
Abstract—In this work, the Optimal Transmission Switching 
(OTS) problem is solved in order to optimize the operation cost of 
an electrical power system. ๠is is accomplished by disconnecting 
some transmission lines, which enables a change to the profile of 
the power flow distribution in the system, allowing for increased 
generation at the buses with lower costs; thus, the hourly operation 
cost of the generation is minimized to meet the demand of the sys-
tem. ๠is paper presents contributions to topics related to the issue 
of the high number of transmission lines that are disconnected 
when the OTS problem is solved, the problem of system islanding, 
and the causes of Braess’s paradox, in the context of the OTS prob-
lem. Finally, tests are conducted using the 41-bus southern Brazil-
ian system and the 92-bus Colombian system. ๠e results demon-
strate the effectiveness of the proposals for reducing the number of 
lines disconnected from the system and for avoiding islanding. 

Index Terms—Braess’s paradox, mixed-integer linear pro-
gramming, optimal transmission switching, system islanding, 
transmission systems operation planning. 

I.  INTRODUCTION 

ECADES ago, a phenomenon was observed, one that ap-
pears to be in conflict with the elemental logic of an elec-

trical engineer. Intuitively, the addition of a transmission line 
should improve the performance of an electrical power system, 
since one additional line should lead to a better distribution of 
the power flow, and therefore, the system should have a greater 
transmission capacity, which should improve some perfor-
mance indicators. ๠us, for example, electrical losses should be 
reduced, and the voltage regulation should be improved by the 
principle of minimum effort. Conversely, disconnecting a trans-
mission line should worsen the performance of an electrical 
power system. However, it has been experimentally observed 
that, when some transmission lines are disconnected from the 
system, some performance indicators may improve [1]–[6]. In 
fact, in some cases, a transmission system that violates the ca-
pacity limits of some lines may operate without violating any 
limits after the disconnection of one or more transmission lines 
[4]. ๠is atypical behavior of an electrical power system is 
known as Braess’s paradox [7], as mentioned in [8]. Reference 

[9] shows that Wheatstone bridges can be associated with this 
paradox. 

In this context, the optimal transmission switching (OTS) 
problem can be used to optimize the operation cost of an elec-
trical power system. In this type of problem, the hourly opera-
tion cost of generation is minimized to meet a specified demand 
profile when some transmission lines are disconnected from the 
network with the objective of achieving a more flexible opera-
tion [10]. 

๠e OTS problem, with the objective of minimizing the gen-
eration cost, is, in fact, part of a family of problems that use the 
strategy of disconnecting transmission lines from an operating 
system to improve some aspect of the network’s operation. In-
deed, in the literature, several works propose to disconnect 
transmission lines in order to improve the performance of some 
aspects of the electrical power systems’ operation by, for exam-
ple, improving the voltage profile, reducing losses in the system 
[3], eliminating congestion at certain transmission lines [4], [5], 
[11], and improving the economic operation of the system by 
dispatching generators with cheaper generation costs [10]. It is 
worth noting, however, that almost all of the studies found in 
the literature are only concerned with solving the OTS problem, 
i.e., finding an optimization proposal that identifies the trans-
mission lines that can be disconnected from the system to opti-
mize a specific goal. ๠ere are few attempts to understand, from 
a conceptual point of view, Braess’s paradox in the context of 
the OTS problem. 

With respect to the OTS problem, to improve the economic 
operation of the system for a specified demand profile, the pa-
rameters are the demand at each load bus, the minimum and 
maximum generation limits at each generation bus, the genera-
tion cost of each generation bus, and the existing lines that are 
in operation in the base topology, with their respective electrical 
parameters (resistance, reactance, line charging capacitance, 
and transmission capacity). In this context, the optimization of 
the OTS problem identifies the transmission lines that must be 
disconnected, maintaining the proper operation of the rest of the 
system, as well as providing a reduction in the value of the 
hourly operation cost of the system. 

Fisher et al. [10] are considered pioneers for having de-
scribed and solved the OTS problem for the economical opera-
tion of an electrical power system in 2008. From this fundamen-
tal work, many works related to this subject were developed. 
Reference [10] clearly shows the idea of switching transmission 
lines with the objective of reducing the generation cost of an 
electrical power system. In this proposal, the linear disjunctive 
model was chosen to represent the DC operation of the network, 
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and the generation costs were linear. However, the first difficul-
ties appeared when the proposal was used to solve the IEEE 
118-bus system in the tests. For example, the CPLEX solver 
needed a high computational time and was unable to find a so-
lution with a gap equal to zero. ๠e same research group pre-
sented relevant contributions in [12], in which they analyzed 
related topics, such as the effect of the OTS on nodal prices, 
load payments, and generation revenues. In [13], they consid-
ered the N–1 security criterion in the OTS problem. 

For the OTS problem considering the DC network model 
and a fixed demand profile, which is the research topic ad-
dressed in this paper, the following subjects are still relevant: 
(i) the network model traditionally used is the DC model, but it 
may be more appropriate to use the AC model; (ii) the high 
number of transmission lines disconnected from the system, as 
suggested by the traditional models, may not be acceptable to 
electrical companies, since it may degrade the system’s security 
without any benefit; (iii) the processing times are still high 
when solving more complex models and highly complex sys-
tems; (iv) the problem of system islanding; (v) proposals for the 
reduction of the number of candidate lines that can be discon-
nected from the system, i.e., to consider disconnecting only 
those lines that produce a significant reduction in the operating 
costs; and (vi) a scientific explanation for the Braess’s paradox. 

As noted, a high number of works in the literature solve the 
OTS problem. ๠ese works can be categorized as being pub-
lished before or after [10]. ๠e first publications related to the 
switching of transmission lines to improve the operation of a 
power system were conducted in the 1980s as a control mecha-
nism of the operation, together with other strategies, such as ca-
pacitor banks operation and the adjustment of transformers’ 
taps. ๠us, [1] reveals that the switching of a transmission line 
can change the magnitudes and/or directions of the power flows 
on the other lines, while losses, bus voltage magnitudes, and the 
short-circuit currents at some points of the system may increase 
or decrease. References [2] and [3], from the same research 
group that published [1], present new proposals whereby lines 
are switched as a control mechanism, while linear programming 
techniques and distribution factors are used to switch lines or 
separate a bus to reduce the power losses in the system (a bus 
is, in fact, formed by several nodes of the electrical system). 
References [11] and [4] present new heuristic algorithms and 
proposals for the reduction of the search space of the problem, 
with the objective of minimizing losses and controlling over-
loads on the transmission lines. Other interesting proposals re-
lated to the OTS problem as a control mechanism for loss re-
duction and elimination of overloads can be found in [5], [6], 
and [14]. 

