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Abstract—To improve the radio spectral efficiency for 5G and
beyond, novel radio access techniques need to be designed to
accommodate unprecedented number of connected devices, and
non-orthogonal multiple access (NOMA) has become a promising
candidate. Additionally, power allocation and NOMA-secondary
user(SU) assignment technology is an efficient way to enhance
the resource utilization efficiency at the power domain and the
spectral domain for underlaying cognitive NOMA networks. In
this paper, firstly, a joint power allocation and SU assignment
problem is formulated for NOMA downlink transmission in an
underlaying cognitive radio network. The worst-case achievable
rate for the NOMA-SU is maximized. To solve this mixed-
integer non-linear programming (MINLP) problem, we divide the
original optimization problem into two sub-problems: NOMA-SU
assignment and power allocation. Next, a heuristic algorithm is
adopted to solve the NOMA-SU assignment subproblem, and
successive convex approximation (SCA) based method is utilized
to design a suboptimal power allocation algorithm. Furthermore,
an alternative joint NOMA-SU assignment and power allocation
scheme is proposed with its average computational complexity
analysis given. Finally, numerical results show that the total
throughput for the proposed algorithm outperforms more than
30 percent compared with an existing benchmark scheme at least.

Index Terms—underlaying NOMA networks, NOMA-SU as-
signment and power allocation, heuristic algorithm, successive
convex approximation.

I. INTRODUCTION

With the upsurge of the number of wirelessly connected
devices, radio communication technology is evolving into 5G
and beyond to provide greater spectral efficiency, ultra-high
reliability, ultra-low latency, and higher connectivity [1], [2].
For each generation of wireless networks, multiple access
technology is the key feature, e.g., code division multiple
access (CDMA) for the 3G, and orthogonal frequency division
multiple access (OFDMA) for the 4G mobile networks. As
a 5G-enabling technology, non-orthogonal multiple access
(NOMA) leverages the interference cancellation technique to
improve the spectral efficiency [3], [4]. For example, superpo-
sition coding (SC) can be adopted at the transmitter to exploit
the power-domain multiplexing, and the signals at the receiver
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of each mobile terminal are separated by successive interfer-
ence cancellation (SIC). Additionally, cognitive radio utilizing
vacant spectrum holes has been a well-studied technology to
alleviate spectrum scarcity in licensed bandwidth [5]–[7]. As
a result, the underlaying cognitive NOMA networks present a
promising solution for further improving the spectral efficiency
of 5G and beyond [8].

The power allocation and NOMA-SU assignment is an
important technology for underlaying cognitive NOMA net-
works, which can improve the throughput and fairness. In
underlaying cognitive NOMA networks, the network manager
allocates the power based on channel condition and optimiza-
tion criterion to obtain the maximum profit, while assigns
different NOMA-SUs to different subchannels to utilize the
spectrum domain and power domain at the same time. Many
existing references investigate the power allocation and user
assignment to prove it as the effective technology for wireless
NOMA networks, e.g., [9]–[18].

In this work, we investigate the joint power allocation
and NOMA-SU assignment problem for underlaying cog-
nitive NOMA networks. The contributions are summarized
as follows. (i) The joint NOMA-SU assignment and power
allocation problem is formulated as a mixed integer non-linear
programming (MINLP) to maximize the minimum achievable
rate among different SUs. (ii) Leveraging a heuristic algorithm
and successive convex approximation method, an iterative
joint power allocation and NOMA-SU assignment algorithm is
proposed to solve the problem. (iii) The average computational
complexity is analyzed for the proposed algorithms.

The rest of this work is organized as follows. We provide
an overview of the related work in section II. Section III
describes the network model and formulates the joint power al-
location and NOMA-SU assignment problem. The joint power
allocation and NOMA-SU assignment algorithm is proposed
in Section IV. Sections V presents performance evaluation.
Finally, Section VI concludes the paper.

II. RELATED WORK

Existing studies on transmission designs and resource allo-
cations for cellular network based NOMA can be divided into
two categories in terms of the optimization objective of the
corresponding problems: the spectrum efficiency maximization
[9]–[13] and the energy efficiency maximization [14]–[18]. For
maximizing the spectrum efficiency, a global optimal solution
of joint user scheduling and power allocation was presented
based on mixed integer optimization for NOMA-based cel-
lular networks [9]. In [10], a deep reinforcement learning
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framework according to attention-based neural network was
investigated to support high throughput for the multi-carrier
NOMA-based cellular networks. A joint power allocation and
splitting control algorithm, whilst satisfying the minimum
rate and the harvested energy requirements of each user, was
designed to maximize the spectral efficiency for simultaneous
wireless information and power transfer (SWIPT)-enabled
NOMA-based cellular networks [11]. The resource allocation
problem using matching theory was studied to strike a balance
between throughput and fairness for NOMA-based cellular
networks in centralized and distributed antenna systems [12].
The proportional fairness scheduling algorithm under imper-
fect channel state estimation was studied with the objective of
achieving high throughput for NOMA-based cellular networks
[13]. For improving the energy efficiency, a beamforming
matrix with power allocation strategy subject to certain quality
of service requirements was designed to minimize the total
transmit power for NOMA-based cellular networks [14]. In
[15], a joint dynamic power control and user pairing algorithm
was proposed for power-efficient and delay-constrained hybrid
NOMA cellular networks. In [16], a joint power allocation and
time switching (TS) control scheme in a TS-based SWIPT
NOMA-based cellular networks was investigated leveraging
a dual-layer algorithm for energy efficiency maximization. In
[17], a subchannel allocation and power allocation algorithm
for downlink NOMA-based cellular heterogeneous networks
was proposed to maximize the sum energy efficiency of the
system including the macrocell and small cells. An energy-
efficient resource allocation problem for a machine-to-machine
enabled NOMA-based cellular networks was investigated in
[18] taking nonlinear energy harvesting into account.

