
IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 1

Performance analysis of software-defined multi-hop
wireless sensor networks

F. Fernando Jurado-Lasso, Graduate Student Member, IEEE, Ken Clarke,
and Ampalavanapillai Nirmalathas, Senior Member, IEEE

Abstract—In this paper, we propose a model-based charac-
terization of energy consumption in a software-defined wireless
sensor network (SD-WSN) architecture in an effort to examine
the implications for network performance when making the
WSN reprogrammable. The proposed model consists of breaking
down all key functions involved in the correct functioning of an
SD-WSN, namely; neighbor discovery, neighbor advertisement,
network configuration, and data collection. The model is analyzed
from a multi-hop network perspective. We consider two static SD-
WSN scenarios to examine scalability, and one scenario to assess
the performance implications in a pseudo-dynamic SD-WSN.
Extensive simulation results are presented regarding the control
overhead introduced, the percentage of alive nodes and remaining
energy, and the impacts on network lifetime. We show that the
accumulated control overhead is inversely proportional to the
interaction period with the controller, whereas the remaining
energy and the network lifetime are directly proportional to this
parameter. Results show that the control overhead, for static
SD-WSNs, can take up 10-29% of the total data flowing to the
controller for the large SD-WSN and 6-19% for the small SD-
WSN. For a pseudo-dynamic network, the control overhead can
take up to two-thirds of the total data sent to the controller, and
the network lifetime was reduced by up to 80% compared with
the static scenarios.

Index Terms—Energy consumption, software-defined wireless
sensor networks, wireless sensor networks, Internet of Things,
control overhead.

I. INTRODUCTION

AWireless sensor network (WSN) is built from a large
number of sensor nodes, each embedded with sensors to

detect a physical phenomenon, a communication radio to trans-
fer the data of interest, a processing unit to handle calculations,
a memory to store information, and a power supply to provide
power to the sensor node [1]. The latest advances in Micro-
Electro-Mechanical Systems (MEMS) technology has enabled
the fabrication of sensor nodes that are inexpensive compare to
traditional sensors [2]. Their size, robustness, intelligence, and
low power consumption make them attractive in the practical
implementation of the Internet of Things (IoT).

The emergence of the IoT paradigm has extended the
scope of WSNs. Different types of real-world applications of
WSNs such as smart cities, smart agriculture, smart grids,
etc., could potentially require the deployment of thousands
of nodes [3], [4]. However, WSNs have limited resources,

Manuscript received June 28, 2019.
The authors are with the Department of Electrical and Elec-

tronic Engineering, The University of Melbourne, Victoria 3010, Aus-
tralia (e-mail: fjurado@student.unimelb.edu.au, clak@unimelb.edu.au, nir-
malat@unimelb.edu.au).

namely energy, processing power, memory and communication
capabilities. In order to improve the wireless sensor network
performance, these resources have to be managed effectively.
The efficient management of large-scale WSNs is also a major
concern. Wireless sensor nodes are originally designed as an
autonomous system, where each sensor node has all the func-
tionalities from the physical- up to application-layer. As the
network size grows, the management complexity also grows.
By employing effective management systems, the operational
cost of the network can be reduced.

In order to solve the complexity of management of WSNs,
the Software-Defined Networking (SDN) paradigm has been
introduced. SDN allows a new network architecture where the
principle is to divide the network into two different planes;
the control- and data-planes. The control plane is in charge
of executing process- and energy-intensive functions such
as routing protocols, whereas the data plane devices act as
forwarding devices where packet forwarding is done based
on control plane instructions. SDN was originally designed
for wired networks, where control messages are sent in a
dedicated channel, whereas in wireless networks the medium is
shared. Therefore, the introduction of SDN-based architecture
can directly affect the network performance metrics such as
energy consumption, Packet Delivery Ratio (PDR), delay, and
increased control overhead [5].

The software-defined wireless sensor network (SD-WSN)
paradigm has emerged as a solution to satisfy the IoT re-
quirements such as management and scalability. Many of
the expected billions of devices connected to the internet,
as predicted by [6], will need to be managed remotely. For
example, at peak hours when some links can get congested,
the network should be able to smartly redirect data through
less congested links. This may also result in reducing the
overall network energy consumption since sensor nodes can
avoid re-transmitting packets. Also, for priority tasks, the
network topology could be reconfigured in near real-time
to provide the best service. In deployments with a large
number of sensor nodes, the reconfiguration for a specific task
(e.g. pollution monitoring) could be adjusted in a centralized
manner and so avoid on-site physical intervention with sensor
nodes. Moreover, in network deployments with difficult access,
operators may, at any time, choose to prioritize the network
lifetime so with SD-WSN energy-efficient routing protocols
could be implemented on the fly.

SD-WSN simplifies the creation of new functions and
abstractions in the network by moving the most processing-
and energy-intensive functions to a centralized controller.

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 2

However, it does need a communication control mechanism
to maintain the connection with the data plane. The amount
of control packets mainly depends on network-specific require-
ments and the characteristics of the network deployment [5].
However, the potentially negative impacts of SD-WSN in
terms of network lifetime and control overhead still need to
be studied in detail. To the authors’ knowledge, this is the first
attempt to study the performance implications of SD-WSN in
terms of impacts on control overhead, energy consumption and
network lifetime.

