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Spotting Key Members in Networks:
Clustering-Embedded Eigenvector Centrality

Emilio Carrizosa, Alfredo Marin, and Mercedes Pelegrin

Abstract—Identifying key members in a social network is critical
to understand the underlying system behavior. Whereas there are
several measures designed to discern the most central member,
they fail to identify a central set of members and at the same
time reveal the spheres of influence of the individuals in such
central set. Here, we combine eigenvector centrality with clustering
to design a mathematical programming formulation capable of
detecting key members while preventing their spheres of influence
from overlapping. Our computational experience reproduces these
two features as different aspects of the same phenomenon. The
optimal set of key members and their spheres of influence are
identified in real-life networks and synthetic ones. For the former,
community structures are consistent with existing knowledge about
the instances. For the latter, network underlying organization is
known a priori and it is perfectly uncovered. Experiments further
reveal previously neglected nodes to be optimal key members. The
size of the instances tested reach several hundreds of nodes and
thousands of links.

Index Terms—Clustering, eigenvector centrality, mathematical
optimization, social networks.

I. INTRODUCTION

ETWORKS are the basic architectures to represent sys-
N tems components and their interrelations in diverse do-
mains, including biological, social, or communication systems.
Given their versatility, it is not surprising that research commu-
nities from wide ranging disciplines such as computer sciences,
biology, psychology, or sociology, have focused their efforts
on improving their insight on networks dynamics [1]-[5]. One
crucial step to understand and modify the processes that net-
works encode is to uncover their relevant nodes. Identification
of such nodes has profound consequences for cyber-physical
systems concerning, e.g., terrorist organizations [4] or viral mar-
keting [5]. But, what do we understand as relevant? If the goal is
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to prevent a terrorist attack, one would target those individuals
whose eradication disrupts the network [6]. However, should a
marketer aim to persuade people about their deepest desires,
she would need to identify those personalities with ultimate
influence and communication power [7].

The concept of relevance is always linked to the idea that
there are a few key nodes that play a distinguished role within
the network. These nodes are usually referred as influencers [8],
leaders (9], central [10], vital [11], spreaders [12], or promi-
nent [13]. The interest towards key nodes in networks emerged
in the past century as a subject of mathematical sociology [9],
[10], [14] and graph theory [15]-[17], and has grown to the point
of becoming one of the most noteworthy challenges towards
understanding social systems [5], [18], [19].

When social networks analysis was still in its infancy, differ-
ent strategies were explored in order to determine the relevance
of a single node, which gave rise to the so-called centrality
measures. Some of the classics are based on local criteria such
as the number of connections with other nodes of the network
(degree centrality), the number of shortest paths that contain the
node (betweenness centrality [10], [20]) or the distance between
the node in question and the rest of the nodes in the network
(closeness centrality [17], [21]). A different approach assumes
that one node’s importance not only depends on its connections
to the rest of the network, but also on the importance of its neigh-
bors. Translating such recursive definition into a mathematical
formula yields the search of the eigenvectors of a matrix, the
matrix of relationships in sociology and the adjacency matrix in
graph theory. The result is a decentralized measure that has been
known as eigenvector centrality [14], [22] and inspired popular
Google’s method for rating web pages, PageRank [23]. Among
later approaches to measure the relevance of individual nodes,
we can find coreness [19] or h-index [24].

State-of-the-art challenges in network analysis include dis-
cerning the relevance of a group of nodes [12], [25], [26]. In
order to accomplish the new task, a first thought could be to
leverage previous knowledge of the problem on a single node.
Indeed, computing some of the abovementioned measures for
every node gives aranking from where selecting those with high-
est individual relevance, but says nothing about their potential
influence power as a group, though. Hence, previous measures to
quantify relevance of single nodes have to be rethought. One of
the aspects that become crucial when determining joint relevance
of multiple members is their relative distance [12], [26]. Think
about the marketer who wants to sell a product. Targeting the
two top influencers among its potential clients seems a sensible
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strategy. However, if these celebrities happen to have lots of
followers in common, it seems more reasonable to replace them
by a pair whose influence covers a bigger portion of clients, even
if they are less popular.

First attempts to approach joint relevance rely upon adap-
tations of classical degree, closeness, and betweenness cen-
tralities [1], [27] and also on the search of the minimal set
of nodes whose simultaneous removal will fragment the net-
work [1], [6]. More sophisticated approaches appeared with
time, based on techniques borrowed from physics and statistics,
including optimal percolation [25], diffusion models [12], [26],
and proportional hazard models [8]. What distinguishes these
latter approaches is the fact that they substantiate on influence
propagation over time rather than taking an individualistic view
of influence. One of these studies suggests that influential people
with influential friends may be instrumental in the spread of
information [8]. However, possible adaptations of eigenvector
centrality, which relies on this idea, remain unexamined.

