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Abstract—Modern Internet of Things (IoT) applications gen-
erate massive amounts of data, much of it in the form of
objects/items of readings, events, and log entries. Specifically,
most of the objects in these IoT data contain rich embedded
information (e.g., frequency and uncertainty) and different levels
of importance (e.g., unit utility of items, interestingness, cost,
risk, or weight). Many existing approaches in data mining and
analytics have limitations such as only the binary attribute is
considered within a transaction, as well as all the objects/items
having equal weights or importance. To solve these drawbacks,
a novel utility-driven data analytics algorithm named HUPNU is
presented, to extract High-Utility patterns by considering both
Positive and Negative unit utilities from Uncertain data. The
qualified high-utility patterns can be effectively discovered for
risk prediction, manufacturing management, decision-making,
among others. By using the developed vertical Probability-Utility
list with the Positive-and-Negative utilities (PU±-list) structure, as
well as several effective pruning strategies. Experiments showed
that the developed HUPNU approach performed great in mining
the qualified patterns efficiently and effectively.

Index Terms—Internet of Things, manufacturing data, uncer-
tainty, utility, data analytics.

I. INTRODUCTION

W ITH the increasing prevalence of sensors, mobile
phones, actuators, and RFID tags, Internet of Things

(IoT) applications generate massive amounts of rich data per
day [1], [2], [3]. Examples include the control signals issued to
Internet-connected devices like lights or thermostats, measure-
ments from industrial and medical equipment, manufacturing
data, or log files from smart-phones that record the complex
behavior of sensor-based applications. These applications need
to find frequent patterns that represent typical system behavior
(e.g., [2], [4], [5]) as well as high risk/utility patterns that
represent very important knowledge from normal behavior [6],
[7], [8]. For industrial areas [3], [9], various algorithms have
been designed by applying data mining methods [3], [10].
These methods can be used to evaluate the complicated and
complex data from the industry and solve existing problems.

In some industrial areas, manufacturing schedules can be
planned by the discovered information and knowledge, which
can then be used to increase and gain utilities, maximally
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[3], [11]. Pattern mining and analysis, from an industrial
research perspective, provides a unique and up-to-date in-
sight into the manufacturing industry [3]. There are many
industrial utility-driven manufacturing systems with different
IoT applications. Consider an environment with all types of
sensors to monitor abnormal conditions. Let each transaction
denote the set of sensors showing above normal value at a
particular instance, and the value associated with each sensor
can be the abnormality or risk measure. Here the number
of units can mean the number of abnormal sensors of the
same type, then how to discover the high risk patterns is quite
useful for manufacturing analytics in Internet of Things. In
the retail industry, it can identify the purchase behaviors of
customers, which can be used to make specific decisions and
improve the service quality of customers. However, existing
Frequent-based Pattern Mining (FPM) algorithms [10] ignore
that information, and the discovered information or pattern
may contain useless knowledge, such as items with a lower
utility that may be discovered. Thus, traditional FPM cannot
handle the problem of the quantitative databases, and also fails
to extract the utility-driven patterns which are insightful for
data analytics. A new utility-driven data analytics framework
named High-Utility Pattern Mining (HUPM) [6], [7], [8] was
presented to provide a solution to the above limitations. It is
important to notice that the utility concept can be referenced
to reflect multiple participants’ satisfaction [12], utility [11],
[13], revenue [14], risk [13], or weight [15].

A. Motivation

To reveal high utility/risk patterns for decision-making, it
considers the quantitative database, as well as the unit utility
of the items. The analytics of using HUPM instead of FPM
is quite helpful for system monitoring, planning, manufactur-
ing management, and decision-making [2], [3], [11]. Most
algorithms in traditional HUPM consider all items to have
positive unit utilities/risks. When the items have the constraint
of negative values, for example sales discount (e.g., buy two
get one free) or if a supermarket/retail store sells the products
at a loss to stimulate the sales of other relative items (e.g.,
sell printers to promote the notebook/PC), traditional HUPM
cannot mine meaningful information. This situation happens in
real-life scenarios, especially when promoting some profitable
items for gaining more money in cross-selling conditions.
Some prior works have mentioned that traditional HUPM
algorithms [6], [8] may generate incomplete and missing
information [16] when the dataset consists of negative unit
utility objects/items.

For analyzing the complex industrial data and manufactur-
ing data [2], [11], [17], it may encounter various challenges,
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i.e., the embedded uncertainty, positive risk and negative risk,
and other factors. The uncertainty factor exists in many realis-
tic situations, such as the collection of noisy data sources (e.g.,
GPS, wireless sensor network, RFID, or WiFi systems) [18],
[19]. Traditional pattern mining algorithms cannot be utilized
straightforwardly to inaccurate or uncertain environments for
mining the required knowledge or information. The reason for
this is that the utility can be considered as a semantic measure
to value how the “utility” of a pattern based on users’ priori
experience, goal, and knowledge, and the uncertainty can be
considered as an objective measure to value the probability
of a pattern as an objective existence; they are two totally
different factors. Most existing utility-based algorithms have
been studied to handle precise data, while they are unable to
deal with data uncertainty [20]. If the uncertain factor was
not considered in the mining process, it may find useless or
misleading information with low existential probability.

B. Contribution

To solve the above limitations and problems, we attempt
to design a novel algorithm named HUPNU to extract High-
Utility patterns with both Positive and Negative unit utilities
from Uncertain data in intelligent environment. Moreover, to
deal with realistic situations in real-life applications, the pos-
itive and negative unit utilities are considered. The significant
contributions of this work are listed below:

• To the best of our knowledge on pattern mining, this is
the first study to discuss the problem by considering both
the positive and negative unit utilities, and the uncertainty
factor to discover the qualified high-utility patterns. This
approach is more suitable for realistic situations such as
risk prediction, manufacturing management, e-commerce,
and decision making.

• A vertical and compact Probability-Utility list, with both
a positive and negative utilities (PU±-list) structure, is
developed. This list can keep all the essential knowledge
from the database for later mining progress.

• A one-phase method called HUPNU is designed to dis-
cover the qualified high-utility patterns using the PU±-list
structure. The multiple database scans and the generate-
and-test mechanism can be largely avoided and ignored.

• We also developed several pruning strategies to easily
remove the unpromising candidates and reduce the search
space size of the qualified high-utility patterns. These
pruning strategies can also efficiently reduce the size of
the PU±-list by the designed downward closure property.

• Several experiments were conducted on both synthetic
and realistic datasets. Results showed that the developed
HUPNU performed great in mining the qualified patterns
efficiently and effectively.

This paper is organized as follows: A literature review is
given in Section II. Preliminaries and the problem statement
are shown in Section III. The designed HUPNU with the
several pruning strategies are studied in Section IV. Extensive
experiments are conducted in Section V. The conclusion is
finally provided in Section VI.