Reference [15] presents a proposal to disconnect a previ-
ously specified maximum number of transmission lines to re-
duce the computational time and find good-quality solutions for 
the OTS problem. In [16], the same research group proposes an 
improved and generalized version for the OTS problem, using 
the AC model for the power system operation. Reference [17] 
addresses the problem of the symmetry of power systems, 
which, in the case of the OTS problem, can lead to very high 
computational times when the existing models are considered. 

๠e symmetry problem appears when there is more than one 
line of the same type connecting two buses. Reference [18] pre-
sents a proposal to reduce the number of candidate lines for 
switching and, therefore, reduce the search space of the prob-
lem, but without overly degrading the quality of the final solu-
tion. ๠e tests show a significant reduction in the computational 
time and a solution in which the operation is only 0.17% more 
expensive than the cost of the operation of the solution obtained 
using the traditional OTS model. Reference [19] presents a pro-
posal for the analysis of the OTS problem for a period of oper-
ation of, for example, 24 hours, differing from the traditional 
proposal, which considers only one hour of operation. A new 
model of the OTS problem is presented in [20], which prevents 
partial or optimal solutions from presenting islanded topolo-
gies. ๠is key topic is addressed in this paper. 

In [8], the authors present an alternative mathematical model 
for the OTS problem, one capable of providing equivalent so-
lutions to the proposal presented in [10], but with lower com-
putational times. In [21], the authors extend the proposal of [8] 
to include the N–1 security criterion in the OTS problem. In 
[22], the OTS problem is analyzed considering seasonal de-
mand variations. In each period, the demand changes, but the 
topology found must be unique. Reference [23] proposes a for-
mulation to strengthen the convex relaxation of the DC OTS 
problem when a connected spanning subnetwork with fixed 
lines exists in the system. Reference [24] presents a stochastic 
model for unit commitment considering transmission switching 
for power systems with large-scale renewable integration. Ref-
erence [25] proposes a method for capacity expansion and 
switch installation in transmission systems, considering short-
term switching operations as a response to attacks. Other pro-
posals related to the OTS problem can be found in [26], which 
considers wind power generation in the system; [27], which 
takes into account energy and spinning reserve markets; [28], 
which considers a multi-objective formulation for the OTS 
problem for the minimization of generation costs and the max-
imization of a probabilistic reliability; [29] which presents a 
contingency-constrained unit commitment model considering 
transmission switching; and [30] which presents a robust model 
for the OTS problem accounting for the uncertainty of the de-
mand. 

Regarding the OTS problem considering the AC operation 
of the network, the authors of [31] propose an AC model for the 
system operation within the context of the OTS problem. ๠e 
resulting formulation is a mixed-integer nonlinear program-
ming problem that is transformed into a mixed-integer second-
order cone programming problem. Reference [32] presents a 
linearized AC formulation that identifies candidate transmission 
lines to be switched off in order to prevent load shedding caused 
by contingencies. Reference [33] presents a multi-objective ar-
tificial immune algorithm for congestion management using 
OTS with the objective of minimizing total operating costs and 
maximize probabilistic reliability. Reference [34] presents re-
laxations for the AC OTS problem with the objective of improv-
ing the precision of convex formulations. Finally, [35] presents 
an optimization model that considers a convex formulation to 
represent the AC of the network with the objective of protecting 



power systems from geomagnetically induced currents, that can 
saturate transformers, induce hot spot heating, and increase re-
active power losses, through line switching, generator redis-
patch, and load shedding. 

๠e goal of this work on the OTS problem is to identify the 
transmission lines that must be disconnected from the network 
in order to obtain a more flexible system that allows a lower 
operation cost. As previously mentioned, by disconnecting 
some transmission lines, it is possible to change the profile of 
the distribution of power flow on the transmission lines, which 
allows increasing the generation at the buses with lower oper-
ating costs. ๠e DC model is used to represent the system’s op-
eration, while an equivalent linear disjunctive formulation is 
used to formulate the OTS problem for a fixed demand profile. 
A discussion is conducted on the extension of the formulations 
to consider the AC operation of the system. 

๠e contributions of this work are as follows: (i) new formu-
lations for the OTS problem that avoid the switching of an ex-
cessive number of lines, without degrading the quality of the 
solution and ensuring that the operation of the resulting system 
is connected; and (ii) an intuitive explanation of why switching 
off a line can improve the operation of an electrical system, 
leading to a reduction in its operating costs. Item (i) is particu-
larly important as switching off an excessive number of lines 
may compromise the reliability of the system and, in particular, 
due to the simplicity with which this problem is solved when 
compared to other proposals presented in the literature. Item (ii) 
is also very important because it is well known in the literature 
that transmission switching can improve the operation of an 
electrical system, but there is no explanation as to why this ap-
parently contradictory behavior occurs. ๠is work shows that 
transmission switching eliminates constraints related to Kirch-
hoff’s voltage law from the model for loops that disappear with 
the switching operation. From the optimization point of view, 
the problem becomes less constrained, but Kirchhoff’s current 
law, on the other hand, becomes more restrictive. In this con-
text, transmission switching can lead to an optimization gain if 
the benefit provided by eliminating some of the constraints as-
sociated with Kirchhoff’s voltage law is greater than the loss of 
capacity caused in Kirchhoff’s current law. 

Finally, it should be emphasized that all the strategies, as 
well as the explanation for Braess’s paradox presented in this 
paper for the DC model are also valid when the AC operation 
of the network is considered. Section II introduces the formula-
tions using the DC model to facilitate the understanding of the 
approaches. Section III extends the discussion and explanations 
to the AC operation model. Section IV presents the results for 
the tests conducted using the 41-bus southern Brazilian system 
and the 92-bus Colombian system. Section V presents the con-
clusions of the work. 

II.  DC MODELS FOR THE OTS PROBLEM 

๠is section presents several mathematical models for the 
OTS problem with the objective of solving it and analyzing its 
characteristics considering the DC formulation for the operation 
of the system. ๠erefore, this section includes (i) a mathemati-
cal model that allows for control of the number of lines to be 

disconnected from the system according to the profit obtained 
from the switching operations, (ii) two mathematical models 
that avoid islanding of the system’s topology, both during the 
optimization procedure and in the final solution, and (iii) a 
mathematical model that allows us to explain Braess’s paradox 
within the OTS problem context. 

Initially, we present the existing model for DC optimal 
power flow and its extension to the OTS problem. 

A.  Model 1 – Traditional Model for DC OPF 

In the traditional optimal power flow (OPF) problem that op-
timizes the operation of transmission systems with the objective 
of minimizing the generation costs, all of the existing lines are 
operating, i.e., connected to the system. 

