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Abstract

This paper considers the problem of minimal control inputs to affect the system states such that the

resulting system is structurally controllable. This problem and the dual problem of minimal observability

are claimed to have no polynomial-order exact solution and, therefore, are NP-hard. Here, adopting

a graph-theoretic approach, this problem is solved for general nonlinear (and also structure-invariant)

systems and a P-order solution is proposed. In this direction, the dynamical system is modeled as a

directed graph, called system digraph, and two types of graph components are introduced which are

tightly related with structural controllability. Two types of nodes which are required to be affected

(or driven) by an input, called driver nodes, are defined, and minimal number of these driver nodes are

obtained. Polynomial-order complexity of the given algorithms to solve the problem ensures applicability

of the solution for analysis of large-scale dynamical systems. The structural results in this paper are

significant as compared to the existing literature which offer approximate and computationally less-

efficient, e.g. Gramian-based, solutions for the problem, while this paper provides exact solution with

lower computational complexity and applicable for controllability analysis of nonlinear systems.

Keywords: Structural Analysis, Controllability, System Jacobian, SCC, Graph Dilation

I. INTRODUCTION

Controllability describes the ability of inputs to drive the dynamical system from any initial state to

the desired final state in finite time, while the dual concept of observability is a measure of how well

internal states of the dynamical system can be inferred by external state measurements in finite time.

Controllability and observability have been topics of interest in analysis of variety of systems, including

smart grid and power systems [1]–[3], biological systems [4], [5], chemical systems [6], and even social
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systems [7]–[9]. Due to the large size of these systems, the identification of a small fraction of their states

to drive the entire system around the state space poses an important problem. This problem, sometimes

referred to as the minimal controllability problem [10], is the main focus of this paper and finds different

applications in leader selection [11], [12], cooperative control [13], [14], formation stabilization [15],

[16], synchronization [17], [18], complex network controllability [19], [20], consensus [21]–[25], etc. As

an example, applying minimal controllability in consensus (or finite-time consensus) [21]–[25], one can

find the minimal number of leader agents to drive the multi-agent system towards reaching consensus

value.

Related literature: different aspects of minimal control input problem are considered in the literature.

The problem of choosing the minimal set of inputs for optimizing the control energy to drive the dynamical

system to the desired state is known to be NP-hard and therefore log n-approximate solution is proposed

[26]. Further, in [27] it is shown that for some specific controllability-Gramian related metrics the problem,

under the special case, yields modular set functions and can be efficiently optimized. The problem of

finding the minimal set of inputs to make the system controllable is claimed to be NP-hard [10], [28] and

log n-approximate solution is developed in [10]. The dual problem of optimal sensor selection for system

observability is claimed to be NP-hard as well and n2-approximate solution is proposed [29]. Similarly,

in [8] it is claimed that the problem of minimal number of information gatherers (observer nodes) for

observability of a social system is NP-hard in general. In [19] the minimal set of driver nodes (the nodes

to be injected by input) in a Strongly-Connected (SC) network is determined as the minimal number of

unmatched nodes, however, for general (non-SC) networks no result is derived. The other less-related

topic is optimal link/node addition to improve structural controllability [11], [30], [31].

An interesting approach is developed in [32], [33] to restore/maintain controllability of networks in

the presence of adversarial attacks or failure that remove some nodes/links. The authors apply a novel

computationally efficient sub-optimal approximation for the restoration of the Power Dominating Set

(PDS)1. The authors apply their restoration strategy over different random models including Erdos-Renyi

(ER), Small-World (SW), and Scale-Free (SF) graphs [32] and also provide a thorough complexity analysis

of their method [33]. Further, this restoration strategy is applied for cloud-based monitoring of Cyber-

Physical-Systems (CPS) [35], where a local attack detection technique based on the opinion dynamics

1A set SG is a Dominating Set of the graph G = {V, E} if every node in V \ SG has a neighbor node in SG. Further define

SG as a Power Dominating Set (PDS) if every link/node in G can be observed by SG [3]. Finding the minimal PDS is known

to be generally NP-complete [3], [33], while P-order approximations are given, e.g., for graphs of bounded treewidth [34]. The

PDS is first applied in the observability of electrical power networks as the optimization problem of measuring all nodes by

placing as few PMUs as possible [3], [34].
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is adopted to find the topological changes in the underlying network and activate a resilience process in

case of detecting a threat. [35] further shows that the proposed recovery approach considering structural

controllability can reach optimal values in linear times. In general, [32], [33], [35] propose a strategy to

reconstruct the PDS in case of topological changes in, e.g., power networks; however, the results can be

extended to other types of networks.

