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System Architecture for Real-time Surface
Inspection Using Multiple UAVs

V. T. Hoang, M. D. Phung, T. H. Dinh, and Q. P. Ha

Abstract—This paper presents a real-time control system
for surface inspection using multiple unmanned aerial vehicles
(UAVs). The UAVs are coordinated in a specific formation to col-
lect data of the inspecting objects. The communication platform
for data transmission is based on the Internet of Things (IoT).
In the proposed architecture, the UAV formation is established
via using the angle-encoded particle swarm optimisation to
generate an inspecting path and redistribute it to each UAV
where communication links are embedded with an IoT board
for network and data processing capabilities. Data collected
are transmitted in real time through the network to remote
computational units. To detect potential damage or defects, an
online image processing technique is proposed and implemented
based on histograms. Extensive simulation, experiments and
comparisons have been conducted to verify the validity and
performance of the proposed system.

Index Terms—UAV formation, Internet of things, surface
inspection, particle swarm optimisation.

I. INTRODUCTION

Continuous monitoring of health conditions of built in-
frastructure is essential for their safe operation and long-
term serviceability. Since structural deterioration is quite often
revealed through visual appearance, the foremost task to be
conducted in monitoring is typically surface inspection. This
task can be carried out by three main approaches including
using foot patrol, ground vehicles, and flying-assisted robots.
While the first two approaches are common, the use of flying
vehicles like UAVs is receiving increasing interest thanks
to their flexibility in operation, versatility in task allocation
and capability of conducting non-intrusive inspection [1]. For
instance, UAVs have been used for periodical inspection of
critical infrastructures such as oil-gas pipelines, wind turbine
blades and power lines [2], [3]. They also have been employed
to collect data for defect/damage recognition such as cracks,
rust or structural misalignment [4], [5].

Systems for robotic inspection using UAVs are often de-
signed in a layer-based architecture. At the top layer, the
UAV is programmed to fly close to the objects to collect
inspection data. They are then post-processed to detect poten-
tial damage/defects via techniques such as photogrammetry
[6] or Haar-like features extraction [2]. The middle layer
involves the generation of inspection trajectories whereby path
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planning algorithms such as A-star, Dijkstra, rapidly-exploring
random tree and probabilistic roadmap can be employed [7].
However, algorithms specifically designed for UAVs using
particle swarm optimization [8] or iterative viewpoint resam-
pling [9] are typically more efficient by considering also
the coverage among waypoints. At the lowest layer, various
techniques have been proposed to track the generated paths,
using backstepping, model predictive control, PID control or
sliding mode control [10] with sufficient performance.

While the use of single UAVs has proved its applicability
in inspection, recent works start to study the coordination of
UAVs in a group to achieve higher time efficiency, perfor-
mance and resilience [11], [12]. A multi-platform UAV system
for power line inspection tasks [11] shows that the time to
inspect 70 km of the power line can be reduced to 3 hours
compared to a week as with the traditional inspection method.
Therefore, different aspects of multiple UAV coordination such
as formation control, collision avoidance, and data acquisition
have been addressed [13], [14].

In a control architecture for inspection using multiple UAVs,
the synchronization in control, path planning and data process-
ing is typically required not only between layers within single
UAVs but also among them. For real-time inspection, commu-
nication channels are therefore needed among UAVs, ground
control stations (GCS), and other remote computational units
(RCU) such as server computers or cloud computing systems
to tackle the high demand of data fusion and processing. Those
requirements pose the need for a homogeneous communication
platform that allows all components of an inspection system
to be integrated. The current use of radio transceiver modules
with a pulse mode modulation 2.4GHz uplink and 2.4/5.8GHz
downlink is insufficient as they can only form a private
network among on-site devices [15]. Some studies suggested
deploying additional UAVs as communication relay stations
to extend the network [16], [17]. This approach is suitable for
tasks covering a local range but not large areas like bridges,
power lines or wind turbines which require hundreds of
kilometres in communication range. Several studies proposed
to use satellite communication to overcome this problem [11],
[18]. It is however expensive, complex and not always feasible.

In this study, the Internet of Things (IoT) is used as the
communication platform to interconnect UAVs and devices in
order to efficiently perform inspection tasks. Based on this
platform, a robust low-level controller is introduced for each
UAV to track the inspection path under harsh working condi-
tions. The high-level control is then developed to coordinate
multiple UAVs via formation and path-planning modules. The
formation configuration is decided based on the results of
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the mission assessment and defect detection requirements. A
multi-objective particle swarm optimisation algorithm using
angle-encoded PSO (θ-PSO) is exploited to generate an op-
timal path for the centroid of the group. This path is finally
translated into individual trajectories for UAVs to follow. The
images captured during the flight are streamed to RCU where
they are processed to detect potential defects. A detection
algorithm based on histogram analysis is proposed for the
image processing tasks. Extensive simulations and experiments
have been conducted in real and practical scenarios to evaluate
the validity and feasibility of the proposed system.

