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Abstract

Unmanned aerial vehicles (UAVs) can be used as aerial wireless base stations when cellular networks

are not operational due to natural disasters. They can also be used to supplement the ground base

station in order to provide better coverage and higher data rates for the users. Prior studies on UAV-

based wireless coverage typically consider an Air-to-Ground path loss model, which assumes that the

users are outdoor and located on a 2D plane. In this paper, we propose using UAVs to provide wireless

coverage for indoor users inside a high-rise building. First, we present realistic Outdoor-Indoor path loss

models and describe the tradeoff introduced by these models. Then we study the problem of efficient

placement of a single UAV, where the objective is to minimize the total transmit power required to

cover the entire high-rise building. The formulated problem is non-convex and is generally difficult to

solve. To that end, we consider three cases of practical interest and provide efficient solutions to the

formulated problem under these cases. Then we study the problem of minimizing the number of UAVs

required to provide wireless coverage to high rise buildings and prove that this problem is NP-complete.

Due to the intractability of the problem, we use clustering to minimize the number of UAVs required to

cover the indoor users. We demonstrate through simulations that the method that clusters the building

into regular structures and places the UAVs in each cluster requires 80% more number of UAVs relative

to our clustering algorithm.
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I. INTRODUCTION

UAVs can be used to provide wireless coverage during emergency cases where each UAV

serves as an aerial wireless base station when the cellular network goes down [3]. They can also

be used to supplement the ground base station in order to provide better coverage and higher

data rates for the users [4].

In order to use a UAV as an aerial wireless base station, the authors in [5] presented an Air-

to-Ground path loss model that helped the academic researchers to formulate many important

UAV-based coverage problems. The authors in [6] utilized this model to evaluate the impact of a

UAV altitude on the downlink ground coverage and to determine the optimal values for altitude

which lead to maximum coverage and minimum required transmit power. In [7], the authors

used the path loss model to propose a power-efficient deployment for UAVs under the constraint

of satisfying the rate requirement for all ground users. The authors in [8] utilized the path loss

model to study the optimal deployment of multiple UAVs equipped with directional antennas,

using circle packing theory. The 3D locations of the UAVs are determined in a way that the total

coverage area is maximized. In [9], the authors used the path loss model to find the minimum

number of UAVs and their 3D locations so that all outdoor ground users are served. However,

it is assumed that all users are outdoor and the location of each user can be represented by an

outdoor 2D point. These assumptions limit the applicability of this model when one needs to

consider indoor users.

Providing good wireless coverage for indoor users is very important. According to Ericsson

report [10], 90% of the time people are indoor and 80% of the mobile Internet access traffic

also happens indoors [11], [12]. To guarantee wireless coverage, service providers are faced

with several key challenges, including providing service to a large number of indoor users and

the ping pong effect due to interference from near-by macro cells [13]–[15]. In this paper, we

propose using UAVs to provide wireless coverage for users inside a high-rise building during

emergency cases and special events (such as concerts, indoor sporting events, etc.), when the

cellular network service is not available or it is unable to serve all indoor users. To the best of

our knowledge, this is the first work that proposes using UAVs to provide wireless coverage for

indoor users. We summarize our main contributions as follows:

• We utilize an Outdoor-Indoor path loss model for low-SHF band (450 MHz to 6 GHz) [16],

certified by ITU, and an Outdoor-Indoor path loss model for high-SHF band (over 6
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GHz) [17], then we show the tradeoff introduced by these models.

• We formulate the problem of efficient placement of a single UAV, where the objective is to

minimize the total transmit power required to cover the entire high-rise building.

• Since the formulated problem is non-convex and is generally difficult to solve, we consider

three cases of practical interest and provide efficient solutions to the formulated problem

under these cases and for different operating frequencies (low-SHF and high-SHF bands).

In the first case, we aim to find the minimum transmit power such that an indoor user with

the maximum path loss can be covered. In the second case, we assume that the locations of

indoor users are symmetric across the dimensions of each floor (such as office buildings or

hotels), and propose a gradient descent algorithm for finding an efficient location of a UAV.

In the third case, we assume that the locations of indoor users are uniformly distributed

in each floor, and propose a particle swarm optimization algorithm to find an efficient 3D

placement of a UAV that tries to minimize the total transmit power required to cover the

indoor users.

• Due to the limited transmit power of a UAV, we formulate the problem of minimizing the

number of UAVs required to provide wireless coverage to high rise building and prove that

this problem is NP-complete.

• Due to the intractability of the problem, we use clustering to minimize the number of UAVs

required to cover indoor users. We demonstrate through simulations that the method that

clusters the building into regular structures and places the UAVs in each cluster requires

80% more number of UAVs relative to our clustering algorithm.