Since cognitive radio can further improve the spectral uti-
lization efficiency for cellular networks, resource allocation
problems for cognitive NOMA networks were studied in
[19]–[21]. Aiming for optimizing the user pairing and power
allocation between weak users and strong users, a distributed
matching algorithm subject to the users’ targeted rate require-
ments was proposed in downlink cognitive NOMA networks
in [19]. In [20], a novel dynamic power allocation scheme by
flexibly meeting various quality of service requirements was
designed for downlink and uplink cognitive NOMA networks
in two-user cases. An optimal resource allocation approach
was designed to achieve the maximum secondary throughput
for energy harvesting enabled cognitive NOMA networks [21].

Although [19]–[21] studied the resource allocation algo-
rithms for cognitive NOMA networks, the fairness in terms
of the worst-case achievable rate among secondary users was
not well investigated. The fairness in underlying cognitive
NOMA networks is defined by the worst-case achievable rate
among secondary users. If the fairness in underlying cognitive
NOMA networks is high, the worst-case achievable rate among
secondary users is large; otherwise, the worst-case achievable
rate among secondary users becomes small. It has thus yet to
be understood how to guarantee the worst-case performance
of a NOMA-user whilst benefiting from multiplexing gains
in a multi-user NOMA systems. In this work, we investigate
the joint optimization of power allocation and NOMA-SU
assignment to achieve the maximum worst-case user through-

put among all the secondary users for underlaying cognitive
NOMA networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first, the system model for a secondary
NOMA networks is introduced, composed of the transmission
model, the interference temperature model, and the SU’s
achievable rate. Next, the joint NOMA-SU assignment and
power allocation problem is formulated aiming for maximizing
the worst-case achievable rate for SUs.

A. Transmission Model

As shown in Fig. 1, a cognitive radio enabled multi-user
downlink cellular network which consists of one primary BS
and many primary users (PUs), termed as primary network,
is underlaid by a secondary cellular network composed of
one secondary BS and several secondary users (SUs). This
secondary cellular network is thus an underlaying cognitive
NOMA network, which reuses the same spectrum resources
as the primary network. There are M SUs in the secondary
network, denoted by M = {1, . . . ,M}, and N PUs in
the primary network, denoted by N = {1, . . . , N}. In the
considered cognitive setup, we divide the whole bandwidth
for downlink transmission into many equal-length orthogonal
subchannels, each with a bandwidth of B Hz, and at each
subchannel NOMA is adopted which allows one subchannel
to be shared by multiple SUs simultaneously. The whole
orthogonal subchannel set is denoted by Kv = {1, . . . ,Kv},
and Sk, k ∈ Kv , denotes the set of active SUs at subchannel k.
During the secondary downlink transmission, SC is adopted
at the secondary BS while SIC is implemented at each of
the SUs to decode their respective information. Under the
assumption that there are a maximum of q SUs permitted
to access one subchannel simultaneously, SU m is capable
of cancelling all the interference caused by the other SUs
within the same Sk that have smaller normalized 1 channel
gain than itself. For example, at the stronger cell-center SU,
the signal of the cell-edge user is first decoded followed by
that of the cell-middle SU, and then that of itself. Whereas,
at the weaker cell-edge SU, it directly decodes its information
treating interference as noise. Additionally, we assume that the
cognitive BS is able to sense the set of vacant subchannels,
Kv0 = {1, 2, . . . ,Kv0}, from the set of unavailable subchan-
nels, Kv1 = {1, 2, . . . ,Kv

1}, such that Kv0
⋃
Kv1 = Kv .

In the above underlaying NOMA networks, the secondary
BS and each SU are equipped with one single antenna. We
assume that the BS have perfect channel state information
(CSI). We also assume that the BS is able to perform a series of
spectral sensing as well as resource allocation algorithms and
send the system design variables to the SUs over a separate
control channel. The allocated power for SU m ∈ M over
subchannel k ∈ Kv0 is P km, and the total transmitting power is
P total for the secondary BS. We also assume slow fading with
channel coefficients following Rayleigh distribution, and thus

1The channel gain is normalized by the sum of interference from the
primary network and the AWGN at the SU’s receiver.
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Fig. 1. Underlaying cognitive NOMA networks reusing the same spectrum resources as the primary network.

the CSI remains constant during one transmission interval, and
may vary from one interval to another. The channel gain over
subchannel k from the secondary BS to the SU m is denoted
by gkm,m ∈M, k ∈ Kv0 , and the transmission symbol for SU
m over subchannel k is denoted by xkm, m ∈M, k ∈ Kv0 . The
signal that SU m receives over subchannel k is thus expressed
as

ykm = gkm
∑

i∈Sk

√
P ki x

k
i + nkm, (1)

where Sk denots the subset of active SUs over subchannel k,
xkm is SU m’s transmitted symbol, and nkm is the additive white
Gaussian noise (AWGN) for SU m over subchannel k. Upon
receiving ykm, the receiver at SU m cancels the co-channel
interference from any other SUi, i ∈ Sk, with a smaller
normalized channel gain by means of SIC. However, since
SIC causes considerable hardware complexity with increasing
number of multiplexing SUs over the same subchannel, q is
defined as the maximum number of users that are allowed
to simultaneously access one subchannel to strike balance
between the decoding complexity and the multiplexing gain.