II. RELATED WORKS

A number of studies have been devoted to the problem
of surface inspection using UAVs. Early works typically
targeted simple and linear structures such as highways, roads,
and canals [19], [20]. They focused on low-level control
laws using the data acquired from the incorporated visual
systems for quasi-stationary flights above planar surfaces.
Later, the inspection of hardly accessible structures in GPS-
denied environments using UAVs has been proposed using
on-board Simultaneous Localisation and Mapping (SLAM)
[21]. While the positioning and self-recovering problems have
been addressed, the system was intended for semi-autonomous
operations that would require an operator to instruct the UAV.
To improve the level of autonomy, images obtained by UAVs
can be used to detect inspecting objects and create paths for
autonomous flights [22], [3].

For automatic inspection, sophisticated systems featured
path planning and path-following control algorithms have been
proposed. In [23], an aerial robotic system for the contact-
based surface inspection has been introduced using not only
optimal trajectory tracking but also accurate force control
techniques. In [9], an iterative viewpoint re-sampling path
planning algorithm was proposed for the inspection of com-
plex 3D structures. The inspection of outdoor structures under
windy conditions was addressed in [24] by using the viewpoint
selection and optimal time route algorithms. Besides, an UAV-
based inspection system for wind turbines was developed in
[25] with the capability of creating smooth and collision-free
flight paths based on the data recorded from LIDAR sensors.
These studies however focus more on data collection rather
than defect detection.

In terms of surface inspection, several studies have been
conducted for defect detection tasks. In [26], a fast and
effective defect detection method has been proposed using
the size-based estimation with data obtained from both color
and infrared cameras. In [2], Haar-like features and a cascad-
ing classifier were applied to UAV-taken images to identify
cracks on wind turbine blade surfaces. Self-organizing map
optimization was introduced in [5], based on image recognition
and processing model for crack detection to reduce human
involvement. On another note, [4] assessed the quality and
feasibility of images taken by UAVs for defect detection and
discussed methods to improve the image quality.

The use of multi-UAV cooperation for infrastructure inspec-
tion has been recently investigated. A multi-platform UAV

system for power line inspection was experimented in [11].
Similarly, a multi-UAV positioning and routing for power
network damage assessment was introduced in [12] whereas
some other studies developed inspection systems for buildings
or bridges [27], [10]. However, those systems are rather limited
in communication and coordination capability. In fact, it can
be seen from the literature that UAV-based inspection is still
in its early development stage. There exists a crucial need for
an architecture that not only enables the integration of various
functional modules like path planning, high-level and low-level
control but also allows for the real-time coordination of multi-
ple UAVs within a homogeneous communication platform for
efficient surface inspection.

III. SYSTEM OVERVIEW AND DATA COMMUNICATION

Figure 1 presents an overview of the proposed inspection
system. Its core includes three UAVs equipped with cameras
to collect data of the inspected structure. The UAVs, via
IoT boards, form a private network called SkyNet for data
exchanges during their cooperative flight. At the same time,
they also share data with GCS via a wireless gateway router
that relays the data via the Internet to RCU to be processed
further. The UAVs localization is conducted via GPS modules
combined with inertial measurement units (IMUs) to monitor
internal states of the drones. Depending on the inspection
task, real-time kinematic (RTK) GPS modules will be used
to improve positioning accuracy. The operation of each UAV
is monitored via its accompanied remote controller which will
take over the control in emergency situations.

A. IoT devices

As illustrated in Fig.1, the inspection system involves real-
time cooperation of many components within the control
architecture. To equip them with networking and data pro-
cessing capabilities, IoT boards are installed, each includes
a processor and a microcontroller as shown in Fig. 8. With
the processor, the IoT-based devices can connect to the wifi
network as well as process the receiving data via the Linux
operating system installed. The microcontroller enables the
devices to work with other low hardware interfaces such as
voltage/current interface, AD/DA converter, PWM, etc. The
boards thus turn a normal device into a smart one that can
be integrated into the Internet protocol (IP) based networks.
Nevertheless, the built-in antennas of IoT boards designed for
indoor applications are insufficient for outdoor communication
which requires high gain external antennas. Therefore, a 6
dBi detachable antenna is placed on the drone to extend the
communication range and provide stable signals, especially
for moving objects like UAVs. In addition, mobile broadband
networks are made available using wireless gateway routers
that have SIM card slots. As mobile broadband networks
present almost everywhere, this approach allows the inspection
system to be deployed for any surface without the need for
relay stations nor satellite communication. In remote areas
where the mobile network is not available, this approach would
be feasible but requires extra equipment to connect to the
nearest available access point.
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Fig. 1: Data communication structure

