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Distributed or Monolithic?
A Computational Architecture Decision Framework

Mohsen Mosleh, Kia Dalili, and Babak Heydari

Abstract—Distributed architectures have become ubiquitous in
many complex technical and socio-technical systems because of
their role in improving uncertainty management, accommodating
multiple stakeholders, and increasing scalability and evolvability.
This departure from monolithic architectures provides a system
with more flexibility and robustness in response to uncertainties
that it may confront during its lifetime. Distributed archi tecture
does not provide benefits only, as it can increase cost and
complexity of the system and result in potential instabilities.
The mechanisms behind this trade-off, however, are analogous to
those of the widely-studied transition from integrated to modular
architectures. In this paper, we use a conceptual decision frame-
work that unifies modularity and distributed architecture o n a
five-stage systems architecture spectrum. We add an extensive
computational layer to the framework and explain how this can
enhance decision making about the level of modularity of the
architecture. We then apply it to a simplified demonstration
of the Defense Advanced Research Projects Agency (DARPA)
fractionated satellite program. Through simulation, we calculate
the net value that is gained (or lost) by migrating from a
monolithic architecture to a distributed architecture and show
how this value changes as a function of uncertainties in the
environment and various system parameters. Additionally,we
use Value at Risk as a measure for the risk of losing the value
of distributed architecture, given its inherent uncertainty.

Index Terms—Modularity, fractionation, uncertainty, fraction-
ated satellites, systems architecture, distributed architecture,
computational systems architecture, complex systems, uncer-
tainty management, modular open systems architecture (MOSA)

I. I NTRODUCTION

FOR many Engineering Systems, dealing with a growing
level of uncertainty results in an increase in systems

complexity and a host of new challenges in design and
architecting such systems. These systems need to respond toa
set of changes in the market, technology, regulatory landscape,
and budget availability. Changes in these factors are unknown
to the systems architect not only during the design phase,
but also during earlier phases, such as concept development
and requirements analysis, of the system’s life cycle [1]. The
ability to deal with a high level of uncertainty translates into
higher architecture flexibility in engineering systems which
enables the system to respond to variations more rapidly, with
less cost, or less impact on the system effectiveness.
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Distributed architecture is a common approach to increase
system flexibility and responsiveness. In a distributed architec-
ture, subsystems are often physically separated and exchange
resources through standard interfaces. Advances in networking
technology, together with increasing system flexibility require-
ments, has made distributed architecture a ubiquitous theme
in many complex technical systems. Examples can be seen
in many engineering systems: Distributed Generation, which
is an approach to employ numerous small-scale decentralized
technologies to produce electricity close to the end users of
power, as opposed to the use of few large-scale monolithic
and centralized power plants [2]; Wireless Sensor Networks,
in which spatially distributed autonomous sensors collectdata
and cooperatively pass information to a main location [3];
and Fractionated Satellites, in which a group of small-scale,
distributed, free-flying satellites are designed to accomplish the
same goal as the single large-scale monolithic satellite [4].

The trend towards distributed architectures is not limited
to technical systems, and can be observed in many social and
socio-technical systems, such as Open Source Software Devel-
opment [5], in which widely dispersed developers contribute
collaboratively to source code, and Human-based Computation
(a.k.a. Distributed Thinking), in which systems of computers
and large numbers of humans work together in order to solve
problems that could not be solved by either computers or
humans alone [6]. Despite the differences between the applica-
tions of these systems, the underlying forces that drive systems
from monolithic, in which all subsystems are located in a
single physical unit, to distributed architectures, consisting of
multiple remote physical units, have some fundamental factors
in common. For all these systems, distributed architecture
enhances uncertainty management through increased systems
flexibility and resilience, as well as enabling scalabilityand
evolvability [7].

In spite of the growing trend toward distributed architec-
ture, studies concerning the systems-level driving forcesand
cost/benefit analysis of moving from monolithic to distributed
architecture have remained scarce1. These studies are essential
to decision models which determine the net value of migrating
to distributed schemes. As we will argue in this paper and have
shown in our previous work [9], the fundamental systemic
driving forces and trade-offs of moving from monolithic to
distributed architecture are essentially similar to thosefor
moving from integrated to modular architectures. In both of
these two dichotomies, increased uncertainty, often in the

1One attempt is [8]. However, the authors did not quantify costs/benefits of
transition from monolithic to distributed architecture based on systems-level
driving forces.
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environment, is one of the key contributors for pushing a
system toward moredecentralizedscheme of architecture, in
which subsystems are loosely coupled. For example, consider
a processing unit. Depending on the relative rate of change
and uncertainty in the use, technology upgrade or budget, the
CPU can be an integrated part of the system (e.g., Smart
phone), becomes modular at discretion of the user (e.g.,
PC), transitions to client-server architecture to accommodate
smoother response to technology upgrade, security threads, or
computational demand, or migrate to a fully flexible system
with dynamic resource-sharing (e.g., Cloud computing).

In this paper, we formulate these problems under the
umbrella of the general concept ofmodularity. Modularity
has often been recognized as a general set of principles—as
opposed to a mere design technique—that enhance managing
complex products and organizational systems. Modularity in
the broadest sense of word, is defined as a mechanism to
break up a complex system into discrete pieces that can then
interact with one another through standardized interfaces[10].
This broad definition of modularity requires us to think of
modularity as a continuous spectrum that includes a wide
range of architectures which covers integrated, modular yet
monolithic, and distributed schemes. This framework can be
used as a basis for computational methods for deciding about
systems architecture and flexibility calculations relatedto
modularity. We will use this broad definition of modularity
together with the notion of a modularity spectrum to create
a framework that can be used as a basis for computational
architecture decision methods and flexibility evaluation for
systems.

