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Data Driven Vulnerability Exploration
for Design Phase System Analysis

Georgios Bakirtzis, Brandon J. Simon, Aidan G. Collins, Cody H. Fleming, and Carl R. Elks

Abstract—Applying security as a lifecycle practice is becoming
increasingly important to combat targeted attacks in safety-
critical systems. Among others there are two significant challenges
in this area: (1) the need for models that can characterize
a realistic system in the absence of an implementation and
(2) an automated way to associate attack vector information;
that is, historical data, to such system models. We propose
the cybersecurity body of knowledge (CYBOK), which takes in
sufficiently characteristic models of systems and acts as a search
engine for potential attack vectors. CYBOK is fundamentally
an algorithmic approach to vulnerability exploration, which is
a significant extension to the body of knowledge it builds upon.
By using CYBOK, security analysts and system designers can
work together to assess the overall security posture of systems
early in their lifecycle, during major design decisions and before
final product designs. Consequently, assisting in applying security
earlier and throughout the systems lifecycle.

Index Terms—Cyber-physical systems, security, safety, model-
based engineering.

I. INTRODUCTION

It has been estimated that 70% of security flaws are intro-
duced prior to coding, most of which are due to the traditional
practice of application developers sharing and reusing third
party, legacy software—that is assumed to be reasonably
secure and trustworthy. These flaws usually end up in the
application software and not, as might be expected, in network-
based software [1, 2, 3]. Most security flaws are introduced as
early design or development decisions.

Both the academic and practicing cybersecurity community
agree that security engineering and analysis as a full life-
cycle practice, especially early in the design process allows
better awareness and leverage at managing the challenges sur-
rounding the unintentional introduction of security flaws into
complex systems. This is especially important in the domain
of cyber-physical systems (CPS), where the exploitation of
software flaws and hardware weaknesses—introduced by either
importing software of unknown pedigree, incomplete security
specifications, or general unawareness of security characteris-
tics of given software, firmware, and/or hardware—can lead to
unforeseen physical behaviors that have consequences in terms
of safety, loss of vital service, and other societal impacts.

As modern CPS evolve into tightly integrated, extensible,
and networked entities, we significantly increase the attack
surface of these systems. CPS now routinely employ a wide
variety of networks, for example, cloud, mobile services,
industrial, internet of things to realize a range of applications
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from real time data analytics to autonomous vehicles control.
The use of extensible operating systems and software to update
code through loadable device drivers enhances productivity,
but it exposes the system to considerable risks from attack
injections.
With these insights and observations, we posit that secure

system design and deployment requires (1) planning for cyber-
security from the outset as a strategic lifecycle activity, and
(2) taking the attackers perspectives to best understand how to
defend a system from threats and exposing weaknesses before
they become vulnerabilities. To achieve this goal methods and
tools are needed to allow security assessment throughout the
systems lifecycle and especially at the concept development
phase, where decision effectiveness is highest [4, 5].
In recent years, a promising and rapidly growing approach to

enhancing awareness and managing challenges of cybersecu-
rity flaws in evolving complex CPS is model-based engineer-
ing [6]. Model-based analysis is firmly entrenched in safety,
dependability, and reliability engineering world as evidenced
by such standards as IEC 61508 and ISO 26262, however
model-based engineering is a late comer to security [7].
Models are generally treated as living documents maintained

to reflect design choices and system revisions. These models
can be a valuable resource for the security specialist by
providing what IT professionals consider the “what’s”; that
is, the rationale behind design choices and not simply the
resulting architecture of a system [8].
An additional benefit of model-based security is it tends to

look at security from a strategic point of view, which means
it attempts to secure a system based on its expected service.
Rather than beginning with tactical questions of how to protect
a system against attacks, a strategic approach begins with
questions about what essential services and functions must be
secured against disruptions and what represents unacceptable
losses. This is critical for CPS where losses or disruptions to
service can have dire societal or safety impacts [9, 10].
However, one of the major impediments to effectively tran-

sition security assessment into the model-based engineering
realm has been associating system models to applicable attack
vectors. These models reside in a higher-level of abstraction
than what is typically present in cybersecurity analysis. Our
aim is to use the model to drive the attack vector analysis in
the design phase. There are two things necessary to achieve
this congruence: (1) understand the data available to security
researchers and decide on which of those can inform early on
and (2) capture lower-level information in the model, such that
it can be used to associate the available data with the model.
Such an approach bridges the gap between existing curated
attack vector information and models of systems. Indeed,
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Fig. 1. CYBOK depends upon stakeholder requirements and expert input to construct the initial design solution. Then, extra design information is added by a
system designer. CYBOK takes as input the graph representation of that design and descriptions of attack vectors to produce all applicable attacks throughout
the topology of the system, the attack surface of the system, and the exploit chains traversing the system topology.

this paper presents one answer to examining cybersecurity
concerns in the model-based engineering setting.