Overall, what missing from the literature is a polynomial-order solution of the minimal driver node

problem for general dynamical systems with possible non-SC system digraphs. One specific application

of such solution is in the controllability (or dual case of observability) of smart grid and power networks

[1]–[3], [34]. Such networks are of large-scale and not SC in general and, therefore, the existing com-

putationally less-efficient approximate solutions are not practical. Similar reasoning holds for biological

system applications [4], [5].

Contribution: motivated by recent advances in structural analysis, a graph-theoretic approach is adopted

in this paper to solve the problem of minimal driver nodes for controllability. In this direction, it is shown

that the driver nodes are tied with two components in the system digraph: (i) the dilation and (ii) the

child SCC, and two types of driver nodes are introduced on the system digraph: Type-I to recover

input-connectivity of state nodes, and Type-II to recover rank condition for structural controllability. The

minimal set of driver nodes is achieved by finding the shared nodes between these two components in

the system digraph. The significance of the contribution of this paper is stated in the following:

• Different realizations of minimal controllability problem are claimed to be NP-hard [8], [10], [26]–

[29], and therefore, approximate (and not exact) solutions are suggested to solve the problem.

However, a polynomial-order exact solution of complexity O(n2.5) is proposed here.

• Only Type-II driver nodes are considered in [19] for SC directed networks. However, in this work,

the Type-I driver nodes are introduced and the problem of minimal driver nodes is solved for general

systems with possible non-SC system digraphs. In general, here it is proved that the minimal number

of driver nodes for general systems might be more than what is claimed in [19].

• In contrast to linear controllability considered in [8], [10], [26]–[29], this paper similar to [19] gen-

eralizes the solution for both linear systems and structure-invariant systems prevalent in linearization

of nonlinear systems.

• In this paper, the algorithm complexity using graph-theoretic approach is O(n2.5), while the com-

plexity of Gramian-based numerical analysis [26], [27] is (at least) O(n3). Lower computational

complexity ensures better efficiency and practicality in large-scale applications.
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II. PROBLEM STATEMENT

In this paper the underlying dynamical system is modeled by coupled first-order Ordinary Differential

Equations (ODEs) in the form,

ẋ = f(x) +Bu (1)

where x ∈ Rn is the state vector, f : Rn → Rn is a nonlinear continuously differentiable function,

u ∈ RN is the input, and B ∈ Rn×N is the input matrix. For controllability analysis, one may consider

the linearized model of the dynamics (1),

ẋ = Jx+Bu (2)

where J ∈ Rn×n is the Jacobian matrix defined as Jij =
∂fi
∂xj

[36]. If fi is a function of xj the entry Jij

is nonzero, where the exact numerical value is determined by the linearization point. Having the function

f to be time-invariant, the structure of the Jacobian matrix J , i.e. its zero-nonzero pattern, is fixed for

all linearization points.

The nonlinear and linear model of the dynamical system are typically represented as a graph, known as

the system digraph. In the system digraph G = {V, E}, node Vi ∈ V represents state xi of the dynamical

system. If the entry Jij is nonzero, implying that fi is a function of xj , there is a link (Vi,Vj) ∈ E

(Vi → Vj) in the system digraph G. Therefore, the system digraph G represents the zero-nonzero pattern

(or the structure) of the Jacobian matrix J . It is known that many properties of the dynamical system are

inherent in the structure of its system digraph2 [38], including system controllability and observability.

Such properties only rely on the zero-nonzero pattern of the Jacobian matrix and are irrespective of the

exact numerical values of J , and therefore are called generic. In this direction, the structural observability

and controllability are checked based on graph-theoretic methods instead of numerical Gramian-based

analysis or PBH test. It is known that the controllability of a nonlinear system is structurally similar to

its linearized model. In fact, having the linearized model to be controllable at every linearization point

implies the controllability of the nonlinear model [36]. In other words, since the structural controllability

implies the controllability over a continuum of linearized points, the controllability results in this paper

are valid for nonlinear case. The main theorem on structural controllability is stated below:

Theorem 1. [39] A dynamical system in the form (1)-(2) is structurally controllable if and only if in

its system digraph G the following conditions hold:

2It should be noted that another important example on the zero-nonzero pattern (structure) of the system digraph is the

calculation of number of spanning trees, see [37] for more details.
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(i) Every state node Vi is the end node of a path initiated from an input or a driver node.

(ii) There is a disjoint family of cycles and input-connected paths covering all state nodes in V .