II. RELATED WORK

A. Support-based Pattern Mining

Data mining and analytic technologies are used in many
different domains [2], [11], [17], [21] and they provide pow-
erful ways of discovering useful, meaningful, and implicit
information from very large datasets. Frequent Pattern Mining
(FPM) is the most fundamental concept in retrieving the
qualified information using a support-based constraint, and
many works have been developed based on the support criteria
to mine frequent itemsets or association rules [4], [5], [10].
Other factors, such as interestingness [22] or weights, have
also been considered with mining criteria to find the interesting
or important patterns in the task of pattern mining. Many
algorithms have been designed to find the meaningful patterns
from a binary database [10], [22], [23]. However, they only
assess whether an item appears in a transaction, and this
approach does not consider the useful factors, for example,
an event may be occurred in multiple quantities in a record.
Quantitative Association-Rule Mining (QARM) [24], [25] was
presented instead of the binary value (0 or 1) for discovering
more meaningful and useful information.

Different from processing precise data, some pattern mining
approaches have been developed to deal with uncertain data,
for discovering frequent expected patterns [26] or probabilistic
frequent patterns [19] by taking the uncertainty from data
into account. The reason is that the uncertainty factor exists
in many realistic data sources (e.g., GPS, wireless sensor
network, RFID, or WiFi systems). Some details of uncertain
data algorithms and applications can be referred to [18].

B. Utility-based Pattern Mining with Efficiency Issues

Although QARM solves the past limitation of traditional
association-rule mining, it still does not consider more im-
portant and interesting factors such as the unit utilities of
the objects/items, which can bring the profitable objects to
user in service-oriented manufacturing system [12], [13]. In
addition, the support-based constraint of pattern mining is
inappropriate for measuring the importance of the items in
realistic situations. To tackle these problems, High-Utility
Pattern Mining (HUPM) [6], [7], [8] was presented to reveal
high-utility patterns. HUPM considers both the unit utility and
quantity of the objects to show the high-utility patterns from
the quantitative database, which can provide more meaningful
results than that of the support-based algorithms. Yao et al.
[27] first defined the utility-mining problem by considering
the occurred quantity (treated as the internal utility) and unit
utility of the objects/items (treated as the external utility) to
reveal the itemsets with high utilities. In the past decade,
HUPM has been considered as the emerging topic in many
tasks of data analytics, and some well-known algorithms are
developed, such as the Transaction-Weighted Utility (TWU)
model [28], IHUP [6], UP-growth and UP-growth+ [8], HUI-
Miner [7], and so on. Many variants of HUPM have also
been discussed focusing on mining different forms of utility-
oriented patterns. The importance of HUPM is increasing,
especially in the current era of big data [29], and more
opportunities and challenges are required for discussion and
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analysis since HUPM can provide realistic benefits to the
retailers and managers in many different applications and
domains [11].

C. Utility-based Pattern Mining with Effectiveness Issues

In addition to the efficiency issue of utility mining, a number
of models have been proposed to address the effectiveness
issue of discovering different kinds of high-utility patterns
(HUPs). Current HUPM algorithms can successfully handle
the temporal data [30], [31], and dynamic data [32], [33],
[34]. Other interesting effectiveness issues, such as HUPM
with discount strategies [35], the concise representation [36],
discriminative issue [37], and top-k problem [38] for HUPM,
have been extensively studied. Lin et al. first proposed an
utility mining model to extract the high-utility patterns from
uncertain databases [20]. Different from the above utility
measures of HUPs, another utility measure for utility-driven
pattern mining namely utility occupancy is introduced recently
[39]. And a comprehensive survey of utility mining has been
provided by Gan et al. [13].

All the above HUPM algorithms only consider the posi-
tive utilities/risks and quantities of items. However, in some
real-world scenarios, the utility/risk/weight values of the ob-
jects/items in databases usually can be either positive values
or negative values. Therefore, the traditional algorithms of
HUPM can not successfully be applied to handle the databases
containing negative values. In the past, the two-phase HUINIV-
Mine [16], TS-HOUN [40], and one-phase FHN [41] algo-
rithms are proposed to deal with precise data which containing
both positive and negative utility values. However, all the
existing negative-based approaches cannot be used to process
uncertain data and extract the utility-driven insightful patterns.

III. PRELIMINARIES AND PROBLEM STATEMENT

We first introduce the uncertain database of the defined
problem for utility-driven mining in this section. Let I =
{i1, i2, . . . , im} be a set of objects/items (symbols), and let
the uncertain database be a set of transactions such as D =
{T1, T2, . . . , Tn}, and each object/item in a transaction has
an uncertain probability of existence such as p(ik, Tc) [18],
[19]. For each Tc, it has the relationship such that ik ∈ Tc.
A positive quantity value is defined as the internal utility, and
denoted as q(ik, Tc). This quantity value shows the quantity
of ik in Tc. Let ik ∈ I be related to a positive or negative
value, which is defined as the external utility, and denoted as
pr(ik). A set of external utility of all items in the database
is denoted as ptable = {pr(i1), pr(i2), . . . , pr(im)}. Table I
shows a simple example to illustrate the proposed approach.

TABLE I
A RUNNING EXAMPLE FOR THE UNCERTAIN DATABASE.

tid Item: quantity, probability) total utility
T1 (a:5, 0.6); (b:3, 0.50); (d:2, 0.9); (e:4, 0.8) $107
T2 (c:1, 0.75); (d:1, 0.9); (e:2, 1.0) $24
T3 (a:4, 1.0); (b:3, 1.0); (c:2, 0.7); (e:1, 0.75) $50
T4 (a:3, 0.9); (c:1, 0.9) $22
T5 (b:2, 1.0); (c:4, 0.95); (d:5, 0.6); (e:4, 1.0) $90

Example 1: Table I is considered as the running example
and can be described as follows: It has five transactions
(T1, T2, . . . , T5). Transaction T2 shows that items {c}, {d},
and {e} are purchased together in T2, and their quantities are
1, 1, and 2, respectively. We also assume that that unit utilities
of the items in the Table I are defined in ptable as: ptable =
{pr(a):$8, pr(b):$5, pr(c):-$2, pr(d):$12, pr(e):$7}. Thus, it
is obvious to see that an item (c) is sold at loss.

Definition 1 (utility measure): The u(i, Tc) indicates the
utility of an item i in the transaction Tc, which can be calcu-
lated as: u(i, Tc) = pr(i)×q(i, Tc). u(X,Tc) shows the utility
of an itemset X in a transaction Tc, which can be calculated
as: u(X,Tc) =

∑
i∈X u(i, Tc). Note that X ⊆ I . Thus, the

total utility of X in a database D can be denoted as u(X),
which can be calculated as: u(X) =

∑
X⊆Tc∧Tc∈D u(X,Tc).