Towards this goal we have previously [11] presented a CPS
model that includes a schema with extra design information
to manually associate attack vector data describing attack
patterns, weaknesses, and vulnerabilities. The previous work
proposed just a model, not an algorithmic solution to the
vulnerability exploration problem. To explore the large amount
of data compiled by security professionals, it is helpful to
associate attack vectors algorithmically. This is precisely the
topic of this paper.

Contributions. The contributions of this work are:
∙ an algorithmic implementation, called cybersecurity body
of knowledge (CYBOK), that accepts as input such mod-
els and produces:
– a component-wise attack vector analysis using attack

vector data,
– a notion of attack surface, which only depends on the

model, and
– all exploit chains applicable to subsystems of the

system model and
∙ a demonstration of the method on an unmanned aerial
system (UAS).

II. MODEL-BASED SECURITY ANALYSIS

Model-based security analysis is a relatively new field that
attempts—as the name implies—to understand system threats
through the use of models. In this paradigm, models are used
either as an augmentation to other security strategies during
deployment or as evidence to support design decisions early
in the systems lifecycle. However, most current models are
probabilistic in nature and, therefore, require a ground truth.
These models also heavily depend on the modelers expertise
and experience. Any such model captures exactly that expertise
such that it is communicated to other stakeholders. To our
knowledge, models used at the design phase have not achieved
fidelity with security data collected and otherwise used in
already realized systems, which would consist of an impor-
tant addition to defending against increasingly sophisticated
threats.

But why is that? To understand the difficulty of find-
ing vulnerabilities in system models—instead of a deployed
product—it is important to first define the difference between
bugs, vulnerabilities, and exploits. Successful exploits take

advantage of flaws (either serious design flaws or unexpected
system behavior that is implementation specific). These flaws
in the system are called bugs. However, not all bugs are vul-
nerabilities. Only a subset of bugs that can lead to exploitation
are vulnerabilities. This notion leads to the first problem that
is addressed in this paper.

Problem 1. Vulnerabilities are explicitly found at the level of
code or hardware. However, to address system security early
in the design cycle, there need to be methods that can identify
potential vulnerabilities before code development.

To bridge the gap between models and realized solutions
requires constructing an initial design of the system. This
design needs to include both the what’s, the components of the
system, for example GPS, and the how’s; that is a particular
hardware, firmware, and software solution that implements
some desired function. Additionally, any such model needs
to include the interaction between components as is defined
by their communication and data transfer.
One way to fulfill those requirements is to model CPS as a

graph of assets but with added information in the form of de-
scriptive keywords. This is a reasonable and appropriate model
as it pertains to security analysis. Attackers typically think in
terms of graphs, through a series of increasing violations based
on concepts of connectivity, reachability, and dependence, not
in lists of assets as—most commonly—defenders do [12].
In addition, this model must include extra information in

the form of keywords that augment the model, resulting
in a system model that captures the choices a designer is
considering about hardware, firmware, and software. These
augmentations can be done without overly specific details
about its final implementation. This is a key feature that
reflects how designs evolve in the construction of a system,
where choices of specific hardware and software are done early
in the development cycle. Furthermore, the ease of changing
those keywords to describe a functionally equivalent system
allows for modeling flexibility that is not available after code
has been written and designs are finalized.
Formally, an architectural model of a CPS can be captured

in a graph, Σ ≜ ( ,  ,), where,

 ≜ {v ∣ v = a system asset} ,

 ≜
{

e ∣ e = (vi, vj); vi, vj ∈  dependent assets
}

, and
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 ≜
{

d ∣ d =
(

w1, w2,… , wn
)

descriptive keywords
}

.

In order to extract and use the descriptive information; that
is, the extra keywords, from a given vertex or edge, we define
the descriptor function, desc ∶  ∪  → .
The above definitions lead to the first practical challenge,

which is to determine if a model is sufficient for security
assessment (Fig. 2). It is important at these early design
stages for a system model to sufficiently describe functionally
complete system—by adding hardware and software informa-
tion that, if put together, implements the desired functional
behaviors expected from the system.

Any model used for security analysis contains two main
challenges. The first challenge, is the amount of data associated
with the model. When using a realized system it is possible
to mine all possible configuration settings including software
and firmware versions. In the absence of the implementation
such information can still be reflected in a modeling setting
but it requires significant modeling cost in terms of time
and expertise. It can also be less informative at the design
phase than a more general model because a slight change in
versioning will hide a class of weaknesses and vulnerabilities.
The second challenge, is the level of abstraction the model
resides in. No model is a direct reflection of a realized system
but any model needs to be specific enough to be informative.
This is a difficult task and largely depends on the given
abstraction set overall by the modeling process as well as the
expertise of the modeller.

