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Abstract—Recent advancements in sensing, networking technologies
and collecting real-world data on a large scale and from various environ-
ments have created an opportunity for new forms of real-world services
and applications. This is known under the umbrella term of the Internet
of Things (IoT). Physical sensor devices constantly produce very large
amounts of data. Methods are needed which give the raw sensor mea-
surements a meaningful interpretation for building automated decision
support systems. To extract actionable information from real-world data,
we propose a method that uncovers hidden structures and relations
between multiple IoT data streams. Our novel solution uses Latent
Dirichlet Allocation (LDA), a topic extraction method that is generally
used in text analysis. We apply LDA on meaningful abstractions that
describe the numerical data in human understandable terms. We use
Symbolic Aggregate approXimation (SAX) to convert the raw data into
string-based patterns and create higher level abstractions based on
rules.
We finally investigate how heterogeneous sensory data from multiple
sources can be processed and analysed to create near real-time in-
telligence and how our proposed method provides an efficient way to
interpret patterns in the data streams. The proposed method uncovers
the correlations and associations between different pattern in IoT data
streams. The evaluation results show that the proposed solution is able
to identify the correlation with high efficiency with an F-measure up to
90%.

Index Terms—Data Streams, LDA, Data interpretation, Internet of
Things, Data analytics

1 INTRODUCTION

W ITH the Internet of Things (IoT) as one of the most
rapidly growing technologies, more and more data

is produced and has become readily available. According
to the annual report 2015 by IBM [1], it is estimated that
2.4 quintillion bytes are published each day by more
than 9 billion connected devices. To put this number
into perspective, this amounts to more than one hundred
million movies in high definition. While this abundance of
data is certainly impressive, without processing methods
that can deal with the huge volume and velocity, the vast
majority of information gets lost in the deluge of data. If
we can extract this information from the data, we can build
intelligent applications, for example smart city applications
that improve the life of citizens in big cities. On average,
a citizen of London spends over 100 hours stuck in traffic.
This comes with a huge environmental and temporal cost

and is a cause for lots of frustration and aggravation.
By analysing the data from traffic sensors, we can build
solutions that regulate the traffic in a more intelligent way.
Additional to spatio-temporal context dependency, patterns
found in the streaming data can also have a significance
depending on the output of other data streams at the same
time in the vicinity. When correlations are known, these
can be used to increase the performance and efficiency
applications such as smart grid frameworks for homes or
cities [2]
Data from multiple sources poses a key challenge to create
actionable information from raw data for developers and
researchers alike. The huge variety of features and their
characteristics make comparing and combining data from
different sources very demanding and complex. This
challenge is alleviated in the case of numerical input data
where different values or patterns within the data may not
translate straightforward into a meaning.
While there are several approaches that can extract
information from a single data source for classification
and prediction purposes with varying degrees of success,
the most existing solutions are limited by not taking into
account information from other sources which can enrich
the information extraction task by providing complimentary
or essential contextual information. When analysing the
user behaviour of urban bicycle sharing, Froehlich et al.
[3] have argued that incorporating contextual information
such as weather data into their methodology could greatly
improve the prediction rates. Similarly, the prediction rates
of tidal events from coastal data in Ganz et al. [4] could be
improved.

1.1 Motivation
Given various heterogeneous data streams that are pro-
duced in the same environment (i.e. same location and at
the same time) we are interested in:
• Understanding the meaning of the current output pro-

duced by the individual data sources.
• Understand how different data sources are correlated

and how they create a meaningful interpretation of the
the situation as a whole in this environment.
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If we can address the above issues, this allows us to monitor,
analyse and predict the situation of various environments
(e.g. smart cities) in order to provide more intelligent so-
lutions for smart applications. To interpret the individual
data streams, we can extract and process patterns. With
these abstract representations of the streaming data we
can further process the data streams and analyse their co-
occurrences and correlations. Since the data comes from
various heterogeneous sources, it has to be first transformed
into a common, homogeneous semantic space previous to
the correlation analysis. Afterwards we can apply latent
topic models to extract the underlying relations between
different data sources. These models can then be used to
give an abstract representation of the data streams. As the
models are generative, we can also use them to fold in
incoming data from one or multiple sources to predict the
expected patterns within other co-related data sources.
Our approach deals with one specific sub-problem in the IoT
domain, namely, the analysis of correlations and dependen-
cies of different data streams to each other. We are using data
from a Smart City use case that is measuring the traffic flow
in the city and analyse if we can find correlations between
the traffic flow and the weather circumstances.

1.2 Overview of Method and contributions
We create a solution which looks at different sensor data
streams in an unsupervised fashion and extracts the pat-
terns, hidden factors and their relationships and therefore
the underlying structure of the input streams. The solution
is applicable for any data stream processing task within the
IoT domain.
Initially the data is converted into a more abstract form, rep-
resenting the patterns found in the data streams. These pat-
terns are then translated into human understandable higher
level abstractions by a rule engine. In the IoT domain, data
comes mainly in the form of numerical data streams. We
apply an abstraction method Symbolic Aggregate Aproxi-
mation (SAX), which transforms the numerical time series
data into a textual representation. We extend SAX for the
analysis of heterogeneous data sources by using multiple
alphabets, one for each different kind of data stream. We
group the extracted labels from the different features of the
data stream together, essentially creating virtual documents,
which opens up the possibility to use a new range of data
analytic methodologies; methods developed for extracting
information from text documents. These methods are able
to extract the underlying relations within textual documents
through the use of probability distributions and latent vari-
able models. The analysis methods have been successfully
developed to extract representative topics from Wikipedia
articles and have also been adapted for the use in ontology
learning [5].
In the past we have successfully applied SAX for pattern
recognition in numerical sensor data as a part of the ab-
straction chain of transforming raw data into actionable
information [6]. With this technique we can pre-process the
data to be used by the topic extraction methods and exploit
the capabilities of the text analysis methods to uncover
hidden relations and structures.
Hereby we face several challenges that have to be overcome.