Example 2: For example in Table I, the utility of {a} in T1

is calculated as: u(a, T1) = 5 × $8 = $40. The utility of {a, e}
in T1 is calculated as: u({a, e}, T1) = u(a, T1) + u(e, T1) = 5
× $8 + 4 × $7 = 6$8. Therefore, the utility of {a, e} in the
Table I can be summed up as: u({a, e}) = u(a, T1) + u(e, T1)
+ (u(a, T3) + u(e, T3) = ($40 + $28) + ($32 + $7) = $107.
For the {a, b, e}, the total utility of {a, b, e} can be calculated
as: u({a, b, e}) = u(a, T1) + u(b, T1) + u(e, T1) + u(a, T3) +
u(b, T3) + u(e, T3) = ($40 + $15 + $28) + ($32 + $15 + $7)
= $137.

Since the discovered patterns are usually rare in realistic
applications, the probabilistic frequent model [19] cannot be
directly applied for any utility-oriented applications [20]. The
common method of mining uncertain data uses the expected
support-based model to mine the interesting patterns. For
example, the expected support of X is to sum up the support
value of a pattern X in a possible world Wj as: expSup(X)

=
∑|D|

i=1(
∏

xi∈X p(xi, Tc)) [18], [19]. The definition of the
expected probability measure of the mentioned problem is
defined as below.

Definition 2 (probability measure): Let X be a pattern
(itemset) and Tc be a transaction in the database D. The
probability of X in Tc is denoted as: p(X,Tc), which can
be calculated as: p(X,Tc) =

∏
i∈X p(i, Tc). Note that X ⊆ I .

The probability of X in D can thus be denoted as Pro(X),
and defined as Pro(X) =

∑
Tc∈D(

∏
i∈X p(i, Tc)).

Example 3: In Table I, the probability of {a} in T1 can
be calculated as: p(a, Ta) = 0.60. The probability of (a, e)
in T1 can then be calculated as: p({a, e}, T1) = p(a, T1) ×
p(e, T1) = 0.6 × 0.8 = 0.48. The probability of (a) in D can
be calculated as: Pro(a) = 2.5, and the probability of {a, b, e}
in D can be calculated as: Pro({a, b, e}) = p({a, b, e}, T1) +
p({a, b, e}, T3) = 0.24 + 0.75 = 0.99.

Definition 3 (Potential High-Utility Itemset, PHUI): Let
X be a pattern (itemset) in an uncertain database D. We
can say that X is a PHUI if it satisfies two conditions: (1)
u(X) ≥ minUtil, and (2) Pro(X) ≥ minPro × |D|, in
which minUtil is a minimum utility threshold and minPro is
a minimum probability threshold. We can then conclude that
interesting desired PHUI has a high expected probability and
a high utility value.

Problem Statement. With an uncertain database, a utility
table (with a positive or negative utility value of each item),
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a minimum utility threshold (minUtiil), and a minimum prob-
ability threshold (minPro), the problem of utility-driven data
analytics from uncertain data is to discover the complete set
of PHUIs.

For example, if the minPro and minUtil are respectively
set as minPro = 0.25 and minUtil = 20, the derived PHUIs
from Table I are {{{a}:$96, 2.50}; {{b}:$40, 2.50}; {{d}:$96,
2.40}; {{e}:$77, 3.55}; {{a, b}:$102, 1.30}; {{a, c}:$50,
1.51}; {{b, e}:$103, 2.15}; {{c, e}:$35, 2.225}; {{d, e}:$166,
2.22}; {{b, c, e}:$48, 1.475}}. Here, {{b}:$40, 2.50} indicates
that the utility value and expected probability of pattern {b}
are $40 and 2.50, respectively.

IV. PROPOSED APPROACH FOR MINING PHUIS

In this section, an utility-driven data analytics framework
named HUPNU is presented to discover the Potential High-
Utility Itemsets (PHUIs) from an uncertain database. We
further design the Probability-Utility list with positive and neg-
ative utilities (PU±-list). In addition, several pruning strategies
are presented here to reduce the search space of the potential
HUIs. More details are described below.

A. Positive and Negative Unit Utilities

The monotonic/anti-monotonic proprieties cannot be held
in utility mining [28]. In this situation, the utility of a
pattern may be higher, lower, or equal to any of its subset
patterns. The search space to discover the meaningful and
useful patterns may become large if many items exist in
the database. The TWU model [28] was presented to avoid
the problem of “combinational exploration”, which aims at
reducing the search space for mining the high-utility itemsets.
Several extensions are then extensively studied [7], [28], [8] to
improve the mining performance. However, those approaches,
including the TWU model, do not consider both the positive
and negative unit utilities of items, which are addressed in this
paper. Moreover, the existing works do not consider the above
situations in the uncertain database for discovering the PHUIs.
We define the following properties for the addressed problem
as follows:

Property 1: We first assume that pu(X) and nu(X) are
respectively the sum of positive and negative utility of an item
X in a database. Thus, we can obtain that the utility of X
is calculated as: u(X) = pu(X) + nu(X), where nu(X) ≤
u(X) ≤ pu(X) holds.

From the above-stated property, we can conclude that u(X)
and nu(X) cannot be straightforwardly used as the over-
estimated utility of a pattern (X). Moreover, even pu(u) is
the upper-bound value of X, the downward closure property
for the superset of X cannot be held since both the positive
and negative unit utilities of the items are considered in the
addressed problem. We then re-utilize the traditional TWU
[28] property to establish a new over-estimated value of the
discovered pattern.

Definition 4: In HUPM, the transaction utility (TU) is
defined as: TU(Tc) =

∑
i∈Tc

u(i, Tc). In this paper, by
considering both positive and negative unit utility of items,
we then re-define the transaction utility as: RTU(Tc) =

∑
i∈Tc∧pr(i)>0 u(i, Tc). The transaction-weight utilization of

an itemset X is also then redefined as RTWU: RTWU(X) =∑
X⊆Tc∧Tc∈D RTU(Tc). The above-stated definitions can be

used to hold the downward closure property for mining the
required PHUIs. Note that RTWU(X) ≥ u(X).

Example 4: For example, the RTU(T2) is $26. Consider
two patterns {a} and {a, b, e}, the RTWU({a}) = $185 and
RTWU({a, b, e}) = $161; both of them are the over-estimated
values of u({a}) = $96 and u({a, b, e}) = $137.

B. Probability Utility (PU±)-List Structure

In the developed HUPNU algorithm, the processing order of
the items in the database is defined as �, which holds the prop-
erties as: (1) the items are then sorted as the RTWU-ascending
order; and (2) negative items always succeed positive ones.
The designed Probability Utility (PU±)-List structure used in
the HUPNU algorithm is stated as follows:

Definition 5 (PU±-list): Let X be an itemset in the database.
The PU±-list of X is denoted as: X.PUL, and it consists of
five elements: (1) tid represents the transaction ID in the
database; (2) pro is the expected probability of X in Ttid,
and pro(X,Ttid) ≥ 0; (3) pu shows the positive utility of X
in Ttid, and u(X,Ttid) ≥ 0; (4) nu represents the negative
utility of X in Ttid, and u(X,Ttid) < 0; (5) rpu represents∑

i∈Ttid∧i�x∀x∈X u(i, Ttid) ≥ 0, which keeps only a positive
utility value for the remaining items.

