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Abstract—Cooperative spectrum sensing based on the limiting
eigenvalue ratio of the covariance matrix offers superior detection
performance and overcomes the noise uncertainty problem. While
an exact expression exists, it is complex and multiple useful
approximate expressions have been published in the literature.
An improved, more accurate, integral solution for the probability
density function of the ratio is derived using order statistical
analysis to remove the simplifying, but incorrect, independence
assumption. Thereby, the letter makes an advance in the rigorous
theory of eigenvalue-based spectrum sensing.

Index Terms—Cooperative spectrum sensing, eigenvalue ratio
analysis, order statistics, probability distribution.

I. INTRODUCTION

THE Eigenvalue-based detection schemes, using the eigen-
values of the covariance matrix to construct a test statis-

tic, are considered to be one of the most effective methods to
test for the presence of a primary user (PU) signal in cogni-
tive radio systems [1]. The maximum-to-minimum eigenvalue
(MME) detector is based on the ratio of the largest eigenvalue
to the smallest eigenvalue of the covariance matrix. However,
theoretical results for eigenvalue ratio schemes usually depend
on asymptotic assumptions, since the distribution of the ratio
of two extreme eigenvalues is difficult to compute [1]-[5].

The probability of false alarm (PFA) is the probability that
the PU is absent but is detected to be present. PFA is one of the
most important performance metrics in spectrum sensing for
cognitive radio. Accurate determination of the PFA improves
the accuracy of the decision threshold of a detector, and the
efficiency of spectrum utilization. Note that the derivation of
the PFA is dependent on the probability density function (PDF)
of the test statistic of the detector under the hypothesis that
the PU is absent. Meanwhile, this PDF is not known exactly
in a tractable form suitable for further theoretical analysis, and
the derivation of a popular approximation necessarily employs
assumptions that are not rigorously correct mathematically.
This letter makes a contribution to the theory of eigenvalue-
based spectrum sensing in two ways, by removing invalid
assumption, and by deriving a more accurate mathematically
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tractable approximation to this important PDF after removing
the invalid assumption.

The distribution of the ratio of the two extreme eigenvalues
for the MME scheme is commonly approximated by the
Tracy-Widom distribution based on the Tracy-Widom law [1],
[2]. However, this approximation is based on the unrealistic
assumption that the number of the received signal samples as
well as the number of the cooperating secondary users are
infinite. It has been shown that this approximation is poor
when the number of the signal samples is small [5], [6].
An improved approximation to the PDF of the ratio of the
two extreme eigenvalues is derived in [5] and [6] with the
assumption that the two extreme eigenvalues are independent
and Gaussian distributed. In [7] and [8], an exact PDF for the
ratio of the two extreme eigenvalues has been derived. The
derived exact expression for the PDF is quite complex, and
other authors have chosen to use the approximation over the
exact solution in [5], [6], [9]-[11].

In this paper, an improved PDF approximation of the ratio
of the two extreme eigenvalues is derived by using the order
statistic theory and the Gaussian distribution assumption. It
is shown that the derived PDF is more accurate than the
commonly employed PDFs given in [2] and [5], and is simpler
than the exact PDF given in [7].

The rest of this paper is organized as follows. Section II
presents the system model and MME spectrum sensing. An
improved solution for the PDF of the ratio of two extreme
eigenvalues is presented in Section III. Section IV presents
simulation results. The paper concludes with Section V.

II. SYSTEM MODEL AND MME SPECTRUM SENSING

As shown in Fig. 1, a cognitive radio network with M
SUs that cooperatively detect one PU is considered. During
the sensing time, each SU collects N samples of received
signal, denoted by xi (n), where n = 1, 2, · · · , N and i =
1, 2, · · · ,M . Note that all the SUs receive the signal at the
same time. To achieve synchronous sampling, each SU has
the center frequency derived from the local oscillator and the
same digital clock [1], [2], [5], [6]. This system model for
cooperative spectrum sensing has been widely applied in these
works. Then, the samples are transmitted to the fusion center.
The aim of cooperative spectrum sensing is to construct a
test statistic and make a decision between the two hypotheses
(H0 and H1) based on those collected samples, where H0

denotes the absence of the PU, and H1 represents the presence
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Fig. 1. The system model.