The condition (i) in the above theorem is referred to as the input-connectivity condition and condition

(ii) is referred to as the rank condition. The main goal in this paper is to determine the minimal number

of driver nodes to be affected by an input such that the system digraph G is structurally controllable.

Without loss of generality assume that each input drives one state node, i.e. each column of the input

matrix contains only one nonzero entry. Let B denote the zero-nonzero pattern of the input matrix B, J

denote the zero-nonzero pattern of the Jacobian matrix J , and |B|0 define the number of nonzero entries

of B. The main problem can be formulated as follows:

argmin
B

|B|0

s.t. (J ,B) structural-controllability.

(3)

The goal of this paper is to find a polynomial-order solution for problem (3) with the assumption

that matrix J has a fixed structure. This problem for general non-SC systems is claimed to be NP-hard

[8], [10], [28], [29] and, therefore, approximate solutions are proposed which are not computationally

efficient. In this paper, a P-order exact solution with low computational complexity is proposed applicable

in large-scale systems.

Assumptions: In this paper, the network is structurally static and time-invariant while the link weights

may change in time. This implies that the system adjacency matrix is fixed-structure while the entries may

vary in time. In nonlinear systems this means that the nonlinear characteristic function is time-invariant

and, therefore, the structure of Jacobian is fixed.

III. RELATED GRAPH-THEORETIC CONCEPTS

The concept of system-digraph is used to structurally model dynamical systems [7], [24], [25], [38].

This section introduces the main graph-theoretic notions related to structural controllability of system

digraphs, namely, dilations and SCCs. An introduction on SCC classification for structural observability

can be found in the previous work by author [40].

A. Dilations

A dilation is defined as a component in the graph in which there are less nodes dilated (or linked) to

more other nodes. Let |.| denotes the cardinality of a set and N (.) represents the set of neighbors of a

node or a subset of nodes, e.g., for the set Di we have N (Di) = {Vj |(Vj ,Vi) ∈ E ,Vi ∈ Di}. Then, the

dilation set is defined as follows:

November 27, 2019 DRAFT
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Definition 1. [19] A dilation is a component in which there is a subset of nodes Di ⊂ V such that

|N (Di)| < |Di|, where Di is the dilation set.

The procedure of finding the dilations and dilation sets are better defined over bipartite graphs. Define

the bipartite representation of the system digraph G = (V, E) as Γ = (V+,V−, EΓ) with two disjoint

set of nodes V+ and V− where every link in EΓ starts from a node in V+ and ends in V−. In Γ

the node sets are defined as V+ = V and V− = V . Further, EΓ is the collection of the links defined

as {(V+
j ,V−

i )|(Vj ,Vi) ∈ E}. A matching, M, in Γ is the set of mutually disjoint links that share no start

node in V+ and no end node in V−. A matching with maximum size is called the maximum matching,

M. Denote by ∂M− the matched nodes as the nodes in V− incident to M and define the unmatched

nodes as δM = V−\∂M−. In fact, a node is matched if it is an ending node of a link in M; otherwise

the node is unmatched. A maximum matching M can be obtained from a matching M in the auxiliary

graph ΓM = (V+,V−, EM
Γ

). Having a matching M, the graph ΓM has the same set of nodes as in Γ,

while the set of links EM
Γ

is obtained from EΓ by reversing the direction of the links in M and keeping the

direction of other links in EΓ\M. Denote by QM a M-alternating path as sequence of links alternating

between matched links M and unmatched links in EΓ\M. Such sequence starts from a node in δM with

a link in EΓ\M and every second link in M. Denote by PM an M-augmenting path as an alternating

path starting and ending in δM. In fact, the M-augmenting path is used to find the maximum matching

from a simple matching (see Algorithm 1). Having a maximum matching M, choose a node Vi ∈ δM

in ΓM and find the set of all nodes in V− reachable by alternating paths QM from Vi. This resultant set

is a dilation set. Denote by D the set of all dilation sets, i.e. D = {D1, ...,Dl}. This procedure of finding

a maximum matching M and consequently finding the dilation sets Di is summarized in Algorithm 1.