A. Contribution

In order to reduce the management complexity of WSNs
by making the data plane reprogrammable, it is necessary to
introduce a new communication control mechanism. Control
packets flowing in the network directly affect the WSN
performance in terms of energy consumption and network
lifetime. For the first time, this work makes an attempt to
examine the real impacts of such a control mechanism in
medium to large scale WSN’s. The work presented here
offers researchers something new: a practical model to build
upon in an area previously limited to theoretical studies and
proof-of-concepts. To address the aforementioned issues and
to quantify the energy consumption and control overhead
introduced in an SD-WSN, we propose a model-based char-
acterization of energy consumption for SD-WSNs. In order to
mathematically express the energy consumed by the network,
we first break down the functions involved, namely; neighbor
discovery, neighbor advertisement, network configuration and
data collection. Neighbor discovery is used by sensor nodes
to scan and detect any node changes in their neighborhood.
Sensor nodes keep the centralized controller updated on the
network status by using neighbor advertisement messages.
The controller reconfigures individual sensor nodes through
configuration packets, and, lastly, the sensing data of interest
is collected. Extensive simulation results were carried out to
show the impacts affecting the network performance; energy
consumption, control overhead and network lifetime. In brief,
the contributions in this work are as follows;

1) We break down all the processes involved in the correct
functioning of the SD-WSN.

2) We provide a mathematical energy model to calculate
the energy consumed by the SD-WSN and the control
overhead introduced.

3) We perform extensive simulation experiments to quantify
the performance implications of SD-WSN in ‘small’ (50
nodes), ‘large’ (100 nodes) and ‘pseudo-dynamic’ WSNs
deployments. The last is so-called because it emulates
the behavior of a dynamic network by increasing the
communication frequency with the controller.

The remainder of this paper is organized as follows. Sec-
tion II discusses the existing research efforts in SD-WSNs.
In Section III, the network and energy model for the WSN
is presented. Section IV presents the mathematical model
characterization for the energy consumption of SD-WSNs.
Section V provides the simulation and result discussion and,
finally, in Section VI, the conclusions are drawn.

II. RELATED WORKS

The SDN paradigm has been introduced as a novel solu-
tion to enable management and real-time reconfiguration of
WSN’s. Most of the research efforts in SD-WSN have been
focused on proof of concept SDN-based WSNs, rather than
showing the performance implications of using SDN in a
multi-hop WSN.

Bera et al. [7] proposed a software-defined wireless sensor
network architecture (Soft-WSN) that enables two manage-
ment policies: device and network management. The device
manager controls the sensors and sensing delay. The network
management controls the network topology which can be mod-
ified during runtime, thus supporting dynamic environments.
The experimental evaluation was carried out with five sensor
nodes and they evaluated their approach based on Packet
Delivery Ratio (PDR), energy consumption and message over-
head. Even though their approach outperformed the traditional
WSN protocol, it lacked a scalability analysis of the energy
consumption and control overhead introduced in small to large
network deployments. Luo et al. [8] proposed a customized
flow-table implementation, named as Sensor-OpenFlow, to
tackle the rigidity in policy changes and management. Two
distinct flow-table rules were proposed: value- and ID-based.
In the value-based rule, forwarding of packets is done by
comparing the sensed data and sending only new values.
Whereas, in the ID-based approach, the sensor ID is used to
forward packets to the sink node. Sensor-OpenFlow was one
of the early adopters of SD-WSN and it was meant to pinpoint
SDN as a potential solution for the management complexities
in WSN. However, no performance metrics were presented.
SD-WSN6Lo [9] was proposed to reduce the management
complexities in WSNs. The ease of changing the network
topology and transmission power through an SDN controller,
without any firmware modification, was demonstrated. Al-
though individual energy consumption could be reduced by
reducing the transmission power, the paper lacked analysis of
energy consumption and control overhead introduced into the
network. Misra et al. [5] proposed situation-aware protocol
switching for SD-WSNs. It consisted of two phases: decision
making and protocol deployment. The decision making used
a supervised learning approach to select the proper routing
protocol that fits the application requirements. The protocol is
deployed in the network by the SDN controller in an adaptive
manner. The objective of the scheme is to maximize the
network performance by minimizing energy consumption and
delay, as well as maximizing the PDR and throughput. The
performance of the proposed scheme was tested with four
routing protocols. The proposed scheme deployed multiple
routing protocols based on the decision made by the controller
while considering the application-specific requirements.

Other SD-WSN works such as [10], [11], [12] try to improve
the network performance by taking into account different
performance parameters. In [10] the control information flow-
ing in the network is reduced by programming sensor nodes
as Finite State Machines (FSM). This allowed sensor nodes
to make decisions, thus reducing the interaction with the
controller. In [11], they eliminated the WSN dependency to

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 3

a single controller, by using multiple controllers. In [12], a
statistical machine learning approach is proposed to determine
the interference affecting network performance.

As explained above, most of the research efforts in SD-
WSN have been focused on demonstrating the advantages
that software-defined networks can bring to the performance
and management of the WSN, rather than studying the im-
pacts of introducing new abstractions into the network. Our
contribution is in providing a mathematical energy model
that enables the quantification of the energy consumption and
control overhead introduced in the network when making a
WSN reprogrammable.

III. SYSTEM MODEL

In this section, we describe the network and energy models
for a SD-WSN.

A. Network model

To simplify the network model, we have adopted the fol-
lowing assumptions:
• Sensors are uniformly distributed within a square field

and the controller is located in the middle of the field.
• All nodes are stationary. (We will examine ‘dynamic’

deployments in the first instance by simply adjusting the
frequency of node messaging as we will see later).

• The energy spent in sensing and processing data is taken
as constant across all the network, therefore, is not
considered, besides the major component of the energy
consumption of sensor nodes is attributed to communica-
tion [13].

• All nodes are homogeneous and energy-constrained.
• The controller has access to mains power; therefore its

energy consumption is not considered.
• Control packets are routed using the shortest path.
• Nodes are unaware of their location. But they can es-

timate the distance to neighboring nodes using the Re-
ceived Signal Strength Indicator (RSSI).

• Nodes sense the environment regularly and send the
collected data at a fixed rate.

Based on the control information collected by the sensor
nodes, the controller constructs a connected graph G = (N,E)
where N is the set of alive nodes on the field and E is the
set of communication links between sensor nodes. We use the
distance to construct a cost matrix [9].

