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Abstract

In the explosively increased number of applications of earth observation satel-
lites (EOSs), scheduling is a significative issue to satisfy more requests and
obtain a high observation efficiency. This paper investigates the scheduling of
multiple EOSs under the impact of clouds. Firstly, we formulate the presences of
clouds as stochastic events, and propose an expectation model. Afterwards, for
the first time, a branch-and-price algorithm based on Dantzig-Wolfe decompo-
sition is devised to solve the model optimally and efficiently. In order to obtain
initial columns for column generation, a dynamic programming algorithm and
a heuristic algorithm are suggested, respectively. Furthermore, we discuss the
impact of clouds in the case of joint probabilities, and establish a sample aver-
age approximation (SAA) model accordingly. With respect to the expectation
model, numerical experiment results demonstrate the relative dominance of the
proposed branch-and-price algorithm in terms of solution time compared to
CPLEX. In addition, the solution of the proposed SAA model is proven to be
more robust than that of the expectation model.

Keywords: scheduling; earth observation satellites; cloud coverage; expectation
model; branch-and-price; sample average approximation

1. Introduction

Earth observation satellites (EOSs) are the platforms equipped with sensors
that orbit the earth to take photographs of special areas at the request of users
[5, 13]. EOSs can image, while moving along their orbits, which is shown in Fig.
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1. After capturing the photographs, the acquired data will be stored in the on-
board memory and transferred to a ground station when the satellites are in the
feasible transferring range. Most EOSs operate at low altitudes with the orbital
periods being dozens of minutes or several hours. However, it takes several days
for a single EOS to view the whole area of the Earth. Hence, multi-satellite
collaboration has been applied extensively in order to accelerate the response
to users.
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Figure 1: The satellite captures the photographs [32]
Because of some unique advantages, e.g. an expansive coverage area, long-

term surveillance, accurate and effective information access and unlimited airspace
borders, EOSs have been extensively employed in earth resources exploration,
nature disaster surveillance, crop monitoring, etc. With the development of
space science and technology, the number of satellites increases continuously.
However, satellites are still scarce in comparison with the explosive growth of
applications. Hence, scheduling is a significative issue to satisfy more requests
and obtain a high observation efficiency.

Up to now, a great number of studies of EOS scheduling have been proposed,
and some of them focus on mathematical programming and exact algorithms.
Chen et al. [11] defined and analyzed the constraints of EOS scheduling in de-
tail, and formulated the problem as a mixed integer linear programming model.
In order to verify the feasibility and effectiveness, they applied the model in
several real-world situations. Benoist and Rottembourg [3] formulated the EOS
scheduling as a generalized prize collecting traveling salesman problem with time
windows, and developed a compact mathematical model. Using valid inequali-
ties based on task interval reasoning, the upper bounds for revenue maximization
were improved. Gabrel et al. [16, 17] constructed mathematical programming
models based on the directed acyclic graph (DAG) formulation, and some de-
composition techniques as well as dynamic programming were employed to get
the optimal solutions. In order to maximize the number of observed images,
Nag et al. [30] proposed a control framework that includes orbital mechanics,
attitude control and scheduling optimization for agile Cubesat constellations.
In detail, a mixed integer programming model was suggested for scheduling
optimization, and a dynamic programming algorithm with heuristics was devel-
oped. Furthermore, the exact solution algorithms based on mathematical pro-
gramming also contain branch-and-bound [12], dynamic programming [21, 22],



Lagrangian relaxation [4, 49] and Constraint programming [35].

In addition, a large number of metaheuristics were developed for EOS schedul-
ing. Cordeau and Cordeau [13] described the problem as the selection of a subset
of requests with maximal profit for a given orbit, and solved the problem using a
tabu search heuristic. As an extension of [13], Bianchessi et al. [5] employed the
tabu search algorithm for EOS scheduling in the multi-satellite, multi-orbit and
multi-user case. Besides, an upper bounding procedure based on column gener-
ation was proposed for evaluation. Furthermore, Habet et al. [19] proposed a
tabu search algorithm to solve the EOS scheduling problem. Besides, a dynamic
programming algorithm was designed to evaluate the performance of the tabu
search algorithm. Considering the observation efficiency and fairness of resource
sharing, Tangpattanakul et al. [32] established a multi-objective combinato-
rial optimization model, and presented an indicator-based multi-objective local
search algorithm. Liu et al. [27] analyzed the setup time constraints of satellite
scheduling, and formulated it as a time-dependent scheduling problem. Based
on six removal operators and three insertion operators, an adaptive large neigh-
borhood search (ALNS) algorithm was developed. Considering task merging
for EOS observation, Wu et al. [41] proposed a simulated annealing algorithm
based on the adaptive neighborhood operators. Moreover, metaheuristics for
EOS scheduling also include tabu search algorithms [20, 26, 34, 35, 46], genetic
algorithms [23, 31, 39, 42], ant colony algorithms [10, 24, 40, 45], local search
algorithms [21, 22] and simulated annealing algorithms [18, 20].

With regard to heuristics, Lemaitre et al. [22] proposed greedy algorithms
to get feasible solutions for EOS scheduling problems. For the scheduling of
COSMO-SkyMed satellite constellation, Bianchessi and Righini [6] proposed a
constructive heuristic algorithm with look-ahead and back-tracking capabilities,
which can produce feasible schedules in a short time. Wolfe and Sorensen [39]
formulated EOS scheduling as a window-constrained packing problem. A fast
and simple priority dispatch method was suggested, and the look-ahead mech-
anism was introduced to improve the performance of solutions. Xu et al. [43]
developed a mathematical programming model for the scheduling of EOSs, and
designed constructive algorithms to solve the problem, which adopt a priority-
based sequential construction procedure to avoid conflicts and to generate feasi-
ble solutions. For the other constructive and heuristic algorithms, readers refer
to [4, 20, 26, 29].

All the previous studies focus on the deterministic scheduling without con-
sidering the impact of clouds. However, in practice, EOS observations are sig-
nificantly affected by the presences of clouds, since most EOSs are equipped
with optical sensors that cannot see through clouds [18]. For instance, around
80% of the observations with the currently operational optical SPOT satellites
are useless due to the presences of clouds [1]. Lin et al. [26] formulated the
presences of clouds as a set of covered time windows, and forbade the tasks
to be observed in the covered time windows. In practice, the drawback and
infeasibility of Lin’s approach is that there exist a lot of uncertainties of clouds,
which are always changing over time and cannot be forecasted deterministically
[1, 21]. Hence, the uncertainties of clouds bring much more difficulties for EOS



scheduling. Liao and Tang [25] considered the uncertainties of clouds, formu-
lated the presence of clouds for each observation window as a stochastic event,
and established a model with the objective of maximizing the weighted sum of
a function of the profits and the expected number of executed tasks. Valicka
et al. [36] formulated the scheduling of EOSs under uncertainties of clouds as
two-stage and three-stage stochastic mixed integer programming models, re-
spectively, with the objective of maximizing expected collection quality across
a set of scenarios. In [1], the online scheduling of a Pleiades satellite that is
equipped with a cloud detection instrument was considered, and the decisions
were made on board based on the detection results of clouds.