These are precisely the challenges that the added keywords
address. By changing the specificity and amount of keywords,
we change the overall fidelity of the system model, Σ. It
is through that extra design information that our solution,
CYBOK, is able to take the graph of a system model and map
applicable attacks from security databases (Fig 1). While there
may be a number of different criteria for selection, in previous
work we have found that the extra design information can be
categorized through the following practical schema: operating
system, device name, communication, hardware, firmware,
software, and entry points [11]. Each of the categories is
expected to contain a string of keywords, d ∈  that
collectively describe a given system solution. A given category
can also duplicate the descriptive keywords present in another
category or simply contain the null set, ∅.

The fidelity of the model is still based on the choices of the
modeller. On the one side of the model sufficiency spectrum
there are designs that are too general and do not contain
information about the system that would aid in determining
security posture. On the other side of the spectrum there are
designs that are too specific, to the extent that the effort to
create and potentially modify is equivalent to constructing an
actual implementation of the system and its functionality. Such
systems are complete but impractical. There is a spot in the
middle of the spectrum, where the information contained in
the model can provide a reasonable idea about the system’s
threat space without being so detailed it is inflexible and costly
to construct and maintain throughout its lifecycle.

A perhaps less obvious but equally important challenge
refers to the information necessary to associate the model, Σ,
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Fig. 2. The fidelity of the attributes describing a CPS has to associate to the
attack vector information (reproduced from Bakirtzis et al. [11]).

to potential attack vectors.

Problem 2. How can we associate vulnerability, weakness,
and attack pattern information that is intended to be used by
security analysts to a model?

This problem is difficult because of the way security experts
record vulnerabilities. While several attempts have been made
to standardize the form of an attack vector entry, the current
situation is such that the different databases are based on
a different schema, because they rely on the deduction and
inference capabilities of a human. This means there is no
straightforward approach to feeding that data into a machine
to automatically find those mapping.
Our solution is based on the set of descriptors, , present

in the model and using standard practices from natural lan-
guage processing to deconstruct and associate the contents of
an attack vector entry—in the form of text—to the models
keywords, d ∈ . This requires a separate set of attack vector
entries,  ≜ {av ∣ av = a set of stemmed words}. There-
fore, the fundamental problem that CYBOK attempts to solve
is then formalized as the function, associate ∶ desc →  .
By doing so, the problem is reduced to associating keywords

describing the system (which exist within the model) to
stemmed words describing attack vector information (which
are constructed using the contents of the database entries and
natural language processing).
Applying security consideration to model-based engineering

is difficult for several reasons. Three of the most important
difficulties are: the curation of information (both from the
model and the attack vector databases), the intuition surround-
ing the fidelity of the system model, and the development of an
algorithmic approach that allows for filtering through a large
number of attack vectors produced at the design phase.
Finding attack vectors for individual vertices or edges
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overcomes these challenges. However, it can be daunting to
see the big picture when confronted with such a larger amount
of data. Security professionals frequently use complimentary
metrics to understand the overall security posture of a given
system.

Two such useful metrics for security analysis are:
1) The attack surface captures all the entry points into a

given system [13].
2) The potential for further spread; that is, further viola-

tions, after an element of the attack surface has been
compromised, known as an exploit chain.

Proposed Solution. In general, CYBOK is an algorithmic
solution that takes as input a sufficient system model (of Σ
form) to associate to the body of knowledge of attack vectors
(of  form). By knowing the associated attack vectors it
then produces security metrics only based on the model; that
is, the attack surface of the system model and the exploit
chains for a particular element of the model.

Intrinsic Limitations. Model-based security analysis is
grounded on early design information. This early design in-
formation is usually incomplete and abstracted with respect to
the final design solution. This leads to result spaces; that is, as-
sociated attack vectors, that are significantly larger than when
analyzing a realized system. Navigating through the results can
be challenging for systems engineers that are not familiar with
security practices. Our aim is to provide a framework in which
security analysts and systems engineers work synergistically to
understand both necessary design decisions (that might affect
potential security mitigations) and security considerations (that
might affect the design of the system).

An additional limitation is the fidelity of the model. The
model can only be as good as the person who is modeling the
system. Therefore, a poorly constructed model might mislead
instead of providing insight into the security posture of the
system.