(a)

tid pro pu nu rpu

T2 1.0 6 0 13

T3 0.55 6 0 33

T5 1.0 24 0 9

Fig. 1. Constructed PU±-list of pattern {a})

(a)

tid pro pu nu rpu

T2 1.0 6 0 13

T3 0.55 6 0 33

T5 1.0 24 0 9

(e)

tid pro pu nu rpu

T2 0.40 3 0 10

T3 0.40 15 0 18

T5 0.45 6 0 3

(b)

tid pro pu nu rpu

T1 0.85 21 0 1

T2 0.60 7 0 3

T3 0.60 14 0 4

T4 0.90 21 0 0

(d)

tid pro pu nu rpu

T2 0.70 0 -10 0

T3 0.09 0 -5 0

T4 0.45 0 -5 0

T5 0.70 0 -10 0

(c)

tid pro pu nu rpu

T1 1.0 1 0 0

T2 0.75 3 0 0

T3 1.0 4 0 0

T5 0.85 3 0 0

Fig. 2. Constructed PU±-list of the running example

Example 5: The search space of the developed HUPNU
approach can be shown as the utility-based Set-enumeration
tree [37], called a PU±-tree, based on the developed PU±-
list. Since {RTWU(a): $185; RTWU(b): $259; RTWU(c):
$202; RTWU(d): $231; and RTWU(e): $285}, the designed
processing order � of the running example can be represented
as: {a � d � b � e � c}. Thus, the constructed PU±-list for
all items in Table I is shown in Fig. 2. We have {a}.PUL =



IEEE INTERNET OF THINGS JOURNAL, 2019 5

{(T1, 0.60, $40, $0, $67), (T3, 1.00, $32, -$4, $22), (T5, 0.90,
$24, -$2, $0)}; {c}.PUL = {(T2, 0.75, $0, -$2, $0), (T3, 0.70,
$0, -$4, $0), (T4, 0.90, $0, -$2, $0), (T5, 0.95, $0, -$8, $0)};
{a, c}.PUL = {T3, 0.70, $32, -$4, $0), (T4, 0.81, $24, -$2,
$0)}.

Definition 6: The sums of the total utility, pu values, nu
values, and rpu values in the PU±-list of X are respec-
tively denoted as: SUM(X.iu), SUM(X.pu), SUM(X.nu), and
SUM(X.rpu), which can be respectively defined as:
SUM(X.pu) =

∑
X∈Tc∧Tc⊆D X.pu(Tc);

SUM(X.nu) =
∑

X∈Tc∧Tc⊆D X.nu(Tc);
SUM(X.rpu) =

∑
X∈Tc∧Tc⊆D X.rpu(Tc);

SUM(X.iu) = SUM(X.pu) + SUM(X.nu).
Lemma 1: For two patterns, such as Y and Z in the PU±-

tree, if the relationship holds: (1) SUM(Y.pu)+SUM(Y.rpu)
-
∑
∀Tc∈D,Y⊆Tc

∧
Z*Tc

(Y.pu + Y.rpu) < minUtil, or (2)
SUM(Y.pro) -

∑
∀Tc∈D,Y⊆Tc

∧
Z*Tc

(Y.pro) < minPro ×
|D|, the (YZ), or any superset of it, will not be a PHUI.

Strategy 1 (PU-Prune strategy): If Lemma 1 holds, then
the PU±-list construction of the pattern Y can be avoided;
and any of its superset will not be a PHUI.

According to the designed PU-Prune strategy, the huge size
of the unpromising k-patterns (k ≥ 2, and k is the size of the
items within the itemset) of the search space can be greatly
filtered. Let Py denote an itemset, and y denote an item;
Py is defined as P ∪ y and y is before z. The construction
procedure of the PU±-list is shown in Algorithm 1. It takes
the PU±-lists of P , Py, and Pz as the inputs, and returns
the PU±-list of Pyz as output. The PU±-lists of k-itemsets
(k ≥ 2) can be easily built using a simple join operation of
(k-1)-itemsets; multiple database scans can be greatly avoided,
and the computational cost of the run time can be reduced. If
P.PUL is empty, the PU±-list of a 2-itemset is constructed
(Line 9). Otherwise, the PU±-list of a k-itemset (k ≥ 3) is
constructed (Lines 5 to 7). For these optimization purposes,
the joint operation of the PU±-lists of P , Py, and Pz can be
constructed by a binary search.

C. Proposed Pruning Strategies

In this section, we discuss several pruning strategies based
on the developed PU±-list for later mining progress. The
developed strategies can greatly help to remove the uncom-
promising candidates in the early stages, and thus the search
space that reveals the actual PHUIs can become smaller. The
node of the (k-1)-itemset in the designed PU±-tree is denoted
as: Xk−1(k ≥ 2), and any superset of it is denoted as: Xk.

Theorem 1 (Downward closure property of RTWU
and probability): In the PU±-tree, the correctness of
Pro(Xk−1) ≥ Pro(Xk) and RTWU(Xk−1) ≥ RTWU(Xk)
hold.

Proof: Since p(X,Tc) =
∏

i∈X p(i, Tc) can be held
for any Tc in D, thus we can have that: p(Xk, Tc) ≤
p(Xk−1, Tc). Since Xk−1 is the subset of Xk; the
tids of Xk is the subset of the tids of Xk−1. We
then can have that: Pro(Xk) =

∑
Xk⊆Tc∧Tc∈D p(Xk, Tc)

≤
∑

Xk−1⊆Tc∧Tc∈D p(Xk−1, Tc) = Pro(Xk−1). Thus, it
can be concluded that Pro(Xk−1) ≥ Pro(Xk). Moreover,

Algorithm 1 Construction procedure
Input: P , Py, Pz.
Output: Pyz with its Pyz.PUL.

1: Pyz.PUL← ∅;
2: set Probability = SUM(Y.pro), Utility = SUM(Y.pu) +

SUM(Y.rpu);
3: for each tuple ex ∈ Py.PUL do
4: if ∃ez ∈ Pz.PUL and ey.tid = eyz.tid then
5: if P.PUL 6= ∅ then
6: search each element e ∈ P.PUL such that e.tid =

ey.tid.;
7: eyz ← <ey.tid, ey.pro × ez.pro/e.pro, ey.pu +

ez.pu− e.pu, ey.nu+ ez.nu− e.nu, ez.rpu>;
8: else
9: eyz ← <ey.tid, ey.pro × ez.pro, ey.pu + ez.pu,

ey.nu+ ez.nu, ez.rpu>;
10: end if
11: Pyz.PUL← Pyz.PUL ∪ {eyz};
12: else
13: Probability = Probability - ey.pro, Utility = Utility -

ey.pu - ey.rpu;
14: if Probability < minPro × |D| or Utility <

minUtil then
15: return null.
16: end if
17: end if
18: end for
19: return Pyz

Xk−1 ⊆ Xk, RTWU(Xk) =
∑

Xk⊆Tc∧Tc∈D tu(Tc) ≤∑
Xk−1⊆Tc∧Tc∈D tu(Tc) = RTWU(Xk−1) holds.
Lemma 2 (Upper-bound probability of PHUI): The

summed up probability of any node in the PU±-tree is greater
than the summed up probabilities of its supersets.