The first challenge is finding the correct format to create
the patterns from sensor data that are produced at different
points in time and from different types of sensors. If we suc-
ceed with the latter, we then have a textual representation
of the continuous numerical data streams and are one step
closer to applying the latent semantic analysis methods such
as Latent Dirichlet Allocation (LDA) [7]). The smallest unit
of analysis for this method are text documents. The question
is how to represent the continuous stream of data as one or
multiple documents. Therefore the next challenge is deciding
which parts of the stream we can interpret virtually as a
document.
The other challenge is to apply the latent semantic analysis
methods on the virtualised documents and interpret the
result of this analysis in a meaningful way. We also need to
design effective methods that can identify the relationships
between the heterogeneous data sources.
The structure of the paper is as follows. Section 2 presents
the methods used and discusses related work. In Section
3 we provide mathematical background information about
the techniques used by the proposed solution. Section 4
explains in detail how the solution and how the individual
components are implemented. It also discusses the impact
of different parametrisations. Section 5 describes the set-
up of the experiments that are carried out and shows the
feasibility of the proposed solution. The outputs of the
individual components are presented and different param-
eter selections are compared. Finally, Section 6 summarises
the presented work and discusses the research impact and
future work.

2 METHODS USED AND RELATED WORK

In order to provide a common understanding throughout
the paper, this section is split into three parts. First we
present the methods used for the data discretisation. We
then present the latent semantic models and give examples
where they have been successfully applied to the existing
topic extraction methods to other domains such as audio
or image retrieval. We discuss related works which are
concerned with finding correlations within different data
sources.

2.1 Data Discretisation
One of the common data discretisation methods introduced
in 2001 by Keogh et al. [8] is Piecewise Aggregate Approxi-
mation (PAA) which is used to reduce the dimensionality
of streaming data. It splits the input data into window
segments which are represented by their mean. For batch
input it means that the data will be reduced from an original
dimension n into N chunks of size n/N .
SAX is a way to transform continuous, numeric data into
discretised values while retaining sequential information.
Intuitively SAX transforms the data into patterns, repre-
sented by words. The words are generated using a given
alphabet and a predefined word size. Initially the data is
normalised with a mean of zero and a standard deviation of
one [9]. A Gaussian distribution is assumed for the values,
which is split into areas of the same likelihood. These are
called equi-probable areas and each area is assigned to a
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SAX literal from the given alphabet. Using pre-computed
breakpoints the PAA coefficients are mapped to the SAX
literals. Put together the literals form a string based rep-
resentation of the pattern, called a SAX word. Section 3
provides a more detailed description of the mathematical
background of PAA and SAX.
SAX has significant advantages over other symbolic repre-
sentation techniques: Applied to the output of PAA, it can
capitalise on its dimensionality reduction power. A distance
measure can be defined in the symbolic space with a high
correlation to the distance measures defined on the raw
data. There is no need to have access to all the data before
transforming the data into the symbolic representations
which makes SAX applicable to streaming data. Because
the representation space provides a lower bound for the
distance function, the SAX output can be used for improved
performance in clustering, classification and indexing tasks.
Furthermore, it can be used for motif discovery and to
visualise activity from different kinds of data, for example
to visualise physical activity from accelerometer data [10].
Ganz et al. [4] developed an abstraction scheme which
starts from raw sensory data and extracts discretised SAX
patterns. The SAX patterns are then associated to events
(wherever applicable) by applying Parsimonious Covering
Theory (PCT) [11]. Using hidden markov models (HMM)
and pre-defined events, temporal relations of the events are
then defined. However, the method focuses only on one
type of sensor data, producing 23% false positives and 7%
false negatives. Ganz et al.’ experiments indicates that these
reported results might be lower boundaries, however the
use of other data streams as contextual information might
be able to pierce these boundaries.

2.2 Latent Semantic Models
Latent Semantic Analysis (LSA) was developed in 1990 [12]
as a way for automatic indexing and retrieval of text docu-
ments. Initially the documents are represented by a term-
document matrix storing the information which terms are
present in the document and which are not. Using singular-
value decomposition, a semantic space is created in which
closely associated terms and documents are near each other
even if the term did not appear in the document. This solves
the problem that the same information can be described
using a completely different vocabulary and can therefore
deliver more meaningful results for document retrieval.
One of the main drawbacks of LSA, however, is that it
assumes that related terms and documents will end up be-
ing close within the created semantic space without strong
theoretical foundation.
An adaptation of the method called Probabilistic Latent
Semantics Analysis (pLSA) was introduced in 1999 by Hof-
mann et al. [13]. LSA provides a strong statistical foundation
for the model. Using an aspect model as a starting point,
the joint probability of terms and words is calculated by
maximising the likelihood (i.e. Expectation Maximisation)
[13].
pLSA has been shown to have a substantial performance
increase over LSA and even works in cases where the

original method failed such as the CISI dataset 1. However
pLSA still has two major drawbacks:

(i) the number of parameters increases with the number of
documents analysed

(ii) documents outside the training set cannot easily be
assigned with a probability

The above problems are addressed by Latent Dirichlet Allo-
cation (LDA), a generative probabilistic model that extracts
topic models from textual documents [7]. Each document is
considered to be a distribution over topics and A Dirichlet
distribution is chosen as the prior distribution and the
posterior distribution for the latent variables is inferred. This
way LDA is able to represent a topic by its most probable
words. At the same time the underlying hidden structure of
the documents is uncovered.
Hu et al. [14] successfully applied a variation of LDA called
Gaussian-LDA to audio retrieval. The audio files are rep-
resented as histograms which can be interpreted as bag-of-
word representations by regarding the audio feature clusters
as words in the dictionary. Having this interpretation gives
them the ability to utilise the topic and structure detection
powers of LDA. Since the histograms have a shortcoming
of treating similar items as unrelated in border regions of
the histogram clusters, Hu et al. instead treat topics as a
Gaussian distribution which allows them to step over the
vector quantification step. To evaluate these experiments Hu
et al. use labelled data and compute precision and recall of
their audio retrieval [14].
Both pLSA and LDA have also found successful applica-
tions in image classification [15], [16]. There are extensions
to LDA to improve the performance of the algorithm for the
image classification. For example Rasiwasia et al. [17] devel-
oped two extensions of LDA, (topic-supervised LDA and
class-specific-simplex LDA) for image classification. These
methods work by representing images as bag-of-visual-words.
These representations are then used as input to train the la-
tent models that are employed in LDA and pLSA. LDA has
also been applied in the context of IoT. Bian et al. [18] have
applied the topic model together with sentiment analysis on
Twitter data to analyse the public perception of the IoT. . Xin
et al. [19] have created hierarchical topic model taxonomies
on IoT data using LDA. However, both approaches can only
be applied to textual information within the and not to
numerical data streams within the IoT domain.