III. SYSTEM MODEL

To address the challenges in the previous section and con-
struct a sufficient model with respect to vulnerability analysis,
first we must elicit information from the stakeholders. The
stakeholders of the system include the owners of the eventual
system, the system designers, the safety engineers, and the
security analysts. While it is outside the scope of this paper
to address the systematic process in which such information
is elicited (see Carter et al. [14] for further details on the
topic), it is important to place CYBOK within its larger
framework. Without this framework it would not be possible
to have complete or correct information to apply vulnerability
exploration this early in the system’s lifecycle. Based on this
elicitation, an initial design solution is modeled in the systems
modeling language (SysML).

SysML uses visual representations to capture the system
design process through objects. The main benefit of SysML
is that it presents the same information in different views,
which allows the same system to be modeled based on its

requirements (through the requirements diagram), through
its behavior (through, for example, the activity and/or state
machine diagrams), and/or through its architecture (through
block definition diagram (BDD) and/or internal block diagram
(IBD)).
To model CPS architectures in SysML the system structure

is captured as a set of BDD and IBD. The BDD view of
the system shows the composition of the system. The IBD
view refines those compositions to interconnections within the
system and how those interconnections compose the system
behavior.
However, each element of the system model is described by

a standardized schema as presented by Bakirtzis et al. [11]. It
is, therefore, not necessary to capture this model in SysML.
This model is flexible to design changes and has supported
vulnerability analysis in a manual setting. In this work we use
the modeling methodology to support automated vulnerability
analysis.
Security specialists usually construct the following informa-

tion implicitly through expertise. To automate this task this
implicit information needs to be captured explicitly in the
model. This information will also assist in constructing a living
document describing the what’s of those choices. To recap, the
schema is composed by the following categories that describe
each system element:
∙ operating system,
∙ device name,
∙ communication,
∙ hardware,
∙ firmware,
∙ software, and
∙ entry points.
It is through that extra design information—gathered

by eliciting stakeholder information and inspecting design
documentation—that CYBOK is able to take the graph of
a system model and map potential attacks from databases
(Section IV). This is done by using the key terms presented in
the schema for each element and checking if they are present
in the documents composing the databases.
Reasoning in terms of the diagrams has several benefits

during the design process that hold for security analysis in
general (see Oates et al. [15]), which is the benefit of starting
with a SysML model instead of its graph representation. This
is less true for matching attack vectors to the model. The
exporting of models in a standardized format is, therefore,
beneficial. The translation of IBD diagrams into a graph is
encoded into GraphML—a simple XML format that is widely
used to import and export graph structures [16].
The two models—i.e., the visual representation in SysML

and the graph structure—-must be isomorphic. This means
that the transformation between the SysML model and the
GraphML representation must not change the model of the
system. To achieve an isomorphic transformation we apply a
model transformation on the IBD model. This transformation
produces a sufficient graph model for security analysis (Fig. 5
in Section VI-B).
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Property 1 (Model Transformation). An INTERNAL BLOCK
DIAGRAM is the graph I ≜ ( , ,), where  is the set
of vertices of I and  is the set of ports of I . Further,
 represents the assets of a cyber-physical system,  the
dependence between assets, and D the descriptors of each
asset. Therefore, the graph I is isomorphic to our system graph
Σ; that is to say I ≅ Σ.

This system model represented as a graph allows us to think
similarly to attackers and to construct connections that would
not be obvious if treated as simple decoupled components.
The graph of the system model assists with not only finding
vulnerable subsystems individually but also with finding the
attack surface of the system and composing exploit chains.
Exploit chains are a subset of attacks that could traverse though
the system model graph and elevate the impact to deteriorate
system behavior. All exploit chains start at elements of the
attack surface. The attack surface,  is composed by all
vertices that an attack from the databases is found to be
potentially applicable at the entry point description.

In particular the graph model allows us to define the attack
surface and exploit chains over the system model Σ in a
straightforward manner.

Definition 1 (Attack Surface). We define the attack surface
of a system model, Σ as  ⊆  , which is composed by all
vertices that can be entry points into the system and allow the
attacker to cause further spread within the system structure.

Definition 2 (Exploit Chain). To construct the exploit chain
we define a function, paths ∶  × t × Σ →  , where 
the sources of all paths and t a used specified target and  ,
the set of all simple paths from the source to the target over
Σ. Then to construct a single exploit chain, ec ∈ , the set
 is filtered by checking if every vertex and edge within each
individual path associates to some attack vector from  .

IV. ATTACK VECTOR DATASET

CYBOK is composed by several databases to address two
main challenges. The first challenge is finding applicable attack
vectors based on a system model. The second challenge is to
present a reasonable amount of data to the security analyst,
such that they can erect barriers or add resilience solutions
to strengthen the design of CPS using an evidence-based
approach.