๠e formulation for obtaining the economic operation of a 
power system considering the DC model of the network (DC 
OPF model) is shown in (1)–(6). 

minimize 𝜐 = ∑ 𝑐𝑖
𝑖∈Ω𝑔

𝑔𝑖 (1)

subject to: 

∑ 𝑓𝑗𝑖
𝑗𝑖∈Ω𝑙

− ∑ 𝑓𝑖𝑗
𝑖𝑗∈Ω𝑙

+ 𝑔𝑖 = 𝑑𝑖 ∀𝑖 ∈ Ω𝑏 (2)

𝑓𝑖𝑗 = 𝑛𝑖𝑗
𝜃𝑖 − 𝜃𝑗
𝑥𝑖𝑗

 ∀𝑖𝑗 ∈ Ω𝑙 (3)

∣𝑓𝑖𝑗∣ ≤ 𝑛𝑖𝑗𝑓𝑖𝑗 ∀𝑖𝑗 ∈ Ω𝑙 (4)

𝑔𝑖 ≤ 𝑔𝑖 ≤ 𝑔𝑖 ∀𝑖 ∈ Ω𝑏 (5)

𝜃𝑟𝑒𝑓 = 0  (6)

๠e previous mathematical model is a linear programming 
(LP) problem that is easy to solve. In this model, 𝜐, in (1), is the 
objective function related to the hourly operation cost of the 
system. ๠e sets are as follows: Ω𝑔 is the set of generation 

buses, Ω𝑏 is the set of buses, and Ω𝑙 is the set of branches. ๠e 
parameters of the model are as follows: 𝑐𝑖 is the generation cost 
at bus 𝑖; 𝑑𝑖 is the demand at bus 𝑖; 𝑔𝑖 and 𝑔𝑖 are the lower and 

upper limits of the generation at bus 𝑖, respectively; 𝑥𝑖𝑗 is the 

reactance of a transmission line on branch 𝑖𝑗; 𝑓𝑖𝑗 is the maxi-

mum power flow capacity of a line in branch 𝑖𝑗; and 𝑛𝑖𝑗 is the 

number of existing lines on branch 𝑖𝑗. ๠e decision variables 
related to the operation of the system are as follows: 𝑔𝑖 is the 
generation at bus 𝑖, 𝜃𝑖 is the voltage phase angle at bus 𝑖, and 
𝑓𝑖𝑗 is the power flow on branch 𝑖𝑗. 

Constraint (2) is the active power balance at each bus of the 
system (Kirchhoff’s current law), (3) represents the application 
of Kirchhoff’s voltage law at each fundamental loop of the sys-
tem, formed by one line and the loads and/or the generators con-
nected to the buses at its ends, (4) is the transmission capacity 
of a branch of the system, (5) is the limit of generation capacity 
of a bus, and (6) imposes the angular reference to the system. 

To illustrate a solution for the OPF model, consider the opti-
mal operation for the 3-bus system presented in Fig. 1, in which 
the power base is 100 MVA and bus 1 is the reference. 



 
Fig. 1.  ๠e solution of the DC OPF model for the 3-bus system. 

In Fig. 1, it can be verified that the lines of branch 1–3 are 
operating at their limits, with 𝜃13 = 𝜃1 − 𝜃3 = 𝑥13𝑓13/𝑛13 =
0.05 ⋅ 1.5/2 = 0.0375 p.u. Kirchhoff’s voltage law will then re-
quire that 𝜃12 + 𝜃23 = 𝜃13, limiting the power transfer on the 
lines of branches 1–2 and 2–3, and requiring that the generator 
at bus 3, which has a higher operating cost than the one at bus 
1, generate more power. ๠e cost of the operation for the solu-
tion presented in Fig. 1 is 13,406.25 US$/h. 

If constraint (3) is not considered in this formulation, then 
we have the transportation model for the problem of the gener-
ation’s cost minimization. Fig. 2 presents the optimal operation 
of the 3-bus system when constraint (3) is not considered in the 
model. In this case, the operation cost is 9,750.00 US$/h. 

 
Fig. 2.  Operation of the transportation model for the 3-bus system. 

๠e solution presented in Fig. 2 is infeasible for the DC 
model and can only be used as a lower bound for the operation 
cost in the OTS problem. ๠e model (1)–(6) will be used later 
to help to explain Braess’s paradox in the context of the OTS 
problem. 

Finally, it should be noted that the simplest example of a sit-
uation in which one line may limit the power transfer capacity 
on other lines is when two or more lines are in parallel on the 
same branch 𝑖𝑗 and they have different values of 𝑥𝑖𝑗𝑓𝑖𝑗. In this 

case, according to Kirchhoff’s voltage law, the value of the an-
gular opening between buses 𝑖 and 𝑗, 𝜃𝑖 − 𝜃𝑗, will be limited by 

the line with the smallest value of 𝑥𝑖𝑗𝑓𝑖𝑗. 

B.  Model 2 – Traditional Model for the OTS Problem 

๠e model presented in [10] for the OTS problem is a mixed-
integer linear programming (MILP) problem, and it is shown in 
(7)–(13). 

minimize 𝜐 = ∑ 𝑐𝑖
𝑖∈Ω𝑔

𝑔𝑖 (7)

subject to: (5), (6) (8)

∑ ∑𝑓𝑗𝑖,𝑦
𝑛𝑗𝑖

𝑦=1𝑗𝑖∈Ω𝑙

− ∑ ∑𝑓𝑖𝑗,𝑦
𝑛𝑖𝑗

𝑦=1𝑖𝑗∈Ω𝑙

+ 𝑔𝑖 = 𝑑𝑖 ∀𝑖 ∈ Ω𝑏 (9)

∣𝑥𝑖𝑗𝑓𝑖𝑗,𝑦 − (𝜃𝑖 − 𝜃𝑗)∣ ≤ 𝑀(1 − 𝑤𝑖𝑗,𝑦) (10)

∣𝑓𝑖𝑗,𝑦∣ ≤ 𝑤𝑖𝑗,𝑦𝑓𝑖𝑗 (11)

∀𝑖𝑗 ∈ Ω𝑙, 𝑦 = 1,… , 𝑛𝑖𝑗 

𝑤𝑖𝑗,𝑦 ≤ 𝑤𝑖𝑗,𝑦−1 ∀𝑖𝑗 ∈ Ω𝑙, 𝑦 = 2,… , 𝑛𝑖𝑗 (12)

𝑤𝑖𝑗,𝑦 ∈ {0,1} ∀𝑖𝑗 ∈ Ω𝑙, 𝑦 = 1,… , 𝑛𝑖𝑗 (13)

In this model, in addition to the previously defined sets, pa-
rameters, and variables, 𝑀  is a large number that shifts from 
the transformation of the DC optimal power flow (OPF) model 
into the linear disjunctive model for the OTS problem and must 
be chosen adequately. ๠e variable 𝑓𝑖𝑗,𝑦 represents the power 

flow on line 𝑦 of branch 𝑖𝑗, and the binary decision variable 
𝑤𝑖𝑗,𝑦 indicates whether line 𝑦 of branch 𝑖𝑗 is connected to the 

system. ๠us, 𝑤𝑖𝑗,𝑦 = 1 if the transmission line 𝑦 of branch 𝑖𝑗 
is connected, and 𝑤𝑖𝑗,𝑦 = 0 otherwise. ๠e total power flow on 

branch 𝑖𝑗 can be calculated as 𝑓𝑖𝑗 = ∑ 𝑓𝑖𝑗,𝑦
𝑛𝑖𝑗
𝑦=1 . 