B. Communication protocols

Along with the hardware, transport protocols play an im-
portant role in ensuring the security and efficiency of the
data exchanged. The most popular transport protocols for
IoT include the Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), and Real-Time Transport Protocol
(RTP). While TCP was originally designed for the reliable
transmission of static data over low-bandwidth, high-error-rate
networks, UDP could send datagrams from a device to another
as fast as possible but only under good network conditions
without considering the state of the network. Developed for
delivering real-time multimedia data, RTP can facilitate jitter
compensation and detection of out-of-sequence arrival in data.
According to those protocol features, RTP is chosen in our
systems architecture for photo/video streaming and UDP for
sensing data transmitting whereas TCP for delivering admin-
istrative data and control commands.

C. Data processing

One of the main benefits of using IoT is the capability
of conducting computation and data processing at various
layers of the system, i.e., the device layer by IoT boards,
the control layer by built-in computers of UAVs and the
application layer by networked server computers or cloud
computing services, depending on the amount of data to be
processed and real-time requirements. In our system, IoT
boards are used for processing communication data among
UAVs such as position, velocity and other state information to
minimize the computational latency. The control algorithm on
the other hand is handled by the built-in computers of UAVs
to enhance reliability. Other information and imaging data are
processed by server computers to cope with the high demand
for computation and energy consumption.

IV. DATA ACQUISITION AND CONTROL

Based on the data communication and processing frame-
work, we propose an architecture for data acquisition and
control consisting of three levels: task assessment, high-level
control and low-level control as shown in Fig. 2. Details are
described as follows.

A. Task assessment

Given the surface to be inspected, at the task assessment
level, a set of camera configurations is computed, covering
all areas of interest. Each configuration ci corresponds to
a position and an orientation of the camera, and subject to
constraints on image quality as per the following requirements:
(i) images are taken when the camera directed perpendicu-

larly to the inspected surface;
(ii) their resolution is sufficiently high to distinguish the

required smallest feature, sf ; and
(iii) image overlapping is specified by the sticking algorithm

to a given percentage, op.
The first requirement confines the camera orientation to the

normal of the inspected surface. The resolution requirement
suggests the computation of the field of view of the camera
as:

afov =
1

2
rcsf , (1)

where rc is the camera resolution. Thus, the distance df,i from
the ith UAV to the surface under inspection can be found as:

df,i =
afovf

ss
, (2)

where f and ss are respectively the focal length and sensor
size of the camera. Let G be a finite set of geometric primitives
gi for the whole inspected surface, with each gi corresponding
to a surface patch covered by a camera shot. Taken the
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Fig. 2: System architecture for multi-UAV surface inspection

overlapping percentage into account, the geometric primitive
gi is computed as:

gi = (1− op)afov. (3)

By using (2) and (3), configurations ci can be sufficiently
determined to cover the set of primitives G [8], which is then
fed to the high-level control layer for path planning.

B. High-level control

The high-level control consists of two modules, path plan-
ning and formation control the generation respectively of the
reference path computed from the task assessment, and of
trajectories for each UAV based on the reference path and
the desired formation shape.

1) Path Planning: When producing a path for the desired
motion of multiple UAVs in a group, a number of constraints
are required for formation maintenance, UAV maneuverability,
operating space, and obstacle avoidance. In this work, all
constraints will be incorporated into a multi-objective function.
The path planning problem then can be simplified to creating
a reference path for the formation centroid. Since our goal
is to construct optimal paths for all UAVs in the group, it
is essential to speed up the convergence of the optimization
process for the whole formation. Therefore, we propose to use
the angle-coded PSO (θ-PSO) [28].

In θ-PSO, a set of particles is generated, each seeks for
an optimal solution by propagating to compromise between

its own experience and the social experience. Initially, each
particle is assigned a random position, xi. This position is
represented by a phase angle θi of the UAV. The particle
motion is then updated by the following equations:

∆θk+1
ij = w∆θkij + c1r

k
1i(λ

k
ij − θkij) + c2r

k
2i(λ

k
gj − θkij)

θk+1
ij = θkij + ∆θk+1

ij , (i = 1, 2, ..., N ; j = 1, 2, ..., S)

xkij =
1

2

[
(xmax − xmin)sin

(
θkij

)
+ xmax + xmin

]
,

(4)

where θij ∈ [−π/2, π/2] and ∆θij ∈ [−π/2, π/2] are
respectively the phase angle and phase angle increment of
the ith particle at iteration j in the searching space; λg =
[λg1, λg2, ..., λgS ] and λi = [λi1, λi2, ..., λiS ] are respectively
the global and personal best positions; N is the swarm size;
S is the searching space dimension; w is the inertial weight;
r1i and r2i are pseudorandom scalars; c1 and c2 are the
gain coefficients; xmax and xmin are the upper and lower
restrictions of the search space; and subscript k is the iteration
index.