B. Energy Model

In this work, we refer to a simplified energy model for
wireless communications as it is used in [14], [15]. The energy
consumed for transmitting a k − bit message to a distance d
can be expressed as follows:

ET = ET
elec ∗ k + εamp ∗ k ∗ dλ (1)

Where ET
elec

refers to the energy dissipated by the circuitry
in transmission and εamp is the energy dissipated by the
transmit amplifier. d denotes the distance between transmitter

TABLE I
LIST OF SYMBOLS

Symbol Description
n Element of alive nodes
d distance between Tx and Rx
k packet size [Bits]
λ Path-loss exponent
m Number of hops
Eelec Energy cost of electronics
εamp Energy cost of transmit amplifier
En
dis

Energy consumed by node n when perform-
ing ND

ETotal
dis

Total energy consumed by the network in
an ND cycle

En
adv

Energy consumed by node n when perform-
ing NA

ETotal
adv

Total energy consumed by the network in
an NA cycle

En
con f

Energy consumed transmitting a configura-
tion message to node n

ETotal
con f

Total energy consumed by the network dur-
ing reconfiguration of all alive nodes

En
ctr l

Energy consumed, by node n, during con-
trol interaction with the controller

En
data

Energy consumed, by node n, when sending
collected data

ETotal
data

Total energy consumed when sending col-
lected data to the controller

ETotal Total energy consumed by the network

and receiver. λ refers to the channel path-loss exponent of the
antenna, and this is affected by the surrounding environment
and satisfies 2 6 λ 6 4.

On the other side of the communication link, the energy
consumed, by the receiver ER, to process a k − bit message
can be expressed as follows:

ER = ER
elec ∗ k (2)

In our model, as considered in [14], [15], [16], we consider
that ER

elec
= ET

elec
= Eelec and that only the transmitting node

can adjust its transmission power to reach a minimum ET

value.

IV. SD-WSN ENERGY MODEL

In order to estimate the energy consumed by a SD-WSN,
we need to break down all the processes involved in the
functioning of a WSN with N nodes. Where N is the set of
alive nodes and n ∈ N . The definitions of the parameters used
in the energy model are summarized in Table I.

A. Neighbor discovery

This is an essential procedure in WSNs. Neighbor discovery
(ND) is vital in the initial set-up phase of the network as well
as during the network lifetime. In the initial phase, sensor
nodes need to discover neighbors and find the best path to the
controller. During the other times, ND allows the detection of
any changes in the network topology (e.g. due to interference,
battery depletion, etc.). The frequency of the ND messages
mainly depends on the application-specific requirements. In
static WSNs, changes in the topology will not be as frequent
as it is in dynamic WSNs. Dynamic WSNs require a higher

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 4

ND rate in order to promptly detect, and react to, changes in
the network.

Sensor nodes use broadcast messages [9], to discover neigh-
bors within the maximum transmission range. To do this,
sensor nodes need to transmit and listen to ND messages.

1) Energy consumed, by node n, during the transmission
of ND message: The energy consumed, by node n, for
transmitting a kdis − bit discovery message to a distance ddis
can be expressed as follows:

En
T−dis(kdis, ddis) = Eelec ∗ kdis + εamp ∗ kdis ∗ dλdis (3)

Where ddis , is the maximum distance reached when transmit-
ting at full power.

2) Energy consumed, by node n, during reception of ND
message: The energy consumed, by node n, for receiving a
kdis − bit discovery message from their neighbors Bn, where
Bn ⊆ N , is.

En
R−dis(kdis, |Bn |) = Eelec ∗ kdis ∗ |Bn | (4)

Where kdis is the message size.
3) Energy consumed by node n during a ND cycle: The

energy consumed by node n during a ND cycle can be
expressed as follows:

En
dis = En

T−dis(kdis, ddis) + En
R−dis(kdis, |Bn |) (5)

Using equations 3 and 4, the energy consumed by node n
during a ND cycle is:

En
dis = ET (kdis, ddis) + ER(kdis) ∗ |Bn | (6)

4) Total energy consumed by the network during a ND
cycle: The total energy consumed by the network when a
ND cycle is performed, can be expressed as follows:

ETotal
dis =

∑
n

En
dis (7)

We know that kdis and ddis are constants, so

ETotal
dis = |N | ∗ ET (kdis, ddis) + ER(kdis)

∑
n

|Bn | (8)

B. Neighbor advertisement

This is a key procedure in an SD-WSN. The neighbor
advertisement (NA) is essential in the initial phase of the
network setup as well during the network lifetime. In the
initial phase, all sensor nodes advertise their neighbors. The
centralized controller makes use of NA messages to build a
global view of the network. Based on the application-specific
requirements, the controller acts to reconfigure the network to
meet those requirements. Sensor nodes also use NA messages
to keep the controller updated about any changes in their
neighborhood. The frequency of NA messages also depends on
application-specific requirements. Sensor nodes can generate
control packets either using a reactive or periodical approach.

Sensor nodes use the Shortest Path algorithm [17], [9] to
send NA messages to the controller as shown in Fig. 1. Where
m is the number of hops to the controller.

