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Abstract—Data collection is a fundamental yet challenging task
of Wireless Sensor Networks (WSN) to support a variety of
applications, due to the inherent distinguish characteristics for
sensor networks, such as limited energy supply, self-organizing
deployment and QoS requirements for different applications.
Mobile sink and virtual MIMO (vMIMO) techniques can be
jointly considered to achieve both time efficient and energy
efficient for data collection. In this paper, we aim to minimize
the overall data collection latency including both sink moving
time and sensor data uploading time. We formulate the problem
and propose a multihop weighted revenue (MWR) algorithm
to approximate the optimal solution. To achieve the trade-off
between full utilization of concurrent uploading of vMIMO and
the shortest moving tour of mobile sink, the proposed algorithm
combines the amount of concurrent uploaded data, the number
of neighbours, and the moving tour length of sink in one metric
for polling point selection. The simulation results show that the
proposed MWR effectively reduces total data collection latency
in different network scenarios with less overall network energy
consumption.

Index Terms—multi-hop wireless sensor networks, data collec-
tion, vMIMO, mobile sink, delay minimization.

I. INTRODUCTION

WSNs have emerged as a promising technology with nu-
merous and various military and civil applications, such as
environment monitoring [1], disaster management [2], tactical
surveillance [3], etc. Recently, mobile sinks are proposed and
explored as an alternative solution to achieve load balancing
and uniform distribution of energy consumption in sensor
networks [4-7]. As the sink moves, hotspot nodes change
and thus the high energy consumption zones around sinks
shift. However, mobile sink introduces sink moving latency in
data collection, which is large due to the wide-spread network
topologies. On the contrary, data transmission time is largely
reduced due to concurrent transmission of the same data
from different independent data streams by applying virtual
multiple-input multiple-output (vMIMO)[S, 9]. That is, several
sensor nodes equipped with one or more antennas can emu-
late a multi-antenna node and achieve multiple independent
transmit-receive paths[10].
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Due to a large number of sensor nodes or large amount of
sensing data in some specific data collection scenarios, the
data uploading time of sensors could be large enough to be
comparable with the sink moving time and become a dominant
factor in the total data collection latency. The previous works
have been mainly focused on the sink moving time only and
the problem about total data collection latency including both
the data uploading time of sensors and sink moving time hasn’t
been addressed properly. To investigate the joint design of
mobile sink and concurrent uploading vMIMO technique,we
aim to minimise the total data collection latency.

On one hand, the sink moving time depends on the trajectory
design of mobile sink which is about the selection of polling
point (PP) where the mobile sink stops to collect sensing
data. The sink moving time can be reduced by decreasing
the total number of polling points (PPs) and shorting the
sink moving tour length. On the other hand, the overall data
uploading time is decided by data uploading associations.
The two sensors emulating a two-antenna node to perform
concurrent data uploading are called a compatible sensor pair.
With the selection of compatible sensors, the other sensors
can transmit their sensing data to the compatible sensor pairs.
One challenge in achieving full utilization of concurrent data
uploading is to evenly distribute the associated data to the
compatible sensors. Thus, the main issues this paper addresses
are how to improve the utilization of vMIMO to shorten data
uploading time, how to design the sink moving tour to shorten
the sink time and how to jointly consider the two aspects to
achieve the shortest total data collection latency.

The main contributions of this paper can be summarised
as: (i) To investigate the joint design of mobile sink and
concurrent uploading vMIMO technique. (i7) To formulate
the delay minimization for multihop data collection (DM-
MDC) problem. (iii) To propose a multihop weighted revenue
(MWR) algorithm for the DMMDC problem. (iv) To carry
out extensive simulations to evaluate the proposed MWR
algorithm. The remainder of this paper is organized as follows.
Section II provides the related works of data collection in
WSNs applying vMIMO and mobile sink techniques. Section
IIT presents system model and problem formulation. Section
IV illustrates the proposed MWR algorithm. Simulation results
and performance analysis are presented in Section V. Finally,
Section VI concludes the paper.



