
Abstract—Modern market management systems continue to 

evolve due to the intentions to improve system security and 

reliability. This evolvement has been leading to a transition of 

market auction models from a deterministic structure with 

approximations on the reliability criteria (e.g., acquirement of 

contingency reserve through proxy reserve policies) to explicit 

representation of contingencies (e.g., estimation of post-

contingency states via participation factors and stochastic 

programming). This paper proposes a comprehensive framework 

to establish various procedures for evaluating: (i) transparency 

and incentive compatibility of different contingency modeling 

approaches, and (ii) efficiency of two possible stochastic market 

designs. First, the concept of securitized LMP is presented to solve 

the issue of how market participants should be compensated for 

providing N-1 reliability services. Then, pricing implications and 

settlements of three market models are compared: (i) a 

deterministic market model with proxy serve policies, (ii) state-of-

the-art market models with estimated post-contingency states, and 

(iii) a two-stage stochastic market model. Second, this paper 

evaluates two stochastic market models while accounting for 

potential adjustments from day-ahead scheduling to real-time 

operation: (i) minimizing expected operating cost of all N-1 

scenarios, and (ii) minimizing the base-case (or no contingency) 

cost. These analyses are conducted on IEEE 118-bus test system. 

 

Index Terms— Locational marginal price, market design, 

market settlements, N-1 reliability, stochastic market model. 

NOMENCLATURE 

Sets and Indices 

𝑐 Index of operating state; 0 for the base-case, non-

zero for contingencies. 

𝐶0, 𝐶𝑔, 𝐶𝑘 Set of scenarios representing base-case, 

generator, and line contingencies, respectively. 

𝑔 Index of generators, 𝑔 ∈ 𝐺. 

𝑔(𝑛) Set of generators connected to node n. 

k, ℓ Index of transmission lines, 𝑘, ℓ ∈ 𝐾. 

n Index of buses, 𝑛 ∈ 𝑁. 

t Index of time periods, 𝑡 ∈ 𝑇. 

Parameters 

𝑐𝑔
𝑁𝐿 , 𝑐𝑔

𝑆𝐷 , 𝑐𝑔
𝑆𝑈 No-load, shutdown and startup costs of unit 𝑔. 

𝐿𝑜𝑎𝑑𝑛𝑡  Load at bus 𝑛 at time period 𝑡. 
𝑃̅𝑔, 𝑢̅𝑔, 𝑟̅𝑔 Day-ahead scheduled power output, 

commitment, and contingency reserve of unit 𝑔. 
𝑃𝑔

𝑚𝑎𝑥 , 𝑃𝑔
𝑚𝑖𝑛 Maximum output and minimum output of unit 𝑔. 

𝑃𝑇𝐷𝐹𝑐𝑛𝑘
𝑟𝑒𝑓

 Power transfer distribution factor during 

operating state 𝑐 for line 𝑘 for an injection at n. 

𝐿𝑂𝐷𝐹𝑘ℓ
𝑟𝑒𝑓

 Line outage distribution factor representing the 

change in flow on line 𝑘 for outage of line 𝑙. 
𝑐𝑔

𝑝
 Variable cost of unit 𝑔 ($/MWh). 

𝑁1𝑘 N-1 contingency indicator of transmission line 𝑘; 0 

for a contingency on line 𝑘; otherwise, 1. 

𝑁1𝑔 N-1 contingency indicator of generator 𝑔; 0 for a 

contingency on generator 𝑔; otherwise, 1. 
𝑅𝑔

𝐻𝑅, 𝑅𝑔
10 Hourly and 10-min ramp rates of unit 𝑔. 

𝑅𝑔
𝑆𝑈 , 𝑅𝑔

𝑆𝐷 Startup and shutdown ramp rates of unit 𝑔. 

𝑈𝑇𝑔, 𝐷𝑇𝑔 Minimum up time and down time of unit 𝑔. 

𝜋𝐵𝐶  Probability of base-case operating state. 

𝜋𝑐 Probability of contingency operating state 𝑐. 

𝑃𝑘
𝑚𝑎𝑥 Thermal rating of transmission line k. 

𝑃𝑘
𝑚𝑎𝑥,𝑐

 Emergency thermal rating of transmission line 𝑘. 

Variables 

𝑃𝑔𝑐𝑡  Output of unit 𝑔 for operating state 𝑐 at period 𝑡. 

𝑃𝑛𝑐𝑡
𝑖𝑛𝑗

 Net power injection at bus 𝑛 for operating state 𝑐 at 

period 𝑡. 

𝐹𝐿0
𝑙𝑡 Flow on transmission line 𝑙 at period 𝑡. 

𝑟𝑔𝑡 Contingency reserve of unit 𝑔 at period 𝑡. 

𝑢𝑔𝑡 Unit commitment variable for unit 𝑔 at period 𝑡. 