Based on the principle of Dantzig-Wolfe decomposition, column generation
algorithms have been proven to be one of the most successful approaches for
solving linear programs or for getting bounds for integer programmes. Currently,
column generation and branch-and-price have been successfully used in many
fields [7, 8, 9, 14, 44]. However, with respect to EOS scheduling, the studies
of column generation are still very limited. The column generation technique
has been invoked in the deterministic EOS scheduling to provide a better upper
bound [17, 28] and to evaluate the feasible solutions derived from some heuristics
[5].

In this study, considering the impact of clouds, we formulate the presences of
clouds for observations as stochastic events. In addition, an expectation model is
proposed to formulate the scheduling of multiple EOSs. Due to the fact that the
expectation model is characterized by a block diagonal structure, we decompose
it into a set-packing master problem and some subproblems using Dantzig-Wolfe
decomposition, and develop a branch-and-price algorithm to solve the model.
Furthermore, relaxing the independence assumptions, the coverage of clouds in
the case of joint probabilities is discussed, and a sample average approximation
(SAA) model is constructed taking into account scheduling each task to multiple
resources. By numerous simulation experiments, we prove that the branch-and-
price algorithm can solve the expectation model optimally and efficiently. In
addition, the solution of the SAA model is proven to be more robust than that
of the expectation model.

The remainder of this paper is organized as follows. In the next section we
describe the problem in detail, and formulate the problem with an expectation
model. In Section 3, we present a branch-and-price algorithm to solve the
expectation model. In Section 7?7, we discuss the impact of clouds in the case of
joint probabilities. Numerical results of our approaches are presented in Section
5. The last section offers conclusions and directions for future research.

2. The EOS scheduling problem

In this study we focus on the scheduling of multiple EOSs in which the pres-
ences of clouds for observations are formulated as stochastic events. Further-
more, a mathematical expectation model is suggested to describe the problem.
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Table 1: Notations
set of tasks, T'= {1, ...,n}
task index, 4,5 € T'U {s,t} , in which s,¢ are
dummy tasks
profit of task 4, i € T'
set of orbits, O = {1, ..., m}
orbit index, k € O
b;r. = 1 if orbit k is available for the observation
of task 4, otherwise by, = 0,71 € T,k € O
memory capacity and energy capacity of orbit k,
keO
memory and energy consumption for each unit
time of observation of orbit k£, k € O
imaging period of observation of task i on orbit k,
1€T, ke O
slewing angle of observation of task ¢ on orbit k,
ie€T,keO
setup time between task ¢ and task j on orbit k,
,j €T, keO
energy consumption for slewing between task ¢
and task j on orbit k, 4,5 € T,k € O
binary stochastic variable, A = 1 denotes that
task ¢ can be successfully observed on orbit k,
otherwise \ix = 0,ieT,keO
probability that task ¢ will be successfully
observed on orbit k, i € T,k € O



2.1. Problem description

In this paper, we focus on the scheduling of targets (circles with limited
dimensions) rather than polygons that cover a wide geographical area. Besides,
the orbits of satellites are formulated as resources. Hence, there will be at
most one observation window for each task (target) on each resource. Some
notations of this study are summarized in Table 1. Let T' be the set of tasks
(strips) submitted by users and let O be the set of orbits within the scheduling
horizon. With each task i € T is associated a profit w;. Each orbit £ € O
is associated with a memory capacity M}, an energy capacity Ej, a memory
consumption for each unit of observation time mj and an energy consumption
for each unit of observation time e;. Let b;, = 1 denote that task i can be
observed on orbit k, otherwise b;rz = 0. [ws;k, we;i] denotes the imaging period
for task i on orbit k, and 6;; represents the slewing angle. Many of these notions
are illustrated in Fig. 2. In this work, we only consider non-agile satellites that
have the maneuverability of rolling (slewing) which indicates a movement that
is perpendicular to the direction of the orbit, without the maneuverability of
pitching which indicates a movement along the direction of the orbit. Hence,
the imaging periods for observations are fixed without flexibility, such that the
start and finish time of task ¢ on orbit k will be fixed as [ws;, we;k], and the
duration can be calculated as we;r, — ws;k.

ground track of satellite

Figure 2: Imaging period for observation

After observing a task, the satellite requires a sequence of transformation
operations to observe the next one, which contain sensor shutdown— slewing—
attitude stability— startup. Hence, there should be sufficient setup time be-
tween two consecutive tasks, and the required setup time can be calculated by
the following formula [37]:

stfj = sdy, + |0ir — 0|/ sk + asy + sug, (1)
where stfj is the setup time between task ¢ and task j on orbit k, and sdy,
asg and sug are the times of sensor shutdown, attitude stability and startup of

orbit k, respectively. Besides, sy is the slewing velocity of orbit &k, and 6;; and
;1 are the slewing angles of tasks ¢ and j on orbit k, respectively.



For observing task ¢ on orbit k, the memory consumption can be computed
by (we;r, —ws;;)my. Differently from memory, energy will not only be consumed
by observation, but also by sensor slewing. The energy consumption for observ-
ing task ¢ on orbit k is (we;, — ws;k)ex. Let p” denote the energy consumption
of slewing between consecutive tasks 7 and j on orbit k&, which can be calculated
by the formula below:

Pl = 10 — Okl (2)
where 7y, is the energy consumption for each unit slewing angle on orbit k.

Considering the impact of clouds, we formulate the presences of clouds for
observations as stochastic events, denoted by 0-1 bernoulli random variables
)\zk,z e T,k € O. Xir = 1 if the observation of task i on orbit k can be
successfully observed without the presences of clouds, otherwise Nir = 0. Let
pir denote the probability for a successful observation of task ¢ on orbit k, i.e.,
no presences of clouds, thus we can obtain p{;\ik =1} = pi; and p{j\ik =0} =
1 — pir. In our assumption, the probabilities of cloud coverage are provided by
meteorological departments [50].