To address these challenges, CYBOK incorporates three
collections curated by the MITRE corporation: CVE [17, 18],
CWE [19], and CAPEC [20]. CVE is the lowest level of attack
vector expression, defining tested and recorded vulnerabilities
on specific systems. CWE presents a hierarchy of known
system weaknesses at different levels of abstraction, from
which exploits can be derived. Finally, CAPEC provides a
high level view of attacks against systems at varying levels of
abstraction, in the form of a hierarchy organized by the goal or
mechanism of each attack. These three collections also include
relationships to one another (Fig. 3). Formally CAPEC, CWE,
and CVE construct the set of attack patterns, weaknesses, and
vulnerabilities A ×W × V ≅  .

PerspectiveAttacker System
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Fig. 3. The collection of the most common open attack vector datasets and
their interconnections in the sense of topical relationships with regard to
attacker and defender perspectives and level of specificity they contain about
platform information. Edges denote which datasets have explicit relationships
with one another. CYBOK only uses a subset of these databases marked by
a ◊.

Other known datasets include the MITRE Common Plat-
form Enumeration (CPE) [21] and the Exploit Database
(exploit-db) [22]. The former includes information that is
platform specific, including particular versions of software
that a particular exploit is associated with. The latter provides
samples of exploits for given CVE entries. The reasons for not
including these two datasets is because CPE requires knowing
the specific versions of software that are going to be on the
system—which are not known at design phase—and exploit-db
requires a realized system to test exploits against.
Using CVE entries has the benefit of finding additional

attack vectors because the specificity of their descriptions
may more closely associate to the descriptions in the model
than those of CAPEC and CWE. When CVEs are matched to
the system model, CYBOK uses that information to abstract
upwards towards the weaknesses and the attack patterns. This
is especially useful in the case where multiple CVE entries
are associated with a subsystem that has the same associated
weakness or attack pattern.
In general the CWE and CAPEC abstractions are more

useful to designers over CVE entries because CVEs are too
specific to be useful at the design phase. For example, being
aware of a vulnerability in a specific version of software is less
illuminating than knowing that a specific class of software
bugs might consist of a vulnerability in the implementation
of the system—and therefore can construct more concrete
requirements or define specific mitigations. On the other hand,
a number of applicable attack vectors from the model are
going to reside in CVE. At the same time, CVE contains a
significantly larger number of entries than both CAPEC and
CWE (∼100, 000 vs. ∼1500), meaning the addition of CVE
entries will explode the number of results for a given system
Σ. Therefore, all three are needed: CVE entries to be more
thorough and complete in analyzing the system model and
CAPEC, CWE to abstract to useful information to system
designers.
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Fig. 4. The architecture of CYBOK is modular, meaning that each of the
functions can be replaced without needing to interfere with other functions.

While the three selected collections are complete in relation
to the sufficient model, CVE is certainly not exhaustive.
There are certainly instances where companies or government
agencies curate more exhaustive databases from their non-
disclosed findings. In those cases, the design of CYBOK can
be extended to use the information contained in these private
databases.

V. ARCHITECTURE

The overall architecture of CYBOK is designed to be
modular and robust with respect to potential architectural
changes (Fig. 4). For example, the specific implementation
of searching can be changed without needing to change the
rest of the core tool functionality.

A. Data Extraction, Preprocessing, & Indexing
The first step to associating models to attack vector

databases is to extract and preprocess the information con-
tained in several individual databases. An automated mech-
anism for downloading the latest set of data is built into
CYBOK because of the CVE, CWE, and CAPEC update cycle.

Specifically, CAPEC is refactored and potentially updated
every six months to a year, CWE is extended every one month
to three months, and CVE adds new entries daily. By doing
automatic updates, the analyst is sure to have the latest set of
data that might inform about new system violations.

All database files are encoded in a standard xml file format.
The steps that follow after updating the data files include
preprocessing and constructing the search index to be used
to associate system models to attack vectors.

The preprocessing step extracts the name of the database,
the identification number, name of attack vector, associated
attack patterns (if any), associated weaknesses (if any), as-
sociated vulnerabilities (if any), and the contents; that is
the description, for each entry. These consist of the full
search index schema; that is, all the information necessary
to construct A ×W × V .

After preprocessing CYBOK keeps a persistent record of
all attack vectors,  , by constructing a search index through
the schema defined above. This allows for efficient information

retrieval of all attack vector information and avoids having to
rebuild  for each new search query.

B. System Models as Graphs
Graph structures provide an important view in a computing

system, and can extend the notion of violation to more than
just a singular view of components. Indeed, the violation of
a single component by an attacker might not be detrimental
to the systems expected service. However, this component
might be connected to other critical infrastructure. Therefore,
this singular component could be a point of lateral pivot for
an attacker. This in turn can cause significant malfunction
during operation with catastrophic consequences. This is how
attackers operate and, therefore, reasoning in graphs of assets
provides an attacker’s view to defenders. For this reason,
CYBOK views the system topology; that is, the design artifact,
as a graph.