Node n hop 1 hop 2 hop m-1 hop m (ctrl)

NA

Fig. 1. Neighbor advertisement

1) Energy consumed, by node n, during transmission of NA
message: The energy consumed transmitting a kadv − bit NA
message to the controller from node n to the controller, can
be expressed as follows:

En
adv =

mn∑
i=1

ET (kn
adv, di) +

mn−1∑
i=1

ER(kn
adv) (9)

Where kn
adv

refers to the size of the NA message of node n,
which differs from node to node, because they could have a
different number of neighbors. i = {1,2, ...,mn} and mn refers
to the number of hops from node n to the controller. Note that
there are mn −1 receiving nodes since the energy spent by the
controller when receiving a packet is not considered as the
controller is assumed to have access to mains power. Using
equations 1 and 2, we have:

En
adv =

mn∑
i=1
(Eelec ∗ kn

adv + εamp ∗ kn
adv ∗ dλi)+

mn−1∑
i=1

Eelec ∗ kn
adv

(10)
We know that Eelec and kn

adv
are constant for node n, then

Eelec ∗ kn
adv

∑mn

i=1 1 = mn ∗ Eelec ∗ kn
adv

. Equation 10 can be
rewritten as,

En
adv = mn ∗ Eelec ∗ kn

adv + εamp ∗ kn
adv

mn∑
i=1

dλi

+(mn − 1) ∗ Eelec ∗ kn
adv (11)

Which can be simplified to:

En
adv = Eelec ∗ kn

adv(2mn − 1) + εamp ∗ kn
adv

mn∑
i=1

dλi (12)

Thus, the energy consumed when transmitting a NA message
from node n to the controller can be expressed as follows:

En
adv = ER(kn

adv) ∗ (2mn − 1) + εamp ∗ kn
adv

mn∑
i=1

dλi (13)

Where di is the Euclidean distance in R2 between hop mi =

(xi, yi) and hop mi−1 = (xi−1, yi−1), where m0 = (x0, y0) = n.
Additionally, kn

adv
can be defined as follows:

kn
adv = H + P ∗ |Bn | (14)

Where H refers to the size of the header in the NA message
and P is the number of bits used to represent a single neighbor
status.

2) Total energy consumed during transmission of NA mes-
sages: During the initial setup phase and over the periodical
NA approach, every node in the network sends NA to the
controller. Thus, in those cases, the total energy consumed by

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 5

the network during NA can be expressed as the sum of the
individual nodes’ energy consumptions.

ETotal
adv =

∑
n

En
adv (15)

Thus, the energy consumed by the network when nodes
transmit NA messages to the controller can be expressed as
follows:

ETotal
adv =

∑
n

ER(kn
adv)∗(2mn−1)+εamp

∑
n

mn∑
i=1

kn
adv∗d

λ
i (16)

C. Configuration packets

The logically centralized controller, which acts as the Net-
work Operating System (NOS) [4], controls and manages the
overall behavior of the network. Sensor nodes simply forward
packets based on instructions provided by the controller. Sen-
sor nodes are devices with no intelligence since process- and
energy-intensive functions, such as routing and management,
are handled at the controller [3], [9]. This approach enables
the network configuration to be performed globally whereas
distributed management schemes require individual reconfigu-
ration of network devices to modify the network behavior [4].
Although SD-WSN offers realtime network configuration and
management [18], SD-WSN introduces extra control overhead
in the network to make the data plane reconfigurable. Here, we
also assume that the controller uses the shortest path algorithm
to deliver configuration packets to sensor nodes as shown in
Fig. 1, but packets travel in the opposite direction.

1) Energy consumed by reconfiguring node n: The energy
consumed transmitting a kn

conf
−bit control message to sensor

node n can be defined as follows:

En
conf =

mn−1∑
j=1

ET (kn
conf , dj) +

mn∑
j=1

ER(kn
conf) (17)

Where kn
conf

refers to the size of the control message trans-
mitted to sensor node n, which differs from node to node,
because of the number of routes to be reconfigured. kn

conf
can

also be defined as equation 14. j = {1,2, ...,mn} and mn refers
to the number of hops to sensor node n. Note that there are
mn − 1 transmissions since the energy spent by the controller
while transmitting a packet is not considered, as previously
discussed in the energy consumption of a NA message. Using
equations 1 and 2, and following a similar procedure to find
equation 13 we have:

En
conf = ER(kn

conf) ∗ (2mn − 1) + εamp ∗ kn
conf

mn−1∑
j=1

dλj (18)

2) Energy consumed reconfiguring the network: During the
initial setup phase and over the periodical reconfiguration
approach, the controller delivers control packets to all sensor
nodes in the network. Thus, the total energy consumed by
reconfiguring the network can be expressed as the sum of all
nodes’ energy consumption during these periods.

ETotal
conf =

∑
n

En
conf (19)

Therefore, the total energy consumed, by the network, during
the reconfiguration of all alive nodes in the network can be
expressed as:

ETotal
conf =

∑
n

ER(kn
conf) ∗ (2mn − 1)+ εamp

∑
n

mn−1∑
j=1

kn
conf ∗ dλj

(20)

D. Control packets

In this work, we consider control-overhead packets as pack-
ets that are flowing from sensor nodes to the controller, or vice
versa, other than data packets. Control overhead packets are
necessary for the correct functioning of the SD-WSN. Thus,
the energy consumed by control overhead packets (En

ctrl
) is

the summation of the energy consumed by NA and network
configuration packets. Mathematically,

En
ctrl = En

adv + En
conf (21)

Thus, using equations 13 and 18, the energy consumed, by the
network, in control-overhead packets can be calculated as:

En
sd = ER(kn

adv) ∗ (2mn − 1) + εamp ∗ kn
adv

mn∑
i=1

dλi

+ER(kn
conf) ∗ (2mn − 1) + εamp ∗ kn

conf

mn−1∑
j=1

dλj (22)

The calculation of the energy consumed by control-overhead
packets can be simplified if the size of NA and configuration
messages are equal. We know that

∑mn

i=1 dλi =
∑mn−1

i=1 dλi +
dλmn

, where dmn is the Euclidean distance between the hop m
(controller) and the previous hop. Mathematically,

En
sd = 2ER(kn

sd)(2mn − 1) + 2εamp ∗ kn
sd

mn−1∑
i=1

dλi

+εamp ∗ kn
sd ∗ dλmn

(23)

Where kn
sd
= kn

adv
= kn

conf
and i = j.

E. Data Packets

The information gathered by the WSN needs to be shared
with the centralized controller for further processing. Sensor
nodes use the routing algorithm, previously reconfigured by
the controller, to send the collected data to the controller.
In a multi-hop network, the collected data has to travel
through multiple hops before reaching the controller. The data
size depends on application-specific requirements. Here, we
assume that all nodes send the same data size.