B. Interference Temperature Model

Additionally, we adopt an interference temperature model to
characterize the interference caused by the secondary NOMA
network to the primary network [1]. At each subchannel j,
the spectrum spans from fs + (j − 1)B to fs + jB, where
fs is the starting frequency of the first subchannel. When the
secondary BS transmits data over subchannel k to SU m with
the unit power, there occurs a cross interference to the PU
n over subchannel j, denoted by Ikjmn, which is expressed as
[22]

Ikjmn =

∫ jB−(k−0.5)B

(j−1)B−(k−0.5)B
hknφ (f)df, (2)

where hkn is the channel gain from the secondary BS to the PU
n over subchannel k. The function φ (f) is the power spectrum
density for the multicarrier NOMA signal, and is defined as

φ (f) = T

(
sinπfT

πfT

)2

(3)

where T is the symbol duration.
Hence, the cross-interference to the PU n caused by trans-

mission from the secondary BS to the SU m over the vacant
subchannel k ∈ Kv1 , denoted by Ikmn, is given by

Ikmn =
∑
j∈Kv1

Ikjmn. (4)

C. SU’s Achievable Rate

At the physical layer, the achievable rate at which the
secondary BS communicates with the SU m over subchannel
k is

Rkm = B log2 (1 + SINRmk) , (5)

where the signal-to-interference-plus-noise ratio (SINR) for
SU m over subchannel k is given by

SINRmk =
P kmg

k
m

Bn0 + Ismk
, (6)

where n0 is the noise power spectral density, and B is the
bandwidth for each subchannel.

After employing SIC decoder, the remaining interference
power, Ismk, introduced by the other SUs to the SU m within
the same Sk over subchannel k, denoted by Ismk, is

Ismk =
∑

l∈M∗
P kl g

k
m, (7)

whereM∗ denotes the set of SUs, whose channel power gain
are larger than that of SU m over subchannel k (k ∈ K),
i.e., M∗ = {m∗ ∈ M|gkm∗ > gkm}. Since SU m decodes
the information transmitted by the secondary BS over all
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the subchannels in Kv0 via orthogonal-frequency division
multiplexing (OFDM), the achievable transmission rate for SU
m is given by

Rm =
∑

k∈Kv0

αkmR
k
m (8)

where αkm’s is an NOMA-OFDMA subchannel assignment
variable indicating whether subchannel k is assigned to SU
m or not, which is given by

αkm =

{
1, if subchannel k is allocated to SU m,
0, otherwise. (9)

D. Problem Formulation

The power consumption consists of two components at
the secondary BS [23]: the first component is Pc, which is
a fixed consumption power by the circular system; and the
second component is the dynamic downlink-transmission pow-
er. Therefore, the total consumption power at the secondary
BS is given by PBS = Pc +

∑
m∈M

∑
k∈Kv0

αkmP
k
m. The total

power consumption, PBS , must satisfy the maximum power
constraint, i.e., PBS ≤ P total , which is given by

Pc +
∑
m∈M

∑
k∈Kv0

αkmP
k
m ≤ P total. (10)

In this work, ’power allocation’ refers to optimization of
the downlink transmitting power of the secondary BS for a
particular user m, m ∈ M, over a particular subcarrier k,
k ∈ Kv0 , denoted by P km, (cf. (6) in the paper), while ’power
consumption’ means the total amount of power consumed
by, e.g., the secondary BS, which includes the static power
consumed by the hardware circuit and dynamic downlink
transmitting power specified by the power allocation algorithm
(cf. (10)).

Moreover, the maximum number of SUs that one subchan-
nel can accommodate leads to the following constraint:∑

m∈M
αkm ≤ q,∀k ∈ Kv0 , (11)

which is an integer constraint, since all αkm are integer vari-
ables. In addition, the total cross-interference to the primary
network should satisfy the interference temperature threshold
set for PU n , i.e.,∑

m∈M

∑
k∈Kv0

αkmP
k
mI

k
mn ≤ Ithn ,∀n ∈ N , (12)

where Ithn ’s is the maximum amount of cross-interference that
PU n, n ∈ N can tolerate [24].

To advocate fairness in terms of the achievable downlink
transmission rate among different SUs, we aim for maximizing
the minimum downlink transmission rate among the SUs
subject to the total transmitting power constraint (10) at the
secondary BS, the maximum number of multiplexing SUs
per subchannel (c.f. (11)), and the interference temperature
constraints imposed by the co-existing PUs (c.f. (12)). Conse-
quently, the joint NOMA-SU assignment and power allocation

problem is formulated as below:

(OP1) : max
{αk

m},{Pk
m}

{
min
m∈M

Rm

}
Subject to

(10)− (12),

αkm ∈ {0, 1} , P km ≥ 0,∀m ∈M,∀k ∈ Kv0 .

(13)

IV. NOMA-SU ASSIGNMENT AND POWER ALLOCATION
ALGORITHM

The problem (OP1) is a mixed-integer nonlinear program-
ming (MINLP), and thus difficult to solve directly. In addition,
since αkm’s and P km’s are given, this problem is still non-convex
due to the occurrence of P km’s in both nominator and denomi-
nator of SINRmk’s (c.f. (6)). To make its solution tractable, we
decouple the original problem into a NOMA-SU assignment
problem and a power allocation problem. Specifically, with
fixed power allocation, we propose a heuristic NOMA-SU as-
signment algorithm. The heuristic algorithm is designed based
on the fairness criterion and the constraints of the interference
power and power multiplexing. Then, with fixed NOMA-SU
assignment policy, successive convex approximation (SCA) is
adopted to obtain sub-optimal power allocation for the power
allocation problem. Then, we alternatively solve the above
two problems to jointly optimize the NOMA-SU assignment
and the power allocation for problem (OP1). Finally, the
complexity of the algorithm is analyzed.

A. NOMA-SU assignment
With the power allocation in (OP1) fixed as P̄ km, m ∈ M,

k ∈ K, the NOMA-SU assignment problem that determines
the worst-case achievable rate for the SUs is denoted by (OP2),
i.e.,

(OP2) : max
{αk

m}
min
m∈M

Rm

Subject to

(10)− (12), αkm ∈ {0, 1} ,∀m ∈M,∀k ∈ Kv0 .