Engineers have long held the intuition that more decen-
tralized schemes—i.e. higher levels of modularity—increase
a system’s flexibility [11], [12]. They have used modularity
for complexity management in many domains, such as soft-
ware [13], hardware architecture [14], the automotive industry
[15], production networks [16], outsourcing [17], and mass
customization [18]. Furthermore, modularity has widely been
studied and applied in organizational design and systems
architecture [19]; it has been argued that a loosely coupled
firm, in which each unit can function autonomously and
concurrently, can benefit from increasedstrategic flexibilityto
respond to environmental changes, due to reduced difficulty
of adaptive coordination [20]. Proper use of modularity is
also argued to bring economies of scale, increase feasibility
of product/component change, increase product variety, and
enhance product diagnosis, maintenance, repair, and disposal
[21]. Finally, modularity is shown to help with increasing
systems flexibility and evolvability by reducing the cost of
change and upgrade in the system on the one hand, and
facilitating product innovation on the other hand [14].

Despite these advantages of modularity, there are studies
that show that many systems follow an opposite path toward
more integration, which suggest thinking about its downsides
and the underlying trade-offs [22], [23], [10], [24]. When
discussing such trade-offs, it is crucial to remember that mod-
ularity is not a binary property but a continuum, representing
the degree of coupling between components of a system, and
describes the extent to which a system’s components can

be separated and recombined [22]. The appropriate level of
modularity is, among other factors such as technical design
requirements, determined by the flexibility required for the
system to deal with the changes and uncertainties that the
system confronts during its lifetime. The value that modularity,
as a systems mechanism for managing uncertainty, adds to
the system has a diminishing return. Although a low degree
of modularity hampers response to environmental changes,
over-modularity increases the overall cost of the system, gives
rise to a host of potential problems at the interfaces. Hence,
finding the appropriate level of modularity, correspondingto
underlying forces in the system’s environment, is a crucialstep
in decision-making under uncertainty from the perspectiveof
system architecture.

In this paper, we consider distributed architecture as a
part of a modular architecture spectrum and analyze the
trade-offs associated with migrating from a monolithic to a
distributed architecture for a real, yet simplified, case ofa
satellite system that was a part of a demonstration for a
DARPA/NASA program on fractionated satellites. We use a
conceptual framework, developed in our previous work [9],
to enhance architecture decisions according to the level of
composition or modularity for systems under uncertainty. We
add an extensive computational layer to the framework, apply
it in the context of space systems, and analyze the value
of design alternatives for various uncertainty parametersand
subsystems configurations. The proposed framework helps to
identify design alternatives based on the level of responsive-
ness to environment uncertainty achievable by various levels
of modularity. This provides decision makers with systemic
intuition when selecting and evaluating alternatives for agiven
set of environment uncertainty parameters in the otherwise
intractable space of design alternative possibilities. Inorder
to determine the value of moving toward more decentralized
schemes, we quantify the net gain in the value of the system
that incorporates increased flexibility, and the associated cost
of adopting higher levels of modularity in the system. To
compute this value, we add a stochastic simulation layer on
top of the proposed model that determines the conditions under
which transition toward a distributed architecture is sensible.
Results of this framework are calculated in the form of proba-
bility distributions of the net value of an architectural change,
to accommodate different decision makers with heterogeneous
expected costs or tolerance for risk.

The organization of the rest of the paper is as follows. In
Section II, we describe the underlying conceptual systems
architecture framework [9] that is used in this paper, and
explain how it unifies modularity and distributed architecture
on a five-stage spectrum and helps in selecting/evaluating
design alternatives. In Section III, we introduce the challenge
of decision making for distributed architectures in space
systems. In Section IV, we add a computational layer to the
conceptual framework and build a mathematical model for a
simplified case of satellite systems. Finally, in Section V,we
illustrate and compare configuration alternatives for different
values of uncertainties in the environment and various system
parameters, and apply different measures, such as Value at
Risk (VaR), for comparison.
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Fig. 1. Five-stage modularity and distributed architecture spectrum, and corresponding four M+ operations. Adaptability of the system increases as we move
right. Each operation assesses the aggregate value of moving one step for a given system, subsystem or component [9].

II. M ODULARITY AND DISTRIBUTED ARCHITECTURE

FRAMEWORK

In conventional systems engineering approaches, design
alternatives are evaluated based on meeting requirements that
are derived from a set of probable scenarios, practical and
technical limitations, and cost considerations. Requirement-
driven approaches, by their very nature, are insufficient for
assessing a system’s responsiveness to uncertainty. Unless
non-functional requirements are explicitly quantified [25], one
cannot use requirement-driven approaches to compare the
goodness of a more expensive design that exhibits smaller
cost growth when it faces an undesired uncertainty, vis-a-vis
a less expensive, yet inflexible design [4].

In this paper we use a value-centric design approach, which
has been suggested as a way to overcome the shortcomings
of traditional approaches and to evaluate the flexibility of
design alternatives [26], [27], [28]. In this approach, the
focus is shifted from a requirement-centric to a value-centric
perspective in which the designer compares the system net
present value for different design alternatives over the lifetime.
The system value may encompass costs and revenue streams
as well as the (real) option value of flexibility resulting from
modularity, scalablity, and evolvability [29].

Methods for deciding about systems architecture under
uncertainty fall into two broad categories: Those that provide
a set of qualitative systemic intuition to select plausibledesign
alternatives (e.g., [30], [31]), and those that take a fixed set
of alternatives as input and determine theiroptimality based
on some exact methods (e.g., [32], [14]). In principle, one
can combine these two methods to first find a set of design
alternatives based on systemic intuitions and then select the
most appropriate one (see [33] for an example in space
systems). However, this two-step process is not sufficient
for many problems where multiple iterations between these
two steps are needed. Under these circumstances, a unified
framework that inherently includes both of these steps can
significantly enhance the iterative process of nominating and
selecting design alternatives.