We propose to embed eigenvector computation into a k-
centroids clustering framework. Real networks usually display
a modular structure that emanates from the combination of
compartments or functional subunits, identified by social sci-
entists as communities [28]. Some existing approaches already
address network modularity, identifying key nodes in a first
step and using them as centers for clustering afterwards [29],
[30]. Our approach is conceptually different because community
discovery and key nodes identification go hand in hand. A
representative or centroid is chosen from each compartment or
cluster to be in the group of key members. The introduction of
a mixing parameter in the model guarantees cluster cohesion
and allows us to reinterpret clusters as network communities.
Eigenvector centrality within each cluster determines the rele-
vance of the corresponding representatives, i.e., we assume that
one node’s importance depends on that of their neighbors in the
same cluster.

A mathematical programming formulation is proposed to
maximize group relevance. In mathematical programming,
problem solution is coded by decision variables. Modeling
eigenvector computation over clusters with decision variables
involves nonlinear equations; normalizing them adds difficulty
to an already challenging optimization problem. Another key
aspect in our model is symmetry breaking. Given that clusters
are interchangeable, node-cluster assignment readily implies
symmetry issues. Here, we use symmetry breaking constraints
to impose some rules to regulate node-cluster assignments.

As an illustrative example, Fig. 1 shows the group of seven
most relevant characters in the novel Les Misérables (diamond
nodes), together with their communities. Here, links connect
any pair of characters that coappear in the novel—weights to
quantify the number of such coappearances were also consid-
ered, as compiled by Knuth [31]. Valjean, the main character,
has been identified as a member of the top group. However,
Javert, the antagonist, has been not. A community only admits
one leader; given two competing nodes, the model automati-
cally discerns whether the sphere of influence of one of them
should absorb the other candidate or, conversely, there is room
for two leaderships. In this case, Javert is eclipsed by Valjean
and embedded in his community. Many other major characters
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Fig. 1. Optimal solution for Les Misérables network: p = 7 and p = 0.46.

Fig. 2.
centrality.

Top-7 nodes for Les Misérables network, according to eigenvector

are covered by Valjean’s influence sphere. In their place, our
method prefers secondary characters such as bishop Myriel or
Courfeyrac to build a more balanced and covering group of
leaders. Case of Childl is especially remarkable. The character,
of little significance for the novel, is, according to our solution,
among the seven most relevant ones. Indeed, Child1 and Child2
are to some extent isolated from the rest, and it is precisely this
distinct role what the model detects. Gueulemer is identified
as the leader of the group consisting of the gang of criminals
made of Montparnasse, Claquesous, Babet and himself, and
Brujon, another criminal in the novel. To illustrate comparison
with eigenvector centrality, Fig. 2 depicts the seven nodes with
highest scores according to this measure when applied to the
whole network of characters. Evidence that it fails to comply
with network coverage is noticeable.

Solution depicted on Fig. 1 has been obtained under mixing
parameter ;= 0.46. This means that node relations within a
cluster represents, for each node, at least a 54% of its relations.
The mixing parameter is an input of our model that can be
tuned to control the cohesiveness of the spheres of influence
(i.e., communities) in the solution.
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As shown by the previous example, eigenvector centrality
needs for an adaptation if one wants to address group relevance.
In this article, we propose such an adaptation, to the best of our
knowledge the first one in the literature. The main contribution of
this work is an innovative model that combines optimization of
group relevance and community discovery in the same process.
Unlike other approaches, which consider the two problems
separately in different steps, the proposed mathematical pro-
gramming model is able to reproduce the interrelation between
them. The rest of this article is organized as follows. Section II
presents the preliminaries about eigenvector centrality and intro-
duces some notation. The proposed mathematical programming
formulation is presented in Section III. Our computational expe-
rience is reported and analyzed in Section I'V. Finally, Section V
closes the article with some conclusions.

II. PRELIMINARIES

Let (V, E, W) be an undirected network with n nodes, V' =
{1,...,n}, some links, collected in a set F, and weights on
these links, arranged in a matrix W. Set E consists of unordered
pairs of distinct nodes, i.e., (¢, j) = (j,4) and ¢ # j. Matrix W is
symmetric and positive: W = (w;;) with w;; = w;; and w;; >
0 for every pair 4, j € V. Weight w;; represents the strength of
link 77, if it exists, and it is O otherwise.