(14)

In order to solve problem (OP2), a heuristic NOMA-SU
assignment algorithm is proposed in Algorithm 1, which is
implemented by the secondary BS. In Algorithm 1, step 1 ini-
tializes the power allocation, SU assignment, and transmission
rate for each SU. Step 2- step 12 perform the SU assignment
for each subchannel. Assuming that the vacant subchannels
Kv0 having been sensed a priori by the secondary BS, first, we
allocate the total power equally among all SUs over different
subchannels in step 1. In step 2- step 12, for each subchannel,
the secondary BS selects the SU with the minimum achievable
rate over all the subchannels in Kv0 , namely, Rm (c.f. (8)). If
the interference caused to each of the PUs does not exceed
the interference temperature constraints, and the current sub-
channel can accommodate more SUs, assign the selected SU
to the current subchannel; otherwise, proceed with the next
subchannel until the interference constraint is not met any
more (cf. step 4 in Algorithm 1). Note that step 3 of Algorithm
1, if multiple secondary users have the same transmission rate,
we select the SU with the largest channel power gain over the
current subchannel.
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Algorithm 1 NOMA-SU assignment Algorithm for (OP2).
Input: P total, Kv0 , Kν1 and q
Output:

{
αkm
}
,m ∈M, k ∈ Kv0 .

1: Initialize
{
αkm = 0

}
and

{
P km = Ptotal

KM

}
, m ∈ M, k ∈

Kν0 , and R.
2: for k = 1 : Kv0

3: Find m∗ = min
m∈M

argRm.

4: if
∑

m∈M

∑
k∈Kv0

αkmP
k
mI

k
mn ≥ Ithn ,∀n ∈ N then

5: Break.
6: end if
7: if

∑
m∈M

αkm < q then

8: Set αkm∗ = 1; and go to step 3.
9: else

10: Go to step 2
11: end if
12: end for

B. Power Allocation for the Secondary BS

In the sequel, we allocate the power among all SUs over
the selected subchannels to improve the worst-case fairness
in terms of the achievable transmission rate of the SUs by
solving the following problem:

(OP3) : max
{Pk

m}
{minRm}

Subject to

(10), (12), P km ≥ 0,∀m ∈M,∀k ∈ Kv0 .

(15)

The problem (OP3) can be recast into its equivalent epi-
graph form:

(OP3′) : max
{Pk

m},ψ
ψ

Subject to

Rm ≥ ψ,∀m ∈M, (16a)
(10), (12),

P km ≥ 0,∀m ∈M,∀k ∈ K, ψ ≥ 0.

where ψ is an auxiliary variable. However, since problem
(OP3′) is a non-convex optimization problem due to the
fractional forms of Rm’s (c.f. (6)) in (16a), the SCA method
is utilized to obtain a lower bound solution for (OP3′) [25].

Proposition 1: The power allocation problem (OP4) is a
convex resource allocation problem.

Proof: See Proof of Proposition 1.

In the (j + 1)th iteration of the SCA method, we aim for

solving the following problem:

(OP4) : max
{P̂k

m},ψ
ψ

Subject to

Pc +
∑
m∈M

∑
k∈Kv0

αkm exp
(
P̂ km

)
≤ P total, (17a)∑

k∈Kv0

χmk − ψ ≥ 0,∀m ∈M, (17b)∑
m∈M

∑
k∈Kv0

αkmI
k
mn exp

(
P̂ km

)
≤ Ithn ,∀n ∈ N ,

(17c)

and

χmk =

αkmB
[
bmk log2

(
exp

(
P̂ km

)
gkm

)
−Bmk({P̂ kl }l∈M∗)

] (18)

where Bmk({P̂ kl }l∈M∗), ∀m ∈M,∀k ∈ Kv0 is defined as

B
{j}
mk ({P̂ kl }l∈M∗) =

b
{j}
mk log2

(
Bn0 +

∑
l∈M∗

exp
(
P̂ kl

)
gkm

)
− c{j}mk

(19)

where the constraints (17a), (17b) and (17c) are obtained
by substituting exp(P̂ km)’s for P km’s in (10), (16a) and (12),
respectively.

Now that Bmk({P̂ kl }l∈M) is a convex function w.r.t. P̂ kl ,
l ∈ M∗ [page 119, 24], together with the other convex
constraints (c.f. (17a) and (17c)) that are easily verified,
problem (OP4) turns out to be a convex problem. Hence, we
solve it by Lagrangian duality method in the sequel. First, the
Lagrangian of problem (OP4) is

f
(
v, um, δn, P̂

k
m, ψ

)
=

(
1−

∑
m∈M

um

)
ψ

+v

{
P total −

(
Pc +

∑
m∈M

∑
k∈Kv0

αkm exp
(
P̂ km

))}
+
∑
n∈N

δn

{
Ithn −

∑
m∈M

∑
k∈Kv0

αkmI
k
mn exp

(
P̂ km

)}
+
∑

m∈M

∑
k∈Kv0

(1 + um)χmk,

(20)

where v, um’s, and δn’s are the Lagrangian multipliers corre-
sponding to (17a), (17b) and (17c), respectively. In line with
the Lagrangian given by (20), h (v, um, δn) is the dual function
and can be expressed as

h (v, um, δn) = max
P̂k

m≥0,ψ≥0
f
(
v, um, δn, P̂

k
m, ψ

)
(21)

The dual problem of (OP4) is thus given by

(OP4− dual) : min
v,{um},{δn}

h (v, um, δn)

Subject to

v ≥ 0, um ≥ 0, δn ≥ 0, ∀m ∈M, ∀n ∈ N .
(22)

Next, to calculate the dual function in (22), we resort to the
following lemma.

Lemma 1: With any fixed dual variables v, um’s, and δn’s,
the optimal power allocation P̂ km,m ∈ M,k ∈ K, and ψ are
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given by

P̂ km =

ln

Bbmk (1 + um)/ ln 2(
v +

∑
n∈N

δnIkmn

)


+

,∀m ∈M, k ∈ Kv0 .

(23)

Proof: See Proof of Lemma 1.