B. Child SCCs

Define a Strongly Connected Component (SCC), denoted by Si, as the largest set of nodes in the system

digraph G = {V, E} in which every two nodes are connected via a directed path, i.e. ∀{Vi,Vj} ∈ S we

have Vi
path
−−−→ Vj and Vj

path
−−−→ Vi. Further, classify the SCCs in terms of their input-connectivity as

child and parent SCCs; a child SCC, denoted by Sc
i , is a SCC with no incoming link from nodes not

belonging to itself, i.e. ∀Vi ∈ Sc
i ,∄(Vj,Vi) ∈ E ,Vj /∈ Sc

i . A SCC that is not a child is called a parent

SCC. Further, define the partial order of SCCs by ≺. Si ≺ Sj implies that there is (at least) one link (or

a directed path) from the nodes in Si to nodes in Sj . This implies that for every child SCC Sc
i there is

no other SCC Sj such that Sj ≺ Sc
i . Denote by Sc the set of all child SCCs, i.e. Sc = {Sc

1, ...,S
c
p}. The

classification of SCCs and their partial order can be defined by applying the well-known DFS algorithm
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Given: System digraph G

Result: Dilations {D1, ...,Dl}

Construct Γ = (V+,V−, EΓ);

Find a matching M ;

Construct ΓM by reversing the links of M in Γ;

Find ∂M− as the nodes in V− incident to M ;

Find δM = V−\∂M−;

Find QM as a sequence of links starting from an unmatched node in δM and every second link

in M;

Find PM as a QM with start and end node in δM;

while PM exist do

for nodes in δM do

Find PM ;

M = M⊕PM ;

end

end

Construct ΓM for the maximum matching M;

Find ∂M− and δM = V−\∂M−;

Find QM for the maximum matching M;

for nodes in δM do

Find QM in ΓM ;

Put all nodes in V− reachable by QM in Di;

end

Return Di, i = {1, ..., l};

Algorithm 1: The first loop in the algorithm renders the maximum matching M, and the second loop

in the algorithm renders the dilation set for each unmatched node in M. Note that ⊕ represents the

XOR operator in set theory. XOR (Exclusive OR) is an operation that outputs true (or 1) only when

logical inputs differ.
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[41].

The DFS algorithm starts from a root node in the digraph and explores all nodes in the digraph. This

so-called root node can be chosen as any arbitrary node in the digraph, where the algorithm starts the

search from it. From this root node the algorithm follows the links in the digraph to reach nodes not

visited before. As the algorithm goes deeper in the graph, a new root node may be chosen if not all nodes

are visited from the previous root node. The algorithm ends as all nodes in the digraph are visited. The

algorithm keeps track of the predecessor of each visited node. The graph associated with this predecessor

is a tree graph called DFS forest3. For each node Vi the following attributes are saved: (i) Vi.π denoting

the predecessor of node Vi, (ii) Vi.u denoting a boolean variable which is false if the algorithm has not

visited Vi yet and true otherwise, and (iii) Vi.s and Vi.e denoting the start time and the end time a node

is visited. The modified DFS algorithm is summarized in the Algorithm 2 and 3.

Given: System digraph G

Result: Node attributes Vi.u, Vi.π, Vi.s, and Vi.e for i = {1, ..., n}

t = 0;

for Vi ∈ V do

Vi.π = ∅ ;

Vi.u = false;

Vi.s = 0 ;

Vi.e = 0;

end

for Vi ∈ V : Vi.u == false do

DFSvisit(G,Vi)

end

Return Vi.u, Vi.π, Vi.s, and Vi.e;

Algorithm 2: This algorithm, called as DFS, returns the node attributes associated with every node in

G calling the algorithm DFSvisit (Algorithm 3).

These algorithms are applied to find the SCCs and particularly the child SCCs in system digraph G as

summarized in the Algorithm 4.

3A (DFS) tree contains all nodes reachable from the root node. A complete DFS exploring the entire graph (and not only

the part reachable from a given root node) builds up a collection of trees, or a forest, called a DFS forest. A recent work [42]

develops the idea of graph likelihood in forest graphs to grow sparse graphs to model real-world networks.
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Given: System digraph G, node Vi

Result: DFSvisit(G,Vi)

Vi.u == true;

t = t+ 1 ;

Vi.s = t ;

for Vj ∈ N ′(Vi) do

if Vj .π == false then

Vj.π = Vi;

DFSvisit(G,Vj)

end

end

t = t+ 1 ;

Vi.e = t ;

Return DFSvisit(G,Vi);

Algorithm 3: This algorithm has been called in Algorithm 2 as DFSvisit. Note that N ′(Vi) =

{Vj|(Vi,Vj) ∈ E}.