2.3 Correlation Analysis in Smart City Data
Because it is a relatively new topic, there is still limited
research in the area of finding correlations within urban
environment data. Froehlich et al. [3] have explored the
spatio-temporal patterns of bicycle share usage with relation
to urban behaviour. Their prediction model using simple
classifiers indicates an lower bound error rate of 12%. How-
ever, Froehlich et al. argue that taking data from additional
sources into account such as weather data to enrich the
prediction with contextual information can help break this
boundary.
Lathia et al. [20] have found out that there are correlations

1. http://www.dataminingresearch.com/index.php/2010/09
/classic3-classic4-datasets/
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between the movement of citizens from different areas to the
degree of social deprivation. To verify the latter, they use
the Pearson Correlation to find a relation between public
transport mobility data and community well-being census
data. This can help identify linear correlations. However, if
the patterns produced from the different sensors correlate
in a non-linear fashion, the Pearson correlation is unable
to detect these. The information about correlating patterns
would therefore be lost.
Correlations between the temperature and traffic flow have
been found and modelled with a Poisson distribution model
by Jara et al. [21]. Their results suggest that both traffic flow
and temperature follow a daily cycle. This follows the com-
mon perception that temperature rises and falls naturally
with the amount of solar radiation. At the same time traffic
flow follows a similar pattern as people are going to and
from work at times close to sunrise and sundown. A more
interesting analysis would be finding out how the traffic
flow on the same days at the same time but in different
weeks correlate with higher or lower temperature.
Semantic road and Traffic Analytics and Reasoning for City
(STAR-CITY) [22] is an integrated traffic analysis system
which takes both historical and real-time heterogeneous
data into account. The system is able to analyse current
traffic conditions and predict future traffic flows. By seman-
tically enriching the data and using a predictive reasoning
component, correlations between traffic flows, social media
and weather data streams are automatically expressed by
creating rules.
Originally deployed in Dublin, the STAR-CITY system has
shown limitations in terms of flexibility and scalability when
being applied to other cities. Therefore Lécué, et al. [23]
have introduced the ”any-city” architecture which addresses
some of these issues to a degree. Since the individual com-
ponents are strongly connected within the system, applying
the solution to other Smart City applications is hindered.
The relationship between weather conditions (specifically
solar radiation, temperature and humidity) and power de-
mand has been analysed by Hernández et al. [2]. They
have developed a smart grid framework which tackles
power consumption prediction on small (Smart Grid, Smart
Building) and large (Smart City, Smart Environment) scales.
Hernández et al.’s work shows how known correlations
between different data streams can be exploited to improve
the efficiency of energy usage and cut down costs.
As discussed above most of the existing solutions for smart
city data analysis work on applying different correlation
analysis methods. However, using and interpreting multi-
modal data and integrating information from different
sources is always a key limitation in making the existing
solutions flexible and scalable. This suggests that more
research should be dedicated to analysing multi-sourced
data streams to reveal previously unknown correlations, as
these can then in turn be exploited in the future.

3 MATHEMATICAL BACKGROUND

In order to provide a common understanding throughout
the descriptions and to keep the paper self-contained, we
provide ashort mathematical explanation about the tech-
niques used in our solution.
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Fig. 1: Sample PAA coeefficient generation (N = 10)

3.1 Piecewise Approximate Aggregation (PAA)
PAA can significantly reduce the dimensionality of the data
while maintaining lower bounds for distance measures in
Euclidean space. PAA exploits that in time series data, the
individual data points are usually strongly correlated to
their neighbours. With this in mind, a time window con-
taining multiple data points can be represented by its mean
without losing too much information about the sequence.
A time series subsequence X = x1, ..., xn is reduced to a
Vector X̄ of size N (with 1 ≤ N ≤ n), where each PAA
coefficient xi is calculated by equation 1 shown below.

xi = N/n

(n/N)i∑
j=n/N(i−1)+i

xj (1)

Figure 1 shows the PAA representation of time series data.

3.2 Symbolic Aggregate Approximation (SAX)
SAX [9] was introduced to provide a discretised, string
based representation for time series data, where the stream
is divided into windows. Each window is initially nor-
malised. The PAA coefficients are then computed (see Sec-
tion 3.1). SAX determines the corresponding symbols for
the coefficient in a way that each symbol has the same
probability of being assigned. Under the assumption that
normalized time series data follows a Gaussian distribution
the probability assumption is achieved by determining the
breakpoints β1, ..., βn−1 which divide the Gaussian curve
into n equi-probable areas. Each of these areas is assigned
to a literal of the chosen alphabet. Depending on which
area the individual PAA coefficients fall, they are assigned
with the respective symbol. When put together for a set of
windows they form a SAX word.
Figure 2 demonstrates this process. The blue line shows the
data that has been aggregated with PAA into ten PAA coef-
ficients. For each coefficient, we assign the literal associated
to the area within the breakpoints. The first coefficient in this
example is above the topmost breakpoint, so we assign an
”a”. The second coefficient is between the topmost and the
second breakpoint from the top, therefore we assign a ”b”.
Continuing this process, the SAX output for this example is
the SAX word ”abadedbecb”.



IEEE SYSTEMS, VOL. ??, NO.??, ???? 2017 5

Fig. 2: Sample sax word generation
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Fig. 3: Plate model representation of LDA [7]

3.3 Latent Dirichlet Allocation
LDA is a generative probabilistic model that is used to
assign topics to documents from a given corpus. Figure
3 shows the plate model representation, which helps
explaining the components of the LDA model. Here k is the
number of topics (fixed on initialisation of the LDA model),
M is the number of documents, N is the number of words
in the document, which itself is represented by the vector
w as a bag-of-words. βk is the multinomial distribution
words representing the topics and is drawn from the prior
Dirichlet distribution with the parameter η. Similarly the
topic distribution θd is drawn from a Dirichlet prior with
parameter α. zij is the topic which is most likely to have
generated wij , which is the jth word in the ith document.