Finally, the optimum values of v, um’s, and δn’s for the dual
problem can be calculated by sub-gradient descent method,
i.e.,

v(i+1) =
[
v(i) −∆ε1P

(i+1)
v

]+
,

P
(i+1)
v = P total − Pc −

∑
m∈M

∑
k∈Kv0

αkm exp
(
P̂ km

)
,

(24)
δ
(i+1)
n =

[
δ
(i)
n −∆ε2I

(i+1)
δ

]+
,

I
(i+1)
δ = Ithn −

∑
m∈M

∑
k∈Kv0

αkmI
k
mn exp

(
P̂ km

)
,

(25)

and

u(i+1)
m =

[
u(i)m −∆ε3

( ∑
k∈Kv0

χmk − ψ

)]+
, (26)

where ∆ε1, ∆ε2 and ∆ε3 are small step sizes, and i is
the iteration index. Since the Lipchitz continuity condition
is satisfied for the gradient of problem (OP4− dual), we
can guarantee the optimum solution with convergence by
iteratively updating ν, δn’s, and um’s, using (24)-(26) with
appropriate step sizes [26]. In addition, v(i), u(i)m ’s, and δ(i)n ’s
denote the values for v, um’s, and δn’s at the (i)th iteration.

To sum up, the proposed SCA-based power allocation
algorithm for solving (OP3’) is summarized in Algorithm 2.
In Algorithm 2, b(j)mk’s and c

(j)
mk’s are required to be updated

by SINR
(j)

mk’s using the solution P̂
k(j)
m ’s for (OP4) obtained

in the jth iteration, where ε4 is the maximum tolerance, Imax
is the maximum iterative number, and i and j are the iteration
indexes. P k(j)m ’s, P̂ k(j)m ’s, b(j)mk’s, c(j)mk’s, SINR

(j)

mk’s,
{
I
s(j)
mk

}
’s,

B
(j)
mk’s and ϕ(j) are the values for P km’s, P̂ km’s, bmk’s, cmk’s,

SINRmk’s, {Ismk}’s, Bmk’s and ϕ at the jth iteration. In

addition, v(i), u(i)m ’s, δ(i)n ’s,
(
P̂ km

)(i)
’s denote the values for

v, um’s, δn’s, P̂ km’s at the ith iteration; ψ∗, v∗, u∗m’s, δ∗n’s,(
P km
)∗

’s and
(
P̂ km

)∗
’s are the values for ψ, v, um’s, δn’s,

P km’s and P̂ km’s at the termination iteration; and ψ
(j)
(i) is the

value for ψ in the ith inner iteration (the subgradient method)
of the jth outer iteration (the SCA method). Algorithm 2
converges to a KKT solution according to Theorem 1 in
[27]. Note that, since problem (OP3′) is tightened by solving
a series of convex optimization problem given by problem
(OP4), solution achieved by Algorithm 2 serves as a lower-
bound for the problem (OP3′) in general [28]–[30].

Algorithm 2 Power Allocation for (OP3′).

Input: P total, Imax,
{
αkm
}

,
{
Ikmn

}
and

{
Ithn
}

, m ∈M, k ∈
Kv0 , n ∈ N .

Output:
{
P km
}

and ψ, m ∈M, k ∈ Kv0 .

1: Initialize j = 0,
{

SINR
(j)

mk = 0
}

,
{
I
s(j)
mk = 0

}
, and

ψ(j) = 0, m ∈M, k ∈ Kv0 .
2: Calculate

{
b
(j)
mk

}
,
{
c
(j)
mk

}
and

{
B

(j)
mk

}
using SINR

(j)

mk in
accordance with (33), (34) and (19).

3: repeat
4: j := j + 1

5: Initialize i = 0, v(i),
{
u
(i)
m

}
, and

{
δ
(i)
n

}
, m ∈ M,

n ∈ N .
6: repeat

7: Calculate
(
P̂ km

)(i)
m ∈M, k ∈ Kv0 , as follows

(
P̂ km

)(i)
=

ln

Bb
(j)
mk

(
1 + u

(i)
m

)
/ ln 2(

v(i) +
∑
n∈N

δ
(i)
n Ikmn

)


+

.

8: Calculate ψ(j)
(i) as follows

ψ
(j)
(i) =

{
+∞, 1−

∑
m∈M

u
(i)
m ≥ 0.

0, otherwise

9: if i < Imax then
10: i := i+ 1.
11: Update v(i),

{
u
(i)
m

}
, and

{
δ
(i)
n

}
in accordance

with (24)-(26).
12: else
13: Update v∗ = v(i),

{
u∗m = u

(i)
m

}
, and

{
δ∗n = δ

(i)
n

}
.

Obtain
(
P̂ km

)∗
as

(
P̂ km

)∗
=

ln

Bb(j)mk (1 + u∗m)/ ln 2(
v∗ +

∑
n∈N

δ∗nI
k
mn

)


+

,

and (
P km
)∗

= exp
((
P̂ km

)∗)
.

14: Obtain ψ∗ as ψ∗ = min
m∈M

∑
k∈Kv0

χ
(j)
mk

χ
(j)
mk = αkmB

[
b
(j)
mk log2

((
P km
)∗
gkm

)
−B(j)

mk

]
.

15: end if
16: until i = Imax

17: Update
{
P
k(j)
m =

(
P km
)∗}

and ψ(j) = ψ∗.

18: Update
{
I
s(j)
mk

}
and

{
SINR

(j)

mk

}
using (6) and (7).

19: Update
{
b
(j)
mk

}
,
{
c
(j)
mk

}
and

{
B

(j)
mk

}
using SINR

(j)

mk in
accordance with (33), (34) and (19).