Given: System digraph G

Result: SCCs Si and child SCCs Sc
i

DFS(G) ;

Find Vi.e for every Vi ∈ V ;

Find GT ;

DFS(GT ) with nodes Vi in decreasing order of Vi.e ;

Si includes all nodes in DFS forest over GT ;

Define Sc
i as Si including no Vj with Vj .π not in Si ;

Return SCCs Si and child SCCs Sc
i ;

Algorithm 4: This algorithm finds the SCCs and child SCCs in the system digraph G applying the DFS

algorithm. Note that the digraph GT is the transpose of the system digraph G obtained by reversing the

link directions in G.
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C. Complexity of the algorithms

The procedure of finding M-augmenting paths PM in Algorithm 1 is executed in time-complexity

O(|E|+ |V|). The first loop runs |δM| times which, in worst-case scenario, is of O(|M|0.5). Therefore,

the first loop to find the maximum matching M is O((|E|+ |V|)|M|0.5) complexity. The complexity of

the second loop of the algorithm is similarly O((|E|+ |V|)|M|0.5). Therefore, with |V| = n, the number

of links in the graph |E| is at most n(n − 1)/2, and the size of maximum matching |M| is at most n.

This implies that Algorithm 1 is of time-complexity O(n2.5).

The running time of the first loop in Algorithm 2 is O(|V|). In the next loop, Algorithm 3 is called

once for each node Vi ∈ V . The loop in Algorithm 3 for every Vi ∈ V executes N ′(Vi) times. Note that,
∑

Vi∈V
|N ′(Vi)| is O(|E|). Therefore, the total running time of Algorithm 3 is O(|E|). Using aggregate

analysis [41], the overall running time of Algorithm 2 is O(|V|+ |E|). Having |V| = n, the complexity of

Algorithm 2 is O(n2). Finally, Algorithm 4 runs Algorithm 2 twice and, therefore, its time complexity

is similarly O(n2).

IV. MINIMAL DRIVER NODES IN SYSTEM DIGRAPH

Using the graph-theoretic notions in Sections II and III, the main results on minimizing |B|0 for

structural controllability are derived in this section. |B|0 can be defined as the minimal number of driver

nodes in the system digraph G that are injected by an input. We denote this number by Nmin in the rest

of the paper. In the light of Theorem 1 and using the notions of dilations and child SCCs the conditions

for structural controllability are redefined in the following theorem.

Theorem 2. The necessary and sufficient conditions for structural controllability of the system digraph

G associated with the dynamical system (1)-(2) are as follows:

(i) at least one state node in every child SCC, Sc
i , i = {1, ..., p}, must be driven by an input. This

node is referred to as Type-I driver node.

(ii) at least one state node in every dilation, Di, i = {1, ..., l}, must be driven by an input. This node

is referred to as Type-II driver node.

Proof. The proof of condition (ii) for SC system digraphs is given in [19]. Assuming that condition (ii)

holds, condition (i) is proved for general non-SC digraphs in the following.

Necessity: The necessity is proved by contradiction. Assume no node in child SCC Sc
i is driven by an

input. According to condition (i) in Theorem 1, for structural controllability every node in Sc
i must be

the end node of a directed path initiated by an input. From the definition of child SCC, there is no SCC

Sj such that Sj ≺ Sc
i . This implies that there is no Sj with direct link or directed path from the nodes
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in Sj to nodes in Sc
i . This along with the contradiction assumption of no driver node in Sc

i implies

that the input-connectivity condition in Theorem 1 is not satisfied and therefore the nodes in Sc
i are not

controllable.

Sufficiency: Assume that there is one driver node in every child SCC Sc
i injected by an input. Based on

the definition of SCC, there is a directed path from this driver node to every other node in Sc
i . Further,

for every parent SCC Sj there is a child SCC Sc
i such that Sc

i ≺ Sj . Therefore, the input-connectivity

of the nodes in Sc
i implies the input-connectivity of the nodes Sj . This holds for every parent SCC Sj .

Assuming that the condition (ii) holds, both conditions in Theorem 1 are satisfied and the structural

controllability follows.

Note the difference between Type-I and Type-II driver nodes in Theorem 2. Injecting input to Type-I

driver nodes recovers the input-connectivity condition in Theorem 1, while input to Type-II driver nodes

recovers the rank-condition. The literature, e.g. [19], only considers Type-II driver nodes, assuming that

the network is SC and the input-connectivity in Theorem 1 holds. In this work, Type-I driver nodes are

introduced for controllability analysis of general non-SC networks.

Lemma 1. Every two SCCs are disjoint, but two dilations may share nodes.