Strategy 2: The RTWU and the probability value of each
item can be easily obtained during the initial database scan.
Thus, if the summed up probability and RTWU of an itemset
X do not achieve the two conditions of PHUI, X and any
supersets of it can be pruned directly.

Strategy 3: While the depth-first search is performed to
traverse the PU±-tree, if the summed up probability of tree
node X such as Pro(X) is no larger than minPro × |D|,
then none of the supersets of this node are considered to be a
PHUI.

Lemma 3 (Upper-bound utility of the PHUI): For a node
X in the PU±-tree, the summed values of SUM(X.pu) and
SUM(X.rpu) are always equal to or larger than any of its
supersets.

We can conclude from the above lemmas that the summed
up utility w.r.t. u(Xk) of an itemset Xk is always no
greater than the summed values of SUM(Xk−1.pu) and
SUM(Xk−1.rpu). Therefore, it is ensured that the transitive
extensions with items having positive or negative utilities can
hold the downward closure property. The following strategies
can be designed based on the above upper-bound constraints:

Strategy 4: While the depth-first search is performed
to traverse the PU±-tree, if the summed up values of
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SUM(Xk−1.pu) and SUM(Xk−1.rpu) are less than minUtil,
any supersets of X cannot be a PHUI. Those nodes in the tree
can be directly ignored and pruned to reduce the search space
for mining the PHUIs.

Strategy 5: For an itemset X in the PU±-list, if the X.PUL
is null or the Pro(X) value is less than minPro × |D|, X
cannot be considered a PHUI; none of its superset (node) is a
PHUI. Therefore, the construction procedure of PU±-lists of
X’s supersets can be ignored.

The efficient Estimated Utility Co-occurrence Pruning
(EUCP) strategy [42] is also utilized here for the designed
HUPNU algorithm. Thus, the Estimated Utility Co-occurrence
Structure (EUCS) is built to keep the RTWU values of the 2-
itemsets. More information can be found in [42].

Strategy 6: Let X be a 2-itemset, which is also one of the
nodes in the Set-enumeration PU±-tree. While the depth-first
search is performed, if the RTWU of X is no greater than the
minUtil based on the built EUCS, X and any supersets of X
are not considered to be the PHUI; the construction progress
of the PU±-tree for X and the supersets of it can be ignored.

Based on the above proposed pruning strategies, the de-
signed HUPNU is shown in detail below.

D. The Procedure of HUPNU

In this section, the main procedure of the developed
HUPNU is shown in Algorithm 2. First, it examines the
uncertain database to find the values of RTWU (with the
redefined RTU ) and Pro(i) of each item (Line 1). The
expected support and RTWU of each item in the set I∗ are then
checked against the minPro×|D| and minUtil, respectively,
and the satisfied items are then discovered and obtained. In
this step, the other items can be ignored directly since they
could not be the potential HUI (Line 2). The database is then
scanned again (Line 4) to re-order the items in the transactions
according to the designed order as � (Line 3). In addition, the
items in the transactions are then re-ordered based on the total
order � while performing the database scan. After that, the
PU±-list of each 1-item i ∈ I∗ is constructed, respectively, and
the depth-first search is recursively performed by the Search
procedure with the empty itemset ∅, the set of single items I∗,
minPro, minUtil, and the EUCS (Line 5).

Algorithm 2 HUPNU main procedure
Input: D, minPro, minUtil, ptable.
Output: The set of PHUIs.

1: scan uncertain database D to calculate the RTWU(i) and
Pro(i) of each item i ∈ I;

2: I∗ ← each item i such that Pro(i) ≥ minPro × |D| ∧
RTWU(i) ≥ minUtil;

3: sort the items in the set of I∗ as � order;
4: scan database D to build the PU±-list of each item i ∈ I∗

and construct EUCS;
5: call Search(∅, I∗, minPro, minUtil, EUCS).
6: return PHUIs

The search procedure of the HUPNU is described in Algo-
rithm 3. For each extension Py of P , if the probability of Py

Algorithm 3 Search procedure
Input: P , ExtensionsOfP, minPro, minUtil, EUCS.
Output: The set of PHUIs.

1: for each pattern Py ∈ ExtensionsOfP do
2: if SUM(Py.pro) ≥ minPro × |D| ∧ (SUM(Py.pu) +

SUM(Py.nu)) ≥ minUtil then
3: output Py as a PHUI;
4: end if
5: if SUM(Py.pro) ≥ minPro × |D| ∧ (SUM(Py.pu) +

SUM(Py.rpu)) ≥ minUtil then
6: ExtensionsOfPy ← ∅;
7: for Pz ∈ ExtensionsOfP such that z � y do
8: if RTWU({y, z}) ≥ minUtil then
9: Pyz ← Py ∪ Pz;

10: Pyz.PUL ← Construct(P, Py, Pz);
11: if Pyz.PUL 6= ∅ and SUM(Pyz.pro) ≥ minPro

×|D| then
12: ExtensionsOfPy ← ExtensionsOfPy ∪Pyz;
13: end if
14: end if
15: end for
16: call Search(Pyz, ExtensionsOfPy, minPro, minUtil,

EUCS).
17: end if
18: end for
19: return PHUIs

is no less than minPro×|D|, and the summed up actual utility
of Py in the PU±-list (denoted as SUM(Y.pu) + SUM(Y.nu))
is no less than minUtil, then Py can be considered to be a
PHUI (Lines 2 to 4). The developed pruning Strategies 3 and
4 are then performed to check whether the extension (Py)
can be explored (Line 5). This progress can be executed by
integrating Py with all extensions Pz of P , such that z � y
and RTWU({y, z}) ≥ minUtil (Line 8, pruning Strategy 6),
to generate the extensions (Pyz) containing |Py| + 1 items.
After that, the PU±-list of Pyz can be built by the Construct
procedure to join the PU±-lists of P , Py, and Pz (Lines 9
to 13). Note that the promising PU±-lists can only be later
explored (Line 12, pruning Strategy 5). A recursive Search
procedure of Pyz is then performed to obtain its utility and
explore the extension(s) (Line 16).