II. RELATED WORKS

Jayaweera et al [11] firstly proposed Vertical Bell Laborato-
ries Layered Time (VBLAST) based vMIMO communication
architecture in WSNs. Taking into account both transmission
and circuit power consumption, they analysed the network
energy consumption and showed that the VBLAST based
vMIMO architecture can offer significant energy savings over
traditional Single-Input and Single-Output (SISO) commu-
nication based WSNs. Nguyen et al [12] compared energy
consumption performance from different vMIMO techniques:
VBLAST and distributed space-time coded (DSTBC) [13].
They illustrated that DSTBC is more energy efficient that
VBLAST for long communication distances by utilizing
higher diversity gain. These papers study the energy con-
sumption by exploring the high transmit data rate and low
transmission duration. That is, the circuit energy consumption
is saved by the time saving of VBLAST. Yet, the data
uploading time consumption itself has not been investigated.
Besides, the analysis is applied only to single hop networks.

There are a few papers applying both mobile sink and
vMIMO communication in WSNs. Zhao et al [14] firstly
proposed a three-layer framework for mobile data gathering in
concurrent data uploading based WSNs, including the sensor
layer, cluster head layer, and mobile collector layer. The cluster
heads were formed to emulate as multiple antenna sensor and
upload sensing data to mobile sink concurrently. The objective
was to achieve good scalability, long network lifetime and
low data collection latency. Guo et al [15] proposed a data
gathering cost minimization framework with concurrent data
uploading, which is constrained by flow conservation, energy
consumption, link capacity, compatibility among sensors and
the bound on total sojourn time of the mobile collector at
all anchor points. They evaluated the relations of energy
consumption and sojourn time at anchor points, and also
provided comparison of sojourn times under different data
gathering cost.

Zhao [16] formalized the mobile data gathering problem
with space-division multiple access (SDMA). Total data gath-
ering time consists of sink moving time and data uploading
time. Three algorithms were proposed to find a set of polling
points to achieve the maximum number of compatible pairs
among sensors while the moving tour containing all the
selected polling points is the shortest. Besides, the problem
of minimizing the maximum data gathering time among dif-
ferent regions was considered and a region-division and tour-
planning algorithm was proposed for multiple sinks scenarios.
However, the data gathering was only limited with single hop
behaviour in the paper, which was inefficient for sink moving
tour shortening. As mentioned, the sink moving time can be
reduced by decreasing the total number of polling points,
which can be effectively achieved by associating sensors via
multihop communications.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In some environment monitoring and military scenarios, the
sensing data could be large enough so that the data uploading
time may effectively affect the total data collection time [16].
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Figure 1. Three possible movement patterns for a mobile sink.

The most essential information comes from the time-sensitive

data and the data collection delay could be of vital importance.

Hence, the total data collection latency minimization problem

needs to be addressed. To jointly consider concurrent data

uploading based VBLAST and mobile sink, the potential trade-
off between fully utilization of VMIMO and shortest moving
tour is the key issue for delay minimization.

There are normally limited resources that can be utilized
in such scenarios, and there is no chance for the independent
set of locations or even a clear pro-knowledge about the area.
Thus, there is a set of sensors randomly deployed in the filed
and the polling points are selected from the sensors. The
polling points can be either part of the compatible pairs or
not. The sensors which are associated with the compatible
sensors or non-compatible PPs are called association sensors.
Once selected as a polling point, except for delivering its own
sensing data, the sensor is also responsible for aggregating,
buffering and transferring data from its associated sensors to
the mobile sink. Therefore, there are different ways for sensing
data to be collected by the sink:

(1). Compatible sensors upload their sensing data concur-

rently and directly to the mobile sink when it arrives.

(i1). Association sensors send their sensing data to the asso-
ciated compatible sensors and polling points to buffer
possibly via multiple hops. Upon the arrival of the
mobile sink, the polling points and other compatible
sensors upload their buffered data by vMIMO or SISO
communications.

(iii). Non-association sensors upload their sensing data to
mobile sink by one hop SISO when it arrives within
the transmission range.

Figure 1 shows three possible association patterns with
different compatible pairs and corresponding two moving tours
of the sink. In Figure 1(a) two sensors (a and d) are selected as
PPs and three compatible pairs are formed among the sensors
(a,b); (c,d); (e, f). Sensor nodes h, g and k are associated
with a, d and f respectively by one hop distance. Sensor node
m is associated with a by two hops via h.

In Figure 1(b), there are also three compatible pairs formed
during the sink moving tour, and three sensor nodes (b, ¢ and g)
are selected as PPs. In Figure 1(c), three compatible pairs are
formed with three PPs being selected. Thus, for the three case,
case (a) selects the minimum number of PPs and could get
the shortest sink moving time. Case (b) forms the maximum
number of compatible sensors with three PPs. This results in
longer moving time, but it achieves more concurrent uploading
benefit which leads to less data uploading time. Even though



TABLE I
FORMULATION NOTATIONS.