C. Finding Applicable Attack Vectors from a System Model

Algorithm 1 Finding attack vectors
1: function ASSOCIATE(Σ, )
2:  ← []
3: for all desc(v) ∈ (Σ) ∧ desc(e) ∈ (Σ) do
4: for all d ∈  do
5: for all av ∈  do
6: if d ∈ av then
7: .append({v ∨ e, d, av})
8: return 

To find applicable attack vectors, CYBOK extracts the
descriptive keywords that define each vertex and edge. Then,
using the descriptive keywords of the system CYBOK looks at
all attack vector entries from  to associate the descriptive
keywords. A list of results is returned for the full system
model, Σ, including the vertex or edge the attack vector can
exploit, the descriptive keyword, wi, that produced the attack
vector, and the attack vector itself (Algorithm 1).
The search functionality of CYBOK currently uses a com-

pound word filter. Other candidates for applying the searching
include n-grams and Shingle filter.

D. Finding Attack Surface Elements

Algorithm 2 Finding attack surface elements
1: function ATTACKSURFACE(Σ, )
2:  ← []
3: for all entry_points(desc(v)) ∈ (Σ) do
4: if {v, d, _} ∈  then
5:  .append({v, d})
6: return 

CYBOK views the attack surface as any vertex that has
an associated attack vector specifically at the entry point. It
constructs this set by going through all vertices and checking
if a descriptive keyword, entry_points(wi), associatess to an
applicable attack vector (Algorithm 2).
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E. Finding Exploit Chains

Algorithm 3 Finding exploit chains
1: function EXPLOITCHAINS(Σ, ,  , t)
2:  ← []
3: for all as ∈  do
4: for all p ∈ paths(as, t,Σ) do
5: for all v ∈ p ∧ e ∈ p do
6: if {v ∨ e, _, _} ∈  then
7: admissible_path ← ⊤
8: else
9: admissible_path ← ⊥
10: break
11: if admissible_path == ⊤ then
12: .append({p})
13: return 

Exploit chains are paths from a source to a target that
contain violation for every vertex or edge in that path. CYBOK
finds exploit chains from all elements of the attack surface,
 to a user input target, t (Algorithm 3). These paths are not
necessarily the most efficient or direct paths from the elements
of the attack surface to the given target. This is because it
is often the case that attackers move laterally from the attack
surface to a specific target without having full observability of
the system. This way the analyst can be aware of all paths that
are valid based on the system model and be better informed
about potential mitigations.

Furthermore, not all paths from  to t are admissible.
Admissible exploit chains require each vertex and each edge
in that path has produced at least one result from  .
Otherwise the path is not fully exploitable based on evidence
and, therefore, does not consist of an exploit chain under this
definition.

F. Visualizations

To facilitate the analysis of results, CYBOK includes three
main visualizations: (1) the system topology, (2) the system
attack surface, and (3) the system exploit chains. This is an
important feature of CYBOK because it allows both security
analysts and system designers to project how exploits propa-
gate over the system model, Σ. This way, they can be better
informed about potential mitigation strategies. For example,
changing the definition of a single element to one that has
no recorded attacks might significantly increase the security
posture of the overall CPS.1
Moreover, a full GUI is developed based on this method-

ology to implement further interactivity functions on top of
CYBOK [23]. This is a natural progression of CYBOK since
in-depth analysis requires the analyst to interact with the
data through interactivity functions, for example, filtering, to
facilitate effective exploration of the diverse types of data input
and output to and by CYBOK [24].

1We assume that a component with no recorded attacks is less susceptible
to exploitation over one that has a large number of recorded attacks.

Primary Application Processor
Differential Pressure Sensor

Absolute Pressure Sensor

Safety Switch Processor
Accelerometer Gyroscope Magnetometer

NMEA GPS

FCS Radio Module

GCS Radio Module
Imagery Radio Module

Imagery Application Processor
CameraLaptop

Control Surface

System Topology

Fig. 5. The system topology, Σ, shows a static view of the system model.

VI. EVALUATION

To evaluate CYBOK we will discuss in some detail the
vulnerability analysis of one potential design solution for a
UAS that contains a full set of descriptors. There is ongoing
work in applying CYBOK to several other systems in the
military and nuclear power domain [25].