II. SYSTEM MODEL

A. System Settings

Let (xUAV ,yUAV ,zUAV ) denote the 3D location of the UAV. We assume that all users are

located inside a high-rise building as shown in Figure 1, and use (xi,yi,zi) to denote the location

of user i. The dimensions of the high-rise building, in the shape of a rectangular prism, are

[0, xb] × [0, yb] × [0, zb]. Also, let dout,i be the distance between the UAV and indoor user i, let

θi be the incident angle , and let din,i be the distance between the building wall and indoor user

i.
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B. Outdoor-Indoor Path Loss Models

The Air-to-Ground path loss model presented in [5] is not appropriate when we consider

wireless coverage for indoor users, because this model assumes that all users are outdoor and

located at 2D points. In this paper, we adopt the Outdoor-Indoor path loss model, certified by

the ITU [16], for low-SHF operating frequency. The path loss is given as follows:

Li = LF + LB + LI = (w log10 dout,i + w log10 fGhz + g1)

+(g2 + g3(1− cos θi)
2) + (g4din,i)

where LF is the free space path loss, LB is the building penetration loss, and LI is the indoor

loss. In this model, we also have w=20, g1=32.4, g2=14, g3=15,g4=0.5 [16] and fGhz is the

carrier frequency.

In [17], the authors clarify the Outdoor-to-Indoor path loss characteristics based on the mea-

surement for 0.8 to 37 GHz frequency band. We adopt this path loss model for high-SHF

operating frequency. The path loss is given as follows:

Li = LF + LB + LI = (α1 + α2 log10 dout,i + α3 log10 fGhz) +

(β1 +
β2 − β1

1 + exp(−β3(θi − β4))
) + (γ1din,i)

In this model, we have α1=31.4, α2=20, α3=21.5, β1=6.8, β2=21.8, β3=0.453, β4=19.7 and

γ1=0.49.

Note that there is a key tradeoff in the path loss models when the horizontal distance between

the UAV and a user changes. When this horizontal distance increases, the free space path loss

(i.e., LF ) increases as dout,i increases, while the building penetration loss (i.e., LB) decreases as

the incident angle (i.e., θi) decreases (Figure 2 shows the penetration loss for high-SHF band).

Similarly, when this horizontal distance decreases, the free space path loss (i.e., LF ) decreases

as dout,i decreases, while the building penetration loss (i.e., LB) increases as the incident angle

(i.e., θi) increases.
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Fig. 1: Parameters of the

path loss model

Fig. 2: Building penetration loss

for high-SHF

Fig. 3: Transmit power required to

cover the building

III. PROVIDING WIRELESS COVERAGE USING A SINGLE UAV

A. Problem Formulation

Consider a transmission between a UAV located at (xUAV ,yUAV ,zUAV ) and an indoor user i

located at (xi,yi,zi). The rate for user i is given by:

Ci = Blog2(1 +
Pt,i/Li

N
)

where B is the transmission bandwidth of the UAV, Pt,i is the UAV transmit power to indoor

user i, Li is the path loss between a UAV and an indoor user i and N is the noise power. In

this paper, we do not explicitly model interference, and instead, implicitly model it as noise.

Let us assume that each indoor user has a channel with bandwidth equals B/M , where M

is the number of users inside the building and the rate requirement for each user is v. Then the

minimum power required to satisfy this rate for each user is given by:

Pt,i,min = (2
v.M
B − 1) ⋆ N ⋆ Li

Our goal is to find the optimal location of UAV such that the total transmit power required to

satisfy the downlink rate requirement of each indoor user is minimized. The objective function

can be represented as:

P =
M∑

i=1

(2
v.M
B − 1) ⋆ N ⋆ Li,
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where P is the UAV total transmit power. Since (2
v.M
B − 1) ⋆N is constant, our problem can be

formulated as:

min
xUAV ,yUAV ,zUAV

LTotal =
M∑

i=1

Li

subject to

xmin ≤ xUAV ≤ xmax,

ymin ≤ yUAV ≤ ymax,

zmin ≤ zUAV ≤ zmax,

LTotal ≤ Lmax

Here, the first three constraints represent the minimum and maximum allowed values for xUAV ,

yUAV and zUAV . In the fourth constraint, Lmax is the maximum allowable path loss and equals

Pt,max/((2
v.M
B − 1) ⋆ N), where Pt,max is the maximum transmit power of UAV.

Finding the optimal placement of UAV is generally difficult because the problem is non-

convex. Therefore, in the next subsection, we consider three special cases of practical interest

and derive efficient solutions under these cases.

B. Efficient Placement of a Single UAV

Case 1. The worst location in building: In this case, we find the minimum transmit power

required to cover the building based on the location that has the maximum path loss inside the

building. The location that has the maximum path loss in the building is the location that has

maximum dout,i, maximum θi, and maximum din,i. The locations that have the maximum path

loss are located at the corners of the highest and lowest floors. Since the locations that have

the maximum path loss inside the building are the corners of the highest and lowest floors,

we place the UAV at the middle of the building (yUAV = 0.5yb and zUAV =0.5zb). Then, given

Outdoor-to-Indoor path loss models for low-SHF and high-SHF bands, we need to find an

efficient horizontal point xUAV for the UAV such that the total transmit power required to cover

the building is minimized.

Now, when the horizontal distance between the UAV and this location increases, the free space

path loss also increases as dout,i increases, while the building penetration loss decreases because

we decrease the incident angle θi. In Figure 3, we demonstrate the minimum transmit power
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Fig. 4: Transmit power re-

quired to cover the building,

fc=2 GHz

Fig. 5: Transmit power re-

quired to cover the building,

fc=10 GHz

Fig. 6: Transmit power re-

quired to cover 30 meter build-

ing height

required to cover a building of different heights, where the minimum transmit power required

to cover the building is given by:

Pt,min(dB) = Pr,th + Li

Pr,th(dB) = N + γth

Here, Pr,th is the minimum received power, N is the noise power (equals -120dBm), γth is the

threshold SNR (equals 10dB), yb=50 meters , xb=20 meters and the carrier frequency is 2Ghz.