Indices:

S ={S;; (i= || A set of sensors.

1,..,N)}

Constants:

R>0 The amount of sensing data for each sensor.

D;; >0 Distance between two sensors Si, S7.

H>1 Maximum hop boundary for multihop transmission.

B>0 Buffer size of each sensor.

Vim >0 Velocity of mobile sink.

V>0 Effective data uploading rate.

Variables:

a; ={0,1} If sensor S; is selected as a polling point, a; = 1,
otherwise, a; = 0.

ki ={0,1} If a polling point S; is non-compatible, k; = 1,
otherwise (PP 7 is part of compatible pairs), k; = 0.

ui; = {0,1} If the sensors S; and S are formed as a compatible
pair, u;; = 1, otherwise, u;; = 0.

ei; = {0,1} If the moving tour contains the segment between S;
and S, e;; = 1, otherwise, e;; = 0.

Tmin = {0,1} If the sensor Sy, is associated with sensor S; in h
hop distance, x,,;;, = 1, otherwise, ;5 = 0.

case (c) forms three compatible pairs which is less than that
in case (b), but it may achieve less overall data uploading
time. This is attributed to that different amount of data for the
two compatible sensors has to be uploaded in SISO way in
case (b). While in case (c) sensor h and g buffer and upload
the same amount of data from its associated sensors. All the
sensing data in this case can be uploaded concurrently, hence,
it achieves high utilization of vVMIMO and small data total
uploading latency.

In the phase of association design, with different locations
of sensor nodes, the sensors could be responsible for uploading
different amount of data to the mobile sink for other nodes due
to the multihop communications. In this case, even though the
sensors are formed as compatible nodes, the data uploading
time may not be saved due to various amount of data from
compatible sensors. Thus, it is challenging to evenly distribute
the associated data to compatible sensors. Meanwhile the
selection of compatible sensor pairs is closely related to the
selection of PPs.

Therefore, to achieve the minimum total data collection
delay does not necessarily mean to form the maximum number
of compatible pairs or to establish the shortest moving tour,
it should also consider the amount of concurrently uploaded
data. Hence, how to jointly utilize vMIMO and organize the
selection of polling points to achieve the minimum total data
collection latency becomes our focus. We study the delay min-
imization for multihop data collection (DMMDC) problem.
Our objective is to minimize the total data collection latency.
Thus, the resulting optimal solution does not necessarily have
the shortest moving tour length or the maximum number of
compatible pairs, but instead, it is a trade-off between the
moving tour and utilization of sensors compatibility.

Moreover, multihop transmission costs more energy for
delivering sensing data to the sink. In order to limit the
energy consumption for sensor nodes, the maximum number
of hop distance is bounded. Due to the technique limitation
of sensors, the buffer size is also bounded. The cost of
sharing control information for vMIMO transmission in the

data gathering is ignored in this work. The reason is that
the control packet is relatively short compared with the data
packet and thus the energy consumption of additional data
exchange will not greatly impact the energy consumption of
vMIMO communication. The channel state information (CSI)
is assumed to be perfectly known [17].

Given a set of sensors S = 1,2,...N deployed over a
sensing field, the DMMDC problem is to determine the selec-
tion of polling points, the compatible pairs, and the multihop
associations between sensors to achieve the minimum data
collection delay for sensors. Due to the limited resources of
sensors, the buffer size of each sensor is bounded with B and
the maximum distance for multihop transmission is bounded
with H. The amount of sensing data for each sensor in one data
collection cycle is R (R < B). For a clear presentation, the
notations used in the formulation are summarised in Table. I.

The total data collection latency minimization problem can
be formulated as:
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Given the notation in Table. I, the DMMDC problem has
been formulated as an integer linear program labelled from
Eqgn. (1) to Eqn. (6).

The objective function Eqn.
tal data collection latency which includes both data
uploading time and sink moving time. The part of
min(X P S g, SISL ST ) specifies that the
data collection time can only be saved by the concurrent
uploading data from compatible sensor pairs.

Constraint (2) guarantees that the overall buffering data in
any sensor does not exceed the sensor buffer limit. Constraint
(3) - (4) guarantees that each sensor should be formed as part
of the compatible pairs or be selected as non-compatible PP

(1) minimizes the to-



or be associated with one of them, so that its sensing data
can be collected during the moving tour. Constraints (5) - (6)
guarantee that the mobile sink enters and departs each polling
point only once.