Constraint (9) represents the active power balance at each 
bus of the system (Kirchhoff’s current law), and constraint (10) 
represents the application of Kirchhoff’s voltage law at each 
fundamental loop of the system. Regarding this constraint, if 
𝑤𝑖𝑗,𝑦 = 1 (line connected to the system), then Kirchhoff’s volt-
age law must be fulfilled in the fundamental loop formed by line 
𝑖𝑗 and the generators or loads or by both generators and loads 
connected between bus 𝑖 and the ground and bus 𝑗 and the 
ground. If 𝑤𝑖𝑗,𝑦 = 0, then this constraint is not active, and the 

angle difference, 𝜃𝑖 − 𝜃𝑗, is limited by the parameter 𝑀 . Note 
that a fundamental loop that does not exist does not need to 
comply with Kirchhoff’s voltage law. Constraint (11) limits the 
power flow of a transmission line to the maximum amount al-
lowed. ๠e surrogate constraint (12) requires that the transmis-
sion lines existing in a certain branch 𝑖𝑗 must be disconnected 
from the system sequentially. It should be noted that this con-
straint is not in the original formulation proposed by [10]. It has 
since been incorporated, taking into account the similarity be-
tween the OTS problem and the transmission network expan-
sion planning problem [36], for which this constraint has al-
ready been used. Finally, constraint (13) requires that the deci-
sion variable 𝑤𝑖𝑗,𝑦 be binary. It should be noted that, for the DC 
OPF model to transform into the OTS disjunctive linear model, 
each transmission line of a branch must be treated separately. 

As a solution for the OTS model (7)–(13), Fig. 3 shows the 
operation of the 3-bus system after the lines of branch 1–3 are 
disconnected from the system. In this case, the transmission ca-
pacity of the system is reduced, but the nonfundamental loop 
(i.e., any loop in the system that contains two or more lines) 
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formed with the lines of branch 1–3 disappears, allowing a more 
economical operation of the system, with a cost of 9,750.00 
US$/h. 

 
Fig. 3.  OTS solution for reducing the operation cost of the 3-bus system con-
sidering the DC formulation. 

๠erefore, it can be concluded that the transmission capacity 
lost by disconnecting the lines of branch 1–3 was compensated 
for by the removal of the loop, in which Kirchhoff’s voltage law 
needed to be satisfied. 

Besides that, contrary to common sense and as a result of 
Braess’s paradox, it can be verified that the disconnection of the 
lines of branch 1–3 also improves the security of the network in 
relation to the N–1 criterion. For the network shown in Fig. 3, 
it can be easily verified that after the disconnection of a line of 
branches 1–2 or 2–3, the system maintains the operation within 
its limits. However, it is not possible to find a feasible operation 
point for the network topology shown in Fig. 1 after a fault oc-
curs on one line of branch 1–3. 

๠is behavior was observed by the authors in the real south-
ern Brazilian and Colombian systems, that are tested in this 
work. However, the OTS problem considering the N–1 security 
criterion and the analysis of the security of these systems is out-
side the scope of this work. 

๠ree alternative optimal solution to the one presented in 
Fig. 3 for the traditional OTS model (7)–(13) are: (i) switch off 
two lines of branch 1–3 and one line of branch 1–2; (ii) switch 
off two lines of branch 1–3 and one line of branch 2–3; and (iii) 
switch off two lines of branch 1–3, one line of branch 1–2, and 
one line of branch 2–3. However, due to reliability aspects, 
these solutions should be avoided. Next section will introduce 
a formulation that avoids the disconnection of unnecessary lines 
from the system in the OTS problem. 

C.  Model 3 – Formulation for the OTS Problem that Avoids 
Switching Unnecessary Lines 

๠e first mathematical model proposed in this work for the 
OTS problem is shown in (14) and (15). 

minimize 𝜐 = ∑ 𝑐𝑖
𝑖∈Ω𝑔

𝑔𝑖 + 𝑐𝑠 ∑ ∑(1 − 𝑤𝑖𝑗,𝑦)
𝑛𝑖𝑗

𝑦=1𝑖𝑗∈Ω𝑙

 (14)

subject to: (5), (6), (9)–(13) (15)

It should be noted that the only difference between the above 
formulation and the proposal presented in [10] is the objective 
function, in which a new term appears. In (14), 𝑐𝑠 is a parameter 
that represents the minimum profit for a line to be disconnected 

from the system. ๠erefore, the optimization process should 
only disconnect lines if doing so generates a profit greater than 
or equal to 𝑐𝑠. ๠e system operator can define 𝑐𝑠 according to 
the savings he is willing to obtain in the operation cost of the 
system by disconnecting one line. ๠is strategy produces two 
significant changes in the optimization process: (i) lines that 
produce a very small operating cost reduction should not be dis-
connected, and (ii) the processing time decreases significantly, 
which may be very important in systems of high complexity. 

๠e second part of the objective function was also introduced 
in the model to eliminate the possibility of system islanding in 
the OTS problem, and therefore, it represents an alternative to 
proposals like the one presented in [20], [37]. Note that, since a 
single line that connects two parts of a system does not form 
any loops with other lines, then by using the arguments pre-
sented previously (and that will be proved in the following sec-
tions), no improvement in the operation cost of the system can 
be obtained by switching it off, and, therefore, the modified ob-
jective function presented in (14) will ensure that this line is not 
disconnected, maintaining the system connected. 

It should be noted that optimization solvers, such as CPLEX, 
use a sophisticated branch-and-cut algorithm in which a node 
of the tree represents a partial solution to the problem. In this 
context, in the solution process of the OTS problem, uncon-
nected partial solutions can appear, and the optimal solution it-
self may be unconnected. ๠erefore, it is fundamental that the 
mathematical model avoid islanded partial solutions. Also, it 
has been experimentally observed that a significant number of 
transmission lines are indifferent in relation to the OTS optimi-
zation problem, i.e., they produce the same objective function 
in both connected or disconnected statuses. In this context, in 
addition to accelerating the optimization process, the proposed 
strategy avoids the improper disconnection of lines, and it 
avoids islanding. 