The numerical results show that there is an optimal horizontal point that minimizes the total

transmit power required to cover a building. Also, we note that when the height of the building

increases, the optimal horizontal distance increases. This is to compensate for the increased

building penetration loss due to an increased incident angle.

In Theorem 1, we characterize the optimal incident angle θ for low-SHF band that minimizes

the transmit power required to cover the building. This helps us finding the optimal horizontal

distance between the UAV and the building.

Theorem 1. For the low-SHF operating frequency case, when we place the UAV at the middle

of building , the optimal incident angle θ that minimizes the transmit power required to cover

the building will be equal to 48.654o and the optimal horizontal distance between the UAV and

the building will be equal to ((
0.5zb

tan(48.654o)
)2 − (0.5yb)

2)0.5 − xb.
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Proof. In order to find the optimal horizontal point, we rewrite the equation that represents the

path loss in terms of the incident angle (θi) and the altitude difference between the UAV and

the user i (∆hi):

Li(∆hi, θi) = w log10
∆hi

sin θi
+ w log10 fGhz + g1

+g2 + g3(1− cos θi)
2 + g4din,i

We know that the altitude difference between the UAV and the location that has the maximum

path loss is constant for a given building. Now, when we take the first derivative with respect

to θ and assign it to zero, we get:

dL(θ)

dθ
=

w

ln10

−∆h. cos θ

sin2 θ
∆h

sin θ

+ 2g3 sin θ(1− cos θ) = 0

dL(θ)

dθ
=
−w

ln10

cos θ

sin θ
+ 2g3 sin θ(1− cos θ) = 0

w

ln10
cos θ = 2g3sin

2θ(1− cos θ)

w

ln10
cos θ = 2g3(1− cos2 θ)(1− cos θ)

2g3 cos
3 θ − 2g3 cos

2 θ − (
w

ln10
+ 2g3) cos θ + 2g3 = 0

(1)

To prove that the function is convex, we take the second derivative and we get:

d2L

dθ2
=

w

ln10

1

sin2 θ
+ 2g3 cos θ(1− cos θ) + 2g3 sin

2 θ > 0 for 0 < θ ≤ 90

Ecrf (1) has only one valid solution which is cos θ=0.6606. Therefore, the optimal incident angle

between the UAV and the location that has the maximum path loss inside the building will be

48.654o.

In order to find the optimal horizontal distance between the UAV and the building, we apply

the pythagorean’s theorem. This gives us:

dH = ((
0.5zb

tan(48.654o)
)2 − (0.5yb)

2)0.5

Therefore, the optimal horizontal distance between the UAV and the building is given by:

dopt = ((
0.5zb

tan(48.654o)
)2 − (0.5yb)

2)0.5 − xb

�
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In Figure 4, we demonstrate the transmit power required to cover the building as a function

of the incident angle, we notice that the optimal angle that we characterize in Theorem 1 gives

us the minimum transmit power.

Now, we find an efficient incident angle θ for high-SHF band that minimizes the transmit

power required to cover the building. In order to find an efficient angle, we rewrite the equation

that represents the path loss in terms of the incident angle (θ) and the altitude difference between

the UAV and location that has the maximum path loss inside the building (∆h), we get:

L(∆h, θ) = (α1 + α2 log10
∆h

sin θ
+ α3 log10 fGhz) +

(β1 +
β2 − β1

1 + exp(−β3(θi − β4))
) + (γ1din,i)

By numerically plotting the transmit power required to cover the location that has the maximum

path loss inside the building (see Figure 5 and Figure 6), where yb=50 meters and xb=20 meters,

we show that for different building heights and different operating frequencies there exists only

one global minimum value. As can be seen from the figures, to provide wireless coverage to small

buildings, the UAV transmit power must be very high, due to the high free space path loss, this

demonstrates the need for multiple UAVs to cover the high rise building when we use high-SHF

operating frequency. To find an efficient incident angle that could give us the global minimum

value, we use the ternary search algorithm. A ternary search algorithm is a method for finding

the minimum of a unimodal function, it iteratively splits the domain into three separate regions

and discards the one where the minimum does not belong to. The pseudo code of this algorithm

is shown in Algorithm 1. From our numerical results, we found that the angle that minimizes

the power is always 15o. This is because the building penetration loss will be minimized at this

angle (see Figure 2). The angles less than 15o will also give us minimum building penetration

loss but the free space path loss will increase as the incident angle θi decreases. Note that for

the high-SHF case the incident angle that results in the minimum path loss is smaller than that

for low-SHF case. This is due to the fact that the building penetration loss at high operating

frequency will be higher than that at low operating frequency.