As a unified framework, we employ a value-based decision
making framework developed in our previous work [9]. This
framework is based on a systems architecture spectrum that
covers a wide range of modularity/distributed architecture in
complex systems and classifies the degree of modularity into
five stages, as shown in Fig. 1. While in this paper we only
evaluate transitions between stages in the framework, within
each stage, a continuous measure of modularity can be defined

depending on the specific problem and resolution needed,
e.g., measures based on DSM for Modular (M2) systems [24]
and network modularity index [34] for Dynamic-Distributed
(M4) systems. The framework enhances systems architecture
decisions under uncertainty by limiting the search space to
possible alternatives with various degrees of responsiveness
to uncertainty. Selecting design alternatives from different
defined stages in the architecture spectrum, together with
quantifying the value of the transition from one stage to
another, effectively reduces the complexity of the design
decision problem and provides intuitions to systems architects.

The systems architecture framework [9] considers five
stages of modularity, indicated byM0 to M4. StageM0

describes fully integrated systems, in which components are
connected to each other in a way that neither physical nor
functional sub-parts can be identified, e.g., System on a Chip,
in which several electronic systems are integrated into a single
chip.M0 is considered the minimum level of modularity and
is the baseline in the modularity framework.M1 represents
systems with identifiable sub-parts, each responsible for aspe-
cific share of the overall system’s functionality. Components
at this stage, although modular in function, cannot easily be
customized, replaced, or upgraded during later stages of the
system’s lifecycle. Smartphone and tablet mainboards can be
considered to be at this modularity stage.

At stageM2, similar toM1, functionalities can be broken
down and attributed to components. However, the related
components are connected to the rest of the system via
standardized interfaces. These standard interfaces allowthe
components to be replaced or upgraded without disrupting the
rest of the system. As opposed to Smartphone mainboards,
personal computers mainboards are at stageM2, which allows
users to customize or upgrade components such as memory
and CPUs. WhileM0, M1 andM2 encompass all cases of
modularization for monolithic systems—systems comprisedof
a single physical unit—M3 andM4 cover systems with more
than one unit, in which communications between units is a
possibility.

At M3, certain functionalities of the otherwise monolithic
system are transferred to different, and often remote, physical
units. Here, we refer to these units as systemsfractions. A
function can be centralized in one or more fractions, creating
a client-server system in which a certain task can be delegated
by a majority of fractions that lack a certain functionality,
to a fraction with a powerful version of that module. A
communication channel is needed for pre-processed and post-
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processed resources between the client units and the server
fraction. Client-server computation systems are an example
of systems at stageM3. Unlike M3, in which the division
of labor among subsystems is static, inM4, the task can be
dynamically distributed among various fractions that havedif-
ferent capabilities in terms of the required functionality. Cloud
computing systems are an example of systems atM4. The
architecture of systems atM4 can be represented by complex
networks models where nodes represent subsystems and edges
represent interactions between the subsystems (subsystems’
heterogeneous parameters can be modeled by nodes’ attributes
and heterogeneity of subsystems’ interactions can be modeled
by weighted links and multi-layered networks) [35], [36].

Moving to distributed architectures (i.e.,M3 andM4) cre-
ates a more adaptable system, but this extra adaptability and
flexibility come at a cost and, under certain conditions, may
result in instability. The reason behind the increased chance of
instability is that distributed architectures require complex task
coordination schemes to allocate resources under uncertain
demand and there are often many paths for resource exchange
as well as multiple feedback loops between the components
in a system with high levels of modularity (i.e., Static-
Distributed). Moreover, the chance of instability increases
further in systems with even higher levels of modularity (i.e.,
Dynamic-Distributed), in which components have a level of
autonomy and their goals are not necessarily aligned with that
of the whole system.

Four M+ operations are defined in the framework that
represent transitions from one stage of modularity to the next
in terms of required changes in the system architecture and
the increased degree of modularity. In order to identify the
optimal modularity, we have to quantify and compare the
value of the system prior to the operation, to the value of
the system afterward. Such evaluation requires knowledge of
the system and its environment. The value of the system at
each modularity level can be calculated via any of the standard
system evaluation methods (e.g., scenario analysis, discounted
cash flow analysis) and should consider technical, economic
and life cycle parameters.

It is worth noting that decisions in the proposed framework
are based on the aggregate economic value that modular
architecture can add to a system by increasing the responsive-
ness to environment uncertainty. Hence, the framework can
be used to evaluate design alternatives that are technically
viable, given factors such as physical constraints or perfor-
mance requirements. The proposed model can complement the
context dependent deterministic approaches for deciding about
modular architecture.

III. C ASE STUDY: MONOLITHIC AND DISTRIBUTED

ARCHITECTURES IN SPACE SYSTEMS

Space systems are often required to deal with a large set of
uncertainties throughout their lifecycles, which in turn makes
design decisions challenging and, in many cases, intractable,
i.e., a large number of possible design alternatives should
be evaluated against myriad number of uncertainty scenarios.
There are various sources of uncertainty for space systems

including technology evolution, demand fluctuation, launch
failure, funding availability, and changes in stakeholders’
requirements. Accommodating most of these uncertainties in
conventional monolithic designs would result in increased
cost and complexity. For example, in response to components
failure, the conventional approach either suggests extreme
measures of reliability or the use of redundant parts, both
of which result in higher mass, cost, and in most cases
higher power. Addressing other types of uncertainties, such as
changes in technology or stakeholder requirements, is either
not possible, or requires unconventional and often costly
methods [37], [38].