Proof. The SCCs being disjoint simply follows the definition. Two SCCs Si and Sj sharing a node Vk

implies that there is a directed path from all nodes in Si to Vk and from all nodes in Sj to Vk; therefore,

there are directed paths between the nodes in Si and Sj , implying that these two components making a

larger SCC. Note that this contradicts the definition of SCCs as the largest set of nodes connected via

directed paths. Further, dilations that share nodes are prevalent, e.g., in star digraphs.

We refer interested readers to the previous work by the author [43] for rank-deficient graph examples.

Also, it should be noted that the dilation sets and child SCCs may share nodes. Examples are given in

Section V.

Lemma 2. For every unmatched node in δM there exists one dilation. In other words, |δM| = |D|.

Proof. This lemma follows the definition of dilation sets. As discussed in Section III-A, the procedure

of finding a dilation set Di starts with an unmatched node in δM and then finds all the reachable nodes

in V− by M-alternating paths QM. Therefore, there is one dilation set for every unmatched node.

Corollary 1. Every choice of maximum matching M accompanies with one unmatched node in every

dilation set Di.
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Proof. The proof follows from Section III-A and the same line of justifications as in the proof of Lemma 2.

Note that the maximum matching is not unique in general and every choice of maximum matching

M results a different set of unmatched nodes δM, while every unmatched node belongs to a dilation set

Di. In fact, the dilation sets Di, i = {1, ..., l} include all possible sets of unmatched nodes for different

choices of maximum matching. Note that injecting input to nodes in dilation sets improves the rank

condition in Theorem 1. This is tightly related with the concept of structural-rank (or S-rank) of the

system adjacency matrix (or the Jacobian matrix).

Definition 2. [44] Define the S-rank of J as the maximum possible rank of the matrix J by changing

its nonzero entries. In other words, the S-rank of J (or structured matrix J ) is the number of distinct

nonzero entries of J that share no rows and no columns.

Lemma 3. [44], [45] Let matrix BDi
denotes the input matrix associated with all the nodes in Di as

driver nodes. Then,

S-rank(J |BDi
) = S-rank(J) + 1 (4)

The lemma implies that injecting input to any node in a dilation set Di improves the rank condition in

Theorem 1 by one; even if more than one driver nodes in Di are injected by input the S-rank recovery is

one. This implies that all the state nodes in the same dilation set are equivalent in terms of controllability.

For more information on the equivalency relation for dual concept of observability refer to the previous

work by the author [45].

Corollary 2. Let Di ∩ Dj denote the shared nodes between two dilation sets Di and Dj , and matrix

BDi∩Dj
denotes the input matrix associated with these shared nodes as driver nodes. Then,

S-rank(J |BDi∩Dj
) = S-rank(J) + min{|Di ∩ Dj|, 2}. (5)

Proof. The proof follows from Lemma 2 and 3 and the equivalency relation defined in [45]. Note that

injecting input to one driver node in a dilation, say Di or Dj , recovers the S-rank by only one, even if

the driver node is shared between two dilation sets. If there are more than two shared nodes in Di ∩Dj ,

by driving these shared nodes the S-rank recovery is only two due to equivalency relation.

This corollary can be easily generalized for more than two shared dilation sets. In the light of Theorem 2

and Lemma 1 and 3 and relevant corollaries the main result of this section is described in the following

theorem.
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Theorem 3. The minimal number of driver nodes for structural controllability of system digraph G

associated with the system models (1)-(2) is equal to Nmin = |D|+ |Sc|−min(|D∩Sc|), where min(|D∩

Sc|) represents the minimum number of child SCCs and dilation sets that share nodes.

Proof. Following the results of Theorem 2, injecting input to one node in every dilation set and one node

in every child SCC recovers the structural controllability of system digraph G. From Lemma 1 the child

SCCs do not share nodes, and further, driving the share nodes among two or more dilation sets recovers

the S-rank of the Jacobian matrix J by at most the number of those dilation sets. In other words, from

Lemma 3, choosing one driver node from every dilation sets, even if the node is shared between two

dilation sets, recovers the S-rank of J by only one. The key point is that the dilation sets and child

SCCs may share nodes (denoted by D ∩ Sc); injecting inputs to these nodes recovers both conditions

on input-connectivity and S-rank recovery in Theorem 1. Therefore, choosing the nodes in D ∩ Sc as

driver nodes and choosing one node from every remaining dilation sets and child SCCs renders minimal

number of nodes for structural controllability. Choosing less driver nodes than Nmin implies that there

is at least one dilation set or child SCC not affected by an input which, according to Theorem 2, makes

the digraph G structurally uncontrollable.