V. EXPERIMENTAL STUDY

In this section, we evaluate the performance of the devel-
oped HUPNU algorithm. All the algorithms were implemented
with Java language, and executed on an Intel Core-i5 processor
running on Microsoft Windows 7 64 bits operation system
with 4GB of main memory. Memory usage was measured by
Java API. To the best of our knowledge, this is the first paper
that considers both the positive and negative unit utilities of
items in an uncertain database; none of the previous works
handle this topic. Thus, the developed HUPNU along with
several designed pruning strategies were compared in the
experiments. HUPNUP12 denotes that pruning Strategies 1
and 2 were involved in the HUPNU; HUPNUP123 considers
pruning Strategies 1, 2, and 3; HUPNUP1234 takes the pruning
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Strategies 1, 2, 3, and 4; and HUPNUAll is concerned with all
the pruning Strategies (1 to 5) for evaluation. Experiments
were carried out on five realistic datasets1 (i.e., kosarak,
accidents, psumb, retail, and mushroom) and one synthetic
dataset [43]. The individual characteristics of each of the six
datasets are given below.
• kosarak: it has 990,002 transactions, and the number

of distinct items is 41,270. The average length and the
maximum length of transactions are is 8.09 and 2,498,
respectively.

• accidents: it has 340,183 transactions and 468 distinct
items. For the all transactions, the average length is 33.8
and the maximum length is 51.

• psumb: it has total 49,046 transactions and 2,113 distinct
items. It is a very dense dataset since the average length
of each transaction is 74.

• retail: this dataset contains 88,162 transactions and total
16,470 distinct items. The average length of transactions
is 10.3, and the maximum length is 76.

• mushroom: it has 8,124 transactions with 119 distinct
items. It is a dense dataset since both the average length
and the maximum length are 23.

• T10I4D100K [43]: this dataset has 100,000 transactions
with 870 items. These transactions have average 10.1
items, and the maximum length is 29.

The external utilities of different items for the six datasets
were generated in the range of [-1,000, 1,000] using a log-
normal distribution. In addition, the quantities of the items
were randomly generated in the range of [1, 5]. These settings
are similar to the previous well-known algorithms [7], [42],
[8] for HUPM. Moreover, the unique probabilities of the
items were randomly assigned in the range of (0.0, 1.0). In
the experiments, we evaluated the implemented algorithms in
terms of runtime, number of visited nodes (or patterns), and
scalability. The results are given below.

A. Evaluation of Runtime

The runtime of the four implemented algorithms were then
compared under the variants of minUtil and minPro thresholds.
Results in terms of the two thresholds are shown in Fig. 3 and
Fig. 4, respectively.

As shown in Fig. 3 and Fig. 4, the runtimes of all imple-
mented algorithms decreased along with the increasing of the
minUtil or minPro threshold. Specifically, the implemented
algorithms with variants of pruning strategies greatly improved
the performance, up to nearly one or two orders of magnitude
faster than the baseline approach. For example, HUPNUP1234,
which adopts all the efficient pruning strategies, outperformed
the other variants of the designed approach. The reason is that
the HUPNUP1234 algorithm is concerned with all the pruning
strategies, and the unpromising candidates can be greatly
reduced. Therefore, the traversal procedure to explore the
unpromising patterns in the enumeration tree can be avoided,
as well as the costly join operation to generate the huge
unpromising candidates of the PU±-lists. When the minUtil

1http://fimi.ua.ac.be/data/

and minPro values were set lower, more and longer patterns
were mined, and there was a greater computational cost in
terms of the runtime that was required. This situation can
be easily observed in a very dense dataset, for example in
accidents and psumb.

The developed PU±-list can also easily help the variants of
the algorithms to directly mine the required patterns without
candidate generation. The list structure can effectively reduce
the multiple database scans. We can also observe that the
designed pruning strategies can greatly help with reducing the
number of unpromising patterns. The required memory usage
of the variants of algorithms is much less, but due to the page
limit, we omit some details of the results. However, in the
general pattern-mining approach, it can be easily concluded
that more memory usage was required when the threshold
was set lower. The designed PU±-list could actually solve
this limitation by using a more compressed search space, and
achieve effectiveness and efficiency for mining the PHUIs.

B. Evaluation of Number of Patterns (Visited Nodes)

In this section, the numbers of visited nodes (also known as
the candidate patterns) in the designed PU±-tree are compared
to evaluate the effects of pruning strategies. Note that the
number of visited nodes of the four variants of the HUPNU
algorithm is denoted as N1, N2, N3, and N4, respectively.
According to the same parameter settings in Fig. 3 and Fig. 4,
the final results of the patterns are respectively shown in Table
II and Table III in terms of minUtil and minPro thresholds.

From Table II and Table III, it can be seen that N1 > N2 >
N3 > N4 > PHUIs in terms of varied minUtil and minPro.
We can then draw a conclusion such that: (1) The number of
designed PHUIs discovered was fewer in the uncertain dataset
compared to the number of candidate patterns. (2) The set
of the discovered PHUIs was more meaningful; the designed
HUPNU discover more concrete and useful patterns with both
positive and negative unit utilities of item constraints than the
traditional algorithms in HUPM. (3) The search space of the
HUPNU was very large without any pruning strategies, but the
developed strategies could reduce the its size. (4) The results
were reasonable, and even the size of the search space could
be reduced by different pruning strategies, the completeness,
and the correctness of the final PHUIs could still be held.

For the designed pruning strategies 2, 3, and 4 of the
implemented HUPNUP1 algorithm, they hold the upper-bound
values for the utility and probability of the patterns, and thus
combinational exploration could be avoided. However, some
unpromising patterns could not be effectively filtered, which
can be obviously seen from the gap between the number of
final PHUIs and N1. It can also be seen that PU-Prune had
a great performance in removing unpromising patterns, which
could be observed in N1 and N2. This strategy avoids the
construction progress for the numerous unpromising patterns.
We can also see that the EUCP strategy made a great effort
to reduce the search space. The relationships of N1 > N2 >
N3 > N4 were correctly held. When the threshold value was
set lower, for example, minUtil or minPro, the gap between
different implemented algorithms of the visited patterns could

http://fimi.ua.ac.be/data/
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Fig. 3. Runtime under varied minUtil with a fixed minPro.

0.009 0.010 0.011 0.012 0.013 0.014
0

500

1000

1500

2000
(a) kosarak (minUtil: 30k)

Minimum probability threshold (%)

R
un

tim
e 

(s
ec

.)

 

 

HUPNU
P1

HUPNU
P12

HUPNU
P123

HUPNU
P1234

0.2 0.3 0.4 0.5 0.6 0.7
0

1000

2000

3000

4000

5000

6000
(b) accidents (minUtil: 7000k)

Minimum probability threshold (%)

R
un

tim
e 

(s
ec

.)

 

 

0.2 0.3 0.4 0.5 0.6 0.7
0

1000

2000

3000

4000

5000

6000
(c) pumsb (minUtil: 3500k)

Minimum probability threshold (%)

R
un

tim
e 

(s
ec

.)