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
(2)

Because a Dirichlet distribution is a conjugate prior for
multinomial distribution, the posterior distribution is also
distributed as a Dirichlet. The exact inference for the poste-
rior is intractable; however, there are several methods which
can be used to estimate the solution for equation 2. In the
equation z and w are written in bold to make clear that they
refer to the vector of topics and vector of words respectively.
The original LDA [7] proposes the use of variational
Bayesian approximation to solve the inference intractability
problem. However, Gibbs sampling can also be applied for
inference [24]. Gibbs sampling chooses initial topics for each
word at random and updates the beliefs iteratively until
convergence is achieved.

4 METHODOLOGY

This Section demonstrates how our proposed approach for
integrating SAX symbols from various data streams and ap-
plying LDA to analyse them works. First a general overview
over the workflow is given. Then each of the components
are described in more detail in individual subsections. Each
component is also configurable based on the parametrised
initialisation, all of which have influence on the outcome.
We carry out our experiments with different configurations
and discuss how suitable parameters can be chosen based
on the application domain and the input data streams. In
general we make an assumption that the required data
streams are readily available, meaning that all issues related
to stream discovery and accessibility are not in the scope
of this work. Furthermore in this paper we do not address
any problems related to Quality of Service or Quality of
Information in the data streams.

4.1 Overview of the workflow
The overall workflow of our presented method consists of
4 steps which are described in more detail in the following
Sections. They are:
• Data Discretisation and Pattern Recognition PAA is

used to reduce the dimensionality of the data; SAX uses
the output to discretise the continuous, numerical data
streams and to recognise (lower-level) patterns.

• Higher Level Abstractions The information obtained
from the pattern together with the statistical values are
translated into higher level abstractions based on rules.
The rules are explained in Section 4.3.

• Virtual Document Generation We create virtual docu-
ments to group the together the higher level abstrac-
tions from different sources within a certain time-frame

• Latent Dirichlet Allocation (LDA) We train and incre-
mentally update an LDA model on the virtual doc-
uments that are generated from the data streams to
identify and extract relations between the higher level
abstractions.

The interaction of these components is shown in Figure 4.
Initially the data coming from the streams is reduced by
PAA. The patterns are generated by applying SAX on the
output of PAA. A vertical split over a specific time frame
along the different streams, groups the patterns within a
time-frame into a virtual document. Together these documents
form the corpus on which LDA is applied to extract the
topics and find correlations between the higher level ab-
stractions. As the method is designed for streaming data,
the approach works in the following incremental online
way. In an initial configurable training period, the virtual
documents are stored together as the corpus, which is used
to train the initial LDA model. From that point on we
can use the model to analyse the correlations between the
different features in the data streams. New incoming data
is again processed in the same way, the SAX patterns are
extracted and the virtual documents are created. Every time
a new set of virtual documents is available, the LDA model
is updated, so that the correlations that we can find with the
LDA model stay current to the situation of the underlying
data streams.



IEEE SYSTEMS, VOL. ??, NO.??, ???? 2017 6

Sensor
Devices PAA/SAX

Raw Data
Rule Engine

Patterns

Virtual 
DocumentsLDA Model Train & Update

Correla'ons	
  	
  
between	
  	
  
labels	
  

Fig. 4: Overall workflow visualisation

4.2 Data Discretisation and Pattern Recognition
As described in Section 2.1, PAA reduces the dimensionality
of streaming data by splitting the input into data of a certain
window size, represented by its mean. Defining the size of
the slicing windows makes a huge difference in the overall
outcome of the presented approach. Choosing an adequate
size is heavily dependent on the input data. Here the most
important factor is the throughput of the given stream. If
the input data stream produces continuous output (e.g. new
data values are produced every few seconds or less) the
window size can be chosen big in relation with the included
data points. If the aggregation is performed directly on the
sensor node sinks, this has the added benefit of drastically
reducing networking traffic and therefore improving the
energy efficiency of the sink node. This has been analysed
by Ganz et al. [4] where they applied a dynamic version
of PAA as part of SensorSAX on the gateway level which
aggregates more data together in times of low activity in the
data stream and therefore reducing network load without
losing information.
On the other hand, if the data stream has a very low
updating rate, the data reduction factor (slicing window
size) will approach 1 (equal or almost equal to no reduction
in the data at all). If this is the case then the PAA step can
be skipped altogether. The output of PAA is used to create
the SAX patterns. In order to apply LDA on continuous
data, we need a discretisation method. One way to discretise
continuous, numerical data is to aggregate the values by
clustering them into different categories through similarity.
There are several way to do this, from hierarchical clustering
to k-means. These methods have the common drawback that
the information about the sequence of values is lost which
is why we will not use them for this approach.
SAX is a way to transform continuous, numeric data into
discretised values while retaining the sequential informa-
tion. The method can capitalise on the dimensionality re-
duction powers of PAA by being applied to the output of
PAA. In cases where the stream does not produce enough
data and the dimension reduction would lead to a too low
granularity, SAX can be applied directly to the streaming
data instead of on the PAA coefficients. Intuitively SAX
transforms the data into patterns, represented by words.
The words are generated using a given alphabet and a word
size. We use a different alphabet for each type of data in
the streams in order to distinguish that the same shaped
patterns in different features do not necessarily translate to
the same meaning.
In the original SAX, each time window is normalised using