Note that, as a result of this theorem, the minimal number of driver nodes is less than or equal to the

number of child SCCs and dilation sets, i.e. |D| ≤ Nmin ≤ |D|+ |Sc|. This is an improvement over the

results given by [19].

A. Systems with inaccessible state nodes

In real applications some of the state nodes might be inaccessible to be affected by input. In this

subsection, such set of nodes, denoted by F , is considered which cannot be selected as driver nodes.

For such nodes the actuator (or sensor in case of observability) may fail to affect the state node [11],

[46], and therefore a node in F must be avoided as a driver node. Similar concept is discussed in [47],

where it is considered that some of the nodes are subject to failure/attack and become dysfunctional or

the nodes are non-cooperative and share wrong information over the consensus network (also known as

Byzantine node). In [47], the concept of resilient consensus is proposed as a counter-measure to deal

with such nodes. Here, the idea of control equivalency is considered as a counter-measure to deal with

inaccessible nodes.

Lemma 4. Consider the digraph G associated with the system (1)-(2). In case of having inaccessible state

nodes F , we have Nmin = |D|+ |Sc|−min(|D∩Sc|−|D∩Sc∩F|), where min(|D∩Sc|−|D∩Sc∩F|)

denotes the minimal number of child SCCs and dilation sets that share accessible nodes.
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Proof. Note that in the above lemma it is assumed that at least one node in every dilation set and child

SCC is accessible. Otherwise, the structural controllability cannot be achieved and the problem has no

solution. As mentioned in Theorem 3, driving the state node Vk shared between a dilation set Di and a

child SCC Sc
j recovers both conditions for structural controllability and minimizes the overall number of

driver nodes. If Vk ∈ F we consider two cases; case (i), assume there is no other shared node between

Di and Sc
j ; then, two new driver nodes including one equivalent driver node in Di and one equivalent

driver node in Sc
j are needed to replace Vk to recover structural controllability. This implies that Nmin is

increased by one for the inaccessible shared node in |D ∩ Sc ∩F|. For case (ii), assume there is another

accessible node Vd shared between Di and Sc
j ; then, selecting Vd as driver node recovers structural

controllability. Therefore, from these two cases, Nmin is determined by the minimal number of child

SCCs and dilation sets sharing accessible nodes, denoted by min(|D ∩ Sc| − |D ∩ Sc ∩ F|).

B. Polynomial-order complexity

For large-scale controllability applications it is preferred to apply polynomial-order algorithms. As

mentioned in Section I, the related literature on minimal controllability (or dual problem of minimal

observability) claim this problem to be NP-hard [8], [10], [26]–[29]. Therefore, approximate solution

or greedy approach is proposed to solve this problem which is not practical for large-scale application.

However, as discussed in Section III-C, the algorithms in this paper are of polynomial-order complexity.

The Algorithm 1 to find the dilation sets is of O(n2.5)-complexity and the overall complexity of the

Algorithm 4 to find the child SCCs is O(n2), with n as the system size (or number of the state nodes).

This implies overall complexity of order O(n2.5), which is significant as the computational complexity

of numerical Gramian-based analysis is at least O(n3).

V. ILLUSTRATIVE EXAMPLES

Example 1: Consider the system digraph G1 represented in Fig. 1. This graph represents a dynamical

system in the form (1) (or the linearized model (2)). For example, a link (V1,V2) in G1 implies that

ẋ1 is a function of state x2, i.e. J12 = ∂f1
∂x2

is nonzero for all operating points. Similar statement holds

for all the links in the system digraph G1. Following the definitions in Section III-B, the node sets

S1 = {V1,V2} make the only largest component in which all nodes are inter-connected via a path,

and therefore S = {{V1,V2}}. Further, we have V1.π = V2 and V2.π = V1 implying that this SCC

has no incoming links from the nodes not belonging to itself, and therefor, it is the (only) child SCC

Sc
1 = {V1,V2}.

November 27, 2019 DRAFT



15

1

3 4

5

2

6
1

3

2

4

6

5

1

3

2

4

6

5

1

3

2

4

6

5

1

3

2

4

6

5

Fig. 1. An example system digraph G1 is shown along with its bipartite representation Γ1 and auxiliary graph representation

Γ
M. The links associated with maximum matching M are shown by black and the unmatched nodes are shown as δM.
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Fig. 2. The dilations and dilation sets of the graph G1 (Fig. 1) are shown in this figure. The black links represent the dilation

in the system digraph G1 and the M-alternating paths in the auxiliary graph Γ
M.