20: until
∣∣ψ(j) − ψ(j−1)

∣∣ ≤ ε4
21: Obtain

{
P km = P

k(j)
m

}
and ψ = ψ(j).
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C. Iterative Power Allocation and NOMA-SU assignment

To solve problem (OP1), an iterative algorithm is proposed
to jointly optimize the NOMA-SU assignment and power
allocation for the underlaying NOMA networks. Specifically,
at the initial stage,

{
P
k(0)
m

}
’s is initialized by allocating

equal power to M SUs over K subchannels. Then at the
tth iteration, t = 1, 2, . . .,

{
α
k(t)
m

}
’s is obtained by Al-

gorithm 1 with the power allocation fixed by
{
P
k(t−1)
m

}
’s

and
{
P
k(t)
m

}
’s is updated by solving problem (OP3′) using

the SCA-based algorithm proposed in Algorithm 2 with the
NOMA-SU assignment fixed by

{
α
k(t)
m

}
’s. In Algorithm 2,

step 1 initializes the variables SINR
(j)

mk and I
s(j)
mk . Step 2

initializes the variables
{
b
(j)
mk

}
,
{
c
(j)
mk

}
and

{
B

(j)
mk

}
. Step

3 and step 4 update the iterative variable j, i, v(i),
{
u
(i)
m

}
,

and
{
δ
(i)
n

}
. Step 6-step 16 calculate the power allocation

and step 9-step 15 calculate the Lagrangian multipliers v(i),{
u
(i)
m

}
, and

{
δ
(i)
n

}
. Step 17- step 19 update the other variables{

P
k(j)
m =

(
P km
)∗}

,
{
P
k(j)
m =

(
P km
)∗}

,
{

SINR
(j)

mk

}
,
{
b
(j)
mk

}
,{

c
(j)
mk

}
, and

{
B

(j)
mk

}
using SINR

(j)

mk at the jth iteration. Step
21 outputs the power allocation result.

The above alternating procedure is repeated until no further
improvement is made [25], [31], which is summarized in
Algorithm 3, where ε denotes a tolerance controlling the
accuracy of Algorithm 3. In Algorithm 3, step 1 initializes the
variables. Step 3 calculates the SU assignment variable {α̂k(t)m }
with the fixed power allocation

{
P
k(t−1)
m

}
. Step 4 calculates

the power allocation {P̂ k(t)m } with the fixed {α̂k(t)m }. Step 5-
step 7 update the latest power allocation and SU assignment.
f({P km, αkm}) denotes the objective function of (OP1), which
is obtained by plugging the corresponding {P km, αkm} into (5).{
R

(t)
m

}
’s and

{
R

(t−1)
m

}
’s are the values for Rm at the tth

iteration and at the (t− 1)th iteration, respectively.

D. Algorithm Complexity Analysis

The algorithm complexity of Algorithm 1 for the heuris-
tic NOMA-SU assignment is O (3MKv0q). The algorith-
m complexity of Algorithm 2 for the power allocation is
given by O

(
OIImaxM

2qKv0
)
, where Imax is the maxi-

mum iterative number for step 3- step 6, and OI is the
iterative number for step 2- step 9 (c.f. Algorithm 2).
Hence, the overall algorithm complexity for Algorithm 3
is O

((
3MKv0q +OIImaxM

2qKv0
)
Osp

)
, where Osp is the

number of iteration controlled by ε in Algorithm 3. The
computational complexity analysis for the proposed algorithm
is in an average sense.

V. NUMERICAL EXAMPLES

A. Simulation Setup

In this section, the performance of NOMA-SU assignment
and power allocation is evaluated for the underlaying NOMA

Algorithm 3 Iterative Joint NOMA-SU assignment and Power
Allocation.
Input: ε, P total, Kv0 , Kν1 , q, Imax,

{
αkm
}

,
{
Ikmn

}
and{

Ithn
}

, m ∈M, k ∈ Kv0 , n ∈ N .
Output:

{
α
k(t)
m

}
and

{
P
k(t)
m

}
, m ∈M,∀k ∈ Kv0 .

1: Initialize t = 1 and
{
P
k(0)
m

}
with equal power allocation.

2: repeat
3: For a fixed

{
P
k(t−1)
m

}
, find NOMA-SU assignment

{α̂k(t)m } by solving the problem (OP2) using Algorithm
1.

4: For a fixed {α̂k(t)m }, find power allocation {P̂ k(t)m } by
solving the problem (OP3′) with Algorithm 2.

5: Set {P k(t)m , α
k(t)
m } =

arg max{f({P k(t−1)m , α̂
k(t)
m }), f({P̂ k(t)m , α̂

k(t)
m })}.

6: Set g(t) = max{f({P k(t−1)m , α̂
k(t)
m }), f({P̂ k(t)m , α̂

k(t)
m })}.

7: Update t := t+ 1.
8: until |g(t) − g(t−1)|/g(t−1) < ε or g(t) − g(t−1) < 0

TABLE I
SIMULATION PARAMETERS.

Simulation Parameter Value
B 1 MHz
Pc 20 dBm
n0 1× 10−19 W/Hz
Ipmk Gaussian distribution with variance

1× 10−15 W and zero mean
Path Loss Fact 4

networks by numerical examples. The simulation tool is Mat-
lab 2016, and we use the Montle Carlo method to simulate the
network operation. There exist one primary network and one
underlaying NOMA network. In the primary network, there are
two PUs located at distance of 300m and 600m away from
the secondary BS, respectively. In the underlaying NOMA
network, the secondary BS is centred with M SUs’ distance
to the secondary BS uniformly generated from U(0, 400]m.
For each subchannel, the probability of PU activity is uniform
distributed at the interval [0, 1]. The other simulation param-
eters are given in Table I. For the proposed algorithm, there
exit two cases, i.e., q = 3 for NOMA scheme and q = 2 for
NOMA scheme. In [32], Mitran’s algorithm focuses on the
fairness resource allocation for cognitive OFDMA networks,
and we compare Mitran’s algorithm to our proposed algorithm
to checkout our proposed new scheme. The computational
complexity is compared with Mitran’s algorithm [32] in table
II. In table II, Os is the iterative number for subchannel
allocation, and Op is the iterative number for power allocation.