z-normalisation before applying PAA [9] and aggregating
each window by representing it with its mean value. N of
these means together are transformed into one SAX pattern,
where N is the word length. Assuming a Gaussian distri-
bution of the normalised data each of the areas is assigned
to one literal from the alphabet as follows: parallel to the
y-axis, breakpoints are used to determine in which of the
K equi-probable areas each time window falls, where K
is the alphabet size used. The whole data window is now
represented by a SAX pattern.
The assumption of having a Gaussian data distribution is
well founded on observing time-series data on a long term
scale [25]. However, in the case of dealing with IoT data
we may also look at the data in a more short term context.
The ad-hoc correlations and meaning that we find might
no longer be true in long term. The very nature of the
IoT means that we are dealing with multivariate data in
dynamic environments. We need to study the data outside
the equilibrium (i.e. when in long term it follows a Gaussian
distribution).
Therefore we propose determining the current probability
distribution of the underlying data stream and use this
distribution to create the equi-probable areas. This enables
to represent the patterns found in the data more accurately
in a short-term context. The time-frame we consider for the
distribution is dependent on and is affected in two opposite
directions. On the one hand, shorter-time-frames for the
distribution computation lead to a faster reaction time in
contextual changes of the environment. We call this effect
the delay impact. On the other hand, too small windows
can lead to flat data distributions as we have less values
to estimate the distribution function. This will lead to less
efficient results in the creation of the SAX patterns. Therefore
an informed choice has to be taken based on the granularity
of the input streams and the domain of the task. For coarsely
granular input streams another option to deal with the delay
impact would be to use interpolation to fill in the gaps
between updates in the stream. However, we argue that this
will introduce a bias in the input data leading to skewed
results. We instead increase the time-frame in which the data
distribution is computed. We consider different values for
this in our experimental set-up (see Section 5).
Keogh et al. [25] state that in order for pattern analysis
tasks through similarity measures (such as indexing or
classification) to be successful, z-normalisation has to be
applied before comparing the patterns. This is true in the
case where the meaning of the patterns and therefore the
similarity is only dependent on the shape of the time series
signal without concern for magnitude or amplitude of the
data in this time-frame. We argue that this is not the case
with the data that we are dealing with. To give a simple
example, consider the temperature measurements of m1 =
[−5,−5,−5,−3,−3,−5], m2 = [−5,−4,−3,−2,−3,−1]
and m3 = [25, 25, 25, 23, 23, 25]. If we normalise each time
window by itself before comparing and classifying, the
pattern created from the measurements m1 and m3 would
be considered as similar (or even equal) and be classified
into the same category. It should be clear that in this case the
magnitude and amplitude do carry a meaning and should
be taken into account for the classification; Therefore we
need to classify m1 and m2 together and m3 in a different
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category.
For this reason, we are omitting the z-normalisation step
of SAX for short-term window analysis. However, in com-
bination with using the current distribution of the data
stream for the pattern creation, we are still able to extract
meaningful patterns. To help us assign these meaning we
apply statistical analysis on the data streams, using the
mean, minimum and maximum values with simple rules
for naming the class higher level abstractions. This statistical
analysis gets updated each and every time the data distri-
bution of one or more of the input streams changes. This
way we can adapt to changes in the environment. Section
4.3 describes the rule-based engine which takes the SAX
patterns and assigns higher level abstractions with the help
of the statistics in the time period in which the patterns were
produced. The next Section presents the steps needed to use
the SAX patterns for the topic extraction model.

4.3 Higher Level Abstractions
We have implemented a rule-based engine which uses the
SAX patterns and the statistical information of the time
frame to produce human understandable higher level ab-
stractions. The general form of the rules is given in Equation
3 where < p > is the SAX pattern, < l > is the level, < f >
is the feature,< mod > a modifier for the pattern movement
and < pm > is the pattern movement. Equation 4 shows
the possible values that the individual output variables can
take. As indicated by the square brackets around < mod >
in Equation 3, the modifier is optional. Furthermore, there
are restrictions on which modifiers can be used, depending
on the pattern movement that was extracted.

{< p >< mean >}
= {< l >< f > [< mod >] < pm >} (3)

The values “slowly′′ and “rapidly′′ are allowed for
“decreasing′′ and “increasing′′, while the pattern move-
ment “peak′′ requires a qualifying modifier to give the
direction of the peak (“upward′′ or “downward′′). We give
examples for the in- and output of the rules in Section 5.4.
The higher level abstractions have the benefit of making the
results of the analysis more understandable for humans.
Though the abstractions obtained from the SAX pattern
extraction give a representation of the shape of the data
within the time frame, the SAX strings are not intuitively
understandable and still have to be interpreted. Further-
more, by taking into account the statistics of the time frame
in the abstraction process we are able to represent more
information in the higher level abstractions than just the
shape.

< l >= [“low′′, “medium′′, “high′′]

< f >= [“vehicleCount′′, “avgSpeed′′,

“tempm′′, “wspdm′′]

< mod >= [“slowly′′, “rapidly′′, (4)
“upward′′, “downward′′]

< pm >= [“decreasing′′, “increasing′′,

“steady′′, “peak′′, “varying′′]

The generic rules can be applied to SAX patterns produced
from any type of data. The shape of the pattern is analysed

and given a human interpretable representation. The pattern
“abc” for example will be an “increasing” traffic pattern
within a specific time-frame from a certain location.

4.4 Virtual Document Generation
In order to use the higher level abstractions described in
Section 4.3 as an input for LDA, we need to group them
together. Since the original LDA method is designed for
textual information, we will call these groups documents, to
follow the naming conventions used in the existing LDA
work in the textual domain literature and strengthen the
intuition of how the method works. For the same reason
we will from now on use word in reference to higher level
abstractions.
We set a fixed time-frame as the document size. All higher
level abstractions produced from the different data streams
in this time-frame are put together into one document. This
document will then be represented as a bag-of-words (bow)
which leads to two things: each word is only present at
most once in the bow representation (even if the word was
present more than once in the original document) and the
order of the words are no longer included. Although in
general sequential information is very important (and one
of the reasons why we used SAX instead of clustering to
discretise the numerical data), in this case we are mainly
concerned with extracting the topics (i.e. words) which give
fair representations of the relatively small time windows.
The document generation specifically means that words pro-
duced in a certain time-frame (from now on referred to as
the document window size) will be saved together in one
document. Similar to the pre-processing step in LDA, the
virtual documents are also represented by bags-of-words. The
bag-of-words representation is described in Section 4.5 in
more detail.
Furthermore, we consider some of the features as contextual
information (e.g. features from weather streams like wind
speed or temperature) while other features are treated as the
main features we want to analyse. In our case study, we use
traffic streams, containing information about the average
speed and the number of cars within a segment of a street
from a smart city dataset. If we have more than one stream
producing the same features of interest (i.e. data type),
within each document window size we save one document
for each of the streams. In these documents all higher level
abstractions produced from features of the data stream are
saved as well as the higher level abstractions produced by
the other streams such as the weather stream. This way we
can find relations between the streams of interest and the
complimentary information provided by the other streams.
During this step the choice of document window size has
the most impact on the overall results. We need to pick a
window size which is both long enough so that we can
encapsulate enough different words into documents for the
topic modelling but still short enough not to lose to much
information. The size of the document window is not the only
important factor. Another issue for applying the method to
online classification is that during the observation time (i.e.
window length), while sufficient data to form the words and
documents is gathered, we can not make any assumptions
about the state of the current environment. Only after the
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new document has been created we can draw any conclu-
sions about this time window.