The objective of the problem is to find a tour and the
association relations between sensors, such that () all the
sensors are either formed as a compatible sensor or associated
with one, (i) the total data collection time for each sensor
is minimized, (¢47) the total buffering data and the maximum
hop distance are within sensors’ constraints. DMMDC is NP-
hard and it can be shown by a reduction from the well-known
Travelling Salesman Problem (TSP). The total data collection
time includes overall data uploading time which is affected by
the total amount of concurrent-uploaded data and sink moving
time which depends on the sink moving tour. In a special case
where the network is super sparse. Assume that the sensing
area is sufficiently large such that no two sensors are able to
form compatible pairs and no sensor can be associated with
other sensors. In this case, all the sensors have to be selected
as polling points and the mobile sink visits all of them. Since
the data uploading time for each sensor is the same with
the amount sensing data, the overall data uploading time is
proportional to the number of sensors. Thus, to achieve the
minimum overall data collection time, the moving time for
mobile sink should be minimized. Hence, the solution is to
find the optimal shortest moving tour in order to visit all the
sensors once, which forms a minimum distance TSP problem.
Hence, DMMDC is NP-hard.

IV. MULTIHOP WEIGHTED REVENUE (MWR) ALGORITHM

In this section, we develop a heuristic multihop weighted
revenue algorithm (MWR) to approximate the minimized data
collection delay. The total data collection latency includes data
uploading time and the moving time of the sink. Thus, the
MWR is designed, on one hand, to minimize the moving
tour delay of mobile sink, on the other hand, to maximize
the amount of data that can be uploaded concurrently. The
proposed algorithm runs at a central node and assists the
underlying routing protocol.

There are different ways to maximize the utilization of
vMIMO and maximize the amount of concurrent uploaded
data. A direct way to increase the concurrent uploading data
is to form as many compatible sensors as possible. However,
this could lead to high number of polling points which may
cause long sink moving delay. Another way is to increase
the amount of data that the compatible sensors buffer. That is
to say, to associate as many as sensors with the compatible
pairs, and distribute the data as evenly as possible for two
sensors in a compatible pair. In this case, the overall number of
polling points can be limited. A good algorithm should jointly
consider the two ways to form the association relations, so
that the total delay can be minimized.

MWR selects PPs based on a combined metric of the num-
ber of compatible pairs, the number of uncovered neighbours
and the sink moving time. Each sensor that is potentially
selected as a PP is assigned a revenue metric. This weighted
revenue metric, denoted by w, is formed of a weighted sum

of normalized metrics. The weighted revenue metric w(i) for
a selected polling point 7 is designed in a way to capture the
following three factors that affect a sensor’s overall quality:

(1). The capability of sensor i to serve the compatibility
among those non-associated sensors, denoted by w,(4).
It is defined as the maximum number of possible un-
covered compatible sensors divided by the number of
uncovered sensors: w.(i) = x;

The capability of sensor ¢ to cover those non-associated
neighbours, denoted by w,, (7). It is defined as the ratio
of the number of h-hop uncovered neighbours and the
number of total uncovered sensors. An h-hop neighbour
of a sensor is that the sensor can be reached by h-hop
distance. The neighbour-covering revenue is w,(i) =

H
N, . .
@, where H is the maximum hop boundary

(i).

for muultihop transmission.

The performance of sensor 7 to decrease the moving tour
length, denoted by wgy(4). It is defined as the minimum
distance between the sensor ¢ and the PPs divided by the

maximum distance between any two sensors: wq(i) =
dmin
1 — 2men

(iii).

dmaa:. . .
Thus, the weighted metric is:

w(i) = we(i) -+ wp (i) - B+ wa(i) -y

N, c Zf:l N, nh dmzn

NoaT ST A (A- )y (D)
where a + 8 +~v =1, 0 < o, 8,7 < 1 are the weighting
factors.

The compatibility revenue w.(4) is the maximum possibility
that the sensors in ¢’s neighbour set can be formed into
compatible pairs. This is a preferred metric to represent the
utilization of vMIMO. The higher the vMIMO communication
is utilized, the more concurrent data-uploading sensors are,
which leads to more uploading time saving. The neighbour-
covering revenue wy, (%) is the capability of sensor 4 to cover
the sensors in its h-hop neighbour set. This metric contributes
to the objective in two ways: (1) For each sensor, higher num-
ber of h-hop neighbours potentially increase the possibility that
the sensors are formed into high number of compatible pairs,
hence decreasing total uploading time. (2) To select the sensor
with large number of neighbours potentially leads to smaller
number of polling points, hence decreasing the sink moving
time. The distance-shoring revenue wgy(%), which is to select
the sensor that is close to the polling points, guarantees that
the increase of the moving tour length is minimized and hence
reduce the total length of the tour. The short moving tour leads
to less sink moving time.