D.  Model 4 –Model that Avoids Islanding of the System 

๠e second mathematical model proposed in this work 
avoids the formation of unconnected partial and optimal solu-
tions, i.e., it avoids islanding in the optimization process. It 
should be noted that a partial solution (a node of the branch-
and-cut tree) of the OTS problem may be unconnected, which 
can cause convergence issues in the solver for several reasons. 
For instance, an unconnected partial solution may have issues 
with the angle 𝜃𝑖 at bus 𝑖 if the initially connected system is 
divided into several islands. In this context, only the angular 
values of the portion of the system in which the reference bus 
is connected will not present issues. In the other islanded sys-
tems, in which the value 𝜃𝑖 was defined as being the angular 
difference in relation to the reference bus, the reference is lost. 
๠us, the values of 𝜃𝑖 at the buses of the islanded parts of the 
system separated from the reference bus usually present numer-
ical stability problems. 

๠e following alternative mathematical model for the OTS 
problem avoids the generation of partial or final unconnected 
solutions, i.e., every valid solution proposal is always con-
nected. According to graph theory, a graph is connected if there 
is a path between a bus and each of the other buses of the graph. 

𝑔1 = 500 
MW 

𝑔3 = 75 
MW 

𝑑2 = 100 MW 

𝑑3 = 475 
MW 

𝑓13 = 0 MW 

𝑓12 = 500 MW 𝑓23 = 400 MW 

1 

2 

3 

𝜃1 = 0 p.u. 

𝜃2 = −0.1667 p.u. 

𝜃3 = −0.3 p.u. 



๠e mathematical model, taking this requirement into account, 
is shown in (16)–(21). 

minimize 𝜐 = ∑ 𝑐𝑖
𝑖∈Ω𝑔

𝑔𝑖 + 𝑐𝑠 ∑ ∑(1 − 𝑤𝑖𝑗,𝑦)
𝑛𝑖𝑗

𝑦=1𝑖𝑗∈Ω𝑙

 (16)

subject to: (5), (6), (9)–(13) (17)

∑ ℎ𝑗𝑖
𝑗𝑖∈Ω𝑙

− ∑ ℎ𝑖𝑗
𝑖𝑗∈Ω𝑙

+ 𝐻𝑖 = 1 ∀𝑖 ∈ Ω𝑏 (18)

∣ℎ𝑖𝑗∣ ≤ (|Ω𝑏| − 1)𝑤𝑖𝑗,1 ∀𝑖𝑗 ∈ Ω𝑙 (19)

𝐻𝑖 = 0 ∀𝑖 ∈ Ω𝑏|𝑖 ≠ 𝑟𝑒𝑓  (20)

𝐻𝑟𝑒𝑓 = |Ω𝑏|  (21)

In this model, the new constraints (18)–(21) were added in 
order to represent artificial flows in the electrical network, with 
an artificial generation bus and every other bus of the system 
being a demand bus with a unity artificial demand consumption. 
๠e need to provide a unity artificial demand to all of the sys-
tem’s buses from a reference bus allows for a path from the ref-
erence bus to each system’s bus (other than the reference); 
therefore, the system must always be connected. ๠e variable 
𝐻𝑖 is the artificial power generated at bus 𝑖, ℎ𝑖𝑗 is the artificial 

flow on branch 𝑖𝑗, and the parameter |Ω𝑏| is the cardinality of 
the set Ω𝑏, i.e., the number of buses in the system. ๠us, con-
straint (18) allows the unity artificial demand at bus 𝑖 to be met, 
and constraint (19) ensures that if at least one line of branch 𝑖𝑗 
is connected, considering the order imposed by (12), then the 
maximum artificial flow through this branch is limited to |Ω𝑏| −
1. Constraints (20) and (21) ensure that only the reference bus 
can have artificial generation, with a capacity of |Ω𝑏| units, 
enough to meet each of the |Ω𝑏| buses that have unity artificial 
demands. 

It should be noted that, model (16)–(21) can provide con-
nected solutions to the OTS problem with the same operation 
cost obtained by the traditional model (7)–(13), since, as dis-
cussed previously, switching off lines that do not form loops 
with other lines cannot lead to a reduction in the operation cost 
of the system. 

E.  Model 5 – Model That Explains the Occurrence of Braess’s 
Paradox 

๠e third mathematical model proposed in this paper ex-
plains Braess’s paradox in the context of the OTS problem. In 
the literature, practically all works related to the OTS problem 
attempt to solve the problem using mathematical models; how-
ever, they fail to explain why the system’s operation can be im-
proved by disconnecting some lines from the network. In this 
work, we intend to explain this paradox by experimentally 
proving the following hypothesis: (i) the need to comply with 
Kirchhoff’s current law at each bus of the system is not respon-
sible for the occurrence of Braess’s paradox; (ii) the need to 
comply with Kirchhoff’s voltage law on every nonfundamental 
loop (formed by two or more transmission lines) of the electri-
cal system is responsible for the occurrence of Braess’s paradox 
in the OTS problem; and (iii) the other constraints are not re-
sponsible for the occurrence of Braess’s paradox. 

In order to experimentally prove the previous hypothesis, the 
LP problem (22)–(25) model must be solved. 

minimize 𝜐 = ∑ 𝑐𝑖
𝑖∈Ω𝑔

𝑔𝑖 + 𝑐𝑑 ∑ ∑∣𝜑𝑖𝑗,𝑦∣
𝑛𝑖𝑗

𝑦=1𝑖𝑗∈Ω𝑙

 (22)

subject to: (5), (6), (9), (11) (23)

𝑓𝑖𝑗,𝑦 =
𝜃𝑖 − 𝜃𝑗 + 𝜑𝑖𝑗,𝑦

𝑥𝑖𝑗
 ∀𝑖𝑗 ∈ Ω𝑙, 𝑦 = 1,… , 𝑛𝑖𝑗 (24)

𝜑𝑖𝑗 ≤ 𝜑𝑖𝑗,𝑦 ≤ 𝜑𝑖𝑗 ∀𝑖𝑗 ∈ Ω𝑙, 𝑦 = 1,… , 𝑛𝑖𝑗 (25)

๠e model optimizes the generation cost by adding artificial 
phase shifters at each branch of the electrical system, with a 
negligible cost 𝑐𝑑. ๠e value of 𝑐𝑑 must be small enough, so that 
it do not compete with the generation cost reduction obtained 
with line switching, e.g., 𝑐𝑑 = 0.0001 US$. ๠e other new pa-
rameters in the model are 𝜑𝑖𝑗 and 𝜑𝑖𝑗, that represent the mini-

mum and maximum phase-shift for the transformer at branch 
𝑖𝑗. ๠e variable 𝜑𝑖𝑗,𝑦 is the phase-shift of the transformer at 

branch 𝑖𝑗, line 𝑦. It should be noted that the proposal of allocat-
ing artificial phase shifters is only a mathematical artifice. Ex-
perimental tests show that the solution of (22)–(25) is exactly 
the same as the solution for the transportation model obtained 
from (1)–(6) after eliminating constraint (3) from the formula-
tion. ๠is proves that constraint (3) is responsible for the occur-
rence of Braess’s paradox in the OTS problem. 