of the PU. Thus, the samples from each SU under the two
hypotheses are given as

H0 : xi (n) = wi (n) (1a)

H1 : xi (n) = hi (n)
√
P ss (n) + wi (n) (1b)

where wi (n) ∼ CN
(
0, σ2

w

)
is complex Gaussian noise and

CN
(
0, σ2

w

)
denotes the complex Gaussian normal distribution

with mean zero and variance σ2
w. s (n) is the primary user

signal and hi (n) are the channel coefficients. Ps is the
transmitted power of the primary user. The distribution of
the PU signal is unknown and independent of the noise.
Based on the collected samples from M SUs, a data matrix
is defined as X =

[
XT

1 , X
T
2 , · · · , XT

M

]
, where Xm =

[xm (1), xm (2), · · · , xm (N)] with m = 1, 2, · · · ,M . The
sample covariance matrix is defined as Rx = (1/N)XXH ,
where (·)H represents the Hermitian transpose operator. Let
λ1 ≥ λ2 ≥ · · · ≥ λM denote the ordered eigenvalues of the
matrix Rx. The test statistic for the MME spectrum sensing
scheme was formulated in [5]. It is denoted by Tξ, given as

Tξ =
λ1
λM

H0

<−
>
H1

γξ (2)

where γξ is the decision threshold of the MME spectrum
sensing scheme.

III. IMPROVED SOLUTION FOR THE PDF OF THE RATIO
OF TWO EXTREME EIGENVALUES UNDER HYPOTHESIS H0

In [1], [2], the PDF of the ratio of two limiting eigenvalues
under the hypothesis H0 is approximated by the PDF of the
Tracy-Widom distribution. This approximation is poor when
the number of samples is small or moderate. The PDF of the
ratio is derived based on the assumption that the two limiting
eigenvalues are independent normal random variables [5]. The

assumption that the two extreme eigenvalues are independent
is not correct and is removed in this paper. In [5], when
there only exist Gaussian noises, the largest eigenvalue and
the smallest eigenvalue of the covariance matrix are assumed
to be normal random variables, namely

λ1 ∼ N
(
uλ1

, σ2
λ1

)
(3a)

λM ∼ N
(
uλM , σ

2
λM

)
(3b)

where uλ1 and uλM are the means of the largest eigenvalue and
of the smallest eigenvalue, respectively. The variances of the
largest eigenvalue and of the smallest eigenvalue are denoted
by σ2

λ1
and σ2

λM
, respectively. According to [5], the means

and variances of the largest eigenvalue and of the smallest
eigenvalue are given as

uλK = E (λK) (4a)

σ2
λK

= E
(
λ2K
)
− u2λK

(4b)

E (λp1) = C−10 βλ1
(p) (4c)

E (λpM ) = C−10 βλM (p) (4d)

where C0 =
M

Π
i=1

(N − i)!
M

Π
j=1

(M − j)!; E[·] denotes the

expectation operator; K = {1,M}; βλ1 (p) and βλM (p) are
given by eq. (5) at the top of the next page. In eq. (5),
sgn (·) denotes the Signum function; αm is the mth element
of the α and α is the permutation of {1, 2, · · · ,M − 1};

pi,j = p+N−M+i+j;
∑
lM−11 =

M−1∑
i=1

li; lM−11 ! =
M−1∏
i=1

li!;∑L1∼M−1

l1∼M−1
=
∑L1

l1=0

∑L2

l2=0 · · ·
∑LM−1

lM−1=0; S is any subset of
the set {l1, l2, · · · , lM−1} and lm is from 0 to Lαm,m−1; |S|
represents the cardinality of subset S.