𝑣𝑔𝑡, 𝑤𝑔𝑡  Startup and shutdown variables for unit 𝑔 at period 𝑡. 

𝑑𝑛𝑡 Demand at bus 𝑛 at period 𝑡. 

𝜆𝑛𝑐𝑡 Locational marginal price at bus 𝑛 for operating 

state time 𝑐 at period 𝑡. 

I. INTRODUCTION 

LECTRIC systems are considered the greatest 

achievement of the 20th century by the National Academy 

of Engineering [1]. Operational scheduling of this sophisticated 

engineering system necessitates consideration of both 

economical and reliability aspects. However, due to its 

complexity, it is non-trivial to model all system components, 

capture detailed characteristics of all system assets, and satisfy 

all reliability requirements all together. Hence, existing 

operational scheduling models are designed with 

approximations, e.g., DC approximation of power flow and 

approximations of the N-1 reliability mandate (i.e., loss of a 

single element, e.g. a generator or a non-radial transmission 

asset,  should not cause involuntary load shedding [2]). This 

mandate makes underlying market model stochastic in nature.  

Some of the existing electricity market operators solve day-

ahead (DA) security-constrained unit commitment (SCUC) 

models with an approximation of the N-1 reliability mandate 

via a proxy reserve requirement [3], where total of contingency 

reserves across the power system is forced to be greater than a 

certain threshold. Such SCUC models do not account for and 

guarantee post-contingency reserve deliverability.  

Furthermore, some other operators, e.g. Midcontinent 
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independent system operator (MISO), model zonal reserve 

requirements [4]. This model is unable to differentiate the 

generators within each zone regardless of their ability or 

inability to deploy reserve due to transmission system 

congestion. To compensate for the approximations in market 

models, the operator may intervene and make adjustments in 

the market solutions. Such interventions are referred to as out-

of-market corrections (OMC) [5] or exceptional dispatches [6] 

which include committing additional generation units or 

redispatching committed units. After an N-1 reliable dispatch 

solution is obtained, the settlements are calculated. The existing 

practice to calculate market settlements is to use the locational 

marginal prices (LMPs) from the DA SCUC (which have not 

been affected by the OMC) and the modified N-1 reliable 

dispatch solution [6]. Such market models are unable to account 

for the true value of reserve provided by each generator in a 

nodal basis and consequently might not incentivize resources to 

do as directed by the market. These inabilities to impact market 

prices will lead to a missing money problem (i.e., insufficient 

compensation received by generators) and cause a natural 

unfairness as market participants might not be dispatched fairly 

with these pricing schemes.  

In the electricity markets, compensation mechanisms are still 

a subject of debate. Some ISOs have capacity market auctions 

with estimated peak load and peak period prices in an attempt 

to compensate market participants for providing reliability 

services during peak periods [7]. Others, such as MISO, use 

convex hull pricing, which is an alternative pricing scheme in 

non-convex markets to clear the market while also minimizing 

the total uplift payments [8]. While these approaches are 

developed in an attempt to improve compensation mechanisms, 

the issue still persists; existing pricing schemes do not 

sufficiently reflect the true value of providing energy during 

contingencies, as these uncertain events are not explicitly 

included in the market models.  

Explicit representation of the contingencies via a two-stage 

stochastic extensive-form SCUC (ESCUC) enables inclusion of 

value of reliability services into the LMPs and can reduce the 

missing money problem. ESCUC optimizes the recourse 

decision variables (or corrective actions) while explicitly 

considering the network constraints for the post-contingency 

state, which ensures nodal reserve deployment considering 

physical network limitations. Pricing analyses for stochastic 

security-constrained approaches in the energy and reserve 

markets are presented in [9]–[12]. Reference [9] investigates a 

method to compensate generators for energy and reserve. The 

authors in [9] derive a pricing mechanism where the generators 

are compensated for the modeled N-1 scenarios. However, 

results are shown for only a single time period while the 

formulated model allows for load shedding through a fixed cost. 

It is worth noting that the fixed cost of load shedding is hard to 

estimate since (1) it is not necessarily proportional to bids 

submitted to the market as energy bids, and (2) it is not the same 

(fixed cost) for different sectors (industry, domestic, 

commercial).  The authors in [10] and [11] formulate a multi-

period stochastic SCUC model that takes into account the post-

contingency states for pre-selected contingencies, while 

allowing load-shedding. In [12], the authors utilize a two-stage 

stochastic linear program to propose different methods to 

compensate generators. The models presented in [9]–[12] allow 

for load-shedding through the value-of-lost-load (VOLL); 

however, this approach is subjective since the obtained results 

are sensitive to the choice of VOLL. Additionally, a 

comprehensive economic evaluation (e.g., generation revenue, 

generation rent, load payment, and congestion rent) for the 

stochastic two-stage SCUC and its comparison with other 

contingency modeling approaches have neither been included 

nor analyzed in prior work.  