As a result of these problems, systemic flexibility is needed
to deal with the increased levels of uncertainty. New methods
have been suggested, based on flexible and adaptable design,
that enable spacecraft systems to respond to uncertainty more
rapidly and at a reasonable cost. One approach is to deploy
a constellation progressively, commencing with a small and
affordable capacity, which can be increased, as needed, in
stages by launching additional satellites and re-configuring the
existing constellation in orbit [39]. Another approach is to
provide on-orbit servicing, which makes various options, such
as service for life extension or upgrade, available after the
spacecraft has been deployed [37]. However, physical access
to a space system is very expensive. Instead, software upgrades
and changes of function can be performed through information
access to the space system, providing some level of flexibility
to address uncertainty [40]. Another approach to increase
space systems’ responsiveness is fractionated satellites, a
design concept in which modules are placed into separate
fractions that communicate wirelessly to deliver the capability
of the original monolithic system [29].

Due to the inherent flexibility that comes with distributed
and networked architectures, fractionated spacecraft arecon-
sidered a viable solution for accommodating uncertainty in
space systems. This is a departure from large, expensive,
and monolithic satellite systems to anetwork of small-scale
and less expensive free-flying satellites that communicate
wirelessly. In this architecture, a new fraction can be launched
to become part of the network of satellites without disruption
of the rest of the system. This option enables incremental
development and deployment, and increases system respon-
siveness [41], [38].

To decide about the level of flexibility of space systems
architecture—e.g., through fractionation—one has to consider
the level of uncertainty and changes in the environment
together with the cost associated with responding to them.
Fractionated architecture—as a flexible architecture—does not
come without cost and is not always the best choice for
space systems. If applied inappropriately, fractionationmay
add no value, increase the cost and complexity, and cause
instability due to multiple paths and feedback loops between
fractions. Hence, one has to calculate and compare the system
value over its lifetime for different design alternatives and
balance it against the potential costs of each alternative,taking
into account the effects of design variables and environment
uncertainty parameters, to find the optimal architecture.

Several studies have investigated the value proposition of
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Fig. 2. Steps for generating and evaluating design alternatives

fractionated architecture in space systems [42], [41]. However,
decisions about the level of fractionation are challengingand
depend on a wide range of system components’ characteristics
and the environment uncertainty parameters. On the one hand,
some studies have investigated the systems-level trade-offs in
the transition from monolithic to distributed architecture for
space systems [8]. These studies have not operationalized the
systemic trade-offs in quantifying the value that is gained(or
lost) in the transition from one level of flexibility to another
at the component-level. On the other hand, a wealth of studies
have developed quantitative frameworks to perform tradespace
exploration that often generate (enumerate) a large number
of design alternatives and then evaluate them against a range
of scenarios [43], [44], [45], [46], [47]. Without considering
the systemic trade-offs (i.e., those of moving from monolithic
to distributed architecture) in the selection and evaluation
of design alternatives, these quantitative frameworks do not
scale well for a large number of possible design alternatives
and uncertainty scenarios. A unified framework can bridge
two approaches to more effectively select and evaluate design
alternatives.

In this paper, by developing computational aspects of the
modularity and distributed architecture spectrum explained
in Section II, we combine the systemic intuition (i.e., how
modularity can improve system responsiveness to uncertainty
and what are the associated advantages/disadvantages) in se-
lecting design alternatives with their quantitative evaluation.
This approach can enhance decision-making about systems
architecture by providing insights about the transition from
one level of system flexibility to another and aids in selecting
and evaluation of different alternatives. The proposed approach
can complement existing methodologies for assessment of
the value of flexibility in systems architecture design under
uncertainty (e.g., [26], [48], [49]) by integrating the role of
modularity in improving the system flexibility into the model.
For example, the method suggested in [48] is based on a
four-phase procedure (estimating the distribution of future
possibilities, identifying candidate flexibilities, evaluating and
choosing flexible designs, and implementing flexibility), yet

it does not consider the level of modularity (composition) of
design alternatives neither in identifying the candidatesnor in
evaluating them.

We apply this approach to a case of space systems in which
monolithic satellite systems and fractionated satellitescan be,
respectively, considered to be at levels of modularityM2 and
M3 in the architecture spectrum inspired by a general notion
of modularity. Hence, we can apply the operationM2 →M3

for calculating the value of distributed architecture and graph
it against different parameters. To accommodate stakeholders’
risk tolerance, we use Value at Risk as a measure for the risk of
losing the value of distributed architecture. In this case study,
we particularly compare monolithic (M2) and fractionated
(M3) architecture. However, the proposed framework can also
be used to evaluate the transition from fractionated to dynamic-
distributed architecture (e.g., Federated satellites [50] and
Earth observation sensor web [51]) in space systems using
the operationM3 →M4.

The steps we took in calculating the value of distributed
architecture are given in Fig. 2. First, we generate design
alternatives based on the proposed modularity spectrum, i.e.,
M2 andM3. Next, we derive the mathematical formulation of
the transition operator. In our case we calculate the probability
distribution of replacements for subsystems as well as the
associated costs for each design alternative. Next, we run a
stochastic simulation based on the environment uncertainty
and the system parameters to find the probability distribution
of the value of the transition. Finally, we compare and evaluate
design alternatives based on economic measures such as Value
at Risk.

IV. COMPUTING VALUE OF DISTRIBUTED ARCHITECTURE

In this section, we calculate the value of distributed archi-
tecture and illustrate it for a particular case in satellitesystems,
based on a simplified variation of fractionated architecture
developed as part of System F6 [53], [52]. We assume a
satellite system that processes the data collected by a sensor
payload and transmits them to earth via a high-speed downlink.
Moreover, a data connection link from Earth can be estab-
lished for maintenance purposes. In a conventional design,
all of the subsystems are integrated and have to be launched
together. However, in the fractionated design, subsystemscan
be separated in flying fractions and launched independently.
The conventional monolithic system is at levelM2 and the
fractionated system is at levelM3 in the five-stage architecture
spectrum introduced in Fig. 1.