Eigenvector centrality of one node j € V, ¢;, is defined as
a weighted sum of the eigenvector centralities of its neigh-
bors [23], [32]

)»Cj = Zwijci. (1)
i=1

Equation (1) indicates that one node’s importance depends on
how notably it is linked to other nodes and how important are
such. This equation is equivalent to determining some of the
left eigenvectors of W and its associated eigenvalue. Indeed, (1)
yields the eigenvector equation Ac = cW. Solutions for such
equation are only guaranteed to exist in R™ under some condi-
tions. Particularly, when all the entries of W are strictly positive
and the sum of any of its rows equals one, WV is row stochastic,
W can be reinterpreted as the fransition matrix of an irreducible,
aperiodic, and positive recurrent Markov chain [33]. This fact
ensures that A = 1is the largest eigenvalue of W with associated
eigenvector ¢ unique and such that ¢; >0 and Y I | ¢; = 1.
Eigenvector c is, then, called a stationary distribution of the
Markov chain.

To guarantee solution existence, a fixed score e; is usually
added to the eigenvector centrality of j

)\Cj = Z wijci + ej (2)
i=1

that is, Ac = cWW + e, where e = (e;), e; > 0. Note that, if
Y oiy ¢; = 1, we can rewrite previous equation as Ac = ¢(W +
e x 1) where 1 = (1,...,1)1xn, i.€., ¢ is a left eigenvector of
W + e x 1, whose entries are strictly positive. If W 4+ e x 1
was row stochastic, Ac = ¢(IW + e x 1) would have a solution
with A = 1 and associated eigenvector ¢ in (R™)" such that
> iy ¢; = 1, which would be also a solution to (2). Vector e
might have different interpretations, including the “exogenous
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contribution” to a person’s status [32] and the probability that
an Internet surfer clicks on links at random [23].

Similarly to k-means clustering, one solution features a parti-
tion of the nodes of the network in p clusters, where p is an input
parameter. Eigenvector centrality is calculated independently
for every cluster in the solution. In other words, we compute
an eigenvector for every submatrix of the matrix of weights
corresponding to one cluster.

For introducing eigenvector computation inside the network
subunits, let {C}, }}_, denote a partition of V' in p clusters, i.e.,
Uk=1Ck = V. We consider W¢ = (ws;), where w; = w;; + €
and e > 0. For each node 7 belonging to Cj, we denote with
i, the eigenvector centrality of ¢ within Cj. That is, node
eigenvector centrality within cluster C, is computed as follows:

we.
Tik= Y Mike—r—r Vj € Cy 3)
ieCy D eec, Wi

subjectto: 0 <y <1 VieC, (4)

> mik=1 5)

1€C

Equation (3) is equivalent to 7., = 7., W*, where WF :=
(%}:we)”eck is the submatrix of W€ induced by C}, and
normalized by rows. Normalization conceptually means that the
strength of one link ¢j is relative to the total influence power
exerted from ¢, computed as the sum of the corresponding

row. Since W* has positive entries and is row stochastic

w§

(ZjeCk m =1 for all i € C}), the system (3)—(5) has
a unique solution for each C%. Note that the introduction of
parameter ¢ is the equivalent of taking uniform vector e = (¢).
Despite its possible interpretations [23], [32], adding € responds
to a technical need: solution existence cannot be guaranteed
otherwise. Therefore, we advise to set e sufficiently small to
prevent network nature from disruption.

III. MATHEMATICAL FORMULATION

In order to model both, node-cluster assignment and eigen-
vector calculation, we define the following mathematical pro-
gramming variables foralli € Vandk =1,...,p:

Tk € {O, 1}, zi = Liffi € Cy;

IL;; € [0,1], the eigenvector centrality of ¢ within C}, if ¢ €
C', 0 otherwise;

yir € {0,1}, yix = 1 iff ¢ is the node with maximum eigen-
vector centrality within C;

zi € [0,1],  the maximum eigenvector centrality in CY, i.e.,

n
2k = i inyik-

Variables II encode p eigenvectors, one per cluster. For
each k, positive components of the vector of variables II.;, =
(Mg, - .., %) T correspond with node eigenvector centralities
within C}. Observe that we model eigenvector centralities as
normalized vectors, i.e., II;;, € [0, 1]. Variables y represent clus-
ters centroids, i.e., y;; = 1 iff II;;, = max{Il;; : j € Cy}.