 

 

0.006 0.008 0.010 0.012 0.014 0.016
4

6

8

10

12

14
(d) retail (minUtil: 100)

Minimum probability threshold (%)

R
un

tim
e 

(s
ec

.)

 

 

0.3 0.4 0.5 0.6 0.7 0.8
10

20

30

40

50

60

70
(e) mushroom (minUtil: 10k)

Minimum probability threshold (%)

R
un

tim
e 

(s
ec

.)

 

 

0.005 0.010 0.015 0.020 0.025 0.030
15

20

25

30

35
(f) T10I4D100K (minUtil: 300)

Minimum probability threshold (%)

R
un

tim
e 

(s
ec

.)

 

 

Fig. 4. Runtime under varied minPro with a fixed minUtil.



IEEE INTERNET OF THINGS JOURNAL, 2019 9

become huge, and the effectiveness of the designed pruning
strategies is held.

C. Evaluation of Scalability

From Fig. 5, the scalability was carried out on a realistic
BMS-POS dataset under varied dataset sizes. The threshold
values were set as minPro = 0.0001 and minUtil = 10k, and the
dataset size was varied from 100k to 500k. In Fig. 5(a), we can
then find that the runtimes of the four implemented algorithms
linearly increased along with the increasing size of the dataset.
We can see that the runtime of HUPNUP123 was close to that
of HUPNUP12, and both of them were significantly faster than
HUPNUP1. We also can see that HUPNUP1234 outperformed
the other implemented algorithms. When the size of the
dataset increases, the gap between the implemented algorithms
becomes larger but they still remain stable with linear growth.
The memory usage of four implemented algorithms is shown
in Fig. 5(b). HUPNUP1 requires the most memory usage;
HUPNUP123 and HUPNUP1234 has similar results, and re-
quires the least memory usage. Fig. 5(c) shows the number of
visited patterns of the four implemented algorithms and the
final PHUIs. The results show the effectiveness and efficiency
of the designed pruning strategies, and when the size of the
dataset becomes larger, the gap of those algorithms becomes
huge.

VI. CONCLUSION

In this paper, we present a HUPNU algorithm by jointly
considering the uncertainty and utility (both positive and
negative) factors, to reveal the qualified high-utility patterns.
This is the first work concerning these realistic factors in
some real-life situations, such as Internet of Things data and
manufacturing data. A vertical structure named PU±-list was
designed to keep necessary information, such as probability,
and the positive and negative utilities of the items for later
mining progress. Based on the above properties, the HUPNU
algorithm could directly produce the qualified high-utility
patterns in one phase. Moreover, several efficient pruning
strategies were also developed to greatly reduce the search
space for mining the promising patterns, and thus the com-
putation could be sped up efficiently. Extensive experiments
were carried out on several synthetic/realistic datasets to show
the efficiency and effectiveness of the designed algorithm in
terms of runtime, number of discovered qualified patterns, and
scalability.
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TABLE II
DERIVED PATTERNS UNDER VARIED minUtil AND FIXED minPro

Dataset Pattern Threshold of minUtil
minUtil1 minUtil2 minUtil3 minUtil4 minUtil5 minUtil6

N1 109,475,579 79,746,008 61,798,333 50,499,186 41,197,757 33,144,921
N2 14,399,980 12,180,884 10,571,745 9,254,740 8,123,221 7,125,357

(a) kosarak N3 12,322,701 10,611,814 9,369,910 8,286,105 7,345,445 6,505,338
N4 8,067,669 6,811,140 5,945,495 5,217,922 4,603,638 4,081,767

PHUIs 45,613 35,662 28,077 24,317 21,420 18,843
N1 194,512 163,169 138,399 120,560 107,620 96,807
N2 147,052 119,802 98,237 83,198 72,963 64,390

(b) accidents N3 146,426 119,140 97,507 82,366 72,087 63,486
N4 144,957 117,671 96,038 80,897 70,618 62,017

PHUIs 6,331 5,462 4,603 3,940 3,493 3,120
N1 2,522,059 1,814,071 1,365,950 1,184,769 1,059,297 849,484
N2 1,265,985 801,074 590,923 490,411 434,835 342,120

(c) pumsb N3 1,238,118 795,362 583,778 484,847 423,414 337,667
N4 1,236,179 793,423 581,839 482,908 421,475 335,732

PHUIs 8,648 4,123 3,114 1,773 1,388 1,238
N1 96,139,509 48,350,235 35,111,699 27,307,914 21,761,430 17,948,378
N2 21,876,139 17,735,518 15,582,757 13,731,190 11,813,940 10,462,617

(d) retail N3 21,078,117 17,429,475 15,360,149 13,568,770 11,696,475 10,374,338
N4 20,968,980 17,332,324 15,270,502 13,484,318 11,615,439 10,296,705

PHUIs 19,278 13,584 10,655 8,747 7,423 6,378
N1 1,558,452 974,145 721,233 507,260 380,254 322,867
N2 828,898 527,865 394,426 278,595 215,407 181,517

(e) mushroom N3 700,121 440,243 327,442 229,328 175,038 146,840
N4 698,969 439,522 326,867 228,871 174,672 146,516

PHUIs 147,088 85,133 62,773 42,466 30,510 25,590
N1 14,059,513 7,194,329 4,743,728 3,475,577 2,739,103 2,257,562
N2 6,199,289 2,365,166 1,264,020 820,482 607,506 491,439

(f) T10I4D100K N3 4,619,226 1,655,006 872,646 584,661 453,250 383,900
N4 4,454,919 1,570,317 802,457 519,180 390,542 323,262

PHUIs 37,242 20,710 13,916 10,140 7,854 6,292

TABLE III
DERIVED PATTERNS UNDER VARIED minPro AND FIXED minUtil

Dataset Pattern Threshold of minPro
minPro1 minPro2 minPro3 minPro4 minPro5 minPro6

N1 79,746,008 73,064,534 66,950,091 61,745,111 57,114,432 53,014,125
N2 12,180,884 11,778,729 11,445,291 11,154,865 10,808,309 10,460,194

(a) kosarak N3 10,611,814 10,375,295 10,205,956 10,077,832 9,882,828 9,664,443
N4 6,811,140 6,028,964 5,459,093 5,019,367 4,612,615 4,243,295

PHUIs 35,662 24,589 17,304 12,595 9,362 7,154
N1 194,512 150,179 112,717 84,525 64,389 48,824
N2 147,052 109,522 81,229 60,283 44,655 32,550

(b) accidents N3 146,426 109,127 80,933 60,098 44,554 32,490
N4 144,957 107,740 79,657 59,029 43,610 31,651

PHUIs 6,331 4,552 3,321 2,411 1,735 1,237
N1 2,522,059 1,892,203 1,433,997 1,054,904 780,328 600,511
N2 1,265,985 904,469 654,212 473,337 344,866 256,833