Next, the dilation sets are found using the graph-theoretic notions in Section III-A. The bipartite

representation of graph G1 is shown in Fig. 1 as Γ1 = (V+,V−, EΓ). A possible matching M =

{(V1,V2), (V2,V1)} is shown by black links. The matched nodes incident to links in M are ∂M− =

{V1,V2} and the unmatched nodes are δM = {V3,V4,V5,V6}. The Auxiliary graph associated with

matching M is shown in Fig.1 as ΓM obtained by reversing the links not belonging to M. The dilation

sets are obtained by finding the nodes reachable from unmatched nodes by M-alternating paths, as

shown in Fig.2. The dilation sets are D = {{V3,V1}, {V4,V1}, {V5,V2}, {V6,V2}}. As shown in the

figure, for each dilation Di from the definition we have |N (Di)| < |Di|. For example, N (D1) = {V2},

N (D2) = {V2}, N (D3) = {V1}, and N (D4) = {V1}. To find the minimal number of driver nodes for

structural controllability, following Theorem 3, D ∩ Sc = {{V1,V2}} which belongs to child SCC Sc
1.

Therefore, minimal number of driver nodes is Nmin = |D|+ |Sc| −min(|D ∩Sc|) = 4+ 1− 1 = 4. One
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Fig. 3. An example system digraph G2 similar to the social network example in [8] is shown in this figure. The nodes bordered

with red circle represent the inaccessible nodes that cannot be affected by a control input.

possible minimal set of driver nodes is, for example, {V1,V4,V5,V6} and the (structured) input matrix

is:

B =





























× 0 0 0

0 0 0 0

0 0 0 0

0 × 0 0

0 0 × 0

0 0 0 ×





























(6)

where × represents a nonzero entry and 0 represents a fixed zero. The structural results match the

Gramian-based numerical analysis. For random numerical realizations of the Jacobian matrix J associated

with system digraph G1 and the input matrix (6) the Gramian (B|JB|J2B|...|J5B) is checked to be full

row rank, verifying the structural results in this paper.

Example 2: An example system digraph G2 with 16 state nodes similar to the social network example

in [8] is shown in Fig.3. Assume there are some inaccessible state nodes F = {V2,V4,V5,V12,V15} in the

system which cannot be affected by input. Using Algorithm 1 and Algorithm 4 the dilation sets and child

SCCs are found in the system digraph as follows: D = {D1,D2,D3,D4} where D1 = {V1,V3,V5,V10},

D2 = {V2,V4,V6,V12}, D3 = {V1,V3,V7,V14}, D4 = {V2,V4,V8,V16}, and Sc = {Sc
1,S

c
2,S

c
3,S

c
4,S

c
5}

where Sc
1 = {{V1,V2,V3,V4}, Sc

2 = {V9,V10}, Sc
3 = {V11,V12}, Sc

4 = {V13,V14}, Sc
5 = {V15,V16}. To

find the minimal driver nodes, D∩Sc = {{V1,V3,V10}, {V2,V4,V12}, {V1,V3,V14}, {V2,V4,V16}} and,
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therefore, following Theorem 3 Nmin = |D|+ |Sc| −min(|D ∩ Sc|) = 5 + 4− 4 = 5. One possible set

of driver nodes is {V1,V10,V12,V14,V16}. This is by assumption that all nodes are accessible. However,

considering the inaccessible nodes as in Fig.3, D ∩ Sc ∩ F = {{V2,V4,V12}} and, therefore, following

Lemma 4 Nmin = |D| + |Sc| −min(|D ∩ Sc| − |D ∩ Sc ∩ F|) = 5 + 4 − 3 = 6. Equivalent accessible

nodes in the same child SCC Sc
3 and dilation set D2 replace the node {V12} for controllability recovery.

One possible set of driver nodes is {V1,V6,V10,V11,V14,V16}. Having the controllability Gramian to be

full row-rank verifies the structural results.

VI. CONCLUDING REMARKS

Results of this paper find applications in network medicine. For example, to find the driver nodes in

a gene regulatory network [48] or to minimally regulate the cell functions via cellular differentiation

process [49]. Further, the dual problem of minimal observer nodes to monitor power grid [1]–[3], [34] is

another direction of future research. Another open problem is in the minimal controllability of composite

networks made by graph product of factor networks [50]. In the same line of research, an open problem

is the minimal link addition and topological change for controllability recovery to reduce the driver nodes

in complex networks. Following [32], investigating the effect of node removal on minimal driver nodes

in ER, SW, and SF networks is another future research direction. Thus, one can compare the number

of driver nodes in different types of these networks and also investigate the effect of changing their

parameters on number of driver nodes.
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