2.2. Expectation model

In this study, a mathematical expectation model maximizing the expected
profits of successful observations is established. In this model, we use binary
decision variables zf; € {0,1} (i,j € TU{s,t},k € O), in which s, are dummy
tasks for starting and terminating, respectively. :ckj = 1 if both tasks 7,5 are
scheduled on orbit k, and task ¢ is the immediate predecessor of task j; otherwise

a: = 0. Hence, the mathematical expectation model is given below:

max Z Z Z Wi - Pik - l‘fj (3)

€T jeTu{t} keO

subject to i#i
o > alh<1VieT (4)
jeTu{t keo
J#i
oooah= > ahvieTkeo (5)
jeTu{t} jeTU{s}
jA jAi
Z M <bu,VieT,keO (6)
jeTu{t}
J#F
xfj(wsjk — wek — stfj) >0,Vi,jeT,keO (7)
Z Z mfj(weik —wsik)mg < My, Vk € O (8)
€T jeTu{t}
jAi



2 > xp(wei — wsir)ey,

€T jeTu{t}
+> > x%pijEk,VkGO
i€l jeT
J#i
af, € {0,1},Vi,j e TU{s,t},k € O (10)

The objective (3) is to maximize the expected value of the profits of the ex-
ecuted tasks under the impact of clouds. The set of constraints (4) guarantees
that each task will be observed at most once. Constraints (5) are flow balance
constraints that force the number of predecessors to be equal to the number
of successors for each task. Constraints (6) enforce that each task can only be
scheduled to the orbits that are available for it. There must be sufficient setup
times between consecutive tasks for transformations, which is enforced in con-
straints (7). Apparently, constraints (7) also guarantee that the imaging periods
for different tasks on the same orbit cannot overlap. Constraints (8) check that
the memory consumption of the scheduled tasks cannot exceed the memory ca-
pacity for each orbit. Constraints (9) compute the energy consumption of the
task sequence for each orbit, and enforce that the energy consumption must be
less than or equal to the capacity.

3. A branch-and-price algorithm

Note that, the proposed expectation model is characterized by a block diag-
onal structure, which facilitates decomposition. Hence, to solve the expectation
model more efficiently, we reformulate it as a set packing (master) problem and
some subproblems using Dantzig-Wolfe decomposition.

3.1. Set packing model

To formulate the set packing problem, we define the following notations:

Ry the set of all feasible solutions (schedules) for orbit k, k € O.

r: a feasible solution, r € Ry, k € O.

Yijrk: Pijrk = 1 if task 4 is the immediate predecessor of task j of solution
r on orbit k, otherwise ;. = 0.

¢k the expected scheduling profits of feasible solution r on orbit k, r € Ry,
keO.

Decision variables:

zkr: 2z = 1 if feasible solution r is selected for orbit k, r € Ry, k € O,
otherwise zg,, = 0.

The set packing model for the scheduling of multiple EOSs under the impact
of clouds can be formulated as follows:

maxz Z Chor Zhor (11)

. keO reRy,
subject to



Z Z Z Gijrkzkr < 1L,ViET (12)

kEOTER), je T U {t}

R
> s =1YVkeO (13)
rER

zir €4{0,1},Vr € R,k € O (14)

The objective (11) is to maximize the expected value of the profits of exe-
cuted tasks. Constraints (12) are corresponding to constraints (4), which enforce
each task to be executed at most once. Constraints (13) are the convexity con-
straints representing that a feasible solution should be selected for each orbit.
Explicitly, the above formulation only take the unicity constraints into account
for EOS scheduling. However, the remaining constraints are also involved im-
plicitly to constitute the feasible solutions for each orbit (see Section 3.4).

It should be noted that the above set packing model decreases the number of
constraints compared to the original expectation model. However, the number
of feasible solutions for each orbit grows exponentially with the problem size.
Hence, in order to avoid the ”explosion” of the solution time, we intend to solve
the linear programming (LP) relaxation of the above set packing problem using
column generation.

3.2. Column generation

In essence, column generation is an iterative procedure that starts by solv-
ing the problem using a subset of all feasible solutions (columns), which is the
so-called Restricted Master Problem (RMP). Then the RMP is solved to op-
timality. In the next step, in the subproblems the dual variables are used to
price out the absent columns that can improve the objective. If one or multiple
promising columns are identified (i.e., columns with a positive reduced cost for
our problem), the column(s) will be added to the RMP and the RMP is re-
optimized. Then, the procedure will terminate if we cannot find any columns to
improve the objective (e.g. the reduced costs of all absent columns are negative).

In the first iteration, we solve the RMP using a subset of columns R}, R} C
Ry, for each orbit k, k € O, in which the subset Rj, are provided by algorithms
in Section 3.3. Thereafter, for each successive iteration, the following dual
variables are passed to the subproblems for identifying feasible columns with
positive reduced costs:

e u;: dual variables corresponding to constraints (12),

e J;: dual variables corresponding to constraints (13).

On the basis of the dual variables from the RMP, we can theoretically calcu-
late the reduced cost for each absent column, and add the columns with positive
reduced costs to the RMP. However, due to the large number of columns, it is
impractical and much too time consuming to enumerate all absent columns.
Hence, we transfer the problem to an optimization problem that searches for
the column with the most positive reduced cost.



8.8. Initial feasible solutions

In this paper, in order to obtain the initial feasible solutions Rj for each
orbit k, we first define a directed acyclic graph (DAG) G*¥ = (V*, A¥) for each
orbit k. Note that, the problems can be solved separately for each orbit. Hence,
without provoking ambiguity, we drop the superscript k. Using a task-on-node
representation, the nodes in V represent the tasks that are available, plus two
special nodes {s, t} representing the dummy starting and terminating tasks.

A is the set of arcs, which is defined as below:

o Vje VU{t}, (s,)) € 4
o VjeVU{s} (j1) € 4

o Vi, j €V, (i,j) € Aiff task j can be observed after task 7, i.e. the setup
time between tasks ¢ and j is sufficient.

It is obvious that a path from the starting node s to the terminating node ¢
that satisfies the memory and energy constraints represents a feasible solution.
Based on the above formulation, we devise two heuristic algorithms to generate
the initial feasible solutions for each orbit. In addition, the time complexities of
the two initialization algorithms are analyzed theoretically in Theorems 1 and
2, respectively.