In Eq. (4), it can be seen that a solution of a particle covers
three alternative options: to track its private trajectory ∆θi,
to follow its best prior position λi, or to move toward the
global best position λg . The correlation among them depends
on coefficients w, c1 and c2. The values of λi and λg are
evaluated based on the cost function in the following form:

JF (TF ) =

3∑
m=1

βmJm(TF ), (5)

where TF is the formation path; βm is the weighting factor
indicating the corresponding threat intensity; and Jm(TF ),
m = 1, 2, 3, are the costs associated with the path length,
collision violation and flying altitude, respectively. The cost
function (5) is formulated from evaluating the length and
violation cost of the path. The former helps to minimize the
total travelling distance of the path whereas the latter is to
avoid inter-UAV collisions and to avoid collisions of UAVs
with static obstacles as identified by the Mission Planner
incorporating a satellite map. It is noted that only static and
known position obstacles are considered in this work. External
dynamic obstacles can be avoided by using additional sensors
such as ultrasonic sensors or Lidars with an extended path
planning module. This topic is however beyond the scope of
our paper. In operation, the UAVs need to maintain certain
distances to the surface as described in (2). Thus, the constraint
in flying attitude is also added to the multi-objective cost
function (5).

2) UAV Formation: From the reference path generated by
the proposed θ-PSO algorithm for the formation centroid, it is
necessary to produce a specific path for each UAV to maintain
the shape of the formation during the flight. Those paths can
be computed from the formation centroid path and the desired
relative distances among the UAVs.

Figure 3 shows the inertial and formation frames that
represent a triangular UAV formation used in this study. All
measurements are referred to the inertial frame O with axes
xO, yO and zO. Positions of UAVn, n = 1, 2, 3, in the inertial
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frame are denoted as Pn = {xn, yn, zn}. The formation frame,
{xF , yF , zF }, is defined such that the origin PF is coincident
with the centroid of the triangle. This allows to determine the
centroid of the formation from the fixed inertial frame as:

PF =
1

3

3∑
i=n

Pn. (6)

The rotation matrix which represents the relation between
the formation and inertial frames is given by:

ROF =

 cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 , (7)

where sx = sin(x), cx = cos(x), and φ, θ and ψ are Euler
angles of the shape.

Let Pn = [xn, yn, zn]T and Pn,d = [xn,d, yn,d, zn,d]
T be

respectively the actual and desired position for each UAV
during the flight, in which Pn can be obtained from GPS data
of the UAV. The relative position errors of the nth UAV during
the flight in the inertial frame are then defined as: en,x

en,y
en,z

 =

 xn,d − xn
yn,d − yn
zn,d − zn

 . (8)

By using the rotation matrix in (7), where RFO(t) = R−1OF (t),
the errors in (8) can be converted from the inertial into
formation frame as: eFn,x

eFn,y
eFn,z

 = RFO(t)

 en,x
en,y
en,z

 . (9)

The customized path for each UAV can then be represented
in terms of trajectory control command as:

TFn = TF + ∆Tn, (10)

where ∆Tn is the required trajectory change for the n-th
UAV to deviate from the formation centroid. This difference
is calculated based on the desired relative distances among
the UAVs and the relative position errors in (9), ∆Tn =
[eFn,x, e

F
n,y, e

F
n,z]

T . The output TFn will be fed to low-level
controllers of UAVs for trajectory tracking.

C. Low-level control
The aim of low-level control is to derive the control laws

that apply to each UAV’s actuators to reach the desired position
and attitude. They are derived from the mathematical model
of the quadcopter with two main frames, i.e., the inertial
frame (xE , yE , zE) and the body frame (xB , yB , zB). The
translational motion of the quadcopter in the inertial frame
is determined by its position, ξ = (x, y, z)T , and velocity,
ξ̇ = (ẋ, ẏ, ż)T . The UAV attitude is described by Euler angles
Θ = (φ, θ, ψ)T with the corresponding roll, pitch, and yaw
rates Θ̇ = (φ̇, θ̇, ψ̇)T . Let ω = [p, q, r]T be the angular rate of
the quadcopter in the inertial frame, i.e.,

ω =

 1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 Θ̇. (11)

The transformation from the body to earth frames is then
determined by the same rotation matrix as in (7).