Given a network partition {C},}} _,, our vectors of variables
Iy = (I, ..., Mp)T, k=1,..., p, must satisfy the follow-
ing constraints (stationary distribution):
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1) ij = Tjk Z?:l xikszm for all
1,...,n;
i) 0<ILx <lforalli=1,...,n

i) dor I =1

These conditions are just a translation of system (3)—(5)
into our modeling language with decision variables. Note that
condition (i) not only indicates eigenvector computation inside
C}, but also ensures that II.;, components are zero for nodes
outside CY,.

Any solution must additionally fulfill some constraints re-
garding clustering cohesion. Such constraints restrict the cluster-
external relations of one node to represent at most a fraction p
of its relations within the entire network. The incorporation of
this parameter to the model avoids dummy solutions in which
clusters have disconnected components or are singletons. But,
more interestingly, p allows us to reinterpret clusters as network
communities. A community is usually defined as a group of
nodes such that the density of links between nodes of the group
is higher than the average link density in the network [28]. In fact,
1 — p determines community cohesion and p has been known
as the mixing parameter [28].

The group of top relevance nodes— the cluster centroids—
is made of those with the highest eigenvector component in
each cluster. Our formulation finds the partition in clusters
that maximizes the sum of centroids’ eigenvector components;
eigenvectors normalization prevents the optimization to produce
biased solutions. When p = 1, the approach becomes trivially
a single eigenvector computation on the complete network,
serving as a generalization of classical eigenvector centrality.

We have now the ingredients to present the following mixed-
integer nonlinear formulation for the problem of group central-
ity, where i, j € Vandk=1,...,p

p
max sz (6)
k=1
P
> mi=1 Vi (D)
>y =1 vk (8)
=1
ZH““ =1 vk (9)
11 Z I i Vi,k  (10)
jk = Tjk Tikllin=m—— Z/ ) wwwfk z,
I < ik Vi k  (11)
Yik < Tik Vi, k  (12)
2 < +1 =y Vi, ko (13)
yire <1411 — I Vi, g,k (14)
Z(wij +wji) K >
j=1
n
(1— )z Z(wiﬂ + wj;) Vi, k  (15)
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Wik, 21 > 0
Tiky Yik S {07 1}

The objective function to maximize (6) is the sum of the greatest
eigenvector components in each cluster. Constraints (7) impose
that each node is assigned to only one cluster, and (8) guarantee
that every cluster has only one centroid. Regarding eigenvec-
tors, constraints (9) and (10) ensure that stationary distribution
equations (iii) and (i) are satisfied. On the other hand, (11) and
(12) prevent I1;;, and v, to be positive when ¢ is not in cluster
C. Constraints (13) have no effect when ¢ is not a centroid
and upperly bound zj by II;; when it is; since (6) is to be
maximized, z; will attain this bound in the optimal solution.
Constraints (14) ensure that binary variable y;, is zero if there
is a node with eigenvector component greater than II;;. Finally,
(15) are to guarantee clusters cohesion. Given that i € CY, [i.e.,
z;;, = 1 on the right-hand side of (15)], the overall relations of
1 with nodes inside C}, (on the left-hand side) must be greater
thana (1 — p) - 100% of its overall relations within the network,
>~ j—1(wij + wji). On the other hand, observe that cluster cohe-
sion is imposed using W— and not W — as a reference. These
inequalities will be referred as mixing constraints. Last lines in
the formulation determine the type of the variables— positive
(II and 2) and binary (x and y).

Even though the previous is a valid formulation, it has a
main drawback, namely that (10) is highly nonlinear. In order to
linearize it, we introduce two families of continuous variables
T and F

Vi, k
Vi, k.

2 HZ .
T = =Pk e VVE=1,....p  (16)
2= Wk
Fz’jk = ﬂkxjk Vi,je V,Vk=1,...,p (17)
Using T variables, eigenvector (10) can be rewritten as
Wjp = a0y wiTw VieVVek=1...p (8
i=1
while, using F’ variables, (16) reads
n
> wiFu = a2yl VieVVE=1,....p. (19

{=1

The introduction of these variables allows us to rewrite previous
nonlinear model into the following mixed-integer linear formu-
lation:

(p-leaders)

max sz
k=1
st (7) = (9), (11) —

(15)
Fiji < Tiy Vi,j ko (20)
Fiji < Mz, Vi, 5,k (21)
Fiji > Tip, — M(1 — 21, Vi,j ko (22)
> w§Fu, = T Vi,k  (23)
/=1

Restrictions apply.
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Tie < M ik (24)
D wi T < Ty + M'(1 — ) Vik  (25)
=1

> w T > T — 1+ 2 Vi.k  (26)
=1

Wik, zi, Tik, Fijr > 0 Vi, j, k

Tik, Yir € {0,1} Vi, k

Here, (20)—(22) serve to linearize (17). In effect, when z 3, = 1,
(20) and (22) guarantee that I} ;;, = Ty, and F;j;, = 0 otherwise
due to (21). Constant M should be large enough and can be
computed in terms of W. Equations (19) stand thanks to (23)
and (24). On the one hand, (23) are precisely (19) when x;; = 1.
On the other hand, if x;;, = 0, the right-hand side of (23) is zero
because of (11), and so is its left-hand side due to (24) together
with (20). Finally, (25) and (26) account for eigenvector (18)
when z;;, = 1. Otherwise, (25) and (26), where M’ is again a
large enough constant, have no effect and (11) ensure that (18)
stand.