Case 2. The locations of indoor users are symmetric across the xy and xz planes: In

this case, we assume that the locations of indoor users are symmetric across the xy-plane

((0,0,0.5zb),(xb,0,0.5zb) ,(xb,yb,0.5zb),(0,yb,0.5zb))) and the xz-plane ((0,0.5yb,0), (xb,0.5yb,0),

(xb,0.5yb,zb),(0,0.5yb,zb)). First, we prove that zUAV =0.5zb and yUAV =0.5yb when the locations of

indoor users are symmetric across the xy and xz planes and the operating frequency is low-SHF
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Algorithm 1 Ternary search algorithm

Input:

The interval [a,b] of unimodal function that contains the efficient incident angle.

The absolute precision =µ.

If |b-a| < µ:

Return
(a+b)

2

l = a+ (b−a)
3

r = b− (b−a)
3

If f(l) > f(r)

Return ternary search(f , l, b, µ)

Else

Return ternary search(f , a, r, µ)

(Theorem 2) or high-SHF (Theorem 3). Then we use the gradient descent algorithm to find an

efficient xUAV that minimizes the transmit power required to cover the building.

Theorem 2. For the low-SHF operating frequency case, when the locations of indoor users

are symmetric across the xy and xz planes, the optimal (yUAV ,zUAV ) that minimizes the power

required to cover the indoor users will be equal (0.5yb,0.5zb).

The proof is presented in Appendix A. The question now is how to find an efficient horizontal

point xUAV that minimizes the total transmit power. In order to find this point, we use the

gradient descent algorithm [18]:

xUAV,n+1 = xUAV,n − a
dLTotal

dxUAV,n

Where:

dLTotal

dxUAV

=

M∑

i=1

w

ln10

−(xi − xUAV )

d2out,i
+ 2g3.(1−

((xi − xUAV )
2 + (yi − yUAV )

2)0.5

dout,i
).

(
(xi − xUAV )dout,i((xi − xUAV )

2 + (yi − yUAV )
2)−0.5

d2out,i
−

((xi − xUAV )
2 + (yi − yUAV )

2)0.5(xi − xUAV )d
−1
out,i

d2out,i
)
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a: the step size.

dout,i=((xi − xUAV )
2 + (yi − yUAV )

2 + (zi − zUAV )
2)0.5

The pseudo code of this algorithm is shown in Algorithm 2. Now, we prove that zUAV = 0.5zb

and yUAV = 0.5yb when the locations of indoor users are symmetric across the xy and xz planes

and the operating frequency is high-SHF.

Algorithm 2 Efficient xUAV using gradient descent algorithm

Input:

The 3D locations of the users inside the building.

The step size a, the step tolerance ǫ.

The dimensions of the building [0, xb] × [0, yb] × [0, zb].

The maximum number of iterations Nmax.

Initialize xUAV

For n=1,2,..., Nmax

xUAV,n+1 ← xUAV,n− a
dLTotal

dxUAV,n

If ‖ xUAV,n − xUAV,n+1 ‖ < ǫ

Return: xUAV,opt = xUAV,n+1

End for

Theorem 3. For the high-SHF operating frequency case, when the locations of indoor users

are symmetric across the xy and xz planes, the optimal (yUAV , zUAV ) that minimizes the power

required to cover the indoor users will be equal (0.5yb,0.5zb).

The proof is presented in Appendix B. To find an efficient horizontal point xUAV that minimizes

the total transmit power, we use the gradient descent algorithm, where:

dLTotal

dxUAV

=

M∑

i=1

α2

ln10

(xUAV − xi)

d2out,i
+ (
−(β2 − β1)(

−β3√
1−u2 )(

−(zUAV −zi)(xUAV −xi)
d3out,i

)

(1 + exp(−β3(sin−1u− β4)))
.

exp(−β3(sin
−1u− β4))

(1 + exp(−β3(sin−1u− β4)))
)

dout,i=((xi − xUAV )
2 + (yi − yUAV )

2 + (zi − zUAV )
2)0.5

u=(
(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
)
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Case 3. The locations of indoor users are uniformly distributed in each floor: In this case,

we propose the Particle Swarm Optimization (PSO) [19] to find an efficient 3D placement of

the UAV, when the locations of indoor users are uniformly distributed in each floor.

The particle swarm optimization algorithm starts with (npop) random solutions and itera-

tively tries to improve the candidate solutions based on the best experience of each candidate

(particle(i).best.location) and the best global experience (globalbest.location). In each iteration,

the best location for each particle (particle(i).best.location) and the best global location (glob-

albest.location) are updated and the velocities and locations of the particles are calculated based

on them [9]. The velocity value indicates how much the location can be changed (see ecrf (2)).

The velocity is given by:

particle(i).velocity = w ∗ particle(i).velocity +

c1 ∗ rand(varsize) ∗ (particle(i).best.location − particle(i).location)

+c2 ∗ rand(varsize) ∗ (globalbest.location − particle(i).location)

where w is the inertia weight, c1 and c2 are the personal and global learning coefficients, and

rand(varsize) are random positive numbers. Also, the location of each particle is updated as:

particle(i).location = particle(i).location + particle(i).velocity (2)

The pseudo code of the PSO algorithm is shown in Algorithm 3. Convergence of the candidate

solutions has been investigated for PSO [20]. This analyses has resulted in guidelines for selecting

a set of coefficients (κ,φ1,φ2) that are believed to cause convergence to a point and prevent

divergence of the swarms particles. We selected our parameters according to this analysis (see

Table I and Algorithm 3).