In this study, the position of the UAVs is controlled by
the built-in PID controller of the flight controller whereas the
attitude is governed by the adaptive twisting sliding mode
control. Therefore, only torque components for orientation
of the UAV are considered, with the control input being
τ = u = [uφ, uθ, uψ]T , where uφ, uθ and uψ respectively
represent the roll, pitch and yaw components of the thrust
torque τ .

The quadcopter dynamics can then be described as follows:{
Ẋ1 = X2

Ẋ2 = I−1
[
f(X) + u+ d

]
,

(12)

where X1 = Θ, X2 = Θ̇, X = [X1, X2]T is the state vector,
d = [dφ, dθ, dψ]T is the disturbance vector, and f(X) is the
vector function of the quadcopter moments of inertia Ixx, Iyy ,
Izz of the intertia matrix I , and angular rates in the inertial
frame [29]:

f(X) =

 (Iyy − Izz)qr
(Izz − Ixx)pr
(Ixx − Iyy)pq

 . (13)

Of interest at the low level for UAV attitude control are
techniques for improving robustness against nonlinearities,
uncertainties, and external disturbances. By following the
sliding mode control methodology, known to possess highly
robust performance, the proposed controller has the form:

u(t) = ueq(t) + uT (t), (14)

where ueq(t) = (ueq,i)
T and uT (t) = (uT,i)

T , i = 1, 2, 3,
are respectively the equivalent control and the discontinuous
part containing switching elements as per desired Euler angle
references X1d = {φd, θd, ψd}T . The sliding function is
chosen as:

σ = ė + Λe, (15)

where Λ = diag(λφ, λθ, λψ) is a positive definite matrix to be
selected, and e is the control error, e = X1 −X1d.

The equivalent control ueq is obtained at no disturbance by
driving σ̇ to zero, as follows:

ueq = I
(
Ẍ1d − Λė

)
− f(X). (16)
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Motivated by [30], the discontinuous control here is the
twisting controller, uT,i, i = 1, 2, 3, of the form:

uT,i =

{
−µiαisign(σi) if σiσ̇i ≤ 0

−αisign(σi) if σiσ̇i > 0,
(17)

where µi < 1 is a fixed positive number and αi > 0 is the
control gain. By considering the one-stage accelerated twisting
algorithm [31] and the adaptive sliding mode control tech-
niques [32] for improving the control transient and tracking
performance, the gain αi in (17) is further adjusted by the
adaptation law:

α̇i =

{
ω̄i
∣∣σi(ω, t)∣∣ sign(|σi(ω, t)|ρi − εi) if αi > αm,i

ηi if αi ≤ αm,i,
(18)

where ω̄i, εi and ηi are positive constants and αm,i is a
sufficiently large threshold for adaptation. By assuming the
external disturbance d to be bounded, the convergence of the
system under the proposed adaptive twisting sliding mode
(ATSM) control is obtained in [33].

D. Path planning and formation control implementation

First, the operation space of UAVs is selected according to
the infrastructure surface to be inspected. This can be done
by using a navigation map with satellite images and a ground
control software called “Mission Planner”. The software is
used to collect initial information about the surface of interest
and its surrounding environment based on Google satellite
maps (GST). For illustration, Fig. 4 shows the map of a
monorail bridge as a testbed subject to inspection loaded
by Mission Planner. Correspondingly, the inspection areas,
waypoints together with obstacles are identified providing
parameters for the cost function and constraints to be defined
as in (5). Then, the θ-PSO algorithm, with the pseudo-code
presented in Fig.5, is run to obtain the desired path. The path
is then uploaded to the UAVs by using Mission Planner for
the autonomous flight.

Given the reference path, the formation flight starts with
an initialisation phase in which each UAV needs to reach
its desired initial position from an arbitrary location without
collision. After that, the low-level control is applied to UAVs

/* Preparation: */
1 Determine the inspection surface;
2 Identify the upper and lower boundaries of the working space, start

and target positions of the swarm;
3 Identify obstacles in the working space, check and adjust obstacles’

parameters if needed ;
4 Group all the above data and save in a common file (init file);
/* Initialization: */

5 Initialize the working environment by loading the init file to global
memory;

6 Initialize the θ-PSO parameters, i.e., w, swarm population, and
swarm iteration and generate a random path to connect the start
and the target points;

7 Set the range of constraints for each particle’s phase angle and
angular increment in [-π/2, π/2];

/* θ-PSO: */
8 foreach i < (swarm iteration) do
9 foreach j < (swarm population) do