1) Energy consumed when sending data-packets: The en-
ergy consumed by the network when node n sends the col-
lected data to the controller can be calculated as follows:

En
data = ER(kdata) ∗ (2mn − 1) + εamp ∗ kdata

mn∑
i=1

dλi (24)

Depending on the routing algorithm programmed by the
controller, the number of hops (mn) and the distance between
hops (di) can vary, so too can the energy consumed by the
network.

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 6

2) Total energy consumed when sending data-packets: In
networks that are periodically sensing the phenomenon of
interest, the collected data must be sent to the controller in
a specific time interval. Thus, the total energy consumed by
the network when all alive nodes send their sensed data can
be calculated as:

ETotal
data =

∑
n

ER(kdata) ∗ (2mn − 1) + εamp

∑
n

mn∑
i=1

kdata ∗ dλi

(25)

F. Total Energy

Lastly, the total energy consumed by the SD-WSN can
be calculated by summing up all the functions or processes
involved in the functioning of the SD-WSN.

ETotal = ETotal
dis + ETotal

adv + ETotal
conf + ETotal

data (26)

As mentioned earlier, all packets flowing from sensor nodes to
controller, or vice versa, other than data packets are considered
as control packets. Thus, the total energy consumed by control
packets (ETotal

ctrl
) is ETotal

adv
+ ETotal

conf
.

V. SIMULATION AND RESULTS

Even for relatively small-sized WSNs with tens of nodes, it
is difficult to analyze the interactions between all sensor nodes
involved [19], [20]. Thus, we use computer-based simulation
software to evaluate the performance implications of using
software-defined networking in terms of energy consumption
and control overhead. In this work, we use MATLAB to
simulate the SD-WSN with two different network sizes. We
chose MATLAB because it is one of the most commonly
used simulators and it provides a numeric power consumption
model, which can be easily adapted to fit different scenarios,
the processing time is quick for large networks, it is not con-
strained to a specific type of sensors, and for other features as
stated in [21]. MATLAB was used in many of the prior works
when only the energy consumption was being evaluated [21].

A. Simulation setup

The simulation experiments were run on high-performance
computing infrastructure [22]. The SD-WSN was tested under
‘small’ (50 node) and ‘large’ (100 node) network deployments.
These numbers were chosen as giving reasonable simulation
times for comparisons to be drawn, as we found that even
our high-performance computing infrastructure struggled with
several hundred nodes. The Eelec and εamp parameters are set
as 50×10−9 J/bit and 100×10−12 J/bit/m2, respectively [14].
For simplicity, we consider that the path-loss exponent (τ) is
always constant and equal to 2, as used in [16], [14], [15].
The simulation parameters are summarized in Table II.

The location of the controller directly impacts the WSN
performance. Among the performance parameters to optimize
are the energy and lifetime. The controller can be located in a
specific part of the network to reduce the energy consumed by
sensor nodes or to extend the network lifetime. The energy-
oriented approach finds the optimal position of the controller
which makes the energy consumption minimum. However, it

TABLE II
SIMULATION PARAMETERS

Parameter Value
WSN area 50 × 50,100 × 100 m2

Node distribution Random-uniformly distributed
Controller position (25, 25) and (50, 50)
Sensor nodes 50, 100
Max. Tx. range 20, 40 m
Initial energy 0.5 J

Eelec 50 × 10−9 J/bit [14]
εamp 100 × 10−12 J/bit/m2 [14]
Data rate 1 packet/min
ND period 5 mins
NA period (NAP) 5, 10, 15, 20 mins
Bn variable
kn
adv

H = 8 Bytes, Padv = 5 Bytes and |Bn |:
variable, thus kn

adv
≥13 Bytes

kn
con f

H = 8 Bytes, Pcon f = 4 Bytes and max 20
routes

kdis 3 bytes
kdata 72 bytes [23]

usually is not the optimal solution for the network lifetime
since the placement for the energy-oriented solution can be
found in a low node density area, which results in insufficient
resources (sensor nodes) in the controller neighborhood [24].
Therefore, sensor nodes in proximity to the controller can
exhaust their energy first, resulting in a shorter network
lifetime. Since the aim of this work is not to find the optimal
location of the controller but to present the impacts of the
software-defined network approach in WSN then we place the
controller in the middle of the WSN area.

kdata consists of 72 data bytes collected by sensor nodes
such us; battery level, temperature, humidity, pressure, lumi-
nosity and acceleration. The data packet consists of a 10-byte
header, a 2-byte Cyclic Redundancy Check (CRC) and 60
information bytes that have sensing parameters [23].

kdis are small packets that only contain information about
the node rank (1 byte) and the sum of RSSI (2 bytes)
values received from the controller. In total, only three bytes
are needed so nodes can choose the best RSSI path to the
controller between two equal ranks.

The kn
adv

parameter depends on the number of neighbors
and the header has 8 bytes distributed as: control packet type (1
byte), rank of node (1 byte), remain energy of node (2 bytes),
packet length (2 bytes) and CRC (2 bytes). Padv (payload)
contains the node address (2 bytes), RSSI (2 bytes) and rank
(1 byte).

The kn
conf

parameter contains the same header as kn
adv

and
Pconf (payload) has the destination (2 bytes) and forwarding
addresses (2 bytes). Also, we assume that sensor nodes can
maintain up to 20 routes in their routing table. In the worst-
case scenario, the controller may need to reconfigure the entire
routing table.

For static WSNs, neighbor discovery is typically performed
every 5 mins whereas, in dynamic WSNs, the neighbor dis-
covery is performed perhaps up to twice a minute [25]. Since
sensor nodes for environmental monitoring are often static,
then we initially set the ND period as 5 mins.