Subsystems communicate internally through the spacecraft
bus, which also supplies power to the subsystems. The type
(and cost) of a spacecraft bus is determined by the total
mass of the subsystems it supports. Fractions communicate
through an extra Tech Package (F6TP, in the case of System
F6) that enables wireless communications among fractions.
The subsystems involved in our analysis are as follows:
(1) Payload: a sensor, (2) Processor: a high performance
computing unit, (3) Downlink: a high-speed downlink for
transmitting data to earth, (4) Communications module: a
broadband access to a ground network through Inmarsat I-4
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Fig. 3. (a) Monolithic satellite system (b) Fractionated satellites system, PR: Processor, DL: Downlink, CM: Communications Module, F6: F6TP, PL: Payload
[52].

TABLE I
COMPONENT COST, MASS, AND RELIABILITY PARAMETERS .α IS THE

SCALE PARAMETER ANDβ IS THE SHAPE PARAMETER OF THEWEIBULL

DISTRIBUTION THAT REPRESENTS SUBSYSTEMS RELIABILITY(MON.:
MONOLITHIC, FRAC.: FRACTIONATED, PR: PROCESSOR, DL: DOWNLINK ,

CM: COMMUNICATIONS MODULE, F6: F6TP, PL: PAYLOAD )

Component α β Cost(K$) Mass(kg)
Payload 15 1.7 27,000 50
Communications 870 1.7 35,000 70
Downlink 190 1.7 40,000 10
Processor 90 1.7 30,000 20
F6TP 600 1.7 2,000 5
Bus (Mon.) 108 1.7 34,000 260
PL Bus (Frac.) 108 1.7 28,000 180
CM Bus (Frac.) 108 1.7 29,000 200
DL Bus (Frac.) 108 1.7 25,000 150
PR Bus (Frac.) 108 1.7 26,000 160

GEO constellation, (5) Bus: spacecraft bus that accommodates
subsystems on board, and (6) F6TP: F6 Tech Package that
enables the communications between the fractions while flying
in formation.

Fig. 3 shows the conceptual arrangement of subsystems for
the monolithic system and a possible allocation of subsystems
for a fractionated configuration. In Fig. 3a, all of the subsys-
tems are integrated and communicate internally through the
bus without requiring an F6TP. In Fig. 3b, however, each of
the four main subsystems is located in a separate fraction,
along with a bus and an F6TP.

A. Value of distributed architecture

In the analysis of this case, we compare the value of
systems with different architectures, composed of similarmain
subsystems, that fulfill the same overarching goal. Moreover,
we assume the systems have to function at an acceptable level
of performance until the end of the project lifetime. Hence,
one way to quantify the value difference between two systems
is to compare the cost of designing, building, launching and
operating them over a fixed project lifetime. Particularly,in
our case, we calculate the value of distributed architecture
as the difference in cost of running a fractionated system
versus the monolithic system. Note that the value of distributed
architecture could potentially be much higher than what is
obtained through the method presented here, as distributed
architectures also enable scalability and evolvability inthe
long run. As a result, this method is a conservative approach,
especially in the long run and the net value calculated here

can be considered as a lower bound for a given set of system
parameters.

Since we assumed that the system has to function to the
end of the project lifetime, we can calculate the cost of
running a system as the total cost of building and launching
its fractions in the beginning of the project and the cost
of replacing them, given uncertainty over the lifetime. We
do not consider component costs that are identical for both
architectures, e.g., subsystem design cost. We also assume
that the cost of building and the mass of a fraction are equal
to the sum of its subsystem costs of building and masses,
respectively. Additionally, we assume a linear launch cost,
proportional to the total mass of the fraction.

It is worth noting that the case study is intended to show
how the proposed framework can be applied to a real-world
system and present the trade-offs of distributed versus mono-
lithic architecture for different possible distributed architec-
ture designs. To this end, we used typical values for space
systems and made few simplistic assumptions. For example,
we did not consider the integration cost, however, this can
be integrated into the model as an additional cost for each
subsystem, which results in a shift in the value curve of design
alternatives. Additionally, we assumed linear launch costand
did not consider common costs in comparing the value of
two systems. Although these could substantially change the
numerical results of our illustrative case, the model can be
easily extended to take more realistic assumptions to studya
particular real-world system.

B. Modeling uncertainty

We take into account technological obsolescence and sub-
system failure as two uncertainties that may affect the system
over the lifetime. Other uncertainties can be integrated into
our model in a similar way. We assume that the uncertainties
have known probability distributions that can be approximated
from historical data. We classify launch failure and in-orbit
collisions as bus failure so the failure of each subsystem
will be only attributed to its own reliability parameters and
we assume that subsystem failure times are independent. In
accordance with [29], we use the Weibull probability distri-
bution for subsystem failure with probability characteristics
presented in Table I. For technological obsolescence, we use a
Log-normal distribution and assume subsystem obsolescence
times are independent. We assume that a subsystem has to
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be replaced when it fails or becomes obsolete in the sense
that a new technology is introduced and the subsystem has
to be upgraded through replacement in order to receive the
benefits of the new technology. We do not consider factors
such as market competition, demand, and performance level
in the decision for replacement of obsolete subsystems.

We calculate the probability density function (PDF) of
replacement time for subsystems as follows. Suppose obso-
lescence time and failure time of subsystemi are given by
the random variablesOi andFi, respectively, and the random
variableTi denotes time of replacement. The PDF,gi(t), and
CDF (cumulative distribution function),Gi(t), of replacement
time for subsystemi can be calculated as follows:

Gi(t) = p(Ti ≤ t) = 1− p(Ti > t)

= 1− p(Oi > t, Fi > t)

= 1− p(Oi > t)p(Fi > t)

= 1− (1− Φi(t))(1 −Ψi(t)).