IV. PROVIDING WIRELESS COVERAGE USING MULTIPLE UAVS

Providing wireless coverage to High-rise building using a single UAV can be impractical, due

to the limited transmit power of a UAV. The transmit power required to cover the building is

too high. It is in the range of 50dBm to 65dBm (see Figures 3, 5 and 6), which corresponds to

100-3000 watts.
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Algorithm 3 Efficient UAV placement using PSO algorithm

Input:

The lower and upper bounds of decision variable (varmin,varmax), Construction coefficients

(κ,φ1,φ2), Maximum number of iterations (maxit), Population size (npop)

Initialiaztion:

φ=φ1+φ1, χ = 2κ/|2− φ− (φ2 − 4φ)0.5|

w=χ, c1=χφ1, c2=χφ2, globalbest.cost=inf

for i=1:npop

particle(i).location=unifrnd(varmin, varmax, varsize)

particle(i).velocity=zeros(varsize)

particle(i).cost=costfunction(particle(i).location)

particle(i).best.location=particle(i).location

particle(i).best.cost=particle(i).cost

if particle(i).best.cost < globalbest.cost

globalbest=particle(i).best

end if

end

PSO Loop:

for t=1:maxit

for i=1:npop

particle(i).velocity=w*particle(i).velocity+

c1*rand(varsize)*(particle(i).best.location- particle(i).location)+

c2*rand(varsize)*(globalbest.location-particle(i).location)

particle(i).location=particle(i).location+ particle(i).velocity

particle(i).cost=costfunction(particle(i).location)

if particle(i).cost < particle(i).best.cost

particle(i).best.location = particle(i).location

particle(i).best.cost = particle(i).cost

if particle(i).best.cost < globalbest.cost

globalbest=particle(i).best

end if

end if

end

end
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Our problem can be formulated as:

min |k|

subject to
|k|∑

j=1

yij = 1 ∀i ∈ m (3.a)

|m|∑

i=1

(2
v.|m|
B − 1).N.Lij .yij ≤ P ∀j ∈ k (3.b)

xmin ≤ xj ≤ xmax ∀j ∈ k (3.c)

ymin ≤ yj ≤ ymax ∀j ∈ k (3.d)

zmin ≤ zj ≤ zmax ∀j ∈ k (3.e)

(3)

where k is a set of fully charged UAVs, m is a set of indoor users, υ is the rate requirement for

each user (constant), N is the noise power (constant), B is the transmission bandwidth (constant),

Lij is the total path loss between UAV j and user i and P is the maximum transmit power of

UAV (constant). We also introduce the binary variable yij that takes the value of 1 if the indoor

user i is connected to the UAV j and equals 0 otherwise. The objective is to minimize the

number of UAVs that are needed to provide a wireless coverage for indoor users. Constraint set

(3.a) ensure that each indoor user should be connected to one UAV. Constraint set (3.b) ensure

that the total power consumed by a UAV should not exceed its maximum power consumption

limit. Constraints (3.c-3.e) represent the minimum and maximum allowed values for xj , yj and

zj .

Theorem 4. The problem represented by (3) is NP-complete.

Proof. The number of constraints is polynomial in terms of the number of indoor users, UAVs

and 3D locations. Given any solution for our problem, we can check the solutions feasibility in

polynomial time, then the problem is NP.

To prove that the problem is NP-hard, we reduce the Bin Packing Problem which is NP-hard [21]

to a special case of our problem. In the Bin Packing Problem, we have a set of items G =

{1, 2, .., N} in which each item has volume zn where n ∈ G. All items must be packed into a

finite number of bins (b1, b,...,bB), each of volume V in a way that minimizes the number of

bins used. The reduction steps are: 1) The b-th bin in the Bin Packing Problem is mapped to the

j-th UAV in our problem, where the volume V for each bin is mapped to the maximum transmit

power of the UAV P . 2) The n-th item is mapped to the indoor i-th user, where the volume for
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each item n is mapped to the power required to cover the i-th indoor user. 3) All UAVs have the

same maximum transmit power P . 4) The power required to cover the i-th indoor user from any

3D location will be constant. If there exists a solution to the bin packing problem with cost C,

then the selected bins will represent the UAVs that are selected and the items in each bin will

represent the indoor users that the UAV must cover and the total cost of our problem is C. �

Due to the intractability of the problem, we study clustering indoor users. In the k-means

clustering algorithm [22], we are given a set of points m, and want to group the points into a k

clusters such that each point belongs to the cluster with the nearest mean. The first step in the

algorithm is to choose the number of clusters k. Then, randomly initialize k clusters centroids.

In each iteration, the algorithm will do two things:1) Cluster assignment step. 2) Move centroids

step. In cluster assignment step, the algorithm goes through each point and chooses the closest

centroids and assigns the point to it. In move centroids step, the algorithm calculates the average

for each group and moves the centroids there. The algorithm will repeat these two steps until

it converges. The algorithm will converge when the assignments no longer change. To find the

minimum number of UAVs required to cover the indoor users, we utilize this algorithm to cluster

the indoor users. In our algorithm, we assume that each cluster will be covered by only one UAV.