In addition, prior work proposed approaches based on the 

estimated post-contingency states using pre-determined 

participation factors. These approaches fill the gap between the 

traditional deterministic and the stochastic models by explicitly 

representing contingencies without any second-stage recourse 

decisions. For instance, line outage distribution factors 

(LODFs) can be used to explicitly model the transmission line 

contingencies [13]. Another example is CAISO, which intends 

to explicitly enforce the post-contingency transmission 

constraints for the generator contingencies using generator loss 

distribution factors (GDF) [14]. Also [15] and [16] have 

proposed a set of G-1 security constraints, thereby, contingency 

reserves are allocated more efficiently in the system with 

respect to post-contingency dispatch feasibility. With the 

explicit modeling of contingency events within the state-of-the-

art market auction models, the industry is actually moving from 

the deterministic market models to a stochastic model. With 

such stochastic modeling, it is desirable for LMPs to reflect the 

value and quality of services provided by market participants in 

response to contingencies. However, there are unsolved issues 

regardless of the choice of uncertainty modeling: generators 

compensation for providing N-1 reliability services as well as 

impact of contingency modeling on prices.  

Apart from the above issue, in the context of stochastic 

market designs, majority of prior work adopt an objective 

function that optimizes the base-case along with the expected 

cost of the post-contingency states [10], [12], [17]–[19]. 

However, there is a number of reasons why optimizing over an 

expected cost may not be the best choice. Firstly, during 

emergency conditions in real-time (RT), the operator may not 

exactly follow the proposed corrective actions since the 

intention during an emergency condition is not to minimize 

cost; rather, the goal is to recover from the event as quickly as 

possible to prevent future unforeseen problems that could lead 

to cascading outages. Furthermore, it is difficult to accurately 

predict the probability of outages, which itself can lead to 

different pricing implications and market solutions. There are 

other studies [9], [20], and [21] that minimize the base-case 

costs as their objective functions, while the model is still a 

stochastic two-stage SCUC with explicit representation of post-

contingency states. References [9], [10], [12], [17]–[21] aim to 

improve stochastic market  models, whereas the proper design 

of objective function for these models has neither been analyzed 

nor included in prior work. 

The above literature survey reveals a few gaps that need 

additional attention and further work. To the best of authors’ 



knowledge, very limited efforts have been done on how various 

choices of modeling contingency events affect the potential 

operational efficiency, incentive compatibility, market 

transparency, and market settlement policies in the markets 

with inherent stochastic nature. In addition, no prior work has 

been conducted about how to formulate the objective function 

that maintains efficiency for the stochastic markets with the 

uncertain contingency events. The primary contributions of this 

work are as follows: 

• Impacts of contingency modeling strategies on electricity 

market outcomes, pricing, and settlements are analyzed. 

This paper leverages the duality theory to calculate LMP in 

a stochastic market model; this theoretical method 

confirms that the value of providing N-1 reliability services 

can be reflected in the LMPs of such stochastic market 

models. This pricing scheme is then compared to two state-

of-the-art market auction models, where achieving N-1 

reliable dispatch is postponed to OMC. Also, the market 

settlements of these models are calculated and compared. 

With these analyses, this paper seeks to inform market 

stakeholders about the impacts of contingency modeling 

approaches in the DA market process and their 

implications on pricing and settlements.  

• The choices of objective function for the stochastic market 

models are analyzed; a stochastic market design with an 

expected cost objective function is examined and 

compared with the base-case costs minimization objective 

function from two aspects: (i) realized cost during N-1 

contingencies and (ii) effects of inaccurate calculation of 

the probabilities on market outcomes. 

It is worth noting that the aim of this paper is not to develop 

a new market design; it is rather to propose a framework to 

evaluate existing market models and stochastic market models 

in terms of potential operational efficiency, incentive 

compatibility, fair pricing, and transparency. 

The rest of the paper is organized as follows. Section II 

presents model formulation. Section III focuses on pricing 

implication of contingency modeling approaches. Section IV 

evaluates choices of objective function for stochastic market 

frameworks. Finally, section V concludes the paper. 

II. MODEL FORMULATION 

Previous studies in the area of managing discrete uncertain 

events (i.e., contingencies) in the SCUC problem can be 

categorized as follows: (i) proxy reserve policies, (ii) modeling 

system response via participation factors, e.g. LODF and GDF, 

(iii) stochastic programming approaches, e.g., ESCUC, and (iv) 

chance-constrained optimization and robust optimization. The 

main focus of this work is on managing uncertainty through (i), 

(ii), and (iii) above. In the following three subsections, model 

formulations related to these approaches are presented.  