4.5 Uncovering the Underlying Structures and Rela-
tions
LDA is a generative probabilistic model used to extract
topic models from textual documents (for more information
please refer to Section 2.2). It does so by finding the latent
variables that describe the relations within the words and
documents. Therefore by applying LDA to the virtual doc-
uments described in Section 4.4, we can uncover hidden
relationships between the different features of the data
stream. Initially the LDA model is trained for a period of
time before its output is used for further analysis. In our
experiments, described in Section 5 we train the model on
2400 virtual documents generated from 36000 data samples
before folding in new documents. Depending on the task
and the granularity of the data, the training period can range
from a few hours to one or several days or even weeks.
After the training phase, the model can be used to extract
the latent topics from incoming documents. From now on
we will use the term corpus to refer to the documents used
for the training period and all documents which have been
folded in the stream analysis process up until the current
time-point.
In the data discretisation step, we assign a different alphabet
for each individual feature stream to distinguish the fea-
tures from the data streams and translate them into higher
level abstractions. By grouping the higher level abstractions
together in documents, we can now analyse their relations
to each other. If we have enough similarities within the
individual documents of the corpus, then LDA will find the
relations of associated higher level abstractions by grouping
them together in a topic representation.
Since the topics represent probability distributions, we can
apply similarity measures for probability distributions in
order to find closely related topics. The topic model can
generate synthesised documents, consisting of words based
on the found relations within the different data streams.
These synthesised documents could be used for predicting
upcoming patterns in the data. At the same time, we can
fold in singular patterns from one data source and predict
the most likely co-occurring patterns in the co-related data
streams.

4.6 Time Complexity
We discuss the time complexity of the algorithms used in
our approach. PAA splits a time series subsequence into
N equal sizes and then calculates the Section means of
each data chunk. This can be done in one pass over the
subsequence of length n, therefore the run time is in O(n).
The resulting PAA coefficients are used as input for the SAX
method.
The original SAX approach uses a lookup table to assign the
SAX literals to each of the coefficients taking O(N) time.
Because usually N << n, in practical application SAX runs
inO(1). In our extension of SAX we introduce the use of the
current PDF of a stream instead of a Gaussian distribution
for calculating the breakpoints. Because the PDF evolves
over time, we have to recalculate the breakpoints whenever

there is a significant change in the distribution of the data.
For the LDA analysis, we are using an online implementa-
tion of the algorithm by Hoffman et al. [26]. For the inference
they are using an online Variational Bayes algorithm which
like the batch Variational Bayes algorithm is in O(1), how-
ever with a much lower constant factor [26].

5 EXPERIMENTAL RESULTS

In this Section we first describe the data sources and data
sets that were used for the experiments. We present the
different parametrisations used. Then we show how each
of the components output looks like and discuss the impact
of the different parametrisations.

5.1 Data-sets
We use two different kind of streams for our experiments:

(i) traffic data streams from the city of Aarhus2

(ii) a weather data stream from a weather station in
Aarhus3.

We use 100 different traffic sensors as our data streams.
The data is provided by the open data Aarhus platform via
the data management system Comprehensive Knowledge
Archive Network (CKAN). The data included is the average
speed and the number of cars measured in one segment
of the city. New values are provided every 5 minutes. The
weather data stream is used as the complimentary data
stream. Here we use the wind speed and temperature data
from the weather streams. The weather data was origi-
nally hosted on Weather Underground, a meteorological
data service platform [27]. Every hour, 3 measurements are
provided. Over the course of two months we gathered data
from both sources and stored it in a csv format, to have re-
producible experiments. At the same time we implemented
a real-time version of our approach that automatically polls
and analyses the data from the sources whenever new data
is available.

5.2 Parameter Selection
During empirical experimentation we have investigated
what parameters affect the results of our method the most.
These parameters are the alphabet size a and word length
w of the SAX pattern on the one hand and k, the number
of topics used to create the LDA model. The word length is
very much dependent on the granularity of the data set. On
the dataset we are running our experiments we chose the
fixed word length 3 for a window length of 1 hour based on
the output speed of our data streams. This parameter needs
to be adjusted accordingly to the data rate in the stream.
We compare combinations of alphabet size a ∈ {3, 5} and
number of topics k ∈ {10, 20, 50, 100}. The differences in the
outcome are described in Section 5.6. Below are the specific
values we used for the individual parameters.
• Configuration A = [a = 3, k = 10]
• Configuration B = [a = 3, k = 20]
• Configuration C = [a = 3, k = 50]
• Configuration D = [a = 3, k = 100]

2. Data set retrieved from: http://www.odaa.dk
3. Data set retrieved from: http://www.wunderground.com
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• Configuration E = [a = 5, k = 10]
• Configuration F = [a = 5, k = 20]
• Configuration G = [a = 5, k = 50]