We start the algorithm with k = 2 and after it finishes clustering the indoor users, it applies the

particle swarm optimization [19] to find the UAV 3D location and UAV transmit power needed

to cover each cluster. Then, it checks if the maximum transmit power is sufficient to cover each

cluster, if not, the number of clusters k is incremented by one and the problem is solved again.

The pseudo code of this algorithm is shown in Algorithm 4.

V. NUMERICAL RESULTS

A. Simulation results for single UAV

First, we verify our results for the second case, when the locations of indoor users are

symmetric across the xy and xz planes, using different operating frequencies, 2GHz for low-SHF

band and 15GHz for high-SHF. We assume that each floor contains 20 users. Then we apply

the gradient descent (GD) algorithm to find the optimal horizontal point xUAV that minimizes

the transmit power required to cover the indoor users. Table I lists the parameters used in the

numerical analysis for single UAV cases.
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Fig. 7: UAV optimal placement (upper part) and convergence speed of the GD algorithm (lower

part) for different building heights, fc = 2G Hz

Fig. 8: UAV optimal placement (upper part) and convergence speed of the GD algorithm (lower

part) for different building heights, fc = 15G Hz

In Figures 7 and 8, we find the optimal horizontal points for a building of different heights. In

the upper part of the figures, we find the total path loss at different locations (xUAV ,0.5yb,zUAV )

and the optimal horizontal point xUAV that results in the minimum total path loss using the GD

algorithm. In the lower part of the figures, we show the convergence speed of the GD algorithm.
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Algorithm 4 Clustering Indoor Users

Input:

The maximum transmit power of UAV (P ).

The 3D locations of m indoor users (xi, yi, zi).

Number of clusters (|k| = 2).

START:

1: Initialize cluster centroids γ1, γ2, ..., γk ∈ Rn randomly.

2: Repeat until convergence:

For every indoor user i ∈ m, set

c(i) = arg min
j∈k
||(xi, yi, zi)− γj||

2

For each cluster j ∈ k, set

γj =

∑

i∈m,c(i)=j

(xi, yi, zi)

∑

i∈m,c(i)=j

1

3: Using particle swarm optimization algorithm, calculate the UAV efficient 3D location and

the transmit power for each cluster j ∈ k:

P (j) =
∑

i∈m,c(i)=j

(2
v.|m|
B − 1) ⋆ N ⋆ Li

4: For j = 1 to |k|

If (P (j) > P )

|k| = |k|+ 1

go to START

End

Output:

|k| Clusters.

The transmit Power of each UAV.

The 3D locations of UAVs.

As can be seen from the figures, when the height of the building increases, the optimal horizontal

point xUAV increases. This is to compensate the increased building penetration loss due to an

increased incident angle.

In Figures 9 and 10, we investigate the impact of different building widths (i.e., xb). We fix

the building height to be 250 meters for low-SHF operating frequency and 25 meters for high-
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TABLE I: Parameters in numerical analysis for single UAV

Vertical width of building yb 50 meters

Hight of each floor 5 meters

Step size a ”GD algorithm” 0.01

Maximum number of iterations Nmax ”GD algorithm” 500

The carrier frequency fGhz , low-SHF 2Ghz

The carrier frequency fGhz , high-SHF 15Ghz

Number of users in each floor 20 users

(varmin,varmax) ”PSO algorithm” (0,1000)

(κ,φ1,φ2) ”PSO algorithm” (1,2.05,2.05)

Fig. 9: UAV optimal placement (upper part) and convergence speed of the GD algorithm (lower

part) for different building widths, fc = 2G Hz

SHF, then we vary the building width. As can be seen from the figures, when the building width

increases, the optimal horizontal distance decreases. This is to compensate for the increased

indoor path loss due to an increased building width.

Now, we validate the simulation results for low-SHF operating frequency by using the particle

swarm optimization (PSO) algorithm and verify our result for the third case, when the locations

of indoor users are uniformly distributed in each floor, using low-SHF operating frequency. As

can be seen from the simulation results in Table II, both algorithms converge to the same 3D
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Fig. 10: UAV optimal placement (upper part) and convergence speed of the GD algorithm (lower

part) for different building widths, fc = 15G Hz

Fig. 11: UAV efficient placement (upper part) and convergence speed of the PSO algorithm

(lower part) for different building heights

placement, when the locations of indoor users are symmetric across the xy and xz planes.

After that, we assume that each floor contains 20 users and the locations of these users are

uniformly distributed in each floor. When we apply the GD algorithm, the 3D efficient placements

and the total costs for 200 meter, 250 meter and 300 meter buildings are (24.7254, 25, 100)
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TABLE II: Simulation Results

Algorithm Distribution Building height Horizontal building Vertical building Efficient 3D placement Efficient total

zb width xb width yb path loss(dB)

