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Probabilistic Stability of Traffic Load Balancing on

Wireless Complex Networks
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Abstract—Load balancing between adjacent base stations (BSs)
is important for balancing load distributions and improving
service provisioning. Whilst load balancing between any given
pair of BSs is beneficial, cascade load sharing can cause network
level instability that is hard to predict. The relationship between
each BS’s load balancing dynamics and the network topology
is not understood. In this seminal work on stability analysis,
we consider a frequency re-use network with no interference,
whereby load balancing dynamics doesn’t perturb the individual
cells’ capacity. Our novelty is to show an exact analytical and
also a probabilistic relationship for stability, relating generalized
local load balancing dynamics with generalized network topology,
as well as the uncertainty we have in load balancing parameters
due to noisy channel or network sensing. We prove that the
stability analysis is valid for any generalized load balancing
dynamics and topological cell deployment and we believe this
general relationship can inform the joint design of both the load
balancing dynamics and the neighbour list of the network. The
probabilistic framework provides uncertainty quantification and
stability prediction for Digital Twins of wireless infrastructure.

Index Terms—Wireless Networks, Reliability and Survivabil-
ity, Stability, Complex Network, Load Balancing, Digital Twin,
Uncertainty Quantification

I. INTRODUCTION

Load balancing is an important aspect of current and future

cellular network operations, homogenizing traffic demand and

interference patterns [1]–[4]. In each base station (BS), load

balancing typically involves tuning the transmit power and

active radio elements to match the traffic demand. When over-

loaded with time-sensitive demand, BSs can offload demand

to neighbouring BSs, if their demand is relatively low. Load

balancing can be implemented between active BSs [5], provide

support for sleep mode BSs [6], user equipments (UEs) in a

D2D underlay [7], and in wireless sensor networks [8].

Current literature focuses on the algorithms of load bal-

ancing and doing so in a multi-RAT/spectrum co-existence

setting, and doesn’t consider cascade effects across large-

scale and hyper-dense networks. We know from other coupled

optimisation systems that runaway cascades are possible, see:

power control in pairwise coupled BSs [9], [10] and in routing

[11]. In the case of load balancing, this would mean that

users are shifted constantly between BSs, without a significant

improvement in the quality of service, but at the cost of

significant spectral inefficiency and coordination signaling.

Unstable behaviour would be the introduction of new users that

cause endless load balancing between BSs. For example, node

1University of Warwick, UK. 2 Cranfield University, UK. 3The Alan Turing
Institute, UK. *Corresponding Author: weisi.guo@cranfield.ac.uk. This work
is funded by EPSRC grant EP/R041725/1.

A offloading to neighbouring node B can cause congestion

in node B and further offloading to node C, and so fourth.

This can cause fewer users being satisfied overall across the

whole network and endless load sharing actions propagating

across the network. Cascade effects on large scale complex

networks (i.e. no. of nodes N is large) that affect stability and

equilibrium solutions are difficult to quantify analytically.

A. Open Challenges

Compared to conventional analysis, there are 2 aspects

of complexity largely unconsidered in wireless literature: (1)

from a network topology perspective, the non-regular structure

of the load balancing network means that the number of

connections (degree) of each node is distributed over a range

as opposed to a single number for a regular lattice, and (2)

from a dynamics perspective, not only is the load balancing

dynamics at each BS node linked to the number of connections

(degree), but also can take any form in this paper.

Recent breakthroughs have shown that there indeed can

exist a relationship between local dynamical behaviour and

global network structure by compressing the N -dimensional

dynamics to a 1-dimensional average behaviour approximation

[12]. However, their work examines the average effective

behaviour of the whole network and an explicit relationship

does not exist universally at the node level. This suffers from

covering up discrepancies at the node level. Our own more

recent work shows that sequential equilibrium substitution can

reveal node level behavioural dynamics [13], but caveats exist

in the application to network topology (e.g. low clustering

coefficient).

B. Contribution

Our contribution is to show an exact analytical and also

a probabilistic relationship for stability, relating generalized

local load balancing dynamics with generalized network

topology, as well as the uncertainty we have in the load

balancing parameters due to noisy channel or network

sensing. We prove that the stability analysis given is valid

for any generalized load balancing dynamics and topological

cell deployment and we believe this general relationship

can inform the joint design of both the load balancing

dynamics and the neighbour list of the network. The proposed

probabilistic framework that links sensor accuracy with

network dynamics provides uncertainty quantification and

stability prediction for Digital Twins of wireless infrastructure.