The first algorithm is a simple labeling-based path construction heuristic
subject to capacity checking. First, for each node j, a weight w}, w; = w;p;
is assigned. For each node j, the state (ix, 1 Iy, Qp, MZ')7 E;,) represents a path
from the starting node s to j, namely p = {s,i1,...,4,5}. In detail, iy is
the immediate predecessor of j of p, T [, is a pointer referring to the subpath
p'={s,i1,...,ik}, {p is the sum of weights of the nodes of the path, and M,
E]’D are the memory consumption and energy consumption of path p. Besides,
N (j) is defined as the number of labels in P(j). In order to prevent the quantity
explosion of paths, and to satisfy the computer memory limit, the number of
paths for each node is limited to less than a predefined number L, i.e. N(j) < L.
The first initilization algorithm is described in Algorithm 1, in which I'"1(j)
is the set of all predecessors of j.

By this algorithm, a predefined number L of feasible solutions of maximum
weight will be obtained as the initial feasible solutions. In addition, in order to
guarantee that the master problem is feasible, we add an “empty” solution that
is corresponding to the direct path from s to ¢ for each orbit.

Theorem 1. The time complexity of Algorithm 1 is O(n?L?).

Proof. The maximum number of labels (subpaths) in P(j) is L. Hence, the
computational complexity of the inner loop (lines 5-9) is O(L). Subsequently,
the maximum number of predecessors for each node is n, and thus the complexity
of lines 4-10 is O(nL). Hence, the maximum number of paths in P(j) should be
nL. In addition, the complexity of selecting L paths from P(j) with maximum
weights (line 11) is nL?. In conclusion, the time complexity of Algorithm 1 is
O(n* (nL 4+ nL?)) = O(n%L?).

10



Algorithm 1 Initialization Algorithm I
1: P(s) < {[null,null,0,0,0]}
2: P(j) —O,N(G) —0(j<1,...,n,t)
3: for j—1,...,n,t do
4:  for alli € I'"'(j) do

5: for all [, € P(i) do

6: if memory and energy constraints are satisfied then

7 P(j) — PG)U{[i, T 1p, Qp +w), My, +m(we; —ws;), B+ e(we; —ws;) +
piil};

8: end if

9: end for

10:  end for

11:  Select L paths from P(j) with maximum weights and delete the other paths
from P(j);

12: end for

With respect to Initialization Algorithm II, we generate L paths from
node s to node t heuristically. The algorithm starts from the dummy terminate
node t, and then selects a predecessor ¢ based on preference random sampling.
The priority rule is to choose the node with the highest weight w;. If the memory
constraints and energy constraints are satisfied, we move to node 7, otherwise
another predecessor will be reselected. Afterwards, the above procedures are
repeated until the dummy starting node s is reached, which implies that a
feasible solution has been obtained. Finally, the above steps are repeated L
times, and L solutions will be produced for each orbit. In this algorithm, the
probability of each predecessor i being selected is p; = w;/Zsep—l(j)w;. The
heuristic initialization algorithm is outlined in Algorithm 2.

Algorithm 2 Initialization Algorithm II
1: COLy « 0
2: forli=1,...,L do
3. j <t //tis the terminate node of orbit k;
4:  while j # s do
5: Select node 4, i € T'(j) with biased random sampling, in which T'""'(5) is
the set of all predecessors of j. The priority value of node i is the sum of the
profit of node 7 and the profits of all predecessors of node i, and the priority
rule is to select the predecessor with the highest priority value.
if Memory constraints and energy constraints are satisfied then
J—
end if
end while
10: Obtain the column coly;, COLy «— COLy U {coli };
11: end for

6
7
8:
9

Theorem 2. The time complexity of Algorithm 2 is O(nL).
Proof. The complexity of selecting a predecessor with biased random sam-
pling (line 5) is O(n). In addition, the maximum number of while loops (lines

11



4-9) should be n, and thus it will consume O(n?) time to obtain a feasible solu-
tion. Therefore, the time complexity of Algorithm 2 is O(L xn?) = O(n%L).

Notably, the time complexity of Algorithm 2 is lower than that of Algo-
rithm 1, thus it will consume less time in obtaining initial solutions, which will
also be proven in Section 5.

8.4. Subproblem

In each iteration of column generation, we solve m subproblems, one for each
orbit k, k € O. In each subproblem, the objective is to find the feasible solution
with the most positive reduced cost. Hence, the objective of the subproblem for
orbit k, k € O is outlined as below:

%%x{ckr - Z Z Gijrktti — On } (15)
. i€T jeTuU{t}
J#F

Note that the index k can be removed, since each subproblem is solved
separately. Therefore, the above objective function can be rewritten as:

max{c, — Z Z Qijrfli — 0} (16)

reR
€T jeTu{t}
J#i
In which ¢, = > > w;ip;ijr, and the index r can also be neglected
€T jeTu{t}
J#

for the optimization problem, thus the objective is:

maxz Z a;j(wipi — pi) — 0 (17)
€T jeTu{t}
JF
Parameters. The additional parameters employed in the subproblem are:
i, 0: the dual variables obtained from the restricted master problem, i € T
b;: b; = 1 if it is available to observe task i, otherwise b; = 0,7 € T.
M, E: memory capacity and energy capacity.
m,e: memory and energy consumption for each unit time of observation.
[ws;, we;|: imaging period of observation of task ¢, i € T
sti;: setup time between task ¢ and task j, 4,5 € T
pi;: energy consumption for slewing between task ¢ and task j, 7,7 € T
p;: probability of successful execution of task i, i € T.
Decision variables. The decision variables are:
oyj: oy = 1 if both tasks 4,j are scheduled, and task ¢ is the immediate
predecessor of task j; otherwise a;; = 0.

Subproblem formulation. The subproblem can be formulated as follows:

maxz Z a;j(wipi — pi) — 0 (18)
€T jeTu{t}
JF
subject to

12



Z Qi = Z Qi VieT (19)

JET ULt} jeTu{s}
J#i IEX
Z o <b;,VieT (20)
jeTuU{t}
J#
aij(wsj —we; — stij) > 0,¥i,j €T (21)

Z Z o (we; —ws)m < M (22)

i€T jeTuU{t}

J#i
> > ag(we —wside+ > Y aypi S E
€T jeTU{t} i€T jeT (23)
J#i J#i
Qi € {0, 1},Vi,j eTUuU {S,t} (24)

Constraints (19)-(24) are corresponding to constraints (5)-(10) of the original
problem, respectively. Since the subproblem is solved separately for each orbit,
the complexity of the problem is significantly reduced compared to the original
problem.