GD symmetric 200 20 50 (20.025, 25, 100) 7.8825 ∗ 104

PSO symmetric 200 20 50 (20.040, 25.0130, 100.0015) 7.8825 ∗ 104

GD symmetric 250 20 50 (30.809, 25, 125) 9.9971 ∗ 104

PSO symmetric 250 20 50 (30.736 , 24.960, 124.956) 9.9971 ∗ 104

GD symmetric 300 20 50 (40.746, 25, 150) 1.2146 ∗ 105

PSO symmetric 300 20 50 (40.758, 25.048, 150.054) 1.2146 ∗ 105

GD uniform 200 20 50 (24.725, 25, 100) 7.8853 ∗ 104

PSO uniform 200 20 50 (21.799, 37.389, 111.790) 7.8645 ∗ 104

GD uniform 250 20 50 (33.818, 25, 125) 9.9855 ∗ 104

PSO uniform 250 20 50 (32.921, 28.712, 124.029) 9.9725 ∗ 104

GD uniform 300 20 50 (43.117, 25, 150) 1.2154 ∗ 105

PSO uniform 300 20 50 (46.589, 31.506 ,143.858) 1.2117 ∗ 105

GD uniform 250 10 50 (38.521, 25, 125) 9.7413 ∗ 104

PSO uniform 250 10 50 (32.104, 21.017, 129.266) 9.7252 ∗ 104

GD uniform 250 30 50 (29.393, 25, 125) 1.0275 ∗ 105

PSO uniform 250 30 50 (25.529, 4.938, 138.765) 1.0211 ∗ 105

GD uniform 250 50 50 (22.711, 25, 125) 1.0753 ∗ 105

PSO uniform 250 50 50 (14.548, 17.308 ,131.8940) 1.0696 ∗ 105

(7.8853∗104), (33.8180, 25, 125) (9.9855∗104) and (43.1170, 25, 150)(1.2154∗105), respectively.

UAV efficient placement and the convergence speed of the PSO algorithm for different building

heights is shown in Figure 11. The 3D efficient placements and the total costs for 200 meter,

250 meter and 300 meter buildings are (21.7995, 37.3891, 111.7901) (7.8645 ∗ 104), (32.9212,

28.7125, 124.0291) (9.9725 ∗ 104) and (46.5898, 31.5061 ,143.8588)(1.2117 ∗ 105), respectively.

As can be seen from the simulation results, the PSO algorithm provides better results. It provides

total cost less than the cost that the GD algorithm provides by (37dB-208dB). This is because
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Fig. 12: UAV efficient placement (upper part) and convergence speed of the PSO algorithm

(lower part) for different building widths

the PSO algorithm is designed for the case in which the locations of indoor users are uniformly

distributed in each floor. On the other hand, the GD algorithm is designed for the case in which

the locations of indoor users are symmetric across the dimensions of each floor.

We also investigate the impact of different building widths (i.e., xb) using the GD and PSO

algorithms (see Figure 12). We fix the building height to be 250 meters and vary the building

width. As can be seen from the simulation results, the PSO algorithm provides better results. It

provides total cost less than the cost that the GD algorithm provides by (57dB-161dB).

We can notice that the tradeoff in case three is similar to that in case two, when the height of the

building increases, the efficient horizontal point xUAV computed by our algorithm increases. This

is to compensate the increased building penetration loss due to an increased incident angle. Also,

when the building width increases, the efficient horizontal distance computed by our algorithm

decreases. This is to compensate the increased indoor path loss due to an increased building

width.

B. Simulation results for multiple UAVs

In this section, we verify our results for multiple UAVs scenario. First, we assume that a

building will host a special event (such as concert, conference, etc.), the dimensions of the

building are [0, 20]× [0, 50]× [0, 100]. The organizers of the event reserve all floors higher than
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75 meters and they expect that 200 people will attend the event. Due to interference from near-by

macro cells, the organizers decide to use UAVs to provide wireless coverage to the indoor users.

We assume that 200 indoor users are uniformly distributed in upper part of the building (higher

than 75 meters) and 200 indoor users are uniformly distributed in the lower part (less than 75

meters). Then, we apply the clustering indoor users algorithm to find the minimum number of

UAVs required to cover the indoor users. Table III lists the parameters used in the numerical

analysis for multiple UAVs.

The algorithm starts with k = 2 and after it finishes clustering the indoor users, it applies the

particle swarm optimization to find the UAV 3D location and UAV transmit power needed to

cover each cluster. Then, it checks if the maximum transmit power is sufficient to cover each

cluster, if not, the number of clusters k is incremented by one and the problem is solved again.

As can be seen from the simulation results in Figure 13, we need 5 UAVs to cover the indoor

users. We can notice that an efficient horizontal point xUAV for all UAVs 3D locations is the

same xUAV = 25, the minimum allowed value for xUAV , this is because the tradeoff (shown in

Figure 3) disappears when a UAV covers small height of building.

In Figure 14, we uniformly split the building into k parts and cover it by k UAVs. As can

be seen from the simulation results, we need 9 UAVs to cover the indoor users. The clustering

algorithm provides better results, this is because it utilizes the distribution of indoor users to

divide them into clusters. On the other hand, the uniformly split method is designed for the case

in which the locations of indoor users uniformly distributed in the building.