(c) pumsb N3 1,238,118 885,941 642,025 466,156 340,510 254,184
N4 1,236,179 883,884 640,104 464,472 338,917 252,599

PHUIs 8,648 5,582 3,630 2,277 1,396 817
N1 37,793,976 37,017,817 36,106,601 35,111,699 34,139,328 33,094,290
N2 16,931,811 16,454,728 15,986,124 15,582,757 15,288,602 15,031,344

(d) retail N3 16,526,029 16,131,265 15,715,903 15,360,149 15,101,236 14,876,214
N4 16,507,082 16,090,920 15,652,668 15,270,502 14,984,007 14,728,697

PHUIs 14,406 13,048 1,1802 10,655 9,660 8,724
N1 974,145 923,770 860,295 796,159 727,630 665,124
N2 527,865 485,700 444,208 404,089 363,959 328,273

(e) mushroom N3 440,243 406,109 373,114 341,243 309,047 281,344
N4 439,522 405,048 372,035 339,920 307,708 279,939

PHUIs 85,133 75,769 67,538 60,065 52,944 47,398
N1 7,194,329 6,992,960 6,804,076 6,632,844 6,457,696 6,259,347
N2 2,365,166 2,195,551 2,034,389 1,879,105 1,718,748 1,549,820

(f) T10I4D100K N3 1,655,006 1,519,652 1,398,078 1,296,955 1,211,962 1,133,041
N4 1,570,317 1,384,445 1,225,810 1,097,950 997,283 905,622

PHUIs 20,710 19,278 17,869 16,454 15,132 13,900



IEEE INTERNET OF THINGS JOURNAL, 2019 11

100k 200k 300k 400k 500k
0

50

100

150

Dataset size

R
un

tim
e 

(s
ec

.)
     (a) BMS−POS (minPro: 0.0001, minUtil: 10k)

 

 

100k 200k 300k 400k 500k
0

200

400

600

800

1000

Dataset size

M
em

or
y 

us
ag

e 
(M

B
)

    (b) BMS−POS (minPro: 0.0001, minUtil: 10k)

 

 

100k 200k 300k 400k 500k
0

1

2

3

4

5
x 10

6

Dataset size

# 
pa

tte
rn

s

           (c) BMS−POS (minPro: 0.0001, minUtil: 10k)

 

 

HUPNU
P1

HUPNU
P12

HUPNU
P123

HUPNU
P1234

N
1

N
2

N
3

N
4

PHUIs

HUPNU
P1

HUPNU
P12

HUPNU
P123

HUPNU
P1234

Fig. 5. Scalability evaluation.

[28] Y. Liu, W. k. Liao, and A. Choudhary, “A two-phase algorithm for
fast discovery of high utility itemsets,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2005, pp. 689–695.

[29] C. W. Tsai, C. F. Lai, H. C. Chao, and A. V. Vasilakos, “Big data
analytics: a survey,” Journal of Big Data, vol. 2, no. 1, p. 21, 2015.

[30] J. C. W. Lin, W. Gan, T. P. Hong, and V. S. Tseng, “Efficient algorithms
for mining up-to-date high-utility patterns,” Advanced Engineering In-
formatics, vol. 29, no. 3, pp. 648–661, 2015.

[31] J. C. W. Lin, J. Zhang, P. Fournier-Viger, T. P. Hong, and J. Zhang,
“A two-phase approach to mine short-period high-utility itemsets in
transactional databases,” Advanced Engineering Informatics, vol. 33, pp.
29–43, 2017.

[32] J. C. W. Lin, W. Gan, and T. P. Hong, “A fast updated algorithm to
maintain the discovered high-utility itemsets for transaction modifica-
tion,” Advanced Engineering Informatics, vol. 29, no. 3, pp. 562–574,
2015.

[33] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, T. P. Hong, and
H. Fujita, “A survey of incremental high-utility itemset mining,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 8, no. 2, 2018.

[34] J. C. W. Lin, W. Gan, and T. P. Hong, “A fast maintenance algorithm of
the discovered high-utility itemsets with transaction deletion,” Intelligent
Data Analysis, vol. 20, no. 4, pp. 891–913, 2016.

[35] J. C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong, and V. S. Tseng,
“Fast algorithms for mining high-utility itemsets with various discount
strategies,” Advanced Engineering Informatics, vol. 30, no. 2, pp. 109–
126, 2016.

[36] V. S. Tseng, C. W. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient
algorithms for mining the concise and lossless representation of high
utility itemsets,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 27, no. 3, pp. 726–739, 2015.

[37] J. C. W. Lin, W. Gan, P. Fournier-Viger, T. P. Hong, and H. C. Chao,
“FDHUP: Fast algorithm for mining discriminative high utility patterns,”
Knowledge and Information Systems, vol. 51, no. 3, pp. 873–909, 2017.

[38] V. S. Tseng, C. W. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient
algorithms for mining top-k high utility itemsets,” IEEE Transactions
on Knowledge and Data Engineering, vol. 28, no. 1, pp. 54–67, 2016.

[39] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, and P. S.
Yu, “HUOPM: High utility occupancy pattern mining,” arXiv preprint
arXiv:1812.10926, 2018.

[40] G. C. Lan, T. P. Hong, J. P. Huang, and V. S. Tseng, “On-shelf utility
mining with negative item values,” Expert Systems with Applications,
vol. 41, no. 7, pp. 3450–3459, 2014.

[41] J. C. W. Lin, P. Fournier-Viger, and W. Gan, “FHN: An efficient
algorithm for mining high-utility itemsets with negative unit profits,”
Knowledge-Based Systems, vol. 111, pp. 283–298, 2016.

[42] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, “FHM:
Faster high-utility itemset mining using estimated utility co-occurrence
pruning,” in International Symposium on Methodologies for Intelligent
Systems. Springer, 2014, pp. 83–92.

[43] R. Agrawal and R. Srikant, “Quest synthetic data generator. http://www.
Almaden.ibm.com/cs/quest/syndata.html,” 1994.

http://www.Almaden.ibm.com/cs/quest/syndata.html
http://www.Almaden.ibm.com/cs/quest/syndata.html

	I Introduction
	I-A Motivation
	I-B Contribution

	II Related Work
	II-A Support-based Pattern Mining
	II-B Utility-based Pattern Mining with Efficiency Issues
	II-C Utility-based Pattern Mining with Effectiveness Issues

	III Preliminaries and Problem Statement
	IV Proposed Approach for Mining PHUIs
	IV-A Positive and Negative Unit Utilities
	IV-B Probability Utility (PU)-List Structure
	IV-C Proposed Pruning Strategies
	IV-D The Procedure of HUPNU

	V Experimental Study
	V-A Evaluation of Runtime
	V-B Evaluation of Number of Patterns (Visited Nodes)
	V-C Evaluation of Scalability

	VI Conclusion
	References