Since the largest eigenvalue and the smallest eigenvalue are
order statistics, the joint PDF, fr,s (x, y), of Xr and Xs, 1 ≤
r < s ≤M , Xr ≤ Xs, for x ≤ y, is [12],

fr,s (x, y) =
M ! [Fr (x)]

r−1
fr (x)fs (y)

(r − 1)! (s− r − 1)! (M − s)!
× [Fs (y)− Fr (x)]

s−r−1
[1− Fs (y)]

M−s (6)

where Fr (x) and Fs (y) are the cumulative marginal distri-
bution functions (CMDFs) for Xr and Xs, respectively, and
fr (x) and fs (y) denote the marginal PDFs for Xr and Xs.
Thus, the joint PDF for the largest eigenvalue and the smallest
eigenvalue, f̃λ1,λM (x, y), is given by

f̃λ1,λM (x, y) =M (M − 1) fλ1 (x) fλM (y)

× [Fλ1 (x)− FλM (y)]
M−2 (7)

where Fλ1 (x) and FλM (y) are the cumulative distribution
functions (CDF) of the two extreme eigenvalues, respectively,
and fλ1

(x) and fλM (y) are their corresponding marginal
PDFs. M is the number of secondary users. Therefore, the
improved PDF for the ratio of the two extreme eigenvalues,
f̃Z (z) is derived as

f̃Z (z) =

∫ ∞
−∞

f̃λ1,λM (yz, y) |y| dy (8)



βλM (p) =

M∑
i,j

(−1)
i+j
∑
α

sgn (α)

M−1∏
m=1

Γ (Lαm,m)

(∑L1∼M−1

l1∼M−1

Γ
(∑

lM−11 + pi,j − 1
)

lM−11 !M
∑
lM−1
1 +pi,j−1

)
(5a)

βλ1
(p) =

M∑
i,j

(−1)
i+j
∑
α

sgn (α)

M−1∏
m=1

Γ (Lαm,m)

(∑
S

(−1)
|S| Γ (

∑
S + pi,j − 1)∏

lM−11 !M
∑
lM−1
1 +pi,j−1

)
(5b)

Lαm,m =


N −M +m+ αm − 1 if αm < i and m < j
N −M +m+ αm + 1 if αm ≥ i and m ≥ j
N −M +m+ αm otherwise

(5c)

where |·| is the magnitude operator. After substituting eq. (7)
into eq. (8) and some algebraic manipulations, the improved
PDF, f̃Z (z), is given by

f̃Z (z) = M (M − 1)

M−2∑
i=1

(
M − 2
i

)
(−1)

M−2−i

×
∫ ∞
−∞

[Fλ1
(yz)]

i
[FλM (y)]

M−2−i
fλ1

(yz) fλM (y) |y| dy.

(9)

Therefore, the improved PDF for the ratio of the extreme
eigenvalues is derived, based on the assumption that the two
extreme eigenvalues follow normal distributions [5], as

f̃Z (z) =M (M − 1)

M−2∑
i=1

(
M − 2
i

)
(−1)

M−2−i

×
∫ ∞
−∞

{[
Φ

(
yz − u1
σ1

)]i [
Φ

(
z − u2
σ2

)]M−2−i

× |y| e
−
[

(yz−u1)2

2σ1
+

(y−u2)2

2σ2

]
2πσ1σ2

}
dy (10)

where Φ (x) is the CDF of the standard normal distribution.
Although the solution for the ratio of the two limiting eigen-
values given in eq. (10) is in integral form, the integral is
well behaved, having a stictly positive integrand, and it can
be evaluated readily by using standard numerical computation
or commonly available mathematical softwares. It is seen that
the proposed solution for the PDF of the ratio of the two
limiting eigenvalues is simpler than the solution given in [8,
eq. (7)]. It is seen from eq. (10) and eq. (7) given in [8]
that the complexity of these two expressions mainly depends
on the multiple integration. Moreover, double integrations
are required. In [8], there are O

(
N2
)

additions due to the
permutation operation and O

(
NM4

)
multiplications in the

integrals, where O is the big O notation [13]. In eq. (10),
M − 1 additions and O (M) multiplications in the integrals
are required. In the simulation, a comparison of the required
time for these two expressions is given to further clarify the
superiority of our proposed PDF in term of the complexity.