Based on the above DAG formulation, the subproblem is to search for a path
from s to t with the maximum weight respecting the memory and energy con-
straints, which in essence is a constrained longest weighted path planning prob-
lem. Notably, at each iteration of column generation, the weight of each node 4
should be updated with the dual variables from the RMP, namely w] = w;p; — ;.
On the basis of [16], the subproblem can be solved using a forward-checking dy-
namic programming algorithm that is composed of labels and dominance rules.
In detail, labels are employed to record the state information after a node is
accessed, and dominance rules are employed to remove the labels that cannot
produce the optimal solution. In this study, the definition of label is the same
as that of Section 3.3, and the dominance rules are illustrated as below.

Definition 1: Path domination. From the starting node s to node j,
there are two feasible paths p, ¢, i.e., l,,l; € P(j), path p is dominated by path
q if and only if Q, < Q,, M, > M,, E, > E, and at least one strict inequality
holds.

3.5. Branch-and-bound

In order to guarantee the integrity, a branch-and-price algorithm, which is a
combination of column generation and branch-and-bound, is required to solve
the problem. With respect to the branch-and-price algorithm, branching is an
important issue that is different from the classical branch-and-bound algorithm.
Normally, direct branching strategies on the column variables of the RMP are
thought to be inappropriate, because it could cause a significant alteration to
the subproblem and yield an unbalanced branch-and-bound tree [2, 33].

In this study, we plan to use the branching on the variables of the original
problem. For each subproblem (orbit) k, if there exist fractional variables, there

13



will be at least two variables that are fractional, say zx, and zxs, due to the
convexity constraints (13). Hence, for the two columns corresponding to the
fractional variables, if >© ; c U Pijrk # D0 jeru ey Qijsk for task i i €
J# J#
T, we will branch on task i, i.e.,set > ; ¢ 7y (¢} xfj =0o0r) jecruqy xfj =
JFi J#
1. The main advantage of this branching scheme is that it does not destroy the
structure of the subproblem, because the resulting modifications simply entail
amending the weight of the corresponding node in the DAG. For instance, if
Y. jeru{s a:fj is set to 1, the corresponding weight w; is set to @ for orbit
J#F
k; otherwise if Y ;e 7y gy #F; is set to 0, w] is set to —Q for orbit k (Q is a
J#

big constant that is larger than the total profits of all the tasks). The second
advantage is the fact that this branching strategy yields a balanced branch-and-
bound tree.

Initialize a predefined number of columns with the
maximum weights using Algorithm 1

GlobalUpperBound « +o, GlobalLowerBound « -
OptSolObj — 0, S — {RootNode}

Solve the relaxation of the RMP ‘

to the RMP

Add the columns
dual price using Algorithm 2

‘ Solve each subproblem based on ‘

\
|
i
1
|
|
|
I
|
1
| Prune
1
|
i
|
I
|
i
i
|
|
i
1

Column Generation

< GlobalLowerBound ?
No

- No
Integer solution?
Yes
. No Update the
——=| GlobalUpperBound 17— current

Optimal solution
Yes

»| Algorithm ends

Figure 3: Branch-and-price algorithm

In Fig. 3, an overview of the branch-and-price algorithm is given.
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In Eq.(??), N is the number of tasks, and K represents the number of orbits
that are available for observing task i,i = 1,..., N, i.e. the number of orbits on
which there is at least one observation window for task 7. In addition, a;, = 1 if
task ¢ can be successfully observed on orbit k without cloud coverage, otherwise
o, = 0. Moreover, « represents one of the possible values of stochastic vector
S\ik, Viel,..,N,Vk €1,..., K;. Notethat, in the case of joint probabilities, the
probability of successful observation for task ¢ on orbit k& should be the following
marginal probability:

ik =pP{Aik =1} = > pa (26)
=1

Apparently, if the probabilities of successful observations are replaced by the
above marginal probabilities, our model (3)-(10) is also available for the case of
joint probabilities.

It should be noted that if a task can be allocated to multiple orbits under
the uncertainties of clouds, the probability of successful observation for this task
will be higher. Therefore, in order to improve the scheduling efficiency, we will
relax the unicity constraints (4) in the case of joint probabilities. Due to the
possible multiple allocations of each task, the scheduling model becomes more
complicated (nonlinear & nonconvex) [38]. In order to facilitate the solution,
the problem is reformulated by introducing some auxiliary variables.

Firstly, the objective of scheduling is still to maximize the profits of the
accomplished tasks.

maximize Z w; * di, (27)
ieT
where ¢; € {0,1},7 € T are auxiliary decision variables. ¢; = 1 if task i can

be successfully executed and otherwise ¢; = 0. Besides, the variables ¢;,1 € T
should also satisfy the following constraints:

¢ik S (,ZS“VZ S Ta ke Oa (28)
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$i <Y ¢, VieT, (29)

keo
(,bik: S 5‘ik7Vi S Ta k S Oa (30)
< Y, ahVieTkeO (31)
jeTU{t}
J# 1,
bi, i € {0,1},Vi € T, k € O. (32)

With regard to the above constraints, xfj and Az have been defined pre-
viously in this article. ¢;, € {0,1},i € T,k € O are also auxiliary variables.
¢ = 1 if task i can be successfully executed on orbit &, and otherwise ¢;, = 0.
Constraints (28) imply that if task ¢ can be successfully executed on any one
orbit k, it means the task can be successfully executed. Constraints (29) enforce
that there is at least one orbit k on which the task can be successfully executed,
i.e. ¢ = 1, in order to make the task be successfully accomplished, i.e. ¢; = 1.
In addition, two sets of constraints have to be satisfied for the successful obser-
vation of task i on orbit k. First, the observation of task ¢ on orbit k£ cannot be
blocked by clouds, which is enforced in constraints (30). Second, task ¢ must be
allocated to orbit k, which is enforced in constraints (31).

Hence, in the case of joint probabilities, our scheduling model can be refor-
mulated as: (27)-(32), (5)-(10). Note that there are random variables A in
the model, and thus the model cannot be solved directly. In this study, for the
sake of solution, we reformulate the problem by sample average approximation
(SAA). }

Let W be a sample of scenarios of the random vector w(\x),i € T,k € O,
such that W = {wy,ws,...,wyx}, in which N is the sample size. The problem
can be reformulated as follows:

maximize% Z Zwi o (33)

w, W €T
subject to

¢ilk§¢il7i€T7k€O7wl€W (34)
b < Z Gitk,1 € T,w € W (35)

k€O
bk <My, i €T k€ O,w €W (36)
o< Y. ahieTkeOweW (37)

JeTu{t}

J#i

i, Pur €{0,1},i € T,k € O,w € W (38)
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Table 2: Parameters of satellites

satellite slewing power on power off stability memory energy energy

velocity time (sec) time (sec) time (sec)  /sec /sec  /deg
(deg/sec)
CBERS-2 2 5 8 3 2 1.5 1.5
IKONOS-2 2.5 8 5 6 4 2.5 4
SPOT-5 3 10 10 9 3 3.5 1

In the above model, both ¢;; € {0,1},i € T,w; € W and ¢ € {0,1},7 €
T,k € O,w; € W are auxiliary decision variables. ¢;; = 1 if task ¢ can be
successfully accomplished under scenario w;, and otherwise ¢;; = 0. ¢ = 1
if task ¢ can be successfully accomplished on orbit k under scenario w;, and
otherwise ¢;; = 0. Besides, )\ﬁk is the realization of the stochastic variable S\ik
under scenario wy.