B. Evaluation Metrics

The throughput and Jain Fairness Index are calculated
with the Montle Carlo method. The total throughput of the
underlying NOMA networks refers to the sum of throughput of
all SUs, which is defined by Eq. (32). The average throughput
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TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON.

Algorithm Name Computational Complexity
Proposed Algorithm O

((
3MKv0q +OIImaxM

2qKv0
)
Osp

)
Mitran’s Algorithm O

(
(1 +Op +OsM) (Kv0)

3
)

refers to the total throughput divided by the number of SUs,
which is defined by Eq. (33). Jain Fairness Index refers to the
fairness of a set of values where there are M SUs and Rm is
the throughput for the mth SU. It ranges from 1/M to 1. 1/M
is the worst case, 1 is the best case, and it is maximum when
all SUs receive the same rate. Jain Fairness Index is defined
as Eq. (34). In Eq. (32)-(34), Rm is the transmission rate for
SU m, M is the total number of SUs in underlying cognitive
NOMA networks and M is the set of SUs.

Throughput =
∑

m∈M
Rm (27)

Average Throughput =

∑
m∈MRm

M
(28)

Jain Fairness Index =

(∑
m∈MRm

)2
M
(∑

m∈MR2
m

) (29)

C. Results Discussion

We depict the total throughput versus the total power at
secondary BS for the underlaying NOMA network in Fig. 2.
The simulation parameters are M = 5 and Kv = 16. There
are two cases, i.e., Ithn = 5 × 10−10 W and Ithn = 1 × 10−9

W. In Fig. 2, it can be seen that the total throughput of
the underlaying NOMA network increases with the growth
of the total power. When the available power for secondary
BS grows, secondary BS allocates more power to the SUs
to increase the network throughput. However, the growing
trend slows down and get saturated when the total power
constraint becomes approximately larger than 2.5W. This is
because when the total power of the secondary BS gets larger,
the co-channel interference caused to the SU (cf. (7)) increases
as well. Thus, to improve the worst SU’ throughput, sufficient
power has to be allocated to these interfering channels to
mitigate the interference power (cf. (6)), which in turn limits
the increase in the throughout of all other users and thus the
total throughput of the secondary network. We can also see
that the network throughput of the proposed algorithm is much
larger than that of Mitran algorithm. This is because Mitran
algorithm does not take full advantage of the power domain
diversity.

We depict the total throughput versus the interference
temperature threshold imposed by the PUs in Fig. 3. The
simulation parameters are M = 5 and Kv = 16. There
are two cases, i.e., P total = 0.5 W and P total = 1 W. In
Fig. 3, it can be observed that the total throughput of the
underlaying NOMA network grows with the interference tem-
perature threshold at PU. The throughput of the underlaying
NOMA network with P total = 0.5 W remains unchanged
when the interference temperature threshold at PU exceeds
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Fig. 2. Total throughput vs. total power at secondary BS for the underlaying
NOMA networks.
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the interference temperature threshold. This is because there
is no more power to improve the throughput for SU. The non-
smooth behavior for the the last two points in Fig. 3 is due
to the fact that the increase in throughput for the case with
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the proposed algorithm with qu = 3 and P total = 1W is not
saturated. The reasons are explained in two folds. Firstly, with
the increased total power constraint P total = 1W compared
with P total = 0.5W, the secondary BS has more power budget
for optimal resource allocation. Secondly, with the increased
permissive number q = 3 of NOMA SUs, the multiplex gain
yields larger network throughput in total.

We depict the average throughput of each SU versus the
SU index in Fig. 4. The simulation parameters are M = 5
and Kv = 16. There are two cases, i.e., Ithn = 6 × 10−10

W. From Fig. 4, we can see that NOMA scheme with q = 3
can guarantee the proportional fairness very well. Additionally,
the throughput for each SU with NOMA scheme is larger than
that of Mitran algorithm. Since the proposed algorithm with
q = 3 exploits the power domain diversity more efficiently
than that of Mitran algorithm, the proposed algorithm achieves
the higher spectrum efficiency than that of Mitran algorithm.

We depict the average throughput versus the number of
the SUs in Fig. 5. The simulation parameters are Kv = 16,
Ithn = 1 × 10−9 W, and P total = 1 W. Fig. 5 shows that
the average throughput for the three algorithms decrease with
increasing the number of SUs. In Fig. 5, as the number of
the secondary users increases, more resources are allocated
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Fig. 7. Total throughput vs. number of subchannels for the underlaying
NOMA networks.

to ensure the worst-user throughput among the SUs, and
therefore the average throughput decreases when the under-
laying NOMA network scales up. Hence, the throughput for
each secondary user reduces, and the average throughput for
secondary users decreases. This is because the SU, who has the
bad CSI, influences the average throughput due to the fairness
constraint.

We depict Jain fairness index vs. the number of the SUs for
the underlaying NOMA networks in Fig. 6. Jain fairness index
is defined in [33]. The simulation parameters are Kv = 16,
Ithn = 1 × 10−9 W, and P total = 1 W. In Fig. 6, it can be
observed that the proposed algorithm can guarantee fairness
for SUs. However, the fairness of Mitran algorithm becomes
bad with the number of SUs due to the lack of spectrum
resource.

We depict the throughput versus the number of the sub-
channels for the underlaying NOMA networks in Fig. 7.
The simulation parameters are M = 5, P total = 1 W, and
Ithn = 1 × 10−9 W. From Fig. 7, it can be observed that
the network throughput for the underlaying NOMA networks
increases with the growth of the number of subchannels.
This can be explained by the fact that the increased total
bandwidth thanks to the growing number of subchannels yields
increase in individual SU’s transmission rate (cf. (8)) and the
network throughput as well. In Fig. 7, we can also observe
that the total throughput gap between the proposed algorithm
and the Mitran’s becomes larger when the number of sub-
channels grows. This phenomenon shows that the superiority
of deploying NOMA other than OMA-based schemes for
the underlying secondary networks becomes more significant
when the number of sub-channels increases compared with
Figs 2 - 5.