e805814
Text Box
IEEE Systems Journal, Volume 14, Issue 2, June 2020, pp. 2551-2556 DOI:10.1109/JSYST.2019.2956060

e805814
Text Box

e805814
Text Box

e805814
Text Box
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

e805814
Text Box



2

II. SYSTEM MODEL

A. Model Assumptions

Consider a geographic area covered by N BSs. There are

two time scales: long term traffic variations (traffic variation

time scale T , e.g. seconds), and short term load dynamics

under some constant traffic demand (symbol period time

scale t, e.g. milliseconds). We are primarily concerned with

the latter time scale. Each BS i has a load defined by

li(t) = di(T )/ci(t), the ratio between: (1) the quasi-static

long-term traffic demand aggregated across all users u in cell i,
di(T ) =

∑

u di,u(T ); and (2) the BS aggregated area capacity

over all users u in cell i, ci(t) =
∑

u ci,u(t).
In this seminal paper on stability, we assume that the

capacity of each cell is stationary, in that load balancing

changes do not dramatically affect the cell capacity (i.e.,

different from inter-cell interference based load balancing

optimisation [14]). This can be justified with frequency re-

use patterns and coordinated inter-cell cooperation designed

to eliminate inter-cell interference, both of which are actively

researched and utilized technologies in hyper-dense scenarios

[15]. We do not consider user-level experience in this initial

paper, and rather focus on network level stability.

We are interested in the transient dynamics and stability

of load balancing at time scale t, for a particular demand

di(T = T1) - see Figure 1b. As such, we do not yet

examine the user-level aspects of demand change, scheduling

and propagation dynamics, nor user flow [16]. Suffice to say,

we acknowledge that the wireless capacity depends on user

location and PHY/MAC protocols, but for this seminal paper,

we simply model (via differential equations) each BS’s load

dynamics as being under a certain random demand value and

is able to deliver a certain capacity profile to meet the demand

to the best of its ability.

B. Linear Example of Load Balancing Dynamics

Within the quasi-static traffic demand regime, the BS ca-

pacity ci(t) reacts to the demand d(T = T1) using adaptive

modulation and coding (AMC) - see Figure 1b1. However, the

mutual information of discrete modulation constellations will

saturate [17], and therefore as the load exceeds 1, load bal-

ancing is necessary in order to avoid outage (see Figure 1b2).

As a demonstration example, we assume an ideal and simple

linear load scaling between capacity and demand. In Section

III, we show that our results hold for any general dynamics.

To demonstrate, the load dynamics in cell i can be described

by (see Figure 1c):

l̇i = f(li) = β(1− li), (1)

where a desirable equilibrium for maximum service efficiency

is at li = 1 (fully loaded). When the BS load not at

equilibrium, the parameter β controls how strong the load is

being pushed away. When the BS is overloaded li > 1, the load

will attempt to be reduced (l̇i < 0); and when it is underloaded

li < 1, the load will attempt to be increased (l̇i > 0).

Each BS may have a list of adjacent BSs neighbours that it

can share load with, and we can think of this virtual coupling

of loads as through the aji connectivity matrix (e.g. a BS
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Fig. 1. Wireless Network Load Balancing Dynamics: a) illustration of

load balancing between frequency-reuse cells, b) capacity saturates for

high loads (due to discrete modulation scheme) and drives load balancing

requirement, c) an example of the load dynamic control for a single cell,

d) an example of the load balancing action between two cells, and e) a

complex network of load balancing between N cells.

load sharing neighbour list). The dynamics of the offloading

process can be described by the difference in the BSs’ loads

(see Figure 1d):

l̇i = g(li, lj) = γ(lj − li), (2)

with an offloading rate γ.

The overall network load balancing dynamics is the linear

combination of the local intra-node level load processing dy-

namics (Eq. (1)) and inter-node load balancing dynamics (Eq.

(2)). They are coupled together via the load sharing network,

described by the adjacency matrix aji (see Figure 1e):

l̇i = β(1− li) +

N
∑

j=1

ajiγ(lj − li), (3)

where aji = (A)ji. Here, we note that the dynamics due to

cascades is N -dimensional, which makes direct prediction on

stability challenging when N is large.
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III. STABILITY ANALYSIS OF GENERAL DYNAMICS

Setting aside the linear dynamics example in Section II, here

we look at the general case

l̇i = f(li) +
N
∑

j=1

ajig(lj − li), (4)

where f, g are twice differentiable functions and g(0) = 0. In

order to understand stability, we need to look at the lineariza-

tion of the system. As such, we write g(x) = γx+O(x2) as

the Taylor expansion, where O(·) is the big O notation which

bounds asymptotic behaviour at x = 0.