A. System Model
While modular approaches to flight control systems (FCS)

have been demonstrated to provide flexible choices in hard-
ware [26], it is not currently possible to assess the security
of one design over another before building the system. By
using models of systems it is possible to assess several system
designs and provide evidence over the use of one hardware
solution over another. In this work one such hardware solution
is evaluated—through its system model (Fig. 5)—and present
the evidence that stems from assessing the model’s security
posture using CYBOK.
The potential design solution present in this paper uses

several XBee radio modules to communicate between com-
ponents, Dell Latitude E6420 ground control station (GCS)
laptop, an ARM STM32F4 primary application processor, a
BeagleBone Black imagery application processor, an ARM
STM32F0 safety switch processor, MPU9150 accelerometer,
gyroscope, and magnetometer, MS4525DO differential and
absolute pressure sensors, a GoPro Hero5 camera, and an
Adafruit Ultimate GPS. This information is part of the descrip-
tive keywords captured in the vertices of the model. Further
information is given for both vertices and edges to drive this
analysis per the schema above (Section II).2

B. Example Analysis
SysML is used as the modeling language and tool because

it is often familiar to Systems Engineers. However, CYBOK
2The model is publicly distributed [27].
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FCS Radio Module

GCS Radio Module
Imagery Radio Module

Imagery Application Processor
Camera
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Control Surface
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System Attack Surface

Fig. 6. The attack surface,  , extends the system topology, Σ, by adding
in the descriptive keywords at the entry point that associate to attack vectors.

is not restricted to SysML models, it merely requires a
graph representation of the system that includes extra design
information (see Bakirtzis et al. [11] and graphml_export [28]
on how this translation is achieved in practice). Inputting
the UAS system topology to CYBOK first constructs the
attack surface (Fig. 6). The attack surface is extended to show
all the descriptive keywords at the entry points that attack
vectors are found. For example, by inspection the use of the
XBee module with the ZigBee protocol for all three radio
modules can be problematic because an attacker can exploit
the system remotely. Other such entry points have a different
degree of potential exploitation. It is unlikely that the GPS
will be violated but attacks for GPS exist and, therefore, are
reported by CYBOK. Additionally, the analyst might be aware
of hardening techniques on the Wi-Fi network used by the
GCS laptop. Consequently, the analyst might decide that they
consist of no threat to the systems mission.

From this initial understanding of the systems security
posture (through its composition and attack surface) an analyst
can further interrogate the model by finding all the potential
exploit chains from the attack surface elements to the primary
application processor. This is because violation of the primary
application processor will cause full degradation of system
functions and, therefore, full mission degradation overall.
Specifically, an analyst might want to examine a potential
exploit chain stemming from the XBee element of the attack
surface. By providing a target, t, CYBOK finds the admissible
paths and, therefore, exploit chains from the imagery radio
module to the primary application processor. This path is
admissible if each vertex and each edge within that path has
produced evidence; that is, attack vectors.

Examining the results produced by CYBOK we find the
following three associated entries: CAPEC-67 “String Format
Overflow in syslog(),” CWE-20 “Improper Input Validation,”
and CVE-2015-8732 a specific attack on the ZigBee proto-
col used by XBee that allows remote attackers to cause a denial

Primary Application Processor
Differential Pressure Sensor

Absolute Pressure Sensor

Safety Switch ProcessorAccelerometer Gyroscope Magnetometer

NMEA GPS

FCS Radio Module

GCS Radio Module
Imagery Radio Module

Imagery Application Processor
Camera

Laptop

Control Surface

GPS

ZigBee

Wi-Fi

System Exploit Chains
for Primary Application Processor

Fig. 7. Exploit chains, , show a possible lateral paths an attacker might
take over the system topology to reach a specific system element. This is but
one example of such exploit chain from the attack surface,  , to some target
t—in this case the primary application processor.

of service (DOS) via a crafted packet. Further, for the edges
from the radio module to the primary application processor
there are the following attack vectors produced by CYBOK,
CVE-2013-7266, which is a specific attack that takes advan-
tage of not ensuring length values matching the size of the data
structure, CWE-20 “Improper Input Validation,” CWE-789
“Uncontrolled Memory Allocation,” CWE-770 “Allocation of
Resources without Limits or Throttling,” and CAPEC-130
“Excessive Allocation.” Finally, the primary application pro-
cessor uses the I2C and RS-232 protocols to communicate
with the rest of the hardware (these are descriptive keywords
contained in the edges of the graph), which produce the follow-
ing, CAPEC-272 “Protocol Manipulation” and CAPEC-220
“Client-Server Protocol Manipulation.” All this information is
used as evidence for the feasibility of one exploit chain from
the attack surface to the primary application processor (Fig. 7).
By projecting the attack over the system structure it is

evident when the same attacks are applicable to several parts
of the system.This is important because attackers contain a
specific skill set and they do not usually deviate from it if not
necessary.
Additionally, CYBOK allows flexible “what-if” analysis by

changing the descriptive keywords in the model. For example,
by changing the radio module definition from XBee using the
ZigBee protocol to some other radio module offered in the
market might exclude it from the attack surface. Since a larger
attack surface implies more access points and, therefore, a less
secure system an analyst might decide to propose changing the
design of the system.
A full analysis consists of first identifying the important

elements of the system; that is, the assets that might require
protections. This might be informed from the outputs produced
by CYBOK or from expert input and information elicitation.
Then, of filtering the large space of attack vectors that asso-
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TABLE I
A FRAGMENT OF RELEVANT RESULTS FOR THE UAS AS PRODUCED BY CYBOK.