In this work, we consider that sensor nodes generate NA

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 7

packets in a periodical approach. The period of NA packets
depends on the application-specific requirements. Here, we
vary the period of NA packets to observe the impacts of control
overhead in the SD-WSN. Since the ND period is set to 5 mins,
a sensor node cannot detect a change in its neighborhood in a
shorter time. Therefore, the period of control packets has to be
greater or equal to 5 mins. We will later examine the results
for periods of 5, 10, 15 and 20 mins. Configuration packets
are sent by the controller every time it detects a change in
the network topology. We generate configuration packets to
all nodes every time a sensor node dies.

B. Performance metrics

We defined three performance metrics to evaluate the im-
pacts of software-defined network management approaches in
WSNs.

1) Control overhead: We have defined control overhead as
the number of NA and configuration packets. We measure
the control overhead during the entire simulation time.
This allows us to observe the behavior of control overhead
packets introduced in a SD-WSN.

2) Alive nodes: This metric reflects the number of sensor
nodes that have not yet exhausted all of their energy.

3) Network lifetime (NL): We define the NL as the time
taken from the deployment until the instant a network
partition occurs. Note that even when a network partition
occurs, there may be energy remaining in the network.

C. Simulation and analysis

The simulation experiments are performed based on the
performance metrics previously discussed in Section V-B. We
have considered two scenarios: (i) The first scenario is a ‘large’
SD-WSN deployed in a 10,000 square meter area containing
100 sensor nodes randomly distributed and a controller located
centrally. (ii) The second scenario is a ‘small’ SD-WSN
deployed in a 2,500 square meter area, containing 50 sensor
nodes randomly distributed, with a controller located centrally,
but note that the node density is twice that of the large
SD-WSN. In both cases, the controller’s transmitter covers
approximately 50% of the total area. Nodes outside this area
have to reach the controller through multiple hops. Since
nodes have programmable transmission power, we limit the
transmission range of nodes in the small scenario to allow us to
create a multi-hop network. Other parameters used are shown
in Table II. At the end of this section, we also compare the
large SD-WSN scenario with a large ‘pseudo-dynamic’ SD-
WSN, to get some insight into the effects of reducing both
the ND and NA periods, although note that the nodes do not
actually move in this scenario as this would make the model
too complex to simulate.

1) Static SD-WSN: Fig. 2 shows the control overhead and
the collected data for the large SD-WSN. It can be observed
that the control overhead is inversely proportional to the NAP,
and that the total collected data is over twice the total control
overhead for NAP=5 mins. It grows to over 9 times the amount
of the total control overhead for NAP=20 mins. The total
number of bits flowing in the network is mainly dictated by the

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

C
ol

le
ct

ed
 d

at
a

(M
B)

C
on

tro
l o

ve
rh

ea
d

(M
B)

Time (Mins)

 data (NAP=5)
 data (NAP=10)
 data (NAP=15)
 data (NAP=20)
 ctrl (NAP=5)
 ctrl (NAP=10)
 ctrl (NAP=15)
 ctrl (NAP=20)

Fig. 2. Accumulated control overhead vs. accumulated collected data for
large SD-WSN.

0 1000 2000 3000 4000 5000

20%

40%

60%

80%

100%

%
 o

f r
em

ai
ni

ng
 e

ne
rg

y

Time (mins)

 large (NAP=5)
 large (NAP=10)
 large (NAP=15)
 large (NAP=20)
 small (NAP=5)
 small (NAP=10)
 small (NAP=15)
 small (NAP=20)

Fig. 3. Remaining energy of large vs. small SD-WSN over simulation time.

data packet rate, and this parameter depends on the particular
application. Note that the control overhead can be reduced
by adopting the reactive approach, where nodes reduce their
interaction with the controller by only sending NA packets
when a change in the network is detected, or when they receive
a packet whose destination is unknown.

As shown in Fig. 3 and Table III, the remaining energy
and the network lifetime are directly proportional to the NAP
as might be expected, but we can see the precise scale of it
here for the first time. As the NAP increases, less energy is
expended in the network and longer network lifetimes result.
For example, an application with a NAP of 5 mins will reduce
the network lifetime by 19% compared with an application
with a NAP of 20 mins for a large SD-WSN and by 13% for
a small SD-WSN. In addition, it can be seen that the shortest
path protocol does not exhaust all the energy available in the
network as the network becomes partitioned. Fig. 3 shows that
approximately 20% of the network energy remains in both

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 8

0 1000 2000 3000 4000 5000
40%

50%

60%

70%

80%

90%

100%
%

 o
f a

liv
e

no
de

s

Time (mins)

Fig. 4. Alive nodes of large vs. small SD-WSN over simulation time.(Same
key as Fig. 3)

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

C
ol

le
ct

ed
 d

at
a

(M
B)

C
on

tro
l o

ve
rh

ea
d

(M
B)

Time (Mins)

 large(data,NAP=5)
 large(data,NAP=20)
 small(data,NAP=5)
 small(data,NAP=20)
 large(ctrl,NAP=5)
 large(ctrl,NAP=20)
 small(ctrl,NAP=5)
 small(ctrl,NAP=20)

Fig. 5. Large vs. small SD-WSN accumulated control overhead and collected
data.

scenarios after partition occurs for all values of NAP. Thus,
further research on energy-efficient SD-WSN routing protocols
needs to be done to make the most of the remaining energy.

The number of alive nodes, as shown in Fig. 4, decays faster,
as one might expect, as the interaction with the controller
increases (smaller NAPs). In dynamic environments, sensor
nodes increase the frequency of communication with the
controller to inform it of any changes in the network topology.