We denote L = (l1, . . . , lN ) and we write equation (4) as

L̇ = F (L). (5)

Let 1 = (1, . . . , 1), then it is straightforward to check that if

r is a root of f , i.e. f(r) = 0; then r1 is an equilibrium of

the dynamical system.

For any load balancing dynamics stated in Eq.(4), we know

that there exists an equilibrium solution at r1. For linear

dynamics (see Section II), this is the only equilibrium solution.

As such, we provide the analysis for stability around this

equilibrium solution.

In order to determine the stability of the equilibrium we

compute the eigenvalues of the Jacobian at the equilibrium.

Let Fi be the i-th component of the function F of equation

(4), then we have

∂

∂li
Fi(L)

∣

∣

∣

∣

L=r1

= f ′(r)−

N
∑

j=1

ajig
′(0)

= f ′(r)− γwi.

(6)

where we have defined wi =
∑N

j=1
aji and by the assumptions

on g it holds that g′(0) = γ.

When k 6= i we have

∂

∂lk
Fi(L)

∣

∣

∣

∣

L=r1

=

N
∑

j=1

δjkajig
′(0) = γaki,

where δki is the Kronecker delta. This equation together with

equation (6) shows that the Jacobian has the form

J(r1) = f ′(r)I − γD + γAT = f ′(r)I − γΛT , (7)

where I is the identity matrix, D is the weighted in-degree

matrix and Λ the weighted in-Laplacian of the graph and ΛT

its transpose. Notice that the spectrum of J(r1) is a spectral

shift of the spectrum of γΛT . Remember that Λ and ΛT have

the same spectrum.

A. Gershgorin Circle Theorem

For the Laplacian it is known that 0 is an eigenvalue and that

all eigenvalues have non-negative real part. The first assertion

is a direct implication of the relation ΛT · 1 = 0. The second

assertion a consequence of Gershgorin circle theorem, [18].

For each row of the matrix we construct the disc that has

the diagonal element as centre and the sum of the absolute

values of the remaining elements as radius, we call each of

these discs a Gershgorin disc. Gershgorin’s theorem states that

each Gershgorin disc contains at least one eigenvalue of the

matrix.

Because a matrix and its transpose have the same eigenval-

ues, we can do the same with the columns instead of the rows.

In the case of the Laplacian matrix, since the sum of a row

is zero and the diagonal elements are all non-negative, each

disc has centre on the positive real axis and is tangent to the

imaginary axis.

B. Stability Scenarios for Various Dynamics

Let µi denote the eigenvalues of J(r1) and λi denote the

eigenvalues of Λ, the relation between them is µi = f ′(r) −
γλi. The equilibrium r1 is stable if Re(µi) > 0 for all i. Then

from the discussion on the eigenvalues of Λ we deduce the

following:

• Default Load Balancing: If f ′(r) < 0 and γ ≥ 0, then

the equilibrium r1 is asymptotically stable. This scenario

is the default load balancing setup. As such, in this default

case, the dynamics (e.g. f(·), γ) only affect how resilient

the stable system is to faults and how fast it approaches

the equilibrium, but not the stability itself.

Since the system (3) is linear and we know that the largest

eigenvalue of the Jacobian is −β, we know that regardless

the initial condition system approaches the equilibrium

with rate e−βt.

• If f ′(r) < 0 and γ < 0, then the equilibrium r1 is asymp-

totically stable if |f ′(r)| > |γ| ρ and asymptotically

unstable if |f ′(r)| < |γ| ρ, where ρ = max{Re(λi)}.

This is appropriate for sleep mode operations, where BS

nodes with a lighter load tend to be switched off and their

load transferred to neighbouring heavy loaded BS nodes

γ < 0. This is in order to conserve energy [6].

• If f ′(r) = 0 and γ < 0, then the equilibrium r1 is

asymptotically unstable. This scenario is similar to the

above sleep mode case.

• If f ′(r) = 0 and γ ≥ 0, then we cannot determine

the stability of the equilibrium r1 just by looking at

the eigenvalues of the Jacobian. In multi-hop routing,

one is generally not motivated to push demand away

based on the demand itself, but by other motivations (e.g.

need to move information from one geographic area to

another). Therefore, the action is entirely inter-node based

(f ′(r) = 0).

• If f ′(r) > 0, then the equilibrium r1 is asymptotically

unstable. Here, the BS attempts to attract load when it is

over-loaded and remove load when under-loaded, which

is against the purpose of serving customer demand. As

such, this scenario is not applicable to most telecommu-

nication dynamics.