A. SCUC with deterministic proxy reserve requirement 

A SCUC market model with deterministic proxy reserve 

requirement is presented in (1)-(19), which is similar to the 

model in [15]. The objective function, minimizing total 

operating costs, is presented in (1). In this formulation, 

constraints (2) and (3) model the relationship of the unit 

commitment variables with the startup and shutdown variables, 

respectively. Constraints (4)-(7) model the binary commitment 

(𝑢𝑔𝑡) decision and the startup (𝑣𝑔𝑡) and shutdown (𝑤𝑔𝑡) 

decisions, respectively. Minimum up and down time constraints 

are enforced by (8) and (9). Constraints (10) and (11) ensure 

ramp rate limits. Constraint (12) guarantees balance between 

the power injection and withdrawal at every bus and constraint 

(13) ensures the energy balance between load and generation 

across the system. Constraint (14) models the transmission line 

limits. The generator output limits are presented by (15) and 

(16), while constraint (17) limits the spinning reserve to the 10-

minute generators’ ramp rate capability. Proxy reserve 

requirements are modeled through (18)-(19). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑐𝑔
𝑝

𝑃𝑔0𝑡𝑡𝑔 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑐𝑔
𝑆𝐷𝑤𝑔𝑡) (1) 

Subject to 

𝑣𝑔𝑡 ≥ 𝑢𝑔𝑡 − 𝑢𝑔𝑡−1, ∀𝑔, 𝑡 ≥ 2 (2) 

𝑤𝑔𝑡 ≥ 𝑢𝑔𝑡−1 − 𝑢𝑔𝑡, ∀𝑔, 𝑡 ≥ 2 (3) 

𝑣𝑔𝑡 ≥ 𝑢𝑔𝑡  , 𝑤𝑔𝑡 = 0, ∀𝑔, 𝑡 = 1 (4) 

0 ≤ 𝑣𝑔𝑡 ≤ 1 , ∀𝑔, 𝑡 (5) 

0 ≤ 𝑤𝑔𝑡 ≤ 1 , ∀𝑔, 𝑡 (6) 

𝑢𝑔𝑡 ∈ {0,1}, ∀𝑔, 𝑡 (7) 

∑ 𝑣𝑔𝑠
𝑡
𝑠=𝑡−𝑈𝑇𝑔+1 ≤ 𝑢𝑔𝑡, ∀𝑔, t ≥ 𝑈𝑇𝑔 (8) 

∑ 𝑤𝑔𝑠
𝑡
𝑠=𝑡−𝐷𝑇𝑔+1 ≤ 1 − 𝑢𝑔𝑡, ∀𝑔, 𝑡 ≥ 𝐷𝑇𝑔 (9) 

𝑃𝑔0𝑡 − 𝑃𝑔0𝑡−1 ≤ 𝑅𝑔
𝐻𝑅𝑢𝑔𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔𝑡, ∀𝑔, 𝑡 (10) 

𝑃𝑔0𝑡−1 − 𝑃𝑔0𝑡 ≤ 𝑅𝑔
𝐻𝑅𝑢𝑔𝑡 + 𝑅𝑔

𝑆𝐷𝑤𝑔𝑡 , ∀𝑔, 𝑡 (11) 

∑ 𝑃𝑔0𝑡𝑔𝜖𝑔(𝑛) − 𝐿𝑜𝑎𝑑𝑛𝑡 = 𝑃𝑛0𝑡
𝑖𝑛𝑗

, ∀𝑛, 𝑡 (12) 

∑ 𝑃𝑛0𝑡
𝑖𝑛𝑗

𝑛 = 0, ∀𝑐, 𝑡 (13) 

−𝑃𝑘
𝑚𝑎𝑥 ≤ ∑ 𝑃𝑛0𝑡

𝑖𝑛𝑗
𝑛 𝑃𝑇𝐷𝐹0𝑛𝑘

𝑟𝑒𝑓
≤ 𝑃𝑘

𝑚𝑎𝑥, ∀𝑘, 𝑡 (14) 

𝑃𝑔0𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔, 𝑡 (15) 

𝑃𝑔
𝑚𝑖𝑛 𝑢𝑔𝑡 ≤ 𝑃𝑔0𝑡 , ∀𝑔, 𝑡 (16) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔, 𝑡 (17) 

∑ 𝑟𝑗𝑡 ≥ 𝑃𝑔0𝑡 + 𝑟𝑔𝑡𝑗∈𝐺 , ∀𝑔, 𝑡 (18) 

∑ 𝑟𝑔𝑡 ≥ 𝜂% ∑ 𝐿𝑜𝑎𝑑𝑛𝑡𝑛𝑔 , ∀𝑡 (19) 