Fig. 4 illustrates the 3-bus system with two phase shifters 
allocated at the lines of branch 1–3, according to the solution of 
model (22)–(25). 

 
Fig. 4.  Operation of the DC OPF model for the 3-bus system with artificial 
phase shifters allocated at the lines of branch 1–3. 

In Fig. 4, it can be verified that 𝜑13,1 = 𝜑13,2 = 𝜑13 =
−0.1625 p.u. It can also be verified that the lines of branch 1–3 
are operating at their limits, with 𝜃13 + 𝜑13 = 𝜃1 − 𝜃3 +
𝜑13 = 𝑥13𝑓13/𝑛13 = 0.05 ⋅ 1.5/2 = 0.0375 p.u. Kirchhoff’s 
voltage law will then require that 𝜃12 + 𝜃23 = 𝜃13, with 𝜃12 =
𝜃1 − 𝜃2 = 𝑥12𝑓12/𝑛12 = 0.10 ⋅ 3.5/3 = 0.1167 p.u. and 
𝜃23 = 𝜃2 − 𝜃3 = 𝑥23𝑓23/𝑛23 = 0.10 ⋅ 2.5/3 = 0.0833 p.u. It 
should be noted that the phase shifter changes Kirchhoff’s volt-
age law relation in the nonfundamental loop, making it easier 
to be satisfied. ๠e cost of the operation of the solution pre-
sented in Fig. 4 is 9,750.00 US$/h, the same value obtained by 
the transportation model for the solution presented in Fig. 2. 

๠e allocation of artificial phase shifters helps the model to 
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1: 1∠𝜑13,1 = −0.1625 p.u. 

1: 1∠𝜑13,2 = −0.1625 p.u. 

𝜃1 = 0 p.u. 

𝜃2 = −0.1167 p.u. 

𝜃3 = −0.2 p.u. 



comply with Kirchhoff’s voltage law on some nonfundamental 
loops of the original system. Braess’s paradox can be explained 
as follows in the context of electrical power systems: (i) the dis-
connection of a transmission line reduces the transmission ca-
pacity of an electrical system and, therefore, increases the “dif-
ficulty” of the system in complying with both Kirchhoff’s cur-
rent law and the line capacity limits simultaneously; (ii) the dis-
connection of a transmission line can improve the power trans-
fer capability in the electrical system if such disconnection 
eliminates problematic nonfundamental loops; (iii) therefore, 
the disconnection of a transmission line that eliminates prob-
lematic nonfundamental loops and does not compromise the 
power transfer capability (the reduction in the power transfer 
capability, i.e., the increase in the “difficulty” of the system in 
complying with both Kirchhoff’s current law and the line ca-
pacity limits simultaneously, is surpassed by the flexibility pro-
vided by not attending Kirchhoff’s voltage law on some non-
fundamental loops) can improve the performance of the electri-
cal system. 

Finally, it should be noted that this model can be used to 
identify problematic lines in the network that constrains the 
power flow on other lines they form loops with. 

F.  Model 6 – Model that Justifies the Occurrence of Braess’s 
Paradox in the OTS Problem 

Finally, a mathematical model that more consistently ex-
plains Braess’s paradox in the context of the OTS problem is 
presented in (26)–(29). 

minimize 𝜐 = ∑ 𝑐𝑖
𝑖∈Ω𝑔

𝑔𝑖 + 𝑐𝑠 ∑ ∑(1 − 𝑤𝑖𝑗,𝑦)
𝑛𝑖𝑗

𝑦=1𝑖𝑗∈Ω𝑙

+ 𝑐𝑑 ∑ ∑∣𝜑𝑖𝑗,𝑦∣
𝑛𝑖𝑗

𝑦=1𝑖𝑗∈Ω𝑙

 

(26)

subject to: (5), (6), (9), (11)–(13) (27)

∣𝑥𝑖𝑗𝑓𝑖𝑗,𝑦 − (𝜃𝑖 − 𝜃𝑗 + 𝜑𝑖𝑗,𝑦)∣ ≤ 𝑀(1 − 𝑤𝑖𝑗,𝑦) (28)

𝑤𝑖𝑗,𝑦𝜑𝑖𝑗 ≤ 𝜑𝑖𝑗,𝑦 ≤ 𝑤𝑖𝑗,𝑦𝜑𝑖𝑗 ∀𝑖𝑗 ∈ Ω𝑙, 𝑦 = 1,… , 𝑛𝑖𝑗 (29)

All sets, parameters, and variables of this model have been 
defined previously. ๠is model minimizes the cost of operation 
whereby transmission lines can be disconnected from the sys-
tem, but phase shifters, with a negligible cost 𝑐𝑑 ≪ 𝑐𝑠, e.g., 
𝑐𝑑 = 0.0001 US$, can also be installed. Exhaustive experi-
mental tests show that, when using this model, no line is dis-
connected and some phase shifters are allocated in the problem-
atic nonfundamental loops of the system. ๠e solution for this 
model for the 3-bus system is the same as one presented in Fig. 
4. 

III.  EXTENSION OF THE FORMULATIONS FOR AC OPERATION 

In this section, the discussion presented for the DC OTS 
problem is extended to consider the AC operation of the net-
work. 

Fig. 5 presents complete data for the 3-bus system, used in 

the previous section, for an AC analysis, in which 𝑆𝑖
𝐺

 is the ap-
parent power generation capacity of bus 𝑖, 𝑆𝑖𝑗 is the apparent 

power transmission limit of a line in branch 𝑖𝑗, 𝑟𝑖𝑗 is the re-

sistance of a line of branch 𝑖𝑗, 𝑏𝑖𝑗𝑆𝐻  is the total line charging 

capacitance of a line of branch 𝑖𝑗, 𝑃𝑖
𝐷 is the active power de-

mand at bus 𝑖, and 𝑄𝑖
𝐷 is the reactive power demand at bus 𝑖. 

 
Fig. 5.  Data for the 3-bus system. 

๠e results of the AC OPF, without considering line switch-
ing, for the 3-bus system is presented in Fig. 6, in which 𝑉𝑖 is 
the voltage magnitude at bus 𝑖, 𝑃𝑖𝑗 and 𝑄𝑖𝑗 are, respectively, 

the active and reactive power flows on branch 𝑖𝑗, from bus 𝑖 to 
bus 𝑗, and 𝑃𝑖

𝐺 and 𝑄𝑖
𝐺 are, respectively, the active and reactive 

power generations at bus 𝑖. In this case, the operation cost is 
13,586.25 US$/h, which is greater than the cost of the DC solu-
tion presented in Fig. 1 due to the losses. 