For the purpose of load balancing as described in this

paper, we are only interested in the case of f ′(r) < 0 and

γ > 0, which when referring to the system considered in

Eq.(3), it implies that the equilibrium is always asymptotically

stable.
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IV. PROBABILISTIC UNCERTAINTY

In realistic networks, each BS can have different load

balancing mechanisms. The general models provided here are

a baseline for Digital Twins [19] and sensors at the channel and

network level inform the actual performance of individual BSs.

Given the challenges in wireless sensing and flaws in sensors,

measurement of the parameters and load flow are subject to

measurement noise and can affect stability [10].

We investigate this by adding a random variable to the load

scaling gradient β and load balancing rate γ (see Eq.(3)).

As such, the dynamical system is l̇i = (β + ζi)(1 − li) +
∑N

j=1
aji(γ + ξji)(lj − li), where ζi and ξji are random

variables of known distribution.

The entries of the Jacobian matrix are

(J)ii = −β − ζi −

N
∑

j=1

aji(γ + ξji)

(J)ij = ajiγ + ajiξji.

We define θi =
∑N

j=1
ajiξji, then the Jacobian becomes

J = −β I − γ ΛT − Z −Θ− Ξ,

with Z = diag(ζ1, . . . , ζN ), Θ = diag(θ1, . . . , θN ) and

(Ξ)ij = ajiξji.

Just like before, the system is stable if and only if all

the eigenvalues of J have negative real part. We use the

Gershgorin circle theorem to get a bound on that probability.

Let

si = −β − ζi +

N
∑

j=1

aji(|γ + ξji| − γ − ξji),

then if for all i, si < 0 then the system is stable.

In this case, the stability is probabilistic, i.e., the

probability that the system is stable is bounded from below

by
∏N

i=1
P(si > 0). The exact form of this bound will depend

on the distribution of the random variables ζi and ξji.

As an example we will look at the case of Default Load

Balancing where the we know the values of β and γ up

to a uniform measurement error. Let β > 0, γ > 0,

ζi ∼ Uniform[−b, b] and ξji ∼ Uniform[−c, c], with c > γ.

Let Xi = |γ+ξji|−γ−ξji Since P(γ+ξji < 0) = 1

2
(1−γ/c),

the random variables Xi take the values

Xi ∼

{

0, with probability 1

2
(1 + γ/c)

Uniform[0, 2(c− γ)], with probability 1

2
(1− γ/c).

We denote Y =
∑N

i=1
Xi. The random variable Y is

the sum of n uniform random variables with probability
(

N
n

)

( 1
2
(1− γ/c))n( 1

2
(1+ γ/c))N−n. The sum of independent

uniform random variables follows the Irwin-Hall distribution.

This implies that the PDF of Y is

fY (x) =
1

2N

N
∑

n=1

(

N

n

)

(1− γ/c)n(1 + γ/c)N−n

×
1

(n− 1)!

⌊

x

2(c−γ)

⌋

∑

k=0

(−1)k
(

n

k

)(

x

2(c− γ)
− k

)n−1

.

We can now write si = −β − ζi + Yi and ask what is the

probability that si is positive. The random variable −β − ζi
is uniform on [−β − b,−β + b] and PDF of the sum of two

random variables is the convolution of the PDFs, we get

P(si < 0) =
1

2b

∫ 0

−∞

∫ x+β+b

x+β−b

fY (s) ds dx.

This integral cannot be written in a simple form, but it can

easily be evaluated numerically. Finally, the probability that

every si is negative is (P(si < 0))n, which bounds from below

the probability that the system is stable.

Note that we looked at the case where c > γ, which

corresponds to a measurement error that is of the same order

of magnitude as the measurement itself. If we assume that

the error is smaller, i.e. c ≤ γ then the γ + ξji cannot be

negative, which implies that the system is always stable.

V. CAPACITY STABILITY ANALYSIS

A smooth invertible transformation of a dynamical system

does not change the stability of its equilibria. In particular let

φi : R → R be invertible, twice continuously differentiable

functions and let us define ci = φi(li). The dynamical system

for ci’s is given by the equations using chain rule ċi = φ′

i

(

li
)

l̇i:

ċi =φ′

i

(

φ−1

i (ci)
)

×


f
(

φ−1

i (ci)
)

+
N
∑

j=1

ajig
(

φ−1

j (cj)− φ−1

i (ci)
)



 .
(8)

From the previous discussion we know that the point

(φ1(r), . . . , φN (r)) is an equilibrium of the system (8) that

corresponds to the equilibrium r1 of the system (4). The

stability of this equilibrium is the same as the stability of r1.

