Xi’an, China, in 2005, the M.S. de-
gree in applied mathematics from Lanzhou Univer-
sity, Lanzhou, China, in 2009, the M.S. degree in ap-
plied mathematics from Uppsala University, Uppsala,
Sweden, in 2009, and the Ph.D. degree in electrical
and electronic engineering from ECIT, Queen’s Uni-
versity of Belfast, Belfast, U.K., in 2012.

He is currently a Research Fellow with the Univer-
sity of Edinburgh, Edinburgh, U.K. His main interests

include the performance analysis of general multiple antenna systems, stochas-
tic geometry, cooperative communications, and cognitive radio.

Faheem A. Khan (M’02) received the Ph.D. degree
in electrical and electronic engineering from Queen’s
University Belfast, Belfast, U.K., in 2012.

He is currently a Research Associate in wire-
less communications and signal processing with the
Institute for Digital Communications, University of
Edinburgh, Edinburgh, U.K., under the EU funded
FP7 project ADEL. He has been actively involved
in the past EU FP7 projects CROWN, HIATUS, and
HARP. His research interests include cognitive radio
networks, licensed shared access, 5G wireless net-

works, millimeter-wave communications, and cooperative communications.

Tharmalingam Ratnarajah (A’96–M’05–SM’05)
is currently with the Institute for Digital Commu-
nications, University of Edinburgh, Edinburgh, U.K.,
as a Professor of digital communications and signal
processing. He has authored or coauthored more than
270 publications. He holds four U.S. patents. He is
currently the Coordinator of the FP7 projects HARP
(3.2M€) in the area of highly distributed MIMO and
ADEL (3.7M€) in the area of licensed shared access.
Previously, he was the Coordinator of FP7 Future and
Emerging Technologies project CROWN (2.3M€) in

the area of cognitive radio networks and HIATUS (2.7M€) in the area of interfer-
ence alignment. His research interests include signal processing and information
theoretic aspects of 5G wireless networks, full-duplex radio, mmWave commu-
nications, random matrices theory, interference alignment, statistical and array
signal processing, and quantum information theory.

Prof. Ratnarajah is a Fellow of the Higher Education Academy, U.K. He is
an Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING.