 
Fig. 6.  ๠e solution of the AC OPF model for the 3-bus system. 

In the solution presented in Fig. 6, as in the solution of Fig. 
1, the lines of branch 1–3 are operating at their limits, with 
𝑉1̇3 = 𝑉1̇ − 𝑉3̇ = 0.0360∠1.1467 p.u., in which 𝑉𝑖̇ is the 
phasor voltage at bus 𝑖. Kirchhoff’s voltage law then requires 
that 𝑉1̇2 + 𝑉2̇3 = 𝑉1̇3, again limiting the power transfer on the 
lines of branches 1–2 and 2–3, and requiring that the generator 
at bus 3, which has a higher operating cost than the one at bus 
1, generate more power. In this case, the losses on the lines of 
branches 1–3, 1–2, and 2–3 are 0.5126 MW, 0.3764 MW, and 
0.0013 MW, respectively, and the total losses in the system is 
0.8903 MW.  
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𝑉2 = 1.0340 p.u. 
𝜃2 = −0.0305 rad 
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𝑃3
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𝑄3
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𝑄31 = −43.8526 MVAr 
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𝑄12 = 38.3259 MVAr 

𝑃21 = −103.1409 MW 
𝑄21 = −41.0768 MVAr 

𝑃23 = 3.1419 MW 
𝑄23 = −8.9230 MVAr 

𝑃32 = −3.1406 MW 
𝑄32 = 2.5108 MVAr 



Fig. 7 illustrates the optimal AC operation of the 3-bus sys-
tem after the lines of branch 1–3 are switched off. As for the 
solution presented in Fig. 3, the transmission capacity of the 
system is reduced. However, in the resulting system, Kirch-
hoff’s voltage law does not need to be satisfied in the nonfun-
damental loop formed with the lines of branches 1–2, 1–3, and 
2–3, allowing a more economical operation, with a cost of 
10,146.59 US$/h. ๠e total losses in the system in this case in-
creases to 12.8731 MW, since the losses on branches 1–2 and 
2–3 increase to 7.7413 MW and 5.1318 MW, respectively. 

 

Fig. 7.  OTS solution for reducing the operation cost of the 3-bus system con-
sidering the AC formulation. 

๠e test considering the allocation of phase shifters at the 
lines of branch 1–3 of the 3-bus system is illustrated in Fig. 8. 
In this case, the cost of operation is 9,937.65 US$/h, slightly 
lower than the cost for the solution presented in Fig. 7, due to 
the reduction of the total losses to 6.2445 MW. ๠e losses on 
branches 1–3, 1–2, and 2–3 are 0.5102 MW, 3.7426 MW, and 
1.9917 MW, respectively. 

 

Fig. 8.  Operation of the AC OPF for the 3-bus system with artificial phase 
shifters allocated at the lines of branch 1–3. 

In Fig. 8, for the phase shifters, the taps 𝑎13,1 = 𝑎13,2 =
𝑎13 = 0.9992 and 𝜑13,1 = 𝜑13,2 = 𝜑13 = −0.1502 rad. The 

lines of branch 1–3 are operating at their limits, with 𝑉1̇2 =

𝑉1̇𝑎13∠𝜑13 − 𝑉2̇. Kirchhoff’s voltage law requires that 𝑉1̇2 +
𝑉2̇3 = 𝑉1̇3. Note that the only difference between the systems 
presented in Fig. 6 and Fig. 8 is related to Kirchhoff’s voltage 
law in the nonfundamental loop. 

๠e examples presented in this section show that the discus-
sion regarding Braess’s paradox introduced in Section II for the 
DC OTS model is also valid for the AC formulation. ๠us, the 
formulations (14) and (15), and (16)–(21) can be adapted to the 
AC OTS problem, providing the same benefits presented previ-
ously. 

IV.  TESTS AND RESULTS 

๠is section presents the results of the tests performed with 
two systems typically used for tests with the transmission net-
work expansion planning problem: the southern Brazilian sys-
tem and the Colombian system [38]. In this paper, however, 
both systems are modified adding the lines of the optimal ex-
pansion plan as part of the network. 

๠e proposed models were implemented in the AMPL [39] 
modeling language and solved with the CPLEX [40] solver ver-
sion 12.9 on a computer with a 3.2 GHz Intel® Core™ i7-8700 
processor with 16 GB of RAM. 

A.  Modified Southern Brazilian System 

๠e southern Brazilian system, presented in Fig. 9, has 41 
buses and 55 branches with 78 lines. ๠e total demand is 6880 
MW, and the total generation capacity is 10545 MW. ๠e gen-
eration cost without disconnecting any lines, provided by 
Model 1, is 185,111.80 US$/h. 

When Model 2 is used to solve the OTS problem in this sys-
tem, the generation cost is 184,063.00 US$/h, and 13 lines are 
disconnected: 1–7, 7–8, 4–5, 14–22, 23–24, 33–34, 37–39, 40–
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Fig. 9.  Topology of the 41-bus southern Brazilian system. 
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42, 38–42×(3), 46–19, and 42–43. In this case, bus 7, which 
does not have load, is disconnected from the system. ๠e com-
putational time to solve the problem is less than 1 second. In 
fact, Model 2 can obtain several alternative optimal solutions 
for this problem with the same value of the objective function, 
with five up to 17 lines disconnected from the system. 

Table I shows the results obtained when Model 4 is used to 
solve the OTS problem. Model 3 provides the same results as 
Model 4, with similar computational times, with one exception: 
when 𝑐𝑠 = 0 US$/line, Model 3 provides the same solution as 
Model 2. 

๠e results show that the solution provided by the traditional 
model for OTS, Model 2, has up to 17 lines disconnected from 
the system, while Model 4 finds a solution with the same gen-
eration cost, but disconnecting only five lines, and ensuring that 
the resulting systems is connected. 

Also, by disconnecting four lines instead of 17, Model 4 pro-
vides a solution that is only 0.01% more expensive than the so-
lution provided by Model 2. Note that, the marginal profit ob-
tained in the operational cost by disconnecting an additional 
line decreases as the number of disconnected lines increases. 

๠e solution provided by Model 1 when constraint (3) is not 
considered in the formulation (transportation model for the op-
timal power flow problem, without disconnecting lines) pro-
vides an operation cost of 184,063.00 US$/h, which is the same 
cost obtained by Model 4 for OTS with 𝑐𝑠 = 0 US$/line or 𝑐𝑠 =
1 US$/line. 