Formulation (p-leaders) can be now implemented in a com-
puter and solved with any commercial optimizer for mixed-
integer linear programming such as Cplex, Gurobi, or Xpress.
All these solvers feature exact procedures, i.e., the solution ob-
tained is guaranteed to be optimal. Nevertheless, a careful design
of formulations is crucial for solvers success. In the following,
we explore some modifications to improve (p-leaders).

A. Formulation Improvements

The size of (p-leaders) can be reduced since w;; = wj; for
all (i, j) € E.Indeed, not all variables T, are needed. Suppose
that 4, j € Cj. We claim that Tj, = Ty, i.e.,

L 1L

n € = n € .
Dorm WiTek Do Wik

Equivalently

n n
Hik E wjga:gk = ij E wf[xgk.
=1 £=1

Now, we can use (10) to replace I1;,
distributive property

E xskHsk E WS pTpg
< 1w§7$7k> /
E CEskHsk E Wi T ek,
r lwerz7k
> (st X vt
siWiellk
T lwsr‘r?”k
E w‘;]wemgk>

IT;1, and then apply the

z(

=1 wsrxrk?
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Fig. 3. Realization of (27) when k = 5 and ¢ = 16.

3
3

xsknsk € €
n ¢ wsiwjlek
s=1 ¢=1 ZT:l Wy Lrk

n n
_ xsk:Hsk € €
= Z n e . We Wik | -

s=1 =1 Zr:l WepLrk

The last equality stands because W is symmetric. Consequently,
wehave that T, = T}Vi, j € C), and the size of the formulation
can be reduced.

Based on clustering, our approach involves symmetry issues
regarding node-group assignments, an so does (p-leaders). Given
a feasible solution to (p-leaders), several (symmetric) solutions
can be produced by permuting clusters members, all them having
same objective value (6). This represents a serious hindrance
for the solving procedure, which is based on branching on the
binary variables: the branching tree grows exponentially towards
the different equivalent feasible solutions. A natural approach
to avoid this is to eliminate such symmetric solutions obtained
by permutations, i.e., to make them unfeasible for the model.
In our case, imposing some constraints that rule node-cluster
assignment will do the work. For each node i and cluster CY,, we
introduce the following mathematical programming constraints:

k 1—1

SNwi+ Y wpp>1 Visk 7
s=1 i=k
v =0 Vi<k, VjeV. 28)

Constraints (28) state that node 1 is assigned to C, node 2 is as-
signed either to C'y or C5 and, in general, i is not assigned to C, if
k > 4. These constraints also imply y;, = I, = Ti = Fij =
0Vi < k,Vj € V. On the other hand, (27) are a particular case
of shifted column inequalities for the partitioning orbitope [34].
For an interpretation of (27), assume without loss of generality
that nodes are assigned to their clusters in order by index, i.e.,
node 1 is assigned first, node 2 is assigned in second place, and
so on so forth. If ¢ is the next node to assign and C}, is empty,
ie., Z;_:lk x5 = 0, then 7 will not be assigned to a cluster with

index greater than k, i.e., Zle x;s = 1. Fig. 3 illustrates (27)
when k = 5,7 = 16, and p = 7. In this example, nodes from 1 to
15 have been placed inside clusters C1, . . . , Cy. Constraints (27)
forbid that the next node, 16, is placed into clusters Cg or C7,
because Cj is empty. Constraints (27) together with (28) indeed
constitute the following rule for node-cluster assignment: “every
node is assigned either to some of the already used clusters or
to the first empty one”.
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IV. EXPERIMENTS AND ANALYSIS

This section discusses the computational performance of the
proposed approach. Model (p-leaders) can be solved by any
standard optimization software. This kind of software, usually
called solvers, are based on a branch and bound scheme and
on some linear programming algorithms, such as the Simplex.
Using the latter, the linear programming relaxation of the model
is first solved at the root. Then, two subproblems (the child nodes
of the root) are created by fixing one of the binary variables to 0
and 1, respectively. The process is repeated for the new nodes in
the tree, until all the search space is explored. The search tree can
be pruned by using the bounds provided by the linear relaxations
together with the current best objective value. The time spent at
each node, the bounds and the size of the tree strongly depend
on the mathematical formulation used, which will have a signif-
icant impact on the algorithm overall efficiency. In this sense,
improvements proposed in Section III-A are oriented to boost
the algorithm’s performance. An introduction to mathematical
programming methods and algorithms can be found in [35].