MWR chooses the sensor with the highest weighted metric
value as the polling points, and associates the sensors evenly
with the compatible sensors to maximize the amount of
concurrent uploaded data. Algorithm 1 shows how the MWR
algorithm works. It takes a set of sensors as input, and it
outputs the selected polling points, the compatible sensor pairs
and the association relations between sensors.

In lines 3 - 9, it checks each sensor for revenue values
of the weighted metric (Eqn. (7)): maximum number of




Algorithm 1 Multihop based weighted revenue (MWR) algo-

rithm.
Inputs:
Set S contains N sensors;
Outputs:
Set S/, C, P are all subsets of S, contains the association sensors, the
compatible sensors and the selected polling point sensors respectively;
Association relations between all sensors;
RB Algorithms:
1: iter = 0;
2: while (iter < N) do
3: for each sensor ¢ € (S\ C'\ S"\ P) do
4
5

Find the number of uncovered h hop neighbour sensors Ny, (4);
Find the minimum distance d,,;, , between sensor 7 and all sensors
contained in P;

6: Find the maximum number of compatible pairs N¢(¢) among
uncovered sensors in (S\ C'\ S’ \ P);

7: Use ¢(%) to record the sensors in those compatible pairs;

8: Calculate the weighted revenue value w(7) based on Eqn. (7);

9: end for

10: Find the sensor ¢ € (S'\ C'\ S’ \ P) that has maximum w(i);
1. i (S\C\ S\ P = o[|Ne(i) = 0) then

12: break;

13: else

14: Add sensor ¢ into P, P. = 4; Add sensors in c¢(¢) compatible
pairs into C'; iter = iter + 1;

15: end if

16: Find the number of uncovered h hop neighbour sensors, denoted as
Nnn(§) 3 € (S\C\ S\ P);

17: Find the sensor j with the maximum Zle Nun(4)s

18 if (CF_; Npn(§) # 0) then

19: Add the compatible pair j and P, into C;

20: end if

21: for (each new-added pair of compatible sensors (%, 7) in C) do

22: if (mln(N’nl(Z)ﬂ Nna1 (])) > E) then

23: Associate E 1-hop neighbours with each of 7 and j;

24: Add the association sensors into S’;

25: else

26: Associate number of min(Np1(i), Np1(j)) 1-hop neigh-
bours with each of ¢ and j;

27: Add the association sensors into S’;

28: Check S Nop(i) and P Npp(j) with b =
2,3, ..., H, associate at most overall 7 neighbour sensors to each of
¢ and j;

29: end if

30: Update the record of number of association sensors for each sensor
i, denoted as A(7);

31: end for

32: end while
33: while (S\ C\ S"\ P # 2) do
34: if (sensor m is in h-hop neighbour set of any PP i € C U P &&

B
A7) < E) then

35: Associate sensor m with 4, update A(3);

36: Add sensor m into S’;

37: else

38: Find the ¢ € (S\ C'\ S’ \ P) that has maximum w(i);

39: Add corresponding ¢ into P;

40: Associate all the sensors that in (S'\ C'\ S”\ P) and in ¢’s h-hop
neighbour set with the 7, update A(%);

41: Add the associated sensors into S’;

42: end if

43: end while

compatible sensor pairs, number of n-hop uncovered sensors,
total number of uncovered sensors and the minimum and
maximum distances between the sensor and all selected PPs.

In lines 16 - 20, all the uncovered sensors are check and the
one with maximum number of h-hop neighbours is selected
as the compatible sensor for the currently selected polling

point. They are recorded as a compatible pair. If there is no
compatible available for the selected PP, it is recorded as a
non-compatible polling point.

In lines 21 - 31, for all the compatible pairs which are
recently added to set C, the uncovered sensors are evenly
associated with two sensors in each pair. In this stage, it
is critical to keep the input amount of data at the same
level for the two sensors in each compatible pair, so as to
fully utilize vMIMO diversity gain and save uploading time.
Moreover, the total association data to each compatible sensor
can not exceed its buffer limit. In addition, to take into account
the network energy consumption, the association sensors are
chosen starting from 1-hop neighbours to H-hop neighbours.