๠is same solution is obtained by Model 5, by allocating 
phase shifters at branches 9–14, 27–38, and 39–42, and by 
Model 6, which does not disconnect any lines and allocates 
phase shifters at the same branches as Model 5. 

๠e results provided by Model 1 without constraint (3), 
Model 5, and Model 6 indicate that Kirchhoff’s voltage law is 
therefore responsible for Braess’s paradox in the OTS problem, 
and by eliminating some nonfundamental loops from the sys-
tems, it is possible to obtain a more efficient operation, as pre-
viously discussed. 

B.  Modified Colombian System 

๠e Colombian system, presented in Fig. 10, has 92 buses 
and 146 branches with 212 lines. ๠e total demand is 14559 
MW, and the total generation capacity is 17473 MW. ๠e gen-
eration cost without disconnecting any lines, provided by 
Model 1, is 438,755.37 US$/h. 

In this case, when Model 2 is used to solve the OTS problem, 

the generation cost is 434,749.44 US$/h, and 45 lines are dis-
connected: 25–29, 14–60×(2), 2–4×(2), 15–17, 15–76, 35–44, 
38–68, 10–78, 1–59, 59–67, 8–59×(2), 1–3, 3–6, 46–53, 9–69, 
32–34, 16–23, 31–60, 47–49×(2), 18–20, 5–6, 1–71, 27–44, 
73–74, 29–64, 33–34, 48–63, 23–24, 26–28, 12–76, 50–54, 54–
56×(4), 60–62, 62–82, 11–92, 1–93, 92–93, and 91–92. In this 
case, Model 2 can obtain alternative optimal solutions for this 
problem with the same value of the objective function and up 
to 67 lines disconnected from the system. In addition, buses 92 
and 93 are disconnected from the system (bus 89 is not con-
nected in the solution of the expansion planning problem; there-
fore, it is not considered in the OTS problem). 

Table II shows the results obtained when Model 4 is used to 
solve the OTS problem for this system. Again, Model 3 pro-
vides the same results as Model 4, with similar computational 
times; the one exception occurs when 𝑐𝑠 = 0 US$/line, in 
which case, Model 3 provides the same solution as Model 2. 

By using Model 4 with 𝑐𝑠 = 0.0001 US$/line, it was possi-
ble to obtain a solution for the problem with the same opera-
tional cost of 434,749.44 US$/h found by Model 2, but by dis-
connecting only 23 lines, instead of 67. Although the computa-
tional time to solve the problem is 3.74 h, the optimal solution 
was found in 30.64 s, and the rest of the time was used by 
CPLEX only to analyze the remaining nodes of the branch and 
cut tree. 

๠e results for Model 4 also indicate that, by disconnecting 
only ten lines, instead of the 67 lines of the traditional OTS 
Model 2, it is possible to obtain a solution that is only 0.04% 
more expensive. 

๠e solution provided by Model 1 when constraint (3) is not 
considered in the formulation provides an operation cost of 
433,194.04 US$/h, which is lower than the cost obtained by 
Model 4 for OTS with 𝑐𝑠 = 0 US$/line. Obviously, this solution 
is infeasible for Model 4, which considers Kirchhoff’s voltage 
law. 

TABLE II 
RESULTS USING MODEL 4 FOR THE MODIFIED COLOMBIAN SYSTEM 

𝑐𝑠 
(US$/line) 

# of lines 
discon-
nected 

Operational 
cost (US$/h) 

Disconnected lines Time 
(h) 

0 46 434,749.44 14–31, 14–60×(2), 15–20, 24–75, 
35–44×(2), 7–78, 30–72, 
56–57×(2), 9–77, 59–67, 

8–59×(2), 3–6, 46–53, 60–69, 
32–34, 16–18, 31–33×(2), 31–60, 

47–54, 47–49×(2), 5–6, 12–17, 
1–71, 1–11, 64–65, 8–71, 48–63, 

8–9, 39–43, 39–40, 50–54, 
54–56×(4), 72–73, 55–82, 62–82, 

7–90, 1–93 

0.42 

0.0001 23 434,749.44 25–29, 14–31, 14–60×(2), 
2–4×(2), 7–78, 30–72, 1–59×(2), 

59–67, 3–6, 8–71, 48–63, 8–9, 
33–72, 50–54, 64–74, 54–56×(4), 

1–93 

3.74 

50 10 434,932.02 14–60×(2), 59–67, 1–3, 1–71×(2), 
1–8, 48–63, 50–54, 91–92 

2.75 

200 4 435,735.35 14–60×(2), 59–67, 50–54 0.19 

2000 0 438,755.37 – 0.00 

 

TABLE I 
RESULTS USING MODEL 4 FOR THE MODIFIED SOUTHERN BRAZILIAN SYSTEM 

𝑐𝑠 
(US$/line) 

# of lines 
disconnected 

Operational 
cost (US$/h) 

Disconnected lines Time 
(s) 

0 9 184,063.00 4–5, 20–23, 33–34, 37–39, 
40–42, 38–42×(3), 42–43 

0.23 

1 5 184,063.00 33–34, 37–39, 38–42×(3) 0.22 

50 4 184,084.47 35–38, 37–39, 38–42×(2) 0.12 

100 3 184,168.71 35–38, 38–42×(2) 0.11 

300 1 184,590.89 35–38 0.08 

600 0 185,111.80 – 0.06 

 



๠is same solution is obtained by Model 5 by allocating 
phase shifters at branches 19–61, 45–54, 45–50, 59–67, 18–58, 
19–22, 48–54, and 19–82, and Model 6, which does not discon-
nect any lines and allocates phase shifters at branches 19–61, 
45–54, 19–22, 19–58, 67–68, 48–54, 50–54, and 19–82. 

๠e results again confirm the hypothesis presented in this pa-
per for Braess’s paradox in the context of the OTS problem. 

V.  CONCLUSION 

In this work, we have presented new models for the optimal 
transmission switching (OTS) problem that provide a more sta-
ble performance than the models available in the literature. In-
deed, these models provide solutions with a reduced number of 
disconnected lines, eliminate the possibility of generating is-
landed partial solutions, and ensure that the final solution pro-
vided by each model is also connected. 

Braess’s paradox in the context of the OTS problem has also 
been consistently explained through mathematical models and 
experimental tests. Furthermore, it should be noted that, if we 
accept the hypothesis about Braess’s paradox presented in this 
work, then the new models will not provide solutions with is-
landed operation, and the system will be connected. Indeed, a 
line connecting two parts of the electrical system cannot be dis-
connected, since this line does not generate a nonfundamental 
loop and, therefore, does not interfere with Kirchhoff’s voltage 

law in the system. 
๠e proposals presented in this paper can be extended to 

more complex OTS problem formulations, such as the OTS 
problem considering the AC network operation model and the 
OTS problem considering reliability with the N–1 criterion. 
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