We conducted experiments on two real-life networks and
twenty synthetically generated networks. Our experiments were
run on an i7-6700 k 4.0 GHz x 8 machine with 16 GB memory
and the solver used was CPLEX v12.6.3.

A. Real-Life Networks

As first real-word example, we use the Zachary’s Karate
Club weighted network [36], which is a standard for testing
community detection algorithms. This network collects relative
strengths of the relations in a university-based karate club.
Fig. 4 shows several illustrations that emphasize different social
structures within the club. Nodes are labeled with numbers from
0 to 33 that represent anonymous club members, except for
the instructor Hi (node 0) and the administrator John A. (node
33). After a conflict, the club separated into those members
that formed a club around John A. and those who remained
with Hi. Fig. 4(a) shows the community structure observed by
Zachary, which only misclassified node 8 with respect to the
actual split. When nodes are ranked by eigenvector centrality,
John A. and Hi occupy the first and second place, respectively.
As opposed to most approaches, our model reveals previously
unnoticed node 5 for a choice of two members with minimum
cluster cohesion 1 — . = 0.62 [see Fig. 4(b)]. This exemplifies
the model’s preference for small communities, given that they
satisfy constraints regarding cohesion. When a set of three key
members is selected, node 5 together with “ground truth” leaders
John A. and Hi are nominated. The increment entails a loss
of cluster cohesion, which drops from 0.62 to 0.58. Modular
structure of the solution coincides with existing knowledge and
features the same communities frontiers originally observed by
Zachary [see Fig. 4(c)]. However, Hi’s faction is divided into
two subunits: one led by member 5, which coincides with that
of Fig. 4(b), and other led by himself. Finally, Fig. 4(d) illus-
trates the optimal group of four key members and their relative
communities, which inevitably present significant interrelations
(= 0.53). This time, unlike other approaches that split the
green group on Fig. 4(c) into two subcommunities, our model
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(b)

(d)

Fig. 4. Social structures in the Zachary’s Karate Club weighted network [36]
revealed by different methods. (a) Ford-Fulkerson binary community detection
algorithm applied by Zachary [36]. (b) Our model with p = 2, . = 0.38. While
0 and 33 are frequently selected [29], [30], our solution reveals node 5 as key
member. (¢) Our model with p =3, u = 0.42. The depicted community structure
was identified in previous studies [37], [38], [39]. (d) Our model withp =4, u =
0.53 In [40], group {0, 5, 31, 33} was obtained with clustering and information
transfer probabilities; and {0, 1, 32, 33} with the greedy of [41]. Communities
also differ from previous studies [39], [40].
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Fig. 5. Key members and communities in the American Political Books
(unweighted) network [38]. Circle, triangle and square nodes represent ground-
truth partition in liberal, conservative and neutral books, resp., which features
modularity 0.4149, see [29]. (a) Our model with p = 2, = 0.4. Nodes in
the optimal group, 12 and 84, have centralities 0.0496 and 0.0644. Partition
modularity is 0.4424. In [29], 8 and 72 were selected (which have centralities
0.0496 and 0.0561 in our solution) and modularity was 0.4454. (b) Our model
with p = 3, p = 0.48. Nodes 84, 8 and 3 form an optimal group of key
members and partition modularity is 0.4924.

redistribute community memberships of that solution. Spotted
key members are {0,5, 32,33}, as opposed to the top group
{0, 2, 32,33} according to a ranking by eigenvector centrality.
The four key members identified by [37], {0, 5, 31, 33}, lie in
the four communities in Fig. 4(d) separately. However, node 31
has eigenvector centrality 0.137 in our solution while 32, the
centroid, has 0.164.