Now we can apply the previous analysis in the case of of

load-balancing of BSs, governed by the dynamical system (3).

Notice that this system is linear, which implies that there is

only one equilibrium and by the previous analysis we know

that when γ, β > 0, this equilibrium is asymptotically stable.

We assume that φi(li) = di/li. This implies that φ−1

i (ci) =
di/ci and φ′

i(li) = −di/l
2
i . Then the system (8) becomes

ċi = −
c2i
di



β

(

1−
di
ci

)

+

N
∑

j=1

ajiγ

(

dj
cj

−
di
ci

)





= βci

(

1−
ci
di

)

+

N
∑

j=1

γ ajici

(

1−
cidj
cjdi

)

. (9)

At first glance it seems that the above equation implies that

the self-dynamics of a BS is given by f(ci) = βci(1− ci/di)
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and it has two equilibria, di which is stable and 0 which

is unstable. The equilibrium (di, . . . , dN ) corresponds to

the stable equilibrium of the system (3) and from this we

deduce that it is not just asymptotically stable but also a

global attractor of the system. Moreover, we get that it

textbfapproaches the equilibrium with the same speed, i.e.

e−λt. The equilibrium 0, however, is not an admittable one

because it appears also as a denominator and in this case the

right-hand side of (9) cannot be evaluated. In a sense the 0
“equilibrium” of the system (9) corresponds to infinity in the

system (3).
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VI. RESULTS

We present results for differing Poisson Point Process (PPP)

and Poisson Cluster Process (PCP) generated random complex

networks [20], where nodes are omni-directional BS sites

and links are offloading relations. We connect the nodes

in accordance to a random network, whereby a percolation

control parameter R and a probability of connecting P is used

to determine if adjacent BSs can offload to each other. Traffic

and capacity values are not needed because we know from

earlier that the system is always stable and the load dynamics

only affect the speed of convergence to the equilibrium and

resilience to faults, but not its asymptotic stability. This is an

important insight.

Fig.2a show the PPP Voronoi plots along with BS load

balancing network. The results in Fig.2b demonstrate that,
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as we expected, the eigenvalues of the Laplacian are all

in the positive real half-plane. Therefore the whole load

balancing network is always stable in this case. Fig.3a show

the PCP Voronoi plots along with BS load balancing network.

The results in Fig.3b demonstrate that, as we expected,

the eigenvalues of the Laplacian are all in the positive real

half-plane. Therefore the whole load balancing network is

always stable in this case.

VII. CONCLUSION & FUTURE WORK

In this paper, we show the mathematical stability criteria that

links the generalized load balancing dynamics (f(·), γ) with

the maximum eigenvalue of the weighted in-Laplacian of the

adjacency matrix (ρ). We prove that default load balancing net-

works are always asymptotically stable, irrespective network

topology and the balancing dynamics (linear or otherwise).

However, we observe that for other forms of balancing actions,

the stability is not ensured. We also present the probabilistic

stability in the face of heterogeneous uncertainty among the

load balancing actions. We showed that given uncertainty in

the load balancing actions, as long as the system measurement

accuracy is better the underlying noise process, the system

is stable. The proposed probabilistic framework that links

sensor accuracy with network dynamics provides uncertainty

quantification and stability prediction for Digital Twins of

wireless infrastructure.

We believe this general relationship can inform the joint

design of both the base station (BS) dynamics and the BS

interaction network. Whilst this seminal work on stability

analysis considered a frequency re-use network with no inter-

ference, future work will consider the effects of interference,

sleep mode, user entry/exit demand dynamics [16], and their

influence on stability.
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[18] R. Varga, Geršgorin and His Circles, ser. Springer Series in Com-

putational Mathematics. Springer Berlin Heidelberg, 2011. [Online].
Available: https://books.google.co.uk/books?id=W3k0a70-Hs0C

[19] F. Tao and Q. Qi, “Make More Digital Twins,” Nature, vol. 573, 2019.
[20] C. Saha, M. Afshang, and H. Dhillon, “3GPP-Inspired HetNet Model

Using Poisson Cluster Process: Sum-Product Functionals and Downlink
Coverage,” IEEE Transactions on Communications, vol. 66, no. 5, 2018.



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2019-12-12

Probabilistic stability of traffic load

balancing on wireless complex networks

Moutsinas, Giannis

IEEE

Moutsinas G, Guo W. (2020) Probabilistic stability of traffic load balancing on wireless complex

networks. IEEE Systems Journal, Volume 14, Issue 2, June 2020, pp. 2551-2556

https://doi.org/10.1109/JSYST.2019.2956060

Downloaded from Cranfield Library Services E-Repository