TABLE III
SD-WSN LIFETIME

Scenario NAP [mins] Units1 3 5 10 15 20
large x x 37 42 45 46

Hourssmall x x 78 86 88 90
pseudo-dyn 16 25 28 31 32 33

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14 static(data,NAP=5)
 dyn(data,NAP=1)
 dyn(data,NAP=5)
 static(ctrl,NAP=5)
 dyn(ctrl,NAP=1)
 dyn(ctrl,NAP=5)

C
ol

le
ct

ed
 d

at
a

(M
B)

C
on

tro
l o

ve
rh

ea
d

(M
B)

Time (mins)

Fig. 6. Pseudo-dynamic vs. static SD-WSN accumulated control overhead
and collected data.

Therefore, the percentage of alive nodes will decay faster than
in static environments. Fig. 4 shows that the small SD-WSNs
have a lifetime approximately twice that of the large SD-WSNs
before the first node dies. As the number of sensor nodes in the
small scenario is less, sensor nodes close to the controller have
to forward fewer control and data packets. The sensor density
in the small network is twice that of the large scenario which
also helps maintain network lifetime as there are more routing
options to share the load.

The results of varying the NAP for the small SD-WSN
scenario are not shown here due to space constraints but we
rather compare in Fig. 5 the control overhead and the collected
data for both large and small SD-WSN scenarios. The control
overhead and the collected data scale up faster for the large
SD-WSN than for the small SD-WSN. This is due to the
number of sensor nodes interacting with the controller. The
network lifetime is affected by the number of sensor nodes
and node density as the large SD-WSN get partitioned faster
than the small SD-WSN as shown in Fig. 5 and Table III.
The network lifetimes and the control overhead for the small
SD-WSN are shown in Table III and Table IV, respectively.

2) Static vs. pseudo-dynamic large SD-WSN: For this com-
parison, we have set the ND period to be 30 seconds and the
NA period starting from 1 min up to 20 mins. Fig. 6 shows
the accumulated control overhead and the collected data for
the large pseudo-dynamic WSN with NAP of 1 and 5 mins
and the large static WSN with NAP=5 mins. From Fig. 6 and
Table IV, it can be seen that for the large pseudo-dynamic
network with NAP=1 min, the control overhead scales up
faster and it is bigger than the collected data at all times.
This represents, in a simplified fashion, a highly dynamic
environment where sensor nodes might be moving and the
controller has to be constantly informed of changes in the
topology. In this scenario, the accumulated control overhead
is twice the size of the accumulated collected data.

The number of alive nodes (Fig. 7) also started decaying
faster than for the static WSN, as expected. The static WSN

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 9

0 500 1000 1500 2000
40%

50%

60%

70%

80%

90%

100%
%

 o
f a

liv
e

no
de

s

Time (mins)

 static (NAP=5)
 dyn(NAP=1)
 dyn(NAP=3)
 dyn(NAP=5)

Fig. 7. Alive nodes of pseudo-dynamic vs. static SD-WSN over simulation
time.

0 500 1000 1500 2000
0%

20%

40%

60%

80%

100%

%
 o

f r
em

ai
ni

ng
 e

ne
rg

y

Time (mins)

 static (NAP=5)
 dyn(NAP=1)
 dyn(NAP=3)
 dyn(NAP=5)

Fig. 8. Remaining energy of pseudo-dynamic vs. static SD-WSN over
simulation time.

lasted 4 times longer without any dead nodes. From Fig. 8, it
can be clearly seen that the large pseudo-dynamic SD-WSN
lasts for less time than all the other scenarios. The network
lifetime is shown in Table III.

In general, the best performance was achieved by the
small SD-WSN (Fig. 3) that has double the node density in
comparison to the other scenarios. The controller and nodes
have more resources in their neighborhood to send and receive
from other nodes in the network. The worst performance was
achieved by the pseudo-dynamic scenario as shown in Fig. 6,
Table IV and Table V.

VI. CONCLUSION

In this paper, we proposed a model-based characterization
of the energy consumption in a SD-WSN architecture for the
first time. We included each process required for the correct

TABLE IV
TOTAL DATA SENT TO CONTROLLER

Scenario Total
Data Control

large (NAP=20-5 mins) 90-71% 10-29%
small (NAP=20-5 mins) 94-81% 6-19%
pseudo-dyn (NAP=5-1 mins) 69-33% 31-67%

TABLE V
LIFETIME REDUCTION FOR THE PSEUDO-DYNAMIC SD-WSN

Scenario large (NAP=5) small (NAP=5)

pseudo-dyn NAP=1 -58% (21 h) -80% (62 h)
NAP=5 -25% (9 h) -65% (51 h)

functioning of the SD-WSN. The model was built based on
individual energy analysis of single sensor nodes for each
process, and the analysis was extended to calculate the overall
network energy consumption. Two different scenarios were
studied to examine the scalability impacts in the network
performance, and one additional scenario to show the likely
effects of a highly dynamic network. Results show that for
the static SD-WSN scenarios, the control overhead can take up
10−29% of the total data flowing to the controller for the large
SD-WSN and 6−19% for the small SD-WSN. The number of
bits flowing in the network is mainly dictated by the rate of
the collected data, which is a parameter defined specifically by
the application. Moreover, the small SD-WSN lasted longer
than the large SD-WSN due to the lower number of sensor
nodes in the network and the higher sensor density. The small
SD-WSN has more resources (nodes) in its neighborhood and
the number of control packets was less as the number of
sensor nodes was reduced. For the pseudo-dynamic network
(NAP=1), the control overhead can consume over two-thirds
of the total data sent to the controller due to the controller
is being constantly informed of changes in the topology. The
network lifetime was reduced by 58% and 80% in comparison
with the large and small static SD-WSN, respectively.

This work is the first attempt to explore the actual per-
formance involved in making WSNs reprogrammable. Future
works include refining our model further to turn it into a tool
suitable for practical SD-WSN performance comparisons, and
extending the analysis in hardware and including real-world
effects of interference, etc. on the packet delivery ratio of the
network.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–
422, 2002.