5.3 Data Discretisation and Pattern Recognition
We have implemented an extension of SAX which allows
us to represent the data with patterns that more accurately
reflect the original data. We compute the probability density
function (PDF) using the kernel density estimation (KDE)
from the recent time period. By dividing the PDF into equi-
probable Sections we have a finer granularity in areas which
are likely to happen. Values which are unlikely to happen
are covered by larger ranges instead. This allows to assign
a literal to segments. Figure 5 shows how a z-normalised
Gaussian distribution (Figure 5a) and the PDFs of the wind
speed data (Figure 5b and temperature data (Figure 5c) are
segmented into equi-probable areas. We are aware that
our extension could be criticised for ignoring the Gaussian
distribution of time-series data in long-term analysis [25].
We use the following Section to justify our reasoning. First,
it can be argued that in cases where we have a probability
distributions with a strong centre such as the one in Figure
5b, all high outlier values would be assigned to the same
literal and are not further differentiated.
However, we argue that these outliers are both unlikely and
very high relative to the other values of this segment; so it
makes sense to assign them the same literal. To make this
concept more clear, let us look at an example SAX word
generation shown in Figure 6. As Figure 6a shows, if we
use a Gaussian distribution, the SAX word ”cba” would be
generated, indicating that the pattern has a shape which
increases from intermediate values to very high values.
Using the computed PDF (Figure 6b), the word ”aaa” is
generated instead, which means that the pattern is of a
shape in which constantly high values are expected. While
this might seem counter-intuitive at first glance, it starts to
make sense once you consider the fact that because of the
current distribution, all values in this window are relatively
high. This means that in this time-frame we certainly have
a pattern which consists of high values.
The benefit of using a PDF based segmentation can be seen
when we compare the word generation shown in Figure 6c
to the one shown in Figure 6d. Using the Gaussian distribu-
tion, the pattern ”ddd” would be generated, indicating no
movement in the pattern. Using the PDF, the word ”dcd”
will be generated which shows that there is some change in
the stream. Since it is more likely that we have values in this
range, it makes more sense to have a more differentiated
pattern here.

5.4 Higher Level Abstractions
In this section we show sample in- and outputs of the higher
level abstraction rules described in Section 4.3 that were
generated as part of our experiments in Equation 5 and 6.
The complete data sets and results are available online at:
https://github.com/UniSurreyIoT/SAX-LDA.

{Pattern : ”eed”,mean : 0.54}
= {Low vehicleCount slowly decreasing} (5)

(a) Gaussian distribution

(b) Probability density func-
tion of wind speed

(c) Probability density func-
tion of temperature

Fig. 5: Probability distribution functions split into equi-
probable areas
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Fig. 6: SAX Pattern generation with Gaussian Distribution
compared to using the computed PDF

{Pattern : ”bab”,mean : 20.0}
= {Medium avgSpeed downward peak}

(6)

5.5 Latent Dirichlet Allocation
Figure 8 shows a small snippet of the topics that were
created by running the LDA on top of the corpus. It shows
which higher level abstractions are correlated with each
other. It can be seen from Figure 8 that higher level abstrac-
tions are not mutually exclusive for the topics (i.e. latent
variables in the LDA model). For example, the abstraction
Medium tempm steady is present in Topic 6 and Topic 14.
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Fig. 7: Perplexity score of models regarding number of
topics and alphabet size of SAX

Therefore if we want to use the topics for predicting a new
document, the most likely one with the most similarities will
be chosen.
In our approach we are using multiple alphabets, one alpha-
bet for each kind of data to create the symbolic representa-
tions from the numerical data streams. While this transforms
the heterogeneous data sources into a more homogeneous
representation, the comparison between the patterns using
different symbols is still not straightforward. Using LDA we
cluster the virtual documents in an unsupervised fashion by
identifying co-occurring higher level abstractions. The latent
factor topic vectors zk provide a common representation
for the different data sources in a latent space. This model
also allows us to fold in a single higher level abstraction
created by one data source and predicting which other
abstractions are most likely to be expected in the other data
streams. By computing the cosine distance between different
topic vectors, we can compute the similarity of different
abstractions and their predicted co-occurence.

5.6 Analysis and discussion
In order to compare different latent models, in text pro-
cessing, conventionally the perplexity score is used [7]. The
formula to compute the perplexity score of a model is given
in equation 7, where Dtest is the held-out corpus used to
test the model, p(wd) is the probability the model assigned
to seeing word w in document d and

∑M
d=1Nd is the total

number of (non-unique) words in the test corpus.

perplexity(Dtest) = exp(−
∑M

d=1 log(p(wd))∑M
d=1Nd

) (7)

High perplexity scores indicate an over-fitted model.
Therefore low perplexity values are more desirable. Figure
7 shows how the alphabet size chosen to generate the
SAX patterns (i.e. words) affect the perplexity score of
the LDA model. The higher perplexity in the case of an
alphabet size of 5 is explained by the fact that there are
more possible permutations of SAX patterns, which leads
to a much larger dictionary. At the same time this explains
why the perplexity can be that low for the alphabet size

3. The number of topics also affects the perplexity once
the alphabet size grows. The results of Figure 7 show
that configurations A-C can be used with LDA as the
topic model, whereas configurations D-G lead to too
high perplexity scores in the model, which makes them
unfeasible to be used. When we use pLSA as the topic
model, the perplexity score still rises with configuration
D-G, however, the perplexity score does not increase much
higher than 100, which means it can still be used in practice.
To demonstrate how the results of the presented approach
can be interpreted and how the identified relations between
the different data features can be verified, we have run
further experiments. To have a comparison, we are using
two different approaches, one using LDA as the topic
extraction model and one using pLSA. Again we have
an unsupervised training process, in which we obtain the
initial model from the generated virtual documents. An
excerpt of the resulting topics can be seen in Figure 8,
higher level abstractions with a probaility less than 0.01
in the model are omitted from the topics. We can observe
some of the relations that were found from the LDA model.
Once the training is completed, the streaming part of the
approach begins. To verify the relations that can be seen
in the topics, we perform the following: whenever a new
document is generated, we cover the higher level abstractions
generated by one of the features, meaning that we just
include the higher level abstractions generated by the other
features in the covered document. We then estimate the
topic that most likely has produced the covered document.
The higher level abstraction of the missing feature with
the highest probability is predicted by our model to be the
one that was covered. If the correlations are correct, then
most of the higher level abstractions that are predicted this
way should be correct. In the case of weak correlations,
the prediction is no better than random guessing; for this
reason we do not include them in the identified correlations.