(1)

Differentiating both sides of Eq. 1 yields the following:

gi(t) = ϕi(t)(1 −Ψi(t)) + ψi(t)(1 − Φi(t)) (2)

whereΦ andϕ are the CDF and PDF for obsolescence time,
respectively, andΨ andψ are the CDF and PDF for failure
time, respectively.

C. Value at Risk

In this study, we incorporate the perspective of a single
stakeholder and the risk-taking thresholds. Given the uncer-
tainty of the input parameters, the deterministic presentation
of each alternative value (e.g., expected value) is not sufficient
for decision makers. A decision maker might prefer a higher
cost solution with a lower risk to a lower cost solution with a
higher risk. Hence, the result of the model will be presented
in the form of the probability distribution of the net value of
changes of a distributed architecture compared to its equivalent
monolithic architecture.

As a measure for risk in evaluating alternatives, we use
Value at Risk (VaR), a commonly-used measure for the risk
of loss of an uncertain value in financial risk management, as
well as in many non-financial applications [54]. For a given
uncertain value, time horizon, and probabilityp, the 100p%
VaR is defined as a threshold loss measure, such that the
probability that the loss over the given time horizon exceeds
this figure isp [55].

For each comparison of alternatives, we obtain the distribu-
tion of the system’s value over the given lifetime. Next, we find
a threshold below which the area under the distribution curve
represents 100p% of the whole area under the curve. Here,p

is the probability that the fractionation value falls belowthe
threshold.

V. RESULTS AND DISCUSSIONS

In this section, we calculate the probability distributions of
the cost of operating a system with a distributed architecture
and that of an equivalent monolithic system over a given
lifetime. This calculation is based on the cost of building and

launching subsystems and the probability distributions oftheir
replacement times.

In a distributed architecture, a fraction has to be deployed
and launched once one of its subsystems requires replacement.
Similarly, for a monolithic architecture, we can consider a
system with only one fraction such that the whole system
has to be replaced if one of its subsystems becomes obsolete
or fails. Hence, in order to find the value of a distributed
architecture, we can compare the cost imposed by each sub-
system replacement in a distributed architecture with thatof
an equivalent monolithic architecture over the project lifetime.
Note that we assume the revenue which is generated by
different distributed and monolithic design alternativesis the
same and we only calculate the cost of operating the system.
Calculating the revenue generated by each design alternative
requires modeling the market uncertainty, the feedback of the
system to its market, and the system scalability.

We formulate the cost of running the system as follows.
For each fractionj, suppose a sequence of random variables
R1j , R2j , . . . , Rnj represents the time between two consecu-
tive replacements. A new instance of a fractionj has to be
deployed at timesR0j = 0,

∑1

i=0
Rij , . . . ,

∑n

i=0
Rij for the

system to function without interruption until the end of itslife-
time, wheren is the largest integer such that

∑n

i=0
Rij < T ,

where T is the project lifetime. Suppose that the cost of
building and launching a new instance of a fractionj is CFj .
The cost of running a system,C, with m fractions is the total
cost of replacing its fractions, discounted to present time.

C =CF1

n
∑

i=0

e
−r

∑

i

k=0
Rk1 + CF2

n
∑

i=0

e
−r

∑

i

k=0
Rk2+

· · ·+ CFm

n
∑

i=0

e
−r

∑

i

k=0
Rkm .

(3)

We use simulation to calculate the cost of running two sys-
tems with different architectures under similar conditions for
subsystem replacements. For each incident of replacement of
a subsystem, we calculate the associated cost of each architec-
ture. Note that the probability of replacement for subsystems
that are located in a fraction are dependent. Hence, once a
subsystem in a fraction is replaced, we reset the replacement
times for other subsystems in that fraction. Our simulation
setup is as follows. First, we sample subsystem replacement
times based on their probability distribution. Next, we find
the subsystem with the earliest replacement time and calculate
the cost associated with its replacement in each architecture.
Next, we update the replacement time for the subsystems
that are affected by the replacement. We continue this for
each architecture until the earliest replacement time is greater
than the lifetime. Finally, for each run of the simulation, we
calculate the cost of running each system and discount it to the
present time. Repeating this process a large number of times
yields an approximation of the costs of running a distributed
architecture and the equivalent monolithic architecture.

In our simulation, we use typical values for analysis of
satellite systems according to [29]; however, the same sim-
ulation approach can be applied for a more specific case.
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Fig. 4. Total cost of monolithic (M2) vs. fractionated (M3) architecture
discounted to present time graphed against project lifetime for 10,000 trials.
The curves represent expected values, and the boxplots depict quartiles of the
cost.

The input to the simulation includes subsystem costs, masses,
and failure and obsolescence probability distribution param-
eters. Table I shows the estimates for costs and masses of
the main subsystems (e.g., Payload, Communication module,
and Downlink), F6 Tech-Package and spacecraft buses that
accommodate subsystems on board. The values for spacecraft
buses are based on commercially available spacecraft buses,
which are chosen according to the subsystems on board and
their total masses.α and β in Table I respectively represent
the scale parameter and the shape parameter of the Weibull
distribution2 for subsystem failure. We assume a mean value
of 1 year3 with a standard deviation of 3 years for the obso-
lescence probability distribution. We also assume that buses
and F6TP do not become obsolete. Moreover, we consider
$30k per kg for launch cost, which is the average cost for
commercially available launch vehicles [56]. The discount
rate in our simulation is 2%, which is based on a forecast
of real interest rates from which the inflation premium has
been removed and based on the economic assumptions from
2014 for 30+ year programs [57]. We run our simulation for
a project lifetime of up to 30 years, which is well beyond
the standard design lifetime of 10 years [29]. All simulation
results are based on 10,000 trials.