TABLE III: Parameters in numerical analysis for multiple UAVs

Maximum transmit power of UAV (P ) 5 Watt

Operating frequency (f ) 2Ghz

Transmission bandwidth (B) 50M Hz

Rate requirement for each user (υ) 2.2Mbps

Noise power (N ) -150 dBm

Min and Max allowed values for xj ,[xmin, xmax] [25,1000]

Min and Max allowed values for yj , [ymin, ymax] [0,50]

Min and Max allowed values for zj , [zmin, zmax] [0,1000]
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Fig. 13: UAVs efficient placements using clustering algorithm

Fig. 14: UAVs efficient placements using uniform split method

VI. CONCLUSION

In this paper, we study the problem of providing wireless coverage for users inside a high-

rise building using UAVs. First, we demonstrate why the Air-to-Ground path loss model is not

appropriate for considering indoor users with 3D locations. Then, we present Outdoor-to-Indoor

path loss models, show the tradeoff in these models, and study the problem of minimizing the

transmit power required to cover the building. Due to the intractability of the problem, we study

an efficient placement of a single UAV under three cases. Due to the limited transmit power

of a UAV, we formulate the problem of minimizing the number of UAVs required to provide
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wireless coverage to high rise building and prove that this problem is NP-complete. Due to the

intractability of the problem, we use clustering to minimize the number of UAVs required to

cover the indoor users. In order to model more realistic scenarios, we will study the problem of

providing wireless coverage for multiple buildings in our future work.

APPENDIX A

PROOF OF THEOREM 2

Consider that m1 represents the users that have altitude lower than the UAV altitude and m2

represents the users that have altitude higher than the UAV altitude, then:

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zUAV − zi)
2)0.5, ∀zUAV > zi

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zi − zUAV )
2)0.5, ∀zUAV < zi

Also,

cosθi =
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
, ∀zUAV > zi

cosθi =
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
, ∀zUAV < zi

Rewrite the total path loss:

LTotal =

m1∑

i=1

(wlog10(dout,i) + g3(1− cos θi)
2) +

m2∑

i=1

(wlog10(dout,i) + g3(1− cos θi)
2) +K

Where:

K =
M∑

i=1

(wlog10fGhz + g1 + g2 + g4din,i)

Now, take the derivative with respect to zUAV , we get:

dLTotal

dzUAV

=

m1∑

i=1

w

ln10

(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)
+

2g3.(1−
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
).

(
((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)
3
2

) +

m2∑

i=1

w

ln10

−(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)

+2g3.(1−
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
).

(
−((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)
3
2

)
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Rewrite the
dLTotal

dzUAV

again, we have:

dLTotal

dzUAV

=

m1∑

i=1

w

ln10

(zUAV − zi)

d2out,i
+ 2g3.(1−

((xUAV − xi)
2 + (yUAV − yi)

2)0.5

dout,i
).

(
((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zUAV − zi)

d3out,i
) +

m2∑

i=1

w

ln10

−(zi − zUAV )

d2out,i
+

2g3.(1−
((xUAV − xi)

2 + (yUAV − yi)
2)0.5

dout,i
).(
−((xUAV − xi)

2 + (yUAV − yi)
2)0.5(zi− zUAV )

d3out,i
)

The equation above equals zero when the UAV altitude equals the half of the building height,

where the locations of indoor users are symmetric across the xy and xz planes.

APPENDIX B

PROOF OF THEOREM 3

Consider that m1 represents the users that have altitude lower than the UAV altitude and m2

represents the users that have altitude higher than the UAV altitude, then:

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zUAV − zi)
2)0.5, ∀zUAV > zi

dout,i = ((xUAV − xi)
2 + (yUAV − yi)

2 + (zi − zUAV )
2)0.5, ∀zUAV < zi

Also,

θi = sin−1(
(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
), ∀zUAV > zi

θi = sin−1(
(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
), ∀zUAV < zi

Rewrite the total path loss:

LTotal =

m1∑

i=1

α2log10(dout,i) +
(β2 − β1)

(1 + exp(−β3(sin−1(u)− β4)))

+

m2∑

i=1

α2log10(dout,i) +
(β2 − β1)

(1 + exp(−β3(sin−1(u)− β4)))
+K

Where:

u = (
(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)0.5
), ∀zUAV > zi

u = (
(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)0.5
), ∀zUAV < zi

K =

M∑

i=1

(α1 + α3log10fGhz + β1 + γ1din,i)
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Now, take the derivative with respect to zUAV , we get:

dLTotal

dzUAV

=

m1∑

i=1

α2

ln10

(zUAV − zi)

((xUAV − xi)2 + (yUAV − yi)2 + (zUAV − zi)2)

+(
−(β2 − β1)(

−β3√
1−u2 )(

dout,i−(zUAV −zi)2d
−1
out,i

d2out,i
)

(1 + exp(−β3(sin−1u− β4)))
.

exp(−β3(sin
−1u− β4))

(1 + exp(−β3(sin−1u− β4)))
) +

m2∑

i=1

α2

ln10

−(zi − zUAV )

((xUAV − xi)2 + (yUAV − yi)2 + (zi − zUAV )2)

+(
−(β2 − β1)(

−β3√
1−u2 )(

−dout,i+(zUAV −zi)2d
−1
out,i

d2out,i
)

(1 + exp(−β3(sin−1u− β4)))
.

exp(−β3(sin
−1u− β4))

(1 + exp(−β3(sin−1u− β4)))
)

The equation above equals zero when the UAV altitude equals the half of the building height,

where the locations of indoor users are symmetric across the xy and xz planes.
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