B. SCUC with line contingency modeling using LODF 

Today, some ISOs use LODF to explicitly model non-radial 

line contingencies in the DA SCUC model without adding any 

second-stage recourse variables [13]. The LODFs are 

participation factors, which indicate redistribution of flow on 

the transmission lines (e.g., line 𝑘) after outage of a line (e.g., 

line ℓ) [5]. The SCUC model that incorporates explicit 

representation of the transmission contingency using LODF is 

presented  in (20)-(23). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑐𝑔
𝑝

𝑃𝑔0𝑡𝑡𝑔 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑐𝑔
𝑆𝐷𝑤𝑔𝑡) (20) 

Subject to 

Constraints (2)-(19) (21) 

−𝑃𝑘
𝑚𝑎𝑥,𝑐 ≤ ∑ 𝑃𝑛0𝑡

𝑖𝑛𝑗
𝑛 𝑃𝑇𝐷𝐹0𝑛𝑘

𝑟𝑒𝑓
+ 𝐿𝑂𝐷𝐹𝑘ℓ

𝑟𝑒𝑓
𝐹𝐿0

𝑙𝑡 ≤ 𝑃𝑘
𝑚𝑎𝑥,𝑐

, 

∀𝑘 ≠ ℓ, 𝑡  (22) 

𝐹𝐿0
𝑙𝑡 = ∑ 𝑃𝑛0𝑡

𝑖𝑛𝑗
𝑛 𝑃𝑇𝐷𝐹0𝑛𝑙

𝑟𝑒𝑓
, ∀ℓ, 𝑡 (23) 

C. ESCUC market model 

The ESCUC problem is formulated as a two-stage stochastic 

program. The scenarios represent base-case pre-contingency 

scenario and contingency scenarios (i.e., the loss of non-radial 



transmission line and generator) with their corresponding 

probabilities. This market model is defined by (24)-(35). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝜋𝐵𝐶𝑐𝑔
𝑝

𝑃𝑔0𝑡𝑡𝑔 + ∑ ∑ (𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 +𝑡𝑔

𝑐𝑔
𝑆𝐷𝑤𝑔𝑡) + ∑ ∑ ∑ 𝜋𝑐𝑐𝑔

𝑝
𝑃𝑔c𝑡𝑡𝑐≠𝐶0𝑔  (24) 

Subject to 

Constraints (2)-(11) and (15) (25) 

∑ 𝑃𝑔0𝑡𝑔𝜖𝑔(𝑛) − 𝑑𝑛𝑡 = 𝑃𝑛0𝑡
𝑖𝑛𝑗

, ∀𝑛, 𝑡 [𝜆𝑛0𝑡] (26a) 

∑ 𝑃𝑔𝑐𝑡𝑔𝜖𝑔(𝑛) − 𝑑𝑛𝑡 = 𝑃𝑛𝑐𝑡
𝑖𝑛𝑗

, ∀𝑛, 𝑐 ∈ 𝐶𝑔, 𝑡 [𝜆𝑛𝑐𝑡] (26b) 

∑ 𝑃𝑔𝑐𝑡𝑔𝜖𝑔(𝑛) − 𝑑𝑛𝑡 = 𝑃𝑛𝑐𝑡
𝑖𝑛𝑗

, ∀𝑛, 𝑐 ∈ 𝐶𝑘, 𝑡 [𝜆𝑛𝑐𝑡] (26c) 

𝑑𝑛𝑡 = 𝐿𝑜𝑎𝑑𝑛𝑡, ∀𝑔, 𝑡 [𝜆𝑛𝑡
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑖𝑧𝑒𝑑] (27) 

∑ 𝑃𝑛𝑐𝑡
𝑖𝑛𝑗

𝑛 = 0, ∀𝑐, 𝑡 (28) 

−𝑃𝑘
𝑚𝑎𝑥 ≤ ∑ 𝑃𝑛𝑐𝑡

𝑖𝑛𝑗
𝑛 𝑃𝑇𝐷𝐹0𝑛𝑘

𝑟𝑒𝑓
≤ 𝑃𝑘

𝑚𝑎𝑥, ∀𝑘, 𝑐 ≠ 𝐶𝑘 , 𝑡 (29) 

−𝑃𝑘
𝑚𝑎𝑥,𝑐𝑁1𝑘 ≤ ∑ 𝑃𝑛𝑐𝑡

𝑖𝑛𝑗
𝑛 𝑃𝑇𝐷𝐹𝑐𝑛𝑘

𝑟𝑒𝑓
≤ 𝑃𝑘

max,𝑐𝑁1𝑘, ∀𝑘, 𝑐 ∈ 𝐶𝑘, 𝑡 

 (30) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡𝑁1𝑔 ≤ 𝑃𝑔𝑐𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡𝑁1𝑔, ∀𝑔, 𝑐, 𝑡 (31) 

𝑃𝑔𝑐𝑡 − 𝑃𝑔0𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡  , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐, 𝑡 (32) 

𝑃𝑔0𝑡 − 𝑃𝑔𝑐𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐, 𝑡 (33) 

𝑃𝑔𝑐𝑡 − 𝑃𝑔0𝑡 ≤ 𝑟𝑔𝑡 , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐, 𝑡 (34) 

𝑃𝑔0𝑡 − 𝑃𝑔𝑐𝑡 ≤ 𝑟𝑔𝑡 , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐, 𝑡 (35) 

In the above formulation, the objective is to minimize the 

expected operating cost over a set of uncertain scenarios as 

presented in (24). The node balance constraint (see (26a-c)) is 

separated to distinguish when the constraint represents the base-

case (26a), G-1 generation contingency scenarios (26b), and 

finally T-1 transmission contingency scenarios (26c). 