For a second test with real-word data, we use the American
Political Books network compiled by Krebs [38] [see Fig. 5].
Here, nodes are 105 books about US politics sold on Amazon,
and edges represent frequent copurchasing of two books by
the same buyers. When the books are ranked by eigenvector
centrality, books 8 and 12 draw as top ones, followed by 3 and 84,
which also end in a tie. Conversely, our formulation identifies 84
and 12 as optimal group, which lie in different books categories,
as opposed to 8 and 12, which are both conservative books [see
Fig. 5(a)]. Alternatively, 84 and 8 are also an optimal solution to
our model. For the three most popular books, our method finds
84, 3, and 8 [see Fig. 5(b)]. This time ties between 8 and 12
are broken, and 12 is absorbed by the community of 8, which
is selected as one of the key books. Furthermore, nodes 3 and

IEEE SYSTEMS JOURNAL, VOL. 14, NO. 3, SEPTEMBER 2020

84 are identified as leading books of distinct communities. Blue
and green communities fairly respect the categories identified
by Newman, while the red one contains a mixture of the three
types of books.

B. Synthetic Networks

The use of a public generator of synthetic networks that
feature modular structures [28] allows us to test the scalabil-
ity of the model while validating community discovery. The
resulting testbed gathers networks of 50, 100, 150, 200, and
500 nodes, with links densities ranging from 1.5 to 16 (%).
The benchmarks feature between 3 and 13 communities whose
interrelation accounts for at most a 58% of the links of one node
in the less cohesive network and a 8% in the most cohesive one.
We compiled in total 20 benchmarks, four of each size.

For evaluating consistency of the method, for each of the 20
instances, we solve the model for different values of p without
exceeding the number of communities in the network according
to the benchmark generator [28]. We observe whether the group
of key members is stable when p increases. Parameter p, the
maximum mixing allowed between clusters, have to be tuned
in each experiment. For instance, with p = 2, we begin with
a small g of 0.1 or 0.2 and increment it until the model is
feasible. Feasibility is rapidly discarded, which allows us to tune
by inspection. The number of clusters is increased at the cost of
losing cohesiveness, and p has to be consequently updated with
the increase of p. As an illustrative example, Fig. 6 shows the
optimal solutions on a network of 50 nodes with p = 2, 3.4,
and 5. Different clusters are depicted in different colors and key
members are marked with an asterisk and displayed as diamond
nodes. Fig. 6(d) illustrates the optimal solution for p = 5, which
perfectly matches the community structure produced by the
benchmark generator. Taking then this figure as reference, one
can observe that communities frontiers are maintained for p < 5.
Indeed, when p is decreased, the original five communities are
placed one inside another, like matryoshkas. Inspecting now how
the optimal group of members varies when p decreases, we find
a singularity when p = 4. Member 37 is in the optimal group
of four leaders depicted on Fig. 6(c), while it is not among the
optimal five key members in Fig. 6(d). Despite the apparent
contradiction, both solutions seem natural, since 37 is linked to
members 42 and 44, the leaders of the original communities on
Fig. 6(d) that are merged to form a bigger community on Fig. 6(c)
whose leader is now 37. These fluctuations in leaderships can
account for quite of the experiments made on one instance and
may not occur for another. On average, we have found that such
changes occur in a 4.7% of our experiments. This tendency may
suggest the use of some ad hoc strategy to approximate a solution
by successive steps.

Table I summarizes the experiments compiled. The bench-
marks, whose nodes range from 50 to 500, are displayed on
different rows. For each of them, we have executed our method
with p ranging from the number of connected components of
the network to the number of communities according to the
benchmark generator [28]. The table shows, for each instance
and p, the minimum mixing parameter under which an optimal
solution is obtained. In other words, there is not a partition of
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(d

Fig. 6. Optimal solutions to instance 50_1 for different p. (a) p =2, u =
0.21, OPT =0.34. (b) p=3, u=0.21, OPT =0.51. (¢c) p=4, u=
0.23, OPT =0.77.(d) p =5, p = 0.23, OPT = 0.98.
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TABLE I
MIXING PARAMETER 4 (IN%) FOR DIFFERENT p THROUGHOUT
THE BENCHMARKS

p
12 3 4 5 6 7 8 9 10 11 12 13

100_2 0 29 29 30 34 34 37
100_3 0 25 26 -

1005 |0 22 22 23 23 27

100_6 |0 27 27 28 30 35 35

150_1|0 27 27 28 33 - - -

15040 22 23 24 24 25 25 27 30 30
150.5|0 26 26 28 29 31

150_7|0 26 26 27 - -

200_1 (0 21 23 24 26 29 32

200_2 0 17 17 18 18 19 19 20 26
20030 - - - - - - 21 - 23
200_4 0 14 14 15 15 15 16 16 17 18
500_1 0O 5 6 6 8
500_2 o 7 7 7 11

500_3 0 19 19 20

500_4 0 19 24 30 30 - - 4

Entries are in Bold When p Equals the Number of Communities Indicated
by the Benchmark Generator.