More specifically, the objective (33) is to maximize the average profits of
executed tasks on the sample W. Constraints (34)-(37) are similar to constraints
(28)-(31) , which implies that the corresponding constraints have to be respected
for each scenario. Surely, the decision variables xfj, 1,7 € TU{s,t}, k € O also
have to satisfy the constraints (5)-(10). Apparently, the above model of the
SAA problem is an integer linear model that can be solved directly by CPLEX.

5. Computational results

In order to verify the effectiveness and efficiency of the proposed models and
algorithms, the tasks are randomly generated in the area: latitude 0°-60° and
longitude 0°-150°. The profits of tasks are integers, uniformly distributed in
the interval [1,10]. In this section, three different satellites are considered. The
parameters of the satellites are outlined in Table 2, and the orbit models of the
satellites are obtained from the Satellite Tool Kit (STK). In addition, the mem-
ory capacity and energy capacity of each orbit are randomly generated based
on uniform distributions in the intervals [200,240] and [240,320], respectively.
Considering the impact of clouds, for each imaging period of observation, the
probability that there is no presences of clouds, i.e. the observation is successful,
will be uniformly distributed in [0.5,1).

The algorithms in this study were implemented in C++ using the CPLEX
12.8 API and run on a personal computer equipped with an Intel(R) Core(TM)
13-2120M 3.29 GHz (4 processors) and 8 Gb RAM, with operating system Win-
dows 7.

5.1. Performance evaluation of the branch-and-price algorithm

In this experiment, the number of tasks ranges from 40 to 400 with an
increment of 40. The scheduling horizons are set to 12 and 24 hours, which are
corresponding to 21 and 42 orbits, respectively. For each parameter setting, we
create 10 problem instances randomly.

To verify the superiority of the branch-and-price algorithm, we compare its
performance with that of CPLEX. Table 3 shows the comparison results for 21
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Table 3: Performance evaluation of branch-and-price algorithm (21 orbits)

Algorithms N Ts/s Tr/s Tr/s Nn Ir LP-GAP(%)
B&P-IA1 40 0.208 0.000 0.177 1.8 5.3 0.06
80 0.477 0.000 0.220 5.4 7.5 0.34
120 0.445 0.000 0.184 4.6 6.4 0.13
160 1.831 0.001 0.467 12.2 13.7 0.14
200 1.150 0.002 0.489 6.0 12.9 0.07
240 0.444 0.001 0.292 2.4 7.4 0.06
280 0.316 0.001 0.260 1.6 7.0 0.01
320 0.404 0.002 0.280 2.4 7.4 0.05
360 0.239 0.002 0.210 1.2 5.3 0.01
400 0.331 0.003 0.288 1.2 7.1 0.01
B&P-TA2 40 0.356 0.000 0.309 1.8 9.4 0.06
80 0.670 0.000 0.322 5.6 11.3 0.34
120 0.550 0.000 0.278 4.6 10.3 0.13
160 2.400 0.000 0.572 16.8 16.8 0.14
200 1.358 0.000 0.629 6.2 16.8 0.07
240 0.618 0.000 0.455 2.4 10.9 0.06
280 0.443 0.000 0.386 1.6 10.8 0.01
320 0.480 0.000 0.351 2.4 10.3 0.05
360 0.409 0.000 0.385 1.2 10.6 0.01
400 0.408 0.000 0.391 1.2 10.4 0.01
CPLEX 40 0.346 0.310 1.0 1.99
80 1.381 1.115 9.0 7.36
120 2.576 1.944 8.2 10.29
160 10.496 3.526 1734.5 7.57
200 10.376 5.582 1004.2 8.80
240 9.449 6.825 122.7 13.23
280 13.830 9.650 129.9 12.91
320 17.162 12.656 281.4 13.77
360 26.090 15.349 1070.1 13.48
400 29.899 19.492 724.9 13.38
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orbits, in which column “N7” represents the number of tasks. The definitions
of the other columns are listed as below:

e Tg: average solution time for the 10 problem instances;

e T7: average time for producing initial solutions;

e Tr: average solution time for the root node;

e Ny: average number of nodes in the branch-and-bound tree for solving;
e [r: average iteration number of column generation for the root node;

e LP-GAP: average distance between the optimal integer solution and its
linear relaxation upper bound, LP-GAP = % x 100, in which
OPT represents the optimal integer solution and UBppr represents the

optimal solution of the linear relaxation.

B&P-TA1 and B&P-TIA2 represent the branch-and-price algorithms with the
initialization algorithms being Algorithm 1 and Algorithm 2, respectively.
Besides, the bold numbers imply optimal performance compared to the other
algorithms. As shown in Table 3, both our branch-and-price algorithm and
CPLEX can solve all the problem instances to optimality. However, the solu-
tion time of the branch-and-price algorithm is much less than that of CPLEX.
The solution time of B&P-IA1 is a bit less than that of B&P-IA2, because
initialization algorithm I can obtain better initial solutions, reducing the
number of exploration nodes (as shown in column Ny). Due to the efficient
heuristic for initialization (Algorithm 2), the initialization time of B&P-TA2 is
significantly less than that of B&P-IA1. The solution time of the root node of
our branch-and-price algorithm is less than that of CPLEX (as shown in column
Tr), since the column generation algorithm is much more efficient to solve the
linear relaxation problem. As shown in the previous studies [47, 48], Dantzig-
Wolfe reformulation and column generation can get tighter upper bounds for
integer programming problems (as shown in column LP-GAP).