Constraint (28) enforces energy balance between the supply and 

the demand at the system level. Transmission line capacity limit 

for the base-case scenario and the G-1 generation contingency 

scenarios is constrained by (29), whereas that for T-1 

transmission contingency scenarios is imposed by (30). The 

generator output limit constraint is represented by (31). Finally, 

deviation of an online generator output level (see (32)-(35)) 

from the base-case dispatch to the post-contingency dispatch is 

limited by its reserve (𝑟𝑔𝑡) and by its 10-minute ramp rate (𝑅𝑔
10). 

Note that for each scenario, only one of 𝑁1𝑘 and 𝑁1𝑔 is set to 

0 while the rest is set to 1. 

III. PRICING IMPLICATIONS OF CONTINGENCY MODELING 

APPROACHES  

The market model presented in Sections II.A and II.B give 

market solutions which may not be N-1 and G-1 reliable, 

respectively. To achieve N-1 reliable solutions, the market 

operators implement OMC on their market solutions [6]. To 

replicate this practice, this paper implements OMC on the 

output of market models from Sections II.A and II. B. The OMC 

approach used in this work is similar to [6], [15] and [22]. In 

this approach, the generation units that are committed in the DA 

SCUC market model are not allowed to be de-committed, and 

their dispatches are limited to the original approximated DA 

solution by their 10-minute ramp rate limit. However, 

modifying the dispatch and the commitment of additional units 

is allowed in order to ensure reliable operation.  

After an N-1 reliable dispatch solution is obtained through 

OMC approach, the settlements are calculated using DA market 

LMP [6]. However, these settlements may not reflect the true 

value of N-1 reliability services due to the discrepancy between 

LMP calculation and final dispatch solution. Thus, such 

practice may not be incentive compatible for market 

participants, especially those who provide reliability services.  

On the other hand, since all contingencies are represented 

endogenously in the ESCUC market model (Section II.C), the 

obtained solution is expected to be N-1 reliable. For this model, 

a pricing mechanism can be obtained to properly incentivize all 

market participants for providing energy and contingency 

reserve. In this paper, the concept of securitized LMP (SLMP) 

is presented to better capture the value of reliability services. 

The SLMP is the dual variable of (27), i.e., 𝜆𝑛𝑡
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑖𝑧𝑒𝑑 . Since 

ESCUC model is a mixed-integer linear program, its dual 

formulation is not well-defined. However, after fixing the 

binary variables to their values at the best solution found, the 

linear model of ESCUC is achieved, which has a well-defined 

dual formulation. Equation (36) is obtained by deriving the dual 

formulation from the ESCUC linear primal problem, which 

shows the relationship between LMPs from the base-case (26a), 

contingency scenarios (26b)-(26c), and the SLMP. 

𝜆𝑛𝑡
𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑖𝑧𝑒𝑑 = 𝜆𝑛0𝑡 + ∑ 𝜆𝑛𝑐𝑡𝑐∈𝐶𝑔

+ ∑ 𝜆𝑛𝑐𝑡𝑐∈𝐶𝑘
, ∀𝑛, 𝑡 (36) 

It is worth mentioning that to obtain the relation presented in 

(36), the demand is treated as a variable in (26a-c), and the 

model enforces 𝑑𝑛𝑡 = 𝐿𝑜𝑎𝑑𝑛𝑡 in (27). The first term in the 

right-hand side of (36) represents energy and congestion 

components of SLMP in pre-contingency state, while the 

second and third terms represent energy and congestion 

components of SLMP in post-contingency states for the 

generators and non-radial transmission lines contingencies, 

respectively. Therefore, the SLMP inherently captures the true 

value of reserves in the post-contingency state on a nodal basis. 

The pricing scheme presented here from the ESCUC market 

model has the advantage that it permits the ISOs to gauge how 

the market participants should be compensated for providing 

contingency-based reserve.  

The market settlements are compared for three market 

models, i.e., models in Sections II. A, II. B, and II.C. Fig. 1 

illustrates the procedure for comparing these market models.  