From Figs. 2 to 7, we can conclude that the proposed al-
gorithm improves the fairness among different SUs compared
with Mitran algorithm. Since the proposed algorithm at the
cost of the receiver complexity improves the network through-
put and the secondary network performance, a proper value q
can achieve the balance between the receiver complexity and
the performance of the underlaying NOMA networks.
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VI. CONCLUDING REMARKS

In this paper, the fairness-aware joint power allocation
and SU assignment was studied for an underlaying downlink
NOMA network. The formulated problem aimed for maxi-
mizing the worst user’s throughput subject to the maximum
transmitting power at the secondary BS, the cross-channel
interference temperature constraints to the PUs in the cognitive
network as well as the NOMA constraints. In the proposed
alternating optimization based algorithm to solve this MINLP
problem, we iteratively solved a subproblem of NOMA-SU
assignment and a subproblem NOMA-SU power allocation
using a heuristic scheduling algorithm and successive convex
approximation, respectively. Results in the numerical examples
showed that the proposed algorithm significantly improves
not only the worst-user throughput, but also the total and/or
the user-average throughput in comparison with the existing
scheme in the literature.

This paper investigates the resource allocation with the
analog power value feedback. Consequently, the feedback
overhead caused by the control channel between the secondary
BS and the NOMA SUs may be very high due to the large
amount of analog value for the power allocation. This will
limit the practical operation for resource allocation algorithm
over underlying cognitive NOMA networks. In the possible
future directions of this work, to mitigate the costly overhead,
we propose to study effective power allocation scheme subject
to limited feedback, e.g., by codebook designs for the power
values.

PROOF OF PROPOSITION 1

Proof : Define f (x) = log2 (1 + 2x), which is a convex
function. By first-order Taylor expansion, we know that for
each x0, we have

log2 (1 + 2x)− log2 (1 + 2x0) ≥ 2x0

1 + 2x0
(x− x0) . (30)

Next, we apply the variable transformation of y = 2x. By
substituting y = 2x and y0 = 2x0 for x and x0 in (30), we
can obtain

log2 (1 + y)− log2 (1 + y0) ≥ y0
1 + y0

(log2 y − log2 y0) . (31)

Now replace y and y0 with SINRmk and SINRmk, ∀m ∈M,
k ∈ Kv0 , respectively, where SINRmk denotes a constant with
the variables P km and P kl , l ∈M∗k, in SINRmk being fixed as
their optimum values in the jth iteration of the SCA method
(c.f. Algorithm 2). Consequently, (31) can be rewritten as

log2 (1 + SINRmk) ≥
log2

(
1 + SINRmk

)
+

SINRmk

1 + SINRmk

(
log2 SINRmk − log2 SINRmk

)
.

(32)

Then, we define

b
{j}
mk =

SINRmk

1 + SINRmk

,∀m ∈M, k ∈ Kv0 (33)

and

c
{j}
mk = log2

(
1 + SINRmk

)
− SINRmk

1 + SINRmk

log2

(
SINRmk

)
,∀m ∈M, k ∈ Kv0 .

(34)

Combining (32)-(34), it follows that

Rkm = αkmB log2 (1 + SINRmk)

≥ αkmB [bmk log2 (SINRmk) + cmk] .
(35)

With fixed bmk’s and cmk’s, Rkm’s is still non-concave as
P km’s exists in both the nominator and the denominator of
SINRmk’s (c.f. (6)), and thus the transformation of P̂ km =
lnP km is further introduced for the purpose of transforming
(OP3′) into a convex problem.

Obviously, the objective function and the constraints in the
problem (OP4) are concave with variable ψ. Consequently,
the problem (OP4) is a convex problem with variable ψ. Now,
we prove problem (OP4) is a convex problem with variable
P̂ km’s. According to the objective function and the constraints
in the problem (OP4), we define the functions g1, f1, f2, and
f3, i.e.,

g1 = ψ

f1 = P total −
∑

m∈M

[
Pc +

∑
k∈Kv0

αkm exp
(
P̂ km

)]
f2 = Ithn −

∑
m∈M

∑
k∈Kv0

αkmI
k
mn exp

(
P̂ km

)
,∀n ∈ N

f3 =
∑

k∈Kv0

αkmB
[
bmk log2

(
exp

(
P̂ km

)
gkm

)
−Bmk

]
− ψ.

(36)
The second derivatives of g1, f1, f2 and f3 with respective

to P̂ km’s are

∂2g1

∂(P̂k
m)

2 = 0 ≤ 0

∂2f1

∂(P̂k
m)

2 = −αkm exp
(
P̂ km

)
≤ 0

∂2f2

∂(P̂k
m)

2 = −αkmIkmn exp
(
P̂ km

)
≤ 0,∀n ∈ N

∂2f3

∂(P̂k
m)

2 = 0 ≤ 0,∀m ∈M.

(37)

From (37), the objective function and the constraints are
concave on P̂ km’s. Additionally, the functions g1, f1, f2, and
f3 are linear functions on the variable ψ. Consequently, the
problem (OP4) is a convex optimization problem.

PROOF OF LEMMA 1

Proof : Take the partial derivative of formula (20), i.e.,

∂f
(
v, um, δn, P̂

k
m, ψ

)
∂P̂ km

= 0. (38)

It is equivalent to∑
m∈M

∑
k∈Kv0

(1 + um)αkmBbmk/ ln 2

=
∑
m∈M

∑
k∈Kv0

αkm

(
v +

∑
n∈N

δnI
k
mn

) (39)

Then, we get formula (23), and Lemma 1 holds.
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