10 Calculate new phase angle increment value in the range of
limitation; /* using 1st equation in (4) */

11 Calculate new phase angle value in the range of limitation;
/* using 2nd equation in (4) */

12 Calculate new position; /* using 3rd equation in
(4) */

13 Check V iolation cost;
14 Evaluate each path based on the Best Costs and V iolation

cost;
15 Update each particle personal best and the global best

positions;
16 end
17 Update global best and V iolation costs;
18 end
19 Save global best and V iolation cost;

/* Path generation: */
20 Final path is chosen as the maximum number of iterations is reached;
21 Generate individual paths for UAVs using (IV-B2);

Fig. 5: Pseudo-code for path generation process

based on (10) to maintain the shape. During the flight, on-
board computers calculate the inverse kinematics, obtain posi-
tion errors with respect to their neighbours and the formation
centroid, and then drive these errors to zero with the tracking
control.

V. SURFACE INSPECTION

For defect detection, images of the inspected surface taken
by UAVs are sent to RCU. Due to a large amount of data to be
processed in real time, a fast yet effective image processing
algorithm is required. Choosing a particular color space in
color image segmentation is largely application dependent
[34]. Here, for the sake of camera-based inspection, a surface
patch quite often has typically similar or repeated background
patterns. Therefore, processing color images may not be as
effective as processing grey scale images for the purpose of
detecting potential defects, which are defined as abnormal
changes in the gray level of pixels. Histogram-based tech-
niques for conversion from 3×2D of RGB images into 1D
thus can be used to speed up the calculation. Since existing
methods such as the global thresholding (Otsu) [35], valley
emphasis (VE) [36], adaptive thresholding (Sauvola) [37],
iterative analysis (ITTH) [38] and slope difference distribution
(SDD) [39] do not yield satisfactory results if required a
higher sensitivity to identify a relatively small number of
pixels indicating defects, we seek a new algorithm with an
optimal threshold to separate defects from the background.

The proposed algorithm, called iterative thresholding (IT)
is illustrated in Fig.6. It begins with the determination of a
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Fig. 6: Flowchart of the defect detection algorithm

threshold value, T ∗, similar to the Otsu threshold that can
maximize the variance between two classes in the histogram.
Given a threshold T , the variance σ2(T ) is calculated as:

σ2(T ) = ω0(T )ω1(T )(ε0(T )− ε1(T ))2, (19)

where ω0(T ) and ω1(T ) are the weight of foreground and
background pixels in the whole image, and ε0(T ) and ε1(T )
are the expectations of the foreground and background inten-
sity:

ω0(T ) =

∑T
x=0 y(x)∑255
x=0 y(x)

, (20)

ω1(T ) =

∑255
x=T+1 y(x)∑255
x=0 y(x)

, (21)

ε0(T ) =

T∑
x=0

xy(x), (22)

ε1(T ) =

255∑
x=T+1

xy(x). (23)

The threshold T ∗ is then given by:

T ∗ = argmax
T∈(0,255)

σ2(T ). (24)

T ∗ will evenly segment the input image into the dark and
bright regions. Without loss of generality, assume that the
defect lies in the dark region, our algorithm then continues
with an iterative process applying on the dark region.

At iteration k, the threshold T ∗k in (24) will segment the
dark region RDk−1 into two new regions RDk and RBk so that:

RDk−1 = RDk ∪RBk , (25)

where RBk is the bright region to be treated as the background.
To detect defects through the iteration, we use the concept of
interclass contrast, a measure for evaluating the segmentation
quality, assuming an average intensity for all pixels inside a
class [40]. For region RDk−1, the interclass contrast CDk is
calculated as:

CDk =
| µDk − µBk |
µDk + µBk

, (26)

where µDk and µBk are the intensity means of RDk and RBk ,
respectively. As the number of pixels in the thresholding region

decreases after each iteration, the denominator in (26) will
decrease leading to the increase of CDk . A large value of
CDk thus indicates a sharp difference in the intensity between
the segmenting classes, which implies the existence of defect-
like objects. Let Cs be the threshold for that occurrence, the
pseudo-code of our algorithm is then presented as in Fig. 7.

Input : RD
0 : histogram of the input image

Output: Tf : final threshold to segment defect from the input image
1 k ← 0
2 repeat
3 k ++
4 T ∗

k ← F (RD
k−1) ; // Compute threshold by (24)

5 RD
k ← RD

k−1(R
D
k−1 < T ∗

k ) ; // Define the region of
interest

6 RB
k ← RD

k−1(T
B
k <= RB

k−1 < T ∗
k−1) ; // Set

background region
7 µDk ← Average(RD

k ), µBk ← Average(RB
k ); // Compute

intensity mean
8 CD

k ← | µ
D
k − µ

B
k |/µ

D
k + µBk ; // Compute interclass

contrast
9 until (CD

k > Cs);
10 Tf ← T ∗

k

Fig. 7: Pseudo code for defect detection

VI. RESULTS

The performance of our proposed system has been evaluated
in a number of surface inspection tasks. This section describes
the system testbed and experimental results.