Out-of-market corrections

Comparing results

Settlements: LMPs 
of model I and 

dispatch after OMC 

Settlements: LMPs 
of model II and 

dispatch after OMC 

Settlements: SLMPs 
and dispatch of 

model III  

Model I: SCUC 
with Proxy reserve  

Model II: SCUC 
with LODF   

Model III: 

ESCUC 

 
Fig. 1: Procedure for pricing implications comparison of market models. 

A. Testing & Results of pricing implication 

CPLEX v12.8 are used to perform all simulations on a 

computer with an Intel Core i7 CPU @ 2.20 GHz, 16 GB RAM, 

and 64-bit operating system. A modified 118-bus IEEE test 

system [23] is used to implement the market auction models, 

which has 54 generators, 186 lines (177 non-radial), and 91 

loads. Set 𝐶𝑔 and 𝐶𝑘 include N-1 contingencies for all 

generators and non-radial transmission line elements, 

respectively. Consequently, there are 232 scenarios modeled in 



the ESCUC market auction model, including the base-case 

scenario, 54 generator contingencies and 177 non-radial 

transmission line contingencies. The probability of 

contingencies is calculated from historical failure rates [24]. 

The probability of base-case is considered to be 0.946 (i.e., 

𝜋𝐵𝐶=0.946) in order to make the summation of probabilities 

over all scenarios equals to 1. The relative MIP gap is set to 0%. 

The three market auction models, i.e., SCUC with proxy reserve 

requirements (abbreviated as “SCUC-Prxy”), SCUC with 

transmission contingency modeled using LODF (abbreviated as 

“SCUC-LODF”), and ESCUC (abbreviated as “SCUC-Extsv”), 

are compared in terms of operational cost, incentive 

compatibility, and market settlements.  

 
Fig. 2: Final costs comparison for N − 1 reliable solutions. 

Fig. 2 compares the final costs for the different market 

auction models. This cost includes the SCUC cost and OMC 

cost. OMC is not performed for SCUC-Extsv as this model 

explicitly represents contingencies using recourse decision 

variables and produces an N-1 reliable solution. The solution of 

the SCUC-Extsv market auction model has the lowest final cost 

(benchmark solution) since its scheduled reserve is deliverable 

in post-contingency states. The SCUC-LODF results in higher 

SCUC cost compared to the SCUC-Prxy, but it requires less 

discretionary changes or uneconomic adjustments (OMC 

actions) to achieve N-1 reliability; thus, the SCUC-LODF 

results in less OMC cost. From the reliability point of view, it 

can be concluded that the SCUC-LODF provides a solution that 

is closer to N-1 reliable SCUC-Extsv solution. 

LMPs of the market models are studied in Fig. 3 for hour 22 

across the buses. Based on this figure, as the market model 

moves away from SCUC-Prxy toward capturing more accurate 

representation of the contingency events, the prices are 

increased from bus #67 to bus #109, and also are mostly higher 

in bus #1-67. The difference between prices is due to the new 

elements of LMP, i.e., marginal security elements, which 

represent the value of reserve provision in the modeled 

contingencies. More specifically, the deterministic model, 

which utilizes proxy reserve to achieve N-1 reliability, does not 

capture the true value of achieving N-1 reliability due to the fact 

that the obtained market LMPs do not adequately reflect the 

value of delivering reserve in the post-contingency state. 

Accordingly, the LMPs tend to be lower in this model. In this 

case, the new committed units after OMC may not be fully 

compensated for providing ancillary services, which can be a 

reason of missing money issue. This will cause a natural 

unfairness in market strategy as  market participants might not 

be compensated fairly with this mechanism. On the other hand, 

the SCUC-Extsv inherently captures the different values of 

reserves offered by various entities, as it reflects the value of 

delivering reserve in the post-contingency state on a locational 

basis, so the SLMPs tend to be higher. This result occurs 

because the model explicitly checks to see whether the reserve 

is deliverable for each contingency. Overall, these analyses 

confirm that with more accurate representation of 

contingencies in the market auction models, the reliability and 

associated products are priced more accurately. This would 

result in fair and accurate market signals for market participants 

and improve overall market efficiency. 

Fig. 4 compares the market auction models with respect to 

market settlements. It can be seen that the generators revenue 

and load payment have the highest values with the SCUC-Extsv 

model, while they have the lowest value with the SCUC-Prxy. 

The generation rent is calculated from subtracting variable cost 

of units from their revenues, which also increases as the models 

have more explicit and accurate representation of the 

contingency events. From these results, it can be said that more 

accurate modeling of N-1 requirement in market models results 

in increased profit of generators. 

 
Fig. 3: Pricing comparison of SCUC-Prxy, SCUC-LODF, and SCUC-Extsv. 

 
Fig. 4: Settlements for different market action models.  