Lines 33 - 43 guarantee that all the sensors are associated
so that the sensing data can be collected by the mobile sink.
The algorithm terminates when all the sensors are formed as
compatible sensors, or selected as polling points, or associated
with one of them.

Then the last step of MWR algorithm is to run an ap-
proximate algorithm for the TSP problem to find the shortest
moving tour of the mobile sink to visit all the polling points.
The time complexity of the proposed algorithm is dependent
on how to find the maximum compatible pairs among the
uncovered sensors. For a network with a total of N sensors,
the worst case is when all the sensors are selected as polling
points, which means the maximum information check will
be O(N?) times. For each compatibility-check process, to
find the approximate maximum compatible pairs among the
uncovered sensors, the time complexity is O(N?). To find the
uncovered h-hop neighbour set, the time complexity is O(N).
To find the distance between a sensor and the polling points,
the time complexity if O(N). To find the shortest tour on
polling points, the time complexity is O(/N?). Combing the
information updating progress, the overall time complexity is
O(N* + N3 + N3 + N?). Hence, the time complexity of the
proposed MWR algorithm is O(N?).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
MWR algorithm. MWR is firstly evaluated and compared with
the optimal solution as formulated in Sec. III. Secondly, MWR
is compared with two existing algorithms with simulations
in different network scenarios. Thirdly, MWR is evaluated
considering different settings of simulation parameters. Except
for the optimal solutions, the simulations are performed using
Matlab. Different kinds of network topologies have been
evaluated with regard to the number of sensor nodes and the
side length of the area.

A. Performance evaluation with optimal solution

To examine the performance of MWR, we first compare
the results of the proposed MWR algorithm with the op-
timal solution results and a SISO data gathering scheme.
For the SISO based algorithms, the overall data collection
latency varies with the different MS moving times. Hence,
the shortest moving tour (SMT) algorithm is chosen as the
SISO benchmark. The optimal solution results (Optimal-MH)
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Figure 2. Performance comparison between optimum solutions and proposed
MWR in small scale networks.

are obtained by solving the formulated problem in Sec. III
by using the CPLEX [18]. However, due to the NP-hardness
of the DMMDC problem, the results of optimal solution can
only be achieved for a few small scale networks. As the third
competitor, the single hop based data collection problem with
vMIMO and mobile sink (Optimal-SH) is also formulated and
solved with CPLEX. We consider a network with 8 to 30
sensors randomly deployed over an area of 100m x 100m.
Any of the sensors can be selected and act as a PP with
a limited buffer of B = 5R [19], where R is the amount
of sensing data for each sensor. The transmission range of
sensors is set to be 30m. The weighting factors a, $ and « in
MWR are set as 0.3, 0.3 and 0.4 respectively. The amount of
sensing data for each sensor is R = 1M b and the effective data
uploading rate is V,, = 80K bps. The velocity of the mobile
sink is V;,, = 0.8m/s. In this set of simulations, the outputs are
the minimum data collection latency and the overall network
energy consumption. The results for performance evaluation
are the average of 40 simulation experiments. Figure 2 demon-
strates the comparison results: the data collection latency for
different solutions follows the trend that Optimal-MH < MWR
< Optimal-SH < SMT (Figure 4(a)), and the overall network
energy consumption for different solutions follows another
trend that Optimal-SH < Optimal-MH < MWR < SMT.
Without achieving utilization and benefiting from vMIMO
technique, there is neither time saving nor energy saving in
SISO based algorithm SMT, it is reasonable to achieve the
highest data collection time and network energy consumption
for SMT. By allowing multihop transmission in the network,
Optimal-MH enables more sensing data to upload to mobile
sink via vMIMO transmission than Optimal-SH, thus, saving
more data uploading time. Moreover, with more sensors being
associated with the same PP, the number of PPs can decrease
and this leads to less sink moving time. Summing up the two
parts, the Optimal-MH scheme potentially saves more data
collection time than that Optima-SH does, and achieves the
lowest total data collection delay (Figure 4(a)). However, the
multihop behaviour increases the energy consumptions for data
transmission. Hence, the Optimal-SH achieves the best energy
efficient (Figure 4(b)).

It is noticed that all the results are quite close when the
number of sensor is less than 10, and the differences become
larger as the increase of number of sensors in Figure 4(a). This
is reasonable since when the number of sensors is small, the
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Figure 3. Performance evaluations with different number of sensors.

time saving from the utilization of vMIMO is limited, and the
sink moving time dominants the overall data collection delay.
The moving time is decided by the length of sink moving tour
which can be similar for the four algorithms.