Table 4 describes the performance evaluation results for 42 orbits. Similarly
to the results in Table 3, the solution performance of our branch-and-price
algorithm is much better than that of CPLEX, with superiorities in solution
time (as shown in column Tg), solution time of root node (as shown in column
Tr) and the number of nodes (as shown in Ny). Furthermore, the Dantzig-
Wolfe reformulation and column generation algorithm can obtain tighter upper
bounds than CPLEX from solving the original linear relaxation problems. As
mentioned above, the initialization time of B&P-IA2 is much less than that of
B&P-TA1, but the derived initial solutions of B&P-IA2 are not as good as those
of B&P-IA1. Hence, the iteration times of column generation, the solution time
of root node and the total solution time of B&P-IA2 are longer than those of
B&P-TA1, respectively.
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Table 4: Performance evaluation of branch-and-price algorithm (42 orbits)

Algorithms N Ts/s Tr/s Tr/s Nn Ir LP-GAP(%)
B&P-IA1 40 0.282 0.000 0.281 1.0 6.8 0.00
80 0.806 0.000 0.692 1.6 15.5 0.02
120 2.555 0.000 0.885 8.0 17.9 0.09
160 10.176 0.001 0.943 44.4 17.3 0.15
200 7.304 0.001 0.929 26.2 16.5 0.07
240 3.984 0.002 1.056 12.0 16.8 0.08
280 4.761 0.002 0.917 21.2 15.8 0.06
320 7.631 0.003 0.959 27.0 15.9 0.07
360 4.494 0.004 0.923 16.6 15.7 0.08
400 2.737 0.009 0.915 8.4 14.3 0.05
B&P-TA2 40 0.428 0.000 0.428 1.0 9.7 0.00
80 1.087 0.000 0.915 1.6 18.4 0.02
120 2.929 0.000 1.135 8.8 21.7 0.09
160 12.224 0.000 1.164 48.0 20.7 0.15
200 8.472 0.000 1.165 28.0 20.0 0.07
240 5.710 0.000 1.387 13.6 21.0 0.08
280 5.401 0.000 1.106 20.4 18.7 0.06
320 7.047 0.000 1.304 23.6 20.8 0.06
360 5.537 0.000 0.989 16.2 16.7 0.08
400 4.277 0.000 1.187 13.4 18.4 0.05
CPLEX 40 0.594 0.588 1.0 0.91
80 2.201 1.872 5.0 2.27
120 6.708 3.730 503.1 5.13
160 12.990 7.132 600.1 7.89
200 53.739 12.672 3145.3 10.73
240 64.307 17.620 2659.6 11.31
280 73.269 23.355 2522.1 12.46
320 113.555 30.517 2757.2 12.84
360 191.654 42.304 5642.3 13.06
400 281.025 56.976 5848.1 13.39
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5.2. Performance analysis of the number of initial solutions

In addition to the initialization algorithms, the number of initial solutions
also affects the performance of our branch-and-price algorithm. With regard
to both B&P-TA1 and B&P-IA2, based on the problem instances in Section
5.1, we set the number of initial solutions for each orbit to 3, 6, 9, 12 and 15,
respectively. The relevant experimental results are outlined in Figure 4 and
Figure 5. Note that, although the number of initial solutions are different,
both B&P-TA1 and B&P-TA2 can solve all the problem instances to optimality.
Hence, the objective function values for each problem instance can be ignored,
and we only need to analyze the impact of the number of initial solutions on
the solution time.

(a) B&P-TA1 (b) B&P-IA2

Figure 4: Performance analysis of the number of initial solutions (21 orbits)

For 21 orbits, when the number of tasks is relatively small (40-120), the
solution time of B&P-TA1 decreases as the number of initial solutions increases
(as shown in Figure 4(a)). This can be attributed to the fact that the iteration
times of column generation decrease with an increase of the number of initial
solutions, and thus the solution of root node is accelerated. When the number
of tasks are larger (160-400), the solution time of B&P-IA1 increases when the
number of initial solutions increases, because more time is required to obtain
initial solutions. It is illustrated in Figure 4(b) that the solution time of B&P-
TA2 increases when the number of initial solutions increases. This is because
a heuristic is employed to obtain initial solutions, which cannot guarantee the
qualities of initial solutions. Hence, the increase of the number of initial solutions
only increases the sizes of master problems fruitlessly, and the iteration times
of column generation cannot be reduced.

For 42 orbits, when the number of tasks is relatively small (40-120), the
solution time of B&P-IA1 changes a little with the variances of the number of
initial solutions. When the number of initial solutions is larger, the solution
time of B&P-TA1 shows a small increment. As shown in Figure 5(b), when
the number of tasks is small (40-120), the solution time of B&P-IA2 is stable
with small variances. Afterwards, for more tasks (160-400), the solution time
increases with the number of initial solutions.
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Figure 5: Performance analysis of the number of initial solutions (42 orbits)

5.8. Performance evaluation of the SAA approach with joint probabilities

In this section, the number of tasks ranges from 20 to 100 with an increment
of 20. The number of orbits are also 21 and 42, respectively. For each parameter
setting, 10 problem instances are created randomly.Our SAA model (33)-(38),
(5)-(10) is solved based on a small sample with the sample size being 100. Both
the expectation model and the SAA model are solved by CPLEX, and the
solution time is described in Table 5.

Table 5: Solution time of the expectation model and the SAA model

Task number 21 orbits 42 orbits

tl(sec)  t2(sec) tl(sec)  t2(sec)

20 0.32 1.08 0.36 1.11
40 0.60 2.06 0.61 3.93
60 1.23 4.48 1.78 -
80 1.51 6.69 1.91 -
100 1.62 - 2.58 -

In Table 5, columns ¢1 and ¢2 represent the solution time of the expectation
model (3)-(10) and the SAA model (33)-(38), (5)-(10), respectively, in which
“” denotes that the optimal solutions cannot be obtained by CPLEX because
of the limited memory. From Table 5, it is observed that the solution time
of the SAA model is longer than that of the expectation model, since more
variables and constraints are introduced from sampling, making the problem
more complicated.

In order to evaluate the performance of our SAA model, the solutions are
also compared to those of the expectation problem. For the sake of comparison,
the obtained solutions were tested on a large sample with the sample size being
10000.

Tables 6 and 7 show the comparison results for each problem instance, in
which column “n” denotes the number of tasks, and column “No.” contains
the serial number of problem instances. Moreover, columns “MIN”, “AVE”
and “MAX” represent the minimum, the average, and the maximum scheduling
profits obtained over all scenarios on the sample, respectively. It is worth noting
that the bold numbers represent the larger profits between the two models. As
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illustrated in Tables 6 and 7, almost all the minimum/average scheduling profits
of the SAA model are larger than those of the expectation model. This is because
we take into account scheduling each task to multiple orbits for the SAA model,
which increases the scheduling robustness. However, for a minority of cases,
the maximal profits of the SAA model are less than those of the expectation
model, which can be attributed to the fact that the SAA model improves the
performance of the worst-case solutions, but it cannot guarantee the optimality
for all the scenarios.