IV. SIMULATION EVALUATIONS AND DISCUSSION

In this section, simulation results are given to contrast the
proposed simple form for the PDF of the ratio of the two
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Fig. 2. Comparison of the improved PDF approximation for the ratio of the
two limiting eigenvalues of the covariance matrix with the known approximate
PDFs for N = 50 and M = 10.

limiting eigenvalues and the expressions for the PDF of that
ratio given in [2], [5] and [7]. We also present some example
results that compare the accuracies of the new and previous
theoretical approximations for the PDF of the ratio of the
eigenvalues to the exact PDF obtained by simulation. The
noises are independent identically distributed Gaussian real
noises with mean zero and unit variance. All the simulation
results are achieved by using 106 Monte Carlo simulations.
The number of samples and the number of secondary users
are set as N = 50 and M = 10 or N = 50 and M = 20,
respectively.

Fig. 2 shows the commonly employed approximations to
the PDF of the ratio of the two limiting eigenvalues of the
covariance matrix obtained by using existing methods and
our proposed approximation which is obtained without the
assumption that the two eigenvalues are independent. In Fig.
2, the empirical PDF curve is the empirical PDF of the
ratio of the two liming eigenvalues while the TW PDF is
the PDF approximation obtained by using the Tracy-Widom
distribution of order 2 [2]. The PDF curve labeled eq. (30)
[5] is the approximate solution given in [5, eq. (30)]. The
PDF curve labeled PDF [7] is the exact PDF given in [7]. It
is observed that the PDF of the ratio test statistic obtained
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Fig. 3. Comparison of the improved PDF approximation for the ratio of the
two limiting eigenvalues of the covariance matrix with the known approximate
PDFs, for N = 50 and M = 10 or N = 50 and M = 20.

by using the new solution matches better with the empirical
PDF than the PDFs obtained from the other two methods. It
is also seen that the PDF given by the exact solution in [7]
matches well with the empirical PDF. The result consists with
the result obtained in [7]. The PDF from [5, eq. (30)] and the
PDF used to approximate the Tracy-Widom PDF in [2] are
both approximate PDFs, and both are inferior approximations
to the new approximation. The Tracy-Widom PDF of order
2 is not a good approximation to the precise PDF obtained
by simulation. The reason is that the Tracy-Widom PDF of
order 2 for the ratio of the two limiting eigenvalues is valid
when lim

N→∞
M
N = c, where c is a constant. However, in the

simulation, N and M are set as 50 and 10, respectively, and
these values do not satisfy the limiting condition. It is seen
that the new solution provides very high accuracy. The reason
is that our new solution is derived without the independence
assumption that the samples are independent, and the only
source of discrepancy is the Gaussian distribution assumption,
which causes only small discrepancies when the number of
samples is even moderately large. These results show that the
major source of error in the previous approximations is the
independence assumption, and not the Gaussian assumption.

Fig. 3 shows the comparison of the improved PDF approx-
imation for the ratio of the two limiting eigenvalues of the
covariance matrix with the known approximate PDF given by
eq. (30) [5] with different M . It is seen that the accuracy of
both our proposed solution and the form given by [5] increases
with M . The reason is that the accuracy of the mean and
variance of the two limiting eigenvalues increases with M .

In order to compare the complexity of our proposed PDF
form with that of the form given by eq. (7) in [8], the
computation times for different parameters (N,M) are given
in Table 1. The results are obtained by using a computer with
64-bit Intel(R) Core(TM) i7-4790 CPU, 8 GB RAM. It is seen
from Table 1 that the required time for calculating the PDF

TABLE I
COMPARISON OF THE REQUIRED COMPUTATION TIMES (S)

`````````Schemes
(N,M)

(50, 5) (100, 5) (100, 10) (100, 20)

Eq. (7) in [8] 10.248 14.835 27.482 43.498
Eq. (10) 6.529 6.572 10.593 22.179

given by eq. (7) in [8] is larger than that for our proposed PDF.
This indicates the complexity of our proposed expression is
lower than that presented in [8]. It further verifies that our
proposed PDF is simpler than that proposed in [8].

V. CONCLUSION

A new approximation for the PDF of the ratio of the two
limiting eigenvalues of the covariance matrix in eigenvalue-
based spectrum sensing was derived based on order statistic
analysis. The new approximate solution is the most accurate
approximation known, and its derivation does not rely on
an invalid independence assumption used to derive a popular
previous approximation. The precise new approximation was
used to show that the major source of error in previous ap-
proximation is the independence assumption and not Gaussian
approximation. The relative poorness of the Tracy-Widom
approximation was clarified and explained.
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