precision =
|{AHLA}| ∩ |{PHLA}|

|{PHLA}|
(8)

precision =
|{AHLA}| ∩ |{PHLA}|

|{AHLA}|
(9)

precision = 2 ∗ precision ∗ recall
precision+ recall

(10)

We verify this by calculating the F-measure for each of
the higher level abstractions. To compute the F-measure
(equation 10) we need to calculate precision (equation 8)
and recall (equation 9). AHLA stands for the higher level
abstractions that have been actually extracted in the data
processing and PHLA stands for the predicted higher level
abstractions using the topic model as a predictor. After
analysing the F-measures we could observe that for some
of the higher level abstractions we have strong correlations
to the other higher level abstractions, while for others we do
not have these. To give an example, we show the F-measures
of the higher level abstractions generated from the feature
vehicle count in Figure 9 and average speed in Figure 10.
Because the names of the higher level abstractions are to
long to be included as the labels of the figures, we map them
to capital letters. This mapping can be found below, along
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Topic&1 Topic&6 Topic&14

Label Probability Label Probability Label Probability

High_tempm_steady 0.265 Low_avgSpeed_steady 0.457 Low_vehicleCount_slowly_increasing 0.265
Medium_wsp_steady 0.26 Medium_tempm_steady 0.184 Medium_tempm_steady 0.26
Low_vehicleCount_steady 0.237 Low_vehicleCount_steady 0.17 Low_vehicleCount_downward_peak 0.237
Medium_avgSpeed_steady 0.203 Low_wspdm_steady 0.079 Medium_avgSpeed_steady 0.203

Medium_wspm_stead 0.066 High_avgSpeed_steady
Low_wspdm_downward_peak 0.018 Low_wspdm_upward_peak

Medium_wspdm_steady

Fig. 8: Excerpt from the initial topics of the LDA model

with the information how often the higher level abstraction
actually appeared during the data processing.
Vehicle count:
• A = Medium vehicleCount steady (Appeared 19968

times)
• B = Low vehicleCount upward peak (Appeared 1739

times)
• C = Low vehicleCount steady (Appeared 33448 times)
• D = Low vehicleCount downward peak (Appeared

1839 times)
• E = High vehicleCount steady (Appeared 4998 times)
• D = Low vehicleCount slowly increasing (Appeared

3733 times)
• E = Low vehicleCount slowly decreasing (Appeared

5706 times)
Average speed:
• A = Low avgSpeed steady (Appeared 11768 times)
• B = Medium avgSpeed steady (Appeared 43811 times)
• C = Medium avgSpeed downward peak (Appeared

168 times)
• D = High avgSpeed steady (Appeared 15623 times)
• E = High avgSpeed downward peak (Appeared 131

times)
In Figure 9 we can see that for three of the higher level

abstractions, the pLSA approach is outperforming the LDA
approach. This is the case because the pLSA model only
predicts these three higher level abstractions throughout the
experiment, leading to almost perfect recall scores, which
result in the high F-measure. The pLSA approach fails
to predict the other higher level abstractions within the
experiment. The approach using LDA is able to identify all
frequently appearing higher level abstractions, meaning that
the model more accurately represents the relations found in
the data stream overall.
In the case of the average speed, we can see that both
models perform similar for most abstractions. However, the
approach using LDA provides more consistent results for all
higher level abstractions.
A further look at the results of the experiments reveals that
the higher level abstractions that are generally more present
in the data set can be better predicted with our model. This
is because they have a stronger effect on the resulting topics.
This is especially the case for the three labels that pLSA is
able to predict.
Running the experiment in replay mode, we could process
two months of data from 100 different traffic sensors within
less than a day. In the live mode where we poll the data
continuously from the traffic sensors, our approach can
provide results in (near) real-time.

Fig. 9: F-measures of vehicle count

Fig. 10: F-measures of feature average speed

5.7 Reproducibility
We are aware that testing a novel approach on a number
of data-sets does not provide enough evidence for the
effectiveness of the method. Therefore we have developed
a configurable data generator and a flexible experimental
set-up. This way our experiments can be reproduced and
they can be also easily applied on any kind of data-sets.
Using the GUI all parameters for the different parts of our
approach can be set. The system and datasets are available
via: https://github.com/UniSurreyIoT/SAX-LDA.
A data stream is represented by at least one CSV file. Each
file represents the measurements of one sensor. One column
of the CSV file needs to be called TIMESTAMP, representing
the time the measurement was taken at. The other columns
each represent one feature of the data stream. Files produced
by different sensors of the same kind (e.g. traffic sensors)
have to contain the exact same features.
Two folders have to be chosen. The first called Main Data
Stream is the data stream of interest, which is intended to be
enhanced by contextual information, provided by the files
in the folder set at Correlated Data Stream.



IEEE SYSTEMS, VOL. ??, NO.??, ???? 2017 12

6 CONCLUSION

We have introduced a novel approach which is designed to
identify structures and relations within heterogeneous data
sources. We have created a solution which looks at different
sensor data streams in an unsupervised fashion and extracts
patterns from the data streams, translates them into human
understandable and machine interpretable higher level ab-
stractions and identifies cross-stream relations and correla-
tions between different features. The proposed solution is
domain independent and can be applied to any IoT data
stream.
We have presented the individual components of the ap-
proach by applying it to traffic data and weather data
streams. We have shown how our extension of the data dis-
cretisation method SAX, by using a computed PDF instead
of a Gaussian distribution, affects the pattern creation pro-
cess on real data. We have also shown how the higher level
abstractions created in a time window are used to generate
virtual documents. The use of higher level abstractions and
virtual documents allowed us to apply a technique, which
is usually used for text analysis on numerical data streams.
We have also shown which of the extracted relationships of
the higher level abstractions by the LDA model are correct
and which ones are incidental by applying a prediction
mechanism on partially hidden data.
For future work, we plan to introduce dynamic time win-
dows, which can automatically decrease to capture times of
high interest in a finer granularity and adjust again in times
of low interest. Since our work allows us to analyse numer-
ical data in the latent factor space, we plan to combine this
work with social media analysis to automatically interpret
and label the data in an unsupervised fashion.
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