The proposed MWR scheme performs better than SMT
and Optimal-SH and achieves very close performance to
Optimal-MH with regard to the data collection delay. Besides,
compared to SMT and Optimal-SH, MWR is overall more
stable as the number of sensors increases. That is to say,
the multihop behaviour helps to utilize the vMIMO especially
when there is high number of sensors in the area (Figure 4(a)).
Figure 4(b), on the other hand, shows that the multihop
behaviour aggregates the energy consumption when comparing
to Optimal-MH, MWR and Optimal-SH. With the increase
of the number of sensors, the energy consumption increases
intensively for MWR. Benefiting from the vMIMO, the energy
consumptions for all Optimal-MH, MWR and Optimal-SH are
much less than that of SMT (Figure 4(b)).

As mentioned, CSI is assumed to be known in the simu-
lation. Since only a finite set of sensor locations the mobile
sink can stop, it is feasible in practice to estimate the CST
between each location and its neighbour sensors. This, how-
ever, introduces additional overhead of control information.
The control message is neglected here because that a control
message is relatively short compared with data packets. In
practice, to obtain network topology information, a number of
control messages will be introduced. The higher the signalling
frequency is, the more control packets are. The transmission
cost of such control messages should be taken into considera-
tion when the number of control messages becomes significant.

B. Performance evaluation with other methods

In this part, we evaluate MWR by comparing its perfor-
mance with other data collection algorithms. In order to show
the benefits of both vVMIMO and multihop behaviour, the
algorithms for both VMIMO based single hop mobile data
collection and SISO based multihop mobile data collection
are chosen as the benchmarks:

o Revenue-Based (RB) algorithm [16], which is a vMIMO
based single hop data collection algorithm, aims at
minimum data gathering latency. By considering both
compatible pairs and the MS moving tour in its weighted
metric, RB utilizes vMIMO gains to an extend to save
data uploading time.



o Weighted Rendezvous Planning (WRP) algorithm [20],
which is a SISO based multihop data collection algo-
rithm, aims to achieve the trade-off between data collec-
tion delay and energy consumption.

In this scenario, N sensors are randomly deployed over a
200m x 200m area. Any sensor could be chosen as the polling
point. The transmission range of sensors is set to be 30m.
The weighting factors «, 5 and « in MWR are set as 0.3,
0.3 and 0.4 respectively. We assume the amount of sensing
data of each collection round is R = 1Mb, the effective data
uploading rate is V,, = 80Kbps and the data buffer size of
each sensor is B = HR. The velocity of the mobile sink
is Vi, = 1m/s. N varies from 20 to 120. To restrain the
overall energy consumption, the maximum hop distance in
multihop transmission scenarios is set as H = 3. In this
set of simulations, the outputs are the data collection latency
and the overall network energy consumption. The results
for performance evaluation are the average of 40 simulation
experiments.

Figure 3 shows the comparison results for the three algo-
rithms. The results demonstrate stable performance trend of the
data collection latency: MWR < RB < WRP (Figure 3(a)).
With the increase of the number of sensors, the data collection
delay increases stably for all three algorithms. It is clear
that without any utilization of vMIMO, the WRP algorithm
presents the highest data collection delay and highest network
energy consumption. Benefiting from the multihop transmis-
sion behaviour, MWR achieves much lower data collection
delay than that of RB. On average, compared to RB, MWR
decreases data collection latency by 45 percentage.

In Figure 3(a), the delay tends to be stable with the increase
of N for both MWR and RB. This is reasonable since when the
network density reaches a certain level as the increase of N,
the selected PPs are sufficiently enough to cover the increased
sensors in the field and the increased sensing data can be more
possibly uploaded concurrently. RB addresses the increased
sensors by forming more compatible pairs for concurrent data-
uploading. Except for forming more compatible pairs, MWR
can also associate the increased sensors with the existing
compatible sensors through multihop behaviour.

Both MWR and RB achieve dramatically lower energy
consumption than that of WRP (Figure 3(b)). The energy
consumptions for MWR and RB are quite close when the
number of sensors is small, and MWR costs slightly higher
energy than RB with the increase of IN. With the increase
of the number of sensors, MWR associates more sensors
to perform multihop transmission to increase the amount of
data that can be transmitted benefiting diversity gain. Hence,
the network energy consumption of MWR becomes more
aggressive with the higher number of sensors (Figure 3(b)).