Model Element Attack Vector Description
Radio Modules CVE-2015-6244 Relies on length fields in packet data, allows attacks from crafted packets

CWE-20 Improper input validation
CAPEC-67 String format overflow in syslog()

NMEA GPS CAPEC-627 Counterfeit GPS signals
CAPEC-628 Carry-Off GPS attack

Primary Application Processor CVE-2013-7266 Does not ensure length values match size of data structure
CWE-20 Improper input validation
CWE-789 Uncontrolled memory allocation
CWE-770 Allocation of resources without limits or throttling
CAPEC-130 Excessive allocation

I2C & RS-232 Protocols CAPEC-272 Protocol manipulation
CAPEC-220 Client-server protocol manipulation

Imagery Application Processor CWE-805 Buffer access with incorrect length value
CAPEC-100 Overflow buffers

Safety Switch Processor CWE-1037 Processor optimization removal or modification of security-critical code

Laptop CAPEC-615 Evil twin Wi-Fi attack
CAPEC-604 Wi-Fi jamming

Camera CVE-2014-6434 Allows remote attackers to execute commands in a restart action

ciate to the model to find the most relevant and strong evidence
(Table I). This evidence is what ultimately informs other
stakeholders, such that they can devise mitigative actions—
changing the system solution to conform to mission needs,
erecting security barriers at strategic points, or applying re-
silience solutions during operation.

VII. RELATED WORK

Little research has been done for evidence-based security
assessment in a model-based setting. Usually work in this
area requires transcribing already known vulnerabilities to a
modeling tool and assessing if it might apply to a system
design. Instead, the aim of this work is to employ models that
can—by their fidelity—immediately produce a large number
of potential attack vectors. These attack vectors stem from the
model itself and are not informed from some a priori security
knowledge.
We acknowledge that some current attack vector search tools

could be repurposed for model-based systems engineering.
One such search tool is cve-search [29]. However, cve-search
cannot input a system model. It only provisions security
datasets in one search engine. It is also limited with respect
to visualization techniques.
Noel et al. [30] propose CyGraph which also is based on a

graph-based understanding of the system but this work funda-
mentally differs in scope (mainly targets traditional networked
systems) and approach (uses a traditional notion of attack
graphs).
Adams et al. [31] propose topic modeling for finding

applicable attack vectors given a system model. However, they
only examine CAPEC as a potential source of attack vectors,
which is necessary but insufficient.
Ford et al. [32] propose using the ADVISE security method-

ology [33] on top of the Möbius tool [34] to provide an
attackers’s view. However, the quantitative analysis is based

on profiling and modeling attacker actions. The framework is
largely unaware of a specific system model that could be used
to implement a realized system.
The analysis presented in this paper is qualitative. This is

because quantitative information for cyber-physical attacks is
limited and ultimately expert input is necessary to understand
what it means for a metric to show that a system is more
susceptible to attacks over another. For example, a number
of quantitative approaches incorporate CVSS as a potential
metric for risk [35, 36, 37]. But, CVSS only defines severity
of a given vulnerability and not risk [38, 39].
In general, to the best of the authors’ knowledge, there

is no direct comparison between the work in this paper and
existing work in the literature. It is challenging to do a direct
comparison with any existing models because previous work
is based on an already implemented system or does not apply
attack vector information directly to the model.

VIII. CONCLUSION

In this paper we propose a method and implement a
tool to support this method, CYBOK, that is able to find
associated attack vectors given a sufficient system model.
CYBOK provides flexibility in modifying the system model to
represent different design solutions that implement the same
desired behaviors. Therefore, moving security analysis earlier
in the systems lifecycle—particularly at the design phase—
and, therefore, building systems with security by design. Two
important metrics are used for assessing a systems security
posture; the attack surface and exploit chains. The results of
this method and toolkit is illustrated and evaluated using a
UAS—an important area for secure system design because
exploits can cause hazardous behavior.
As a final observation we note the experience of using

a systematic, model-driven process to conduct attack vector
analysis often yields more information than just quantifying
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the vulnerability aspects of the system. The process itself is
an iterative learning experience, allowing circumspection into
how a system behaves in response to potential exploits.
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