[3] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey
on software-defined wireless sensor networks: Challenges and design
requirements,” IEEE Access, vol. 5, pp. 1872–1899, 2017.

[4] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software defined
networking for improved wireless sensor network management: A
survey,” Sensors, vol. 17, no. 5:1031, pp. 1–32, 2017.

IEEE SYSTEMS JOURNAL CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 10

[5] S. Misra, S. Bera, M. Achuthananda, S. K. Pal, and M. S. Obaidat,
“Situation-aware protocol switching in software-defined wireless sensor
network systems,” IEEE Systems Journal, vol. 12, no. 3, pp. 2353–2360,
2018.

[6] F. Computing, “The Internet of Things: Extend the cloud to where the
things are,” Cisco Syst., San Jose, CA, USA, Report, 2016.

[7] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-
defined WSN management system for IoT applications,” IEEE Systems
Journal, 2016.

[8] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor OpenFlow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[9] F. F. J. Lasso, K. Clarke, and A. Nirmalathas, “A software-defined
networking framework for IoT based on 6LoWPAN,” in Wireless
Telecommunications Symposium (WTS), 2018. IEEE, Conference
Proceedings, pp. 1–7.

[10] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE, Conference Proceedings, pp. 513–
521.

[11] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, “TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks,”
IEEE Latin America Transactions, vol. 13, no. 11, pp. 3690–3696, 2015.

[12] C. Orfanidis, “Ph. D. forum abstract: Increasing robustness in WSN
using software defined network architecture,” in Information Processing
in Sensor Networks (IPSN), 2016 15th ACM/IEEE International Con-
ference on. IEEE, Conference Proceedings, pp. 1–2.

[13] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: A survey,” IEEE
Communications surveys & tutorials, vol. 15, no. 2, pp. 551–591, 2012.

[14] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proceedings of the 33rd annual Hawaii international conference on
system sciences. IEEE, Conference Proceedings, p. 10 pp. vol. 2.

[15] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on wireless communications, vol. 1, no. 4,
pp. 660–670, 2002.

[16] J. Luo, J. Hu, D. Wu, and R. Li, “Opportunistic routing algorithm for
relay node selection in wireless sensor networks,” IEEE Transactions
on Industrial Informatics, vol. 11, no. 1, pp. 112–121, 2015.

[17] R. K. Ahuja, Network flows: theory, algorithms, and applications.
Pearson Education, 2017.

[18] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for
Internet of Things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, 2017.

[19] P. Bahl, V. N. Padmanabhan, V. Bahl, and V. Padmanabhan, “RADAR:
An in-building RF-based user location and tracking system,” 2000.

[20] Y. Liu, K. Xu, Z. Luo, and L. Chen, “A reliable clustering algorithm
base on LEACH protocol in wireless mobile sensor networks,” in 2010
International Conference on Mechanical and Electrical Technology.
IEEE, Conference Proceedings, pp. 692–696.

[21] L. Xu, R. Collier, and G. M. O’Hare, “A survey of clustering techniques
in WSNs and consideration of the challenges of applying such to 5G
IoT scenarios,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1229–
1249, 2017.

[22] L. Lafayette, G. Sauter, L. Vu, and B. Meade, “Spartan performance
and flexibility: an HPC-cloud chimera,” 2016.

[23] M. Rodriguez-Sanchez, S. Borromeo, and J. Hernandez-Tamames,
“Wireless sensor networks for conservation and monitoring cultural
assets,” IEEE Sensors Journal, vol. 11, no. 6, pp. 1382–1389, 2011.

[24] F. Chen and R. Li, “Single sink node placement strategy in wireless
sensor networks,” in 2011 International Conference on Electric Infor-
mation and Control Engineering. IEEE, Conference Proceedings, pp.
1700–1703.

[25] H. Pham and S. Jha, “Addressing mobility in wireless sensor media
access protocol,” International Journal of Distributed Sensor Networks,
vol. 1, no. 2, pp. 269–280, 2005.

F. Fernando Jurado-Lasso (GSM’18) received the B.Sc. degree in electronic
engineering from the Universidad del Valle, Cali, Colombia, in 2012. He
also received the M.Sc. in Telecommunications Engineering degree from The

University of Melbourne, Australia, in 2015. He is currently pursuing the
Ph.D. degree with the Department of Electrical and Electronic Engineering,
University of Melbourne.

His research interests include software-defined particularly focus on wire-
less sensor networks, protocols and applications for the Internet of Things.

Ken Clarke received his B.Sc.(hons) in Applied Physics from Heriot-Watt
University, Edinburgh, Scotland, in 1985.

He worked in the optoelectronic and telecommunications industries in
various R&D and engineering roles in both the UK and Australia from 1985-
2010, before moving to the University of Melbourne where he is currently
Deputy Director of the Networked Society Institute. He has published over
50 articles and book chapters, and produced five patents.

Ampalavanapillai Nirmalathas (M’98 - SM’03) received the B.Eng. and
Ph.D. degrees in electrical engineering from The University of Melbourne,
Australia, in 1993 and 1998, respectively. He is currently a Professor with
the Electrical and Electronic Engineering Department, The University of
Melbourne.

His research interests include microwave photonics, optical wireless net-
work integration, broadband networks, and stability of Internet and telecom
services. He is a member of OSA and a Fellow of the Institution of Engineers
Australia.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Jurado-Lasso, FF;Clarke, K;Nirmalathas, A

Title:
Performance Analysis of Software-Defined Multihop Wireless Sensor Networks

Date:
2020

Citation:
Jurado-Lasso, F. F., Clarke, K. & Nirmalathas, A. (2020). Performance Analysis of Software-
Defined Multihop Wireless Sensor Networks. IEEE Systems Journal, 14 (4), https://
doi.org/10.1109/jsyst.2019.2948203.

Persistent Link:
http://hdl.handle.net/11343/265800

http://hdl.handle.net/11343/265800