In Tables 6 and 7, column “DEV” denotes the standard deviations of so-
lutions on the large sample, where the italic numbers represent the smaller
deviations between the two models. Apparently, the standard deviations of the
SAA model are smaller than those of the expectation model for all the problem
instances, which proves that the solutions of the SAA model are more robust
and stable.

Although the SAA model outperforms the expectation model in robustness
and stability, it is only solvable for small- to medium-scale problems. Hence,
the SAA model is still far from large-scale practical application.

6. Conclusions and future work

In this paper, considering the impact of clouds, we formulated the presences
of clouds as stochastic events, and then investigated the scheduling of multi-
ple EOSs. Furthermore, an expectation model was proposed to formulate the
problem. With respect to the expectation model, a branch-and-price algorithm
was devised to solve the model optimally and efficiently. In addition, a SAA
model was proposed in the case of joint probabilities. Finally, by a great num-
ber of simulation experiments, we proved that the branch-and-price algorithm
can solve the problem optimally for all generated instances and is much faster
than CPLEX. Besides, we also analyze the impacts of the numbers of initial so-
lutions on the performances of the branch-and-price algorithm. Moreover, the
SAA model is proven to be more robust by simulation experiments.

In the future, the first extension of our research is to consider the scheduling
of agile satellites under the impact of clouds. Differently from the non-agile
satellites in this study, the agile satellites do not only have the maneuverability
of slewing, but also have the maneuverability of pitching, along with the orbit.
Hence, the satellite will have a long time window for observation. Consequently,
we need not only allocate the tasks to the orbits, but also need to decide the start
and finish times. Moreover, in the future, considering the sparsity of observation
windows for polar satellites, we will construct a more concise and more efficient
model. In the new model, the redundant variables will be removed by analyzing
the relationships between observation windows. Furthermore, with regard to
the SAA problem, it is essential to design more efficient solution algorithms for
large-scale instances, making the SAA model available in practice.
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Table 6: Performance evaluation on the samples (21 orbits)

n No. Expectation model SAA model

MIN AVE MAX DEV MIN AVE MAX DEV

0 27 66.60 89 9.81 45 81.36 92 6.83

1 28 78.71 108 12.02 57 92.91 108 8.49

2 32 80.23 104 11.74 53 95.64 104 7.72

3 24 61.00 83 9.94 45 74.54 83 6.34

4 21 54.07 71 8.24 39 64.82 75 5.95

20 5 20 59.73 70 7.23 43 65.94 70 5.12
6 6 33.79 49 7.63 9 36.57 49 6.90

7 23 66.25 86 9.29 32 74.77 86 7.33

8 38 81.72 104 10.74 57 91.26 104 8.12

9 26 74.32 101 11.33 42 80.49 101 9.78

Ave 245 65.64 86.5 9.80 42.2 75.83 87.2 7.25

0 62 109.00 139 10.83 74 117.48 143 10.51

1 60 111.11 151 13.55 93 132.73 154 9.62

2 97  164.27 213 16.42 143 194.90 227 13.34

3 52 102.15 128 10.54 65 107.02 128 9.54

4 61 110.18 143 11.33 90 122.27 139 8.36

40 5 109 17193 214 15.13 122 181.97 218 13.85
6 33 91.04 127 13.04 57 103.91 126 10.12

7 61 113.86 146 12.01 75 121.77 146 10.96

8 58 114.74 159 14.37 91 135.85 160 10.98

9 65 117.45 156 13.30 91 135.78 156 9.98

Ave 65.8 120.57 157.6 13.05 90.1 135.37 159.7 10.72

0 100 172.03 228 17.24 121 186.23 231 15.22

1 132 205.36 276 19.28 170 233.06 284 17.21

2 127 201.91 257 17.64 152 219.09 263 15.85

3 105 172.39 217 15.18 122 175.04 200 11.32

4 110 180.72 238 16.83 125 191.44 237 15.12

60 5 91 164.70 218 16.76 114 179.09 224 15.51
6 96 168.10 220 16.26 136 199.58 230 12.41

7 83 146.39 195 15.87 114 169.56 210 14.30
8 108 174.84 227 17.37 132 185.60 226 14.07

9 115 191.68 253 18.67 157 220.82 255 15.71
Ave 106.7 177.81 232.9 17.11 134.3 195.95 236 14.47
0 153 236.76 295 18.48 191 253.82 305 16.67

1 159 232.87 303 19.99 174 240.38 292 16.48

2 154 218.68 272 16.69 159 221.54 270 15.59

3 114 193.53 254 19.06 152 218.98 267 16.18

4 110 185.70 245 17.28 177 240.58 292 16.83

80 5 123 190.86 245 17.38 146 214.00 259 15.85
6 123  195.04 254 18.25 155 221.05 266 15.54

7 137 199.07 254 17.18 175 238.10 288 16.43

8 143 227.19 290 20.22 168 241.32 303 18.86

9 123 211.60 280 20.02 158 235.72 289 17.64

Ave 133.9 209.13 269.2 18.45 165.5 232.55 283.1 16.61
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Table 7: Performance evaluation on the samples (42 orbits)

Expectation model SAA model
MIN AVE MAX DEV MIN AVE MAX DEV

28 78.00 115 13.61 54 95.84 115 9.95
40 83.96 107 10.47 66 98.97 107 7.02
37 77.55 94 7.98 75 93.09 94 2.84
34 83.82 115 12.58 63 101.74 115 8.67
36 75.22 94 9.57 60 87.89 94 5.83
26 65.69 91 9.78 63 86.40 91 4.48
39 81.92 108 10.87 79 104.62 108 4.47
23 71.13 98 10.99 79 96.25 98 2.95
28 73.64 102 11.17 78 98.82 102 3.82
23 71.65 100 11.58 69 94.51 100 4.57
76.26 102.4 10.86 68.6 95.81 102.4 5.40
63 115.85 155 12.48 116 150.34 162 6.88
88 149.46 190 14.17 151 184.85 191 6.03
76 136.74 180 14.97 139 174.40 188 7.88
89 149.62 192 14.08 137 177.46 195 9.32
64 126.05 172 13.89 123 160.10 172 8.11
112 179.86 236 17.76 176 221.55 240 9.59
103 162.75 211 15.19 150 191.03 211 9.93
123 187.34 238 16.37 169 218.20 241 11.22
81 163.90 219 16.83 174 212.49 224 8.25
75 139.09 190 15.60 116 164.83 188 10.51
151.07 198.3 15.13 145.1 185.53 201.2 8.77

n No
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