TABLE I
RUNNING TIME (IN SECONDS), TL INDICATES THAT TIME LIMIT (5000 s.)
WAS REACHED

P
1 2 3 4 5 6 7 8 9 10 11 12 13
5010 1 1 5 1
50210 25 5 58 2787 787 410
50_3 0 0
50410 31 7
100_2 0 1 1 1 8 2 15
100_3 0 0 1 TL
100_500 1 1 3 1 2
1006/0 2 2 6 7 46 11 TL
150_112 10 16 45 23 TL TL TL
150_4/2 4 30 81 83 293 119 368 3146 73
150512 9 9 18 42 173
150_7|/2 35 9 171 TL TL
200_1|10 10 7 248 495 324 2028
200_2 5 755 83 998 155 3710 390 844 125
200_3(10 TL TL TL TL TL TL 76 TL 689
200_4 5 15 129 1050 239 145 2627 533 233 329
500_1 96 78 321 317 351
500_2 309 319 748 156 1546
500_3 196 130 186 1224
500_4 169 608 2644 1313 1921 TL TL 4902

the given network in p clusters with mixing parameter smaller
than that indicated in Table 1. Zero entries appear when p
equals the number of connected components of the network.
In this case, our method simply computes eigenvector centrality
in each connected component. Dash entries indicate unsolved
configurations. Finally, bold entries correspond to experiments
in which p matches the number of communities identified by
the benchmark generator. In those experiments, the community
structure produced by the generator was perfectly uncovered,
i.e., it coincides with the optimal cluster partition identified by
our method. On the other hand, Table II shows the running time
spent to find the optimal solution for each instance and p.
When n = 50, the method is able to find the optimal key
members for all the experiments run, even when the mixing pa-
rameter is close to 0.5 (see Table I). The underlying communities
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Fig. 7. Optimal solution for synthetic benchmark 500_4 with n = 500,
p =13, pn=0.44.

according to the benchmark generator are discovered in all the
cases. Whenn = 100 or n = 150, the method also finds optimal
solutions for wide ranging sizes of the key members group.
However, sometimes p does not reach the number of underlying
communities when they are not well-cohered (mixing parameter
close to 0.5 or exceeding 0.5 in the underlying structures). For
the last group of benchmarks, those with n = 200 and n = 500,
community structures produced by the generator are always
uncovered (we find bold entries for these instances on Table I).
Note that running times are not only related to the network size
but also to the mixing parameter (see Table II). For instance,
it took 410 s to solve an instance with n = 50 and p = 0.48
and 329 s to solve one with n = 200 and p = 0.18. Despite
comparison with underlying structures for testing purposes, one
should keep in mind that parameters p and p are not known a
priori for a given network. Moreover, these parameters present
some degree of uncertainty in real applications, especially for
large networks. In this vein, difficulties in finding an optimal
solution to, for instance, network 500_4 and p = 12, are palliated
by the discovery of 13 key members and their communities,
which, as a matter of fact, fit better with the actual network layout
(see Fig. 7). Indeed, if the model struggles to find a solution, it
is probably the case that the structures that are being searched
for (which are determined by p and p) are far from the intrinsic
network organization.

Unlike most existing solving strategies, which are of heuristic
nature, results reported here provide the best group of key
members for the proposed approach. Finding such optimum
obviously has a computational cost, which can turn expensive
depending on the network at hand. Our computational expe-
rience on the proposed model demonstrates extremely good
performance for the smallest instances and high flexibility for
the largest ones, even if sometimes optimal solutions are not
achieved within a reasonable time limit through the full range
of possible values of p.

IEEE SYSTEMS JOURNAL, VOL. 14, NO. 3, SEPTEMBER 2020

V. CONCLUSION

This article proposes a new approach to identify the group of
most relevant nodes, where relevance is based on eigenvector
centrality. Originally thought to give support to eigenvector
computation, clusters became a key aspect of our proposal,
whose result is twofold. Clustering partition and group relevance
optimization interact in a two-directional feedback mechanism
to reveal both network modular structure and key members of
the network. Network partition directly affects group relevance
estimation, while optimizing such results in a more suitable
partition in clusters.

Experiments on real-life networks of small size show inter-
esting results that reveal previously unnoticed key members.
Additionally, clusters are consistent with previous knowledge
on the community structure of the networks. Our computational
experience on larger synthetic networks demonstrates an ade-
quate scalability of the method, which is able to find optimal
solutions for networks of hundreds of members and thousands
of links. As future work, the use of some heuristic, such as
large neighborhood search (LNS), together with the proposed
formulation could be explored with the aim of solving bigger
instances.
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