A. Comparing fractionated and monolithic satellite systems

Fig. 4 illustrates the cost of operating a fractionated satellite
system, in which each main subsystem is assigned to a
separate fraction, and that of a monolithic system. All costs are

2The PDF and CDF of the Weibull distribution are as follows:

f(x) =

{

β
α
( x
α
)(β−1)e−(x/α)β x ≥ 0

0 x < 0

F (x) =

{

1− e−(x/α)β x ≥ 0

0 x < 0

3This is based on the assumption that in modular and fractionated satellite
systems, computational and sensing subsystems will most likely be silicon-
based whose obsolescence follows Moores law.

Fig. 5. Probability distribution for the value obtained through transition from
M2 (Integral) toM3 (Fractional) in the modularity and distributed spectrum,
i.e., project lifetime = 15 years. The vertical line at 0 represents Value at Risk
55% is 0, meaning that area to the left represents 55% of the total area under
the curve.

discounted to present time. The curves in Fig. 4 represent the
expected cost of each architecture during the project lifetime.
The curves have relatively low slopes in the beginning of the
system lifetime, due to the low probability of obsolescence
and failure in the early years. The initial cost of running
the fractionated system is greater than that of the monolithic
system due to fractionation cost, i.e., the cost of building
additional subsystems, such as F6TP. However, the expected
lifetime cost of the monolithic system increases faster over
time because the whole system must be deployed and launched
once again when a subsystem fails or becomes obsolete.

The boxplots in Fig. 4 depict the probability distribution
of cost for every 3 years. The cost variance at each point
is the result of two opposing forces. On the one hand, the
intrinsic property of the underlying stochastic process results
in an increase of cost variance by time. On the other hand,
over the project lifetime, whenever a subsystem is deployed
and launched due to failure or obsolesce, the time to replaceit
is also reset, which reduces the cost variance. In the monolithic
architecture, when a component fails, the time of replacement
for the whole system is reset with a high cost. However, in the
case of failure of the equivalent component in the fractionated
architecture, the times to replace the other components do not
change. Instead, a failure results in a lower cost. Fig. 4 shows
that the cost variance for the two systems increases by time.
However, the monolithic architecture has a higher variancein
every time step. This is due to the dominance of the impact
of costs associated with each subsystem replacement incident.

Fig. 5 depicts the probability distribution of the value of
a distributed architecture having each main subsystem in a
separate fraction atT=15 years. As a measure of value loss
under uncertainty, we use Value at Risk (VaR). As depicted in
Fig. 5, forp = .55 the net positive gains in transitioning from
M2 to M3 is positive, meaning that there is a 0.55 probability
that the value of distributed architecture falls below zero.
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TABLE II
VALUE OF DISTRIBUTED ARCHITECTURE FORDIFFERENTPAYLOADS (EV: EXPECTEDVALUE , VAR: VALUE AT RISK, p = .25)

year 5 year 10 year 15 year 20 year 25 year 30
Cost(K$) Weight(Kg) EV VaR EV VaR EV VaR EV VaR EV VaR EV VaR

Payload 1 31,652 230 -73 -96 -38 -96 -8 -96 20 -85 45 -66 67 -50
Payload 2 34,132 260 -66 -96 -21 -96 18 -96 54 -64 87 -45 118 -26
Payload 3 40,332 335 -58 -96 4 -96 57 -96 106 -50 150 -17 190 10.13

B. Effects of payloads’ attributes on system value

In this section, we run the simulation for different pay-
load attributes and calculate the probability distribution of
the value that is obtained in transition from monolithic to
distributed architecture. Table II shows the effect of payload
characteristics (i.e., cost and weight) on the value of distributed
architecture. For each payload, Table II shows the expected
value (EV) and Value at Risk (VaR,p=0.25) of the value of
distributed architecture every five years in the project lifetime.
Payload 1, Payload 2, and Payload 3 are progressively heavier
and more expensive. The results in Table II show that for a
given moment in time during the project lifetime, distributed
architecture creates higher value for a system with a more
expensive payload and higher mass. It can be observed that a
distributed architecture does not add any value to the system
with Payload 1 in the first half of the lifetime (e.g., EV=-8
@year=15). However, it does add value earlier in the lifetime
of the system with Payload 2 (e.g., EV=18 @year=15) and
Payload 3 (e.g., EV=4 @year=10). Table II shows that, in
this case, a distributed architecture is a better choice formore
expensive payloads with higher masses over a shorter lifetime,
all other things being equal. This is because in a monolithic
system with an expensive payload, a failure in any subsystem
will result in replacement of the payload, which imposes
a high cost on the system. However, in the fractionated
system, the payload is only replaced once a component in
the payload’s fraction—e.g., F6TP, bus or the payload itself—
fails or becomes obsolete. Hence, when the payload is more
expensive, the cost of fractionation is dominated by the savings
due to elimination of unnecessary payload replacements in the
fractionated architecture.

C. Effects of F6TP’s reliability parameters on system value

Since F6TP is an additional subsystem required for com-
munications between fractions in a distributed architecture, it
is important to analyze how its parameters affect the value
of a distributed architecture. Fig. 6 shows the effects of
the F6TP reliability parameters on the value of distributed
architecture for the project lifetime of 15 years. In this figure,
β is the shape parameter of the Weibull distribution that is
commonly used in modeling satellite reliability. A Weibull
shape parameter greater than one represents an increasing
failure rate or “wear-out”.β = 1.7 is a typical value in
modeling reliability of satellites [58]. The value of distributed
architecture is highly sensitive to F6TP reliability parameters
for its shorter average lifetime. The curves which belong to
higher values ofβ represent higher increase rate of the value
of distributed architecture against the F6TP’s average lifetime.
For a given shape parameter, when the average lifetime of the

Fig. 6. Effects of F6TPs reliability parameters on value of distributed
architecture (i.e., project lifetime=15 years).