A. Experimental setup

The UAVs used in this study is the 3DR Solo drone shown
in Fig. 8. It has three processors, two are Cortex M4 168 MHz
running Pixhawk firmware for low-level control and the other
is an ARM Cortex A9 running Linux operating system for data
processing and high-level control. The UAV is retrofitted with
an RTK compatible GPS receiver, an IoT board, a detachable
antenna, a camera, a 3D gimbal and other sensors for data
acquisition.

The camera used is a Hero 4 Black with the focal length of
34.4 mm, resolution of 12 megapixels, and wireless network

Fig. 8: The 3DR Solo testbed
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Fig. 9: Convergence comparison between conventional PSO
and θ-PSO

capability. It is attached to a three-axis gimbal with one degree
of freedom for controlling its elevation (pitch) angle. The
photos taken by this camera will be streamed to RCU. The
IoT board named Arduino-yun is attached to the accessory
port of the drone and interfaced with the embedded Linux
operating system via USB protocol. A 6 dBi Ralink RT5370
detachable antenna is attached to the IoT board to extend the
wireless communication range. The gateway router is a TP-
Link wireless N 4G LTE router that has a SIM card slot to
use mobile broadband networks. The RTK compatible GPS
receiver is based on the u-blox NEO-M8P-2-10 module. It
periodically updates correction data from the base GPS station
to improve positioning precision.

The task assigned in experiments is to inspect a
monorail bridge using three UAVs. The operation space
is of dimension 141 m × 101 m × 40 m equiva-
lent to GST coordinates {−33.87601, 151.191182, 0} and
{−33.875086, 151.192676, 40}, as illustrated in Fig. 4. The
initial and final positions of the formation centroid (6) are
Pi = {40.0, 8.0, 30} and Pf = {64, 108, 34}, respectively.
Therein, ten obstacles are identified, each with a different
radius.

In our path planning algorithm, the number of particles,
waypoints, and iterations are respectively selected as 150, 10,
and 300. Parameters of the three quadcopters with respect to
the centroid are ∆T1 = (0, 0, 2) m, ∆T2 = (3, 0,−1) m and
∆T3 = (−3, 0,−1) m.

TABLE I: Performance comparison between GA, TLBO, PSO
and θ-PSO

Algorithm Initial cost Min cost Iterations
GA 142.91 114.17 147

TLBO 142.84 113.80 84
PSO 143.00 112.43 102
θ-PSO 142.84 111.02 68

B. High-level control results
The path planning and formation results are presented in

this subsection to illustrate the generation of collision-free
paths for the three UAVs with sufficiently fast convergence
using the proposed algorithm. For this, let us first compare the
performance of the proposed θ-PSO with a conventional PSO
algorithm and two other bio-inspired algorithms, Genetic Al-
gorithm (GA) [41] and Teaching-Learning-Based Optimization

(a) Triangular UAV formation

(b) Planned path (yellow) and flown path (violet)

Fig. 10: Bridge inspection with UAV formation

(TLBO) [42]. Figure 9 shows the cost values over iterations,
wherein the θ-PSO algorithm exhibits a faster and more stable
conversion. The results are confirmed as recorded in Table I
showing the cost values and convergence iterations.

Field tests were conducted with the triangular formation
automatically navigating along the inspected surface, as de-
picted in Fig. 10. The 3D trajectories generated from the
formation centroid path are shown in Fig. 11, illustrating the
three UAVs in taking off, reaching to their individual altitude
set-point, descending and finally arriving their target position
at almost the same interval while also maintaining the desired
triangular shape. This result can be further verified via the
altitude time responses of the three UAVs as recorded in Fig.
12. It is clear that the UAVs are capable of avoiding obstacles
and preserving the desired formation configuration during the
inspection task. For further evaluation, Fig. 13 shows the
error between the planned and flying paths to indicate the
feasibility and reasonable smoothness of the generated path
for the deployment of UAV formation.