Figure 4 shows simulation performance for the three algo-
rithms with different side length of the area L considering
the same number of sensors (N = 60) in the field. Thus, the
sensor density is decreased with the increase of L. The data
collection time is prolonged largely with the increase of L
for all three algorithms. One important reason is that the MS
moving length increases largely due to the longer distance
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Figure 4. Performance evaluations with different side lengths of sensing area.

between sensors. MWR and WRP achieve the lowest and the
largest data collection latency respectively (Figure 4(a)). MWR
outperforms RB and this trend of superiority becomes even
more remarkable as L increases. With the decrease of the
density of network, to achieve more compatible pairs, RB has
to deploy more PPs, which causes longer moving tour distance,
hence longer moving time. Besides, for some far-away sensors,
RB is more likely to select them as the non-compatible polling
points. MWR, on the other hand, is able to associate those far-
away sensors with the selected PPs or other compatible pairs
via multihop behaviour.

MWR and RB lower the network energy consumption
dramatically compared to WRP (Figure 4(b)). For MWR, the
amount of network energy consumption rises when L is less
than 100m and drops with the increase of L after that. This is
attributed to that the number of multihop association sensors
reduces with the network becoming sparser. In high density
networks, MWR is more likely to associate the sensors and
the associations become less and less with the decrease of
network density. This is consist with the results in Figure 3(b)
that the energy consumption increases as the network becomes
dense (as the increase of N). The network energy consumption
tends to be stable and slightly increase for RB. It is noticed
that MWR consumes even less energy than RB does when L
is larger than 200m. The reason can be that with the wider
network size, less sensors are able to form as the compatible
pairs and benefit the energy efficiency from the concurrent
data uploading for RB. Thus, less utilization of vMIMO leads
to the increase of overall network energy consumption. To
conclude from Figure 3 and Figure 4, the proposed MWR
provides the best performance for time-sensitive applications
with considerable energy consumption in all kinds of network
densities. Algorithm RB works the best for energy-sensitive
but relatively delay-tolerance applications when the network
is sparse.

To evaluate how the MWR algorithm is affected by the
application parameters, Figure 5 shows the performance of
MWR with different parameter settings. MWR describes the
results aforementioned in this section. With higher effective
data uploading rate (MWR-1: V,. = 160K bps), the total data
collection delay largely decreases, and the decrease becomes
more remarkable with the increase of N. In MWR-1, the
data uploading time becomes sufficiently short and the sink
moving time dominates the total data collection delay. Thus,
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Performance comparison for MWR with different parameter

the performance of MWR-1 is similar with the trend of moving
tour length: The result tends to be stable with the increase
of N. When the number of selected polling points reaches
a certain level, most of the increased sensors in the field
can be associated with the existing PPs, and thus the moving
tour remains stable. The stable level is related to the network
topology setting, such as the side length of the area L. As the
sink moving velocity increases from V,,, = 0.8m/s (MWR)
to V,, = 1.6m/s (MWR-2), the total data collection delay
generally decreases due to the reduction of sink moving time.
The increase slope of the performance of MWR-2 is faster
than that of MWR-1, due to the larger effect of the increase
of N. Compared to MWR, MWR-3 rises the sensors’ buffer
size limit (B = 10R), so that more sensors are able to be
associated with a same node which could lead to less number
of polling points and more concurrent uploading of data. Thus,
MWR-4 decreases the total data collection delay than MWR,
while maintaining similar performance trend. Overall, all three
parameters can be adjusted to meet different levels of network
performance requirements. In sparse networks, the effective
data uploading rate improves the network performance more
critically than the other parameters. The sink moving velocity,
on the contrary, shows major impact in dense networks.

VI. CONCLUSION

In this paper, we focus on minimizing the total data
collection latency in multihop networks. We formulate the
delay minimization problem for multihop data collection and
propose a multihop weighted revenue (MWR) algorithm which
jointly considers the amount of concurrent uploaded data and
the moving tour length. It combines the number of compatible
sensors, the number of h-hop neighbours, and the moving
distance of sink in a weighted metric, to accurately account for
these factors when ranking the available sensors for selection
of polling points. Moreover, in order to achieve full utilization
of concurrent uploading technique, MWR also emphasises on
even associations of sensors to the compatible sensors.

Extensive simulation results show the effectiveness of the
proposed algorithm. Compared to other algorithms, MWR
effectively reduces the total data collection delay in different
scenarios. Moreover, it requires less network energy con-
sumption with least energy consumption in relatively sparse
networks.
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