F6TP is short, there will be a huge cost to keep the system
functional, due to the large number of replacements of whole
fractions resulting from the F6TP failure and a monolithic
architecture is always superior, as expected. Therefore, F6TP’s
average lifetime has to be above a certain threshold so that
fractionation is sensible. Moreover, beyond a certain value of
the F6TP’s average lifetime (e.g., 100 years forβ = 1.7),
the value of fractionation is not much affected by the F6TP’s
reliability parameters because the number of replacements
of F6TP due to failure is negligible in the given lifetime
(i.e., F6TP’s average lifetime is much greater than the project
lifetime).

D. Comparing design alternatives with different distributions
of subsystems

Distributed architecture (levelM3 in the proposed spectrum)
includes a range of architectures with different numbers of
fractions and allocations of subsystems. In this section, we
study the effect of subsystem allocation on the value of
fractionation. In our case, there are 15 (B4 = 15 [59]) possi-
ble allocations of subsystems into fractions. We demonstrate
the comparison of design alternatives for four architectures
(including the monolithic architecture) with different number
of fractions. However, the same analysis can be applied to
all possible alternatives with the model being fairly tractable.
We compare the fractionation value for the three architectures
depicted in Fig. 7 based on the monolithic equivalent archi-
tecture.

The architecture in Fig. 7a has two fractions. The Processor
and Payload are placed in one, and the Communications mod-
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TABLE III
VALUE OF DISTRIBUTED ARCHITECTURE FORDIFFERENTNUMBER OF FRACTIONS FOR THE CONFIGURATIONS GIVEN INFIG. 7 (EV: EXPECTED

VALUE , VAR: VALUE AT RISK, p = .25)

year 5 year 10 year 15 year 20 year 25 year 30
EV VaR EV VaR EV VaR EV VaR EV VaR EV VaR

Architecture (a) -15 -34 11 -34 34 -50 54 -53 74 -51 92 -46
Architecture (b) -44 -68 -10 -68 18 -68 47 -68 71 -65 94 -50
Architecture (c) -72 -102 -29 -101 11 -102 45 -73 76 -55 106 -35

ule and Downlink are placed in another fraction. Fig. 7b de-
picts a system with three fractions. The Payload and Processor
are in their own fractions, while Communications module and
Downlink are located together in the same fraction. Finally,
Fig. 7c represents a system in which each subsystem is placed
in a separate fraction.

We calculate the probability distribution of the value of
transition from monolithic to distributed architecture for each
architecture independently and compare the results. The ar-
chitectures in Fig. 7 are progressively—from a to c—more
flexible but more expensive to build. Table III shows the
expected value (EV) and Value at Risk (VaR,p=0.25) of the
distributed architecture every five years in the project lifetime
for the systems conceptually depicted in Fig. 7. For each
fraction in these architectures, we estimated mass and cost
of the spacecraft bus based on the total mass of subsystems
that are on board and according to commercially available
spacecraft buses.

Table III shows that systems with a larger number of
fractions have a lower value in the earlier years of their
lifetime. This is due to the dominance of high fractionation
cost in the beginning of the lifetime—i.e., the higher cost of
launching more fractions and the cost of additional subsys-
tems. However, later in the system lifetime, the value of a
distributed architecture in the systems with a larger number of
fractions outgrows that of systems with a smaller number of
fractions. This shows that the benefits of responsiveness ofthe
system with a larger number of fractions becomes dominant
over a longer lifetime. The results in Table III demonstratethe
trade-off between higher flexibility and its associated costs
i.e., higher flexibility results in less cost in responding to
environment uncertainty, yet making the system more flexible
is costly. The results suggest that for projects with longer
expected lifetime, it is worth investing on the flexibility of
the system through higher number of fractions.

VI. CONCLUSION

Building on a conceptual systems architecture framework
in this paper, we developed a computational approach for
decisions about the level of modularity of system architecture.
We quantified the value that is gained (or lost) in the transition
from a monolithic system architecture to a distributed system
architecture. We applied this approach to a simplified case of
a space system, and compared the value difference between
the two architectures as a function of uncertainties in various
system and environment parameters, such as cost, reliability,
and technology obsolescence of different subsystems, as well
as the distribution of subsystems among fractions. We used
Value at Risk, a commonly-used measure for the risk of
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Fig. 7. Allocation of subsystems between fractions together with the number
of fractions in Table III, (a) two fractions, (b) three fractions, (c) four fractions
(PR: Processor, DL: Downlink, CM: Communication Module, F6: F6TP, PL:
Payload)

loss of an uncertain value, to accommodate the stakeholders’
threshold of risk.

Distributed architectures—and in the case study of this
paper, fractionated satellites—also increase scalability and
resilience and foster innovation. For example, to accommodate
uncertainty in the demand, additional modules can be launched
throughout the lifetime of the system and become part of it.
Similarly, upon failure of a module the fraction can evolve
so that the system continues to function. None of these
advantages were explicitly considered in assessing the value of
fractionation in our model, which was focused solely on flex-
ibility and uncertainty management. Ignoring these additional
advantages, our proposed approach represents a lower bound
for the value that is obtained in the transition to distributed
architecture for the given set of system parameters. We also
believe that resilience mechanisms can, in theory, be modeled
and integrated into the proposed framework. However, the
effect of architecture on scalability needs to be modeled by
considering the feedback of the system to its market, some-
thing that requires an additional layer on top of the proposed
framework. Quantifying the impact of distributed architecture
on creativity mechanisms is even more challenging due to a
need to simultaneously integrate technological, behavioral, and
economic factors into the model. Thus, it is often best to keep
models of these systems features semi-qualitative and separate
from flexibility models, unless the exact context and path of
the system is known. This is rarely the case and often defeats
the original purpose of moving toward distributed architectures
in the first place.

Additionally, in this paper we used a single criteria stochas-
tic decision model under uncertainty to find the architecture
that optimally respond to the uncertainty in the environ-
ment. Future research is needed to integrate multiple criteria
and multiple stakeholders decision models into the proposed
model.
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