IV. OBJECTIVE FUNCTION DESIGN AND FORMULATION 

EVALUATION FOR STOCHASTIC MARKET MODELS 

ESCUC model presented by (24)-(35) minimizes the 

expected cost of all scenarios (called ESCUC-expected model 

in rest of this paper), as presented in (24). However, during 

emergency conditions in RT, the system operators implement 

corrective actions, which are aimed to eliminate violations  as 

quickly as possible (not to minimize operation cost) in order to 

recover from the contingency and to regain N-1 reliability. 

These corrective actions may not necessarily be the lowest cost 

options. Thus, minimizing post-contingency cost in the DA 

may result in a solution, which anyways will not be fully 

implemented. This discrepancy can result in inefficiency of 

stochastic market model with expected cost minimization 

objective. Furthermore, minimizing expected cost may result in 

deviation of the base-case schedule, which has the highest 

probability of occurrence, from its optimal solution. In short, 

such models may generate operational schedules with higher 

base-case cost with no guarantee of reducing operating costs 
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during contingencies. Additionally, inaccurate estimation of the 

probability of the asset outages can lead to different pricing and 

market outcomes.  

The aforementioned issues create a need for detailed 

examination of the objective function design for the stochastic 

market models. An alternative option for ESCUC is to 

minimize only the base-case costs including generator 

production costs, the startup costs, and the shutdown costs as 

shown in (37), with the same set of constraints as (25)-(35). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑐𝑔
𝑝

𝑃𝑔0𝑡 + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑐𝑔
𝑆𝐷𝑤𝑔𝑡)𝑡𝑔  (37) 

The above model for stochastic market is called ESCUC-base 

market model throughout this paper. This model minimized 

(37) while searching for a feasible solution for pre- and post-

contingency states. This paper proposes a framework to identify 

an effective stochastic market design by comparing two 

ESCUC models, i.e., ESCUC-expected and ESCUC-base, from 

the aforementioned aspects. The detailed analyses are presented 

in the following sub-sections.  

A. Realized N-1 final operating cost  

As discussed, intention during an emergency condition is not 

to minimize cost; rather, the goal is to recover from the event as 

quickly as possible by minimizing violation. In this section, 

contingency analysis with violation minimization is performed, 

which mimics the operator’s actions in emergency conditions. 

The realized N-1 operating costs for the two ESCUC models are 

calculated using the dispatch from contingency analysis tool; 

these costs reflect the corrective generation dispatch actions 

after the N-1 contingencies. Then, the realized N-1 costs for the 

dispatch from two ESCUC models are compared.  Fig. 5 

demonstrates the procedure performed for this analysis.   

Market solutions

Model 1: ESCUC-base Model 2: ESCUC-expected 

Realized N-1 cost of model 2 

N-1 contingency analysis (violation minimization)

Realized N-1 cost of model 1 

Compare actual realized N-1 

costs of model 1 & 2 
 

Fig. 5: Procedure of comparison of two models for actual realized N-1 costs. 

The N-1 contingency analysis tool is a linear programming 

problem which is solved independently at each time period 𝑡 for 

each operating state 𝑐 ∈ 𝐶𝑔, 𝐶𝑘. The formulation for 

contingency analysis is given below. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝐿𝑆𝑛
+ + 𝐿𝑆𝑛

−)𝑛  (39) 

−𝑃𝑔 ≤ (𝑟𝑔̅ − 𝑃̅𝑔)𝑢̅𝑔𝑁1𝑔, ∀𝑔 (40) 

𝑃𝑔 ≤ (𝑟𝑔̅ + 𝑃̅𝑔)𝑢̅𝑔𝑁1𝑔, ∀𝑔 (41) 

𝑃𝑔
𝑚𝑖𝑛𝑢̅𝑔𝑁1𝑔 ≤ 𝑃𝑔 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢̅𝑔𝑁1𝑔, ∀𝑔 (42) 

𝑃𝑛
𝑖𝑛𝑗

= ∑ 𝑃𝑔 − 𝐿𝑜𝑎𝑑𝑛 + 𝐿𝑆𝑛
+ − 𝐿𝑆𝑛

−
𝑔∈𝑔(𝑛) , ∀𝑛 (43) 

∑ 𝑃𝑛
𝑖𝑛𝑗

= 0𝑛  (44) 

−𝑃𝑘
𝑚𝑎𝑥,𝑐𝑁1𝑘 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛𝑘

𝑟𝑒𝑓
𝑃𝑛

𝑖𝑛𝑗
≤ 𝑃𝑘

𝑚𝑎𝑥,𝑐𝑁1𝑘𝑛 , ∀𝑘 (45) 

𝐿𝑆𝑛
−, 𝐿𝑆𝑛

+ ≥ 0, ∀𝑛 (46) 

Positive slack variables, i.e., 𝐿𝑆𝑛
− for load shedding and 𝐿𝑆𝑛

+ 

for load surplus, indicate the post-contingency security