C. Low-level control results

Control performance of the controller can be judged under
disturbances and parametric variations. In our experiments, the
UAV was initially staying at the steady state in the air, where
all angles and angular velocities are zeros. To test with the real
inspection situation, it some sudden and significant changes in
reference values are applied as φ = −10◦, θ = 10◦ and ψ =
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Fig. 11: Trajectories of three UAVs tracking the planned paths  

 
Fig. 12: Altitudes of the three UAVs in the formation test

45◦ at time 0.5 s, 1 s and 2 s, respectively. Simulation results
in Fig. 14 illustrate that ATSM effectively rejects disturbances
by driving the three angles to their reference values within 2
seconds. Further comparison and evaluation can be found in
[33].

D. Surface inspection results

The effectiveness of our proposed defect detection algorithm
has been tested on images taken by the camera mounted
on UAVs. The results are compared with other methods
including Otsu, VE, ITTH, Sauvola and SDD as shown in
Figs. 15 and 16 for various surface defects. The input images
were taken at different light conditions with various levels
of background complexity, i.e., uniform background (Image 1
and 2), patterned background (Image 3), noisy to very noisy
background (Image 4 - 10). It can be seen that our algorithm
outperforms other methods in all test cases regardless of
background complexity or image contrast. Specifically, Otsu

Fig. 13: Errors between the planned and flown paths

 

Fig. 14: Angular velocity and angle responses in the presence
of disturbances

and ITTH return a high level of noise on all test images except
Image 1 where the contrast is high and the background is
uniform. Sauvola and VE return a proper segmentation on
Images 1-3 where the contrast between the object and the
background is rather large, but fail to extract cracks on other
images. Similarly, SDD could not detect defects in Images 5-8
as it treats bigger classes more favorably.

The comparison results can be quantitatively evaluated via
the F -measure, a compromise between recall and precision
[43]. Let tp and tn be the correctly reported positive and neg-
ative results, whereas fp and fn be the falsely reported positive
and negative results. The F -measure for binary classification
is calculated as:

F =
2pr

p+ r
, (27)

where p and r denote the precision and recall measures defined
respectively as:

p =
tp

tp + fp
, (28)

r =
tp

tp + fn
. (29)

Table II reports the F values obtained for each method which
clearly shows the superiority of our proposed algorithm.

We also evaluated the processing time executed by using
MATLAB R2018b on an Intel(R) Core(TM) i5-5300U CPU
@2.30 GHz with 64 bit Windows 7. The average processing
time is 50 ms per image or 20 frames per second which is
sufficient for real-time inspection.

VII. CONCLUSION

In this paper, we have presented a system architecture for
surface inspection in real time using multiple UAVs. The
system features a new communication platform based on the
Internet of Things which can exploit processing capabilities
of RCU and reduce communication distance burdens. Here, a
multi-layer paradigm has been introduced to integrate various
modules of a complicated system to fulfil a common inspection
task with UAVs following a predefined geometrical shape.
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Image 1

Image 2

Image 3

Image 4

Image 5

Fig. 15: Defect detection results. First row: image name, original image, ground truth, our result, Sauvola; second row: detection
respectively by Otsu, VE, ITTH and SDD.



11

Image 6

Image 7

Image 8

Image 9

Fig. 16: Defect detection results. First row: image name, original image, ground truth, our result, Sauvola; second row: detection
respectively by Otsu, VE, ITTH and SDD.

TABLE II: Comparison in defect detection between the proposed method and Sauvola, Otsu, VE, ITTH and SDD methods

Image Our method Sauvola Otsu VE ITTH SDD

Image 1 0.9889 0.9163 0.8800 0.9206 0.9416 0.6881
Image 2 0.9774 0.9743 0.5101 0.9736 0.5112 0.7626
Image 3 0.9818 0.9547 0.5083 0.9818 0.5076 0.8534
Image 4 0.9542 0.6251 0.5141 0.5203 0.5147 0.6974
Image 5 0.9451 0.5239 0.5071 0.5119 0.5069 0.4965
Image 6 0.9140 0.8256 0.5183 0.8774 0.5208 0.5198
Image 7 0.8693 0.6776 0.5117 0.6371 0.5125 0.5017
Image 8 0.8685 0.7333 0.5214 0.6809 0.5244 0.5029
Image 9 0.8474 0.7876 0.5197 0.8367 0.5208 0.5730
Image 10 0.7537 0.6893 0.5179 0.7362 0.5222 0.5706
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The coordination among UAVs is then carried out via a novel
formation algorithm based on the angle-encoded PSO that can
create optimal flying paths subject to constraints of the surface
to be inspected and collision avoidance. Finally, a histogram-
based segmentation algorithm has been developed for online
detection of potential defects with high accuracy. A number
of experiments have been conducted with real-world defects
detected from the data acquired by a triangular formation of
UAVs. Comparisons and discussions have been also presented
to evaluate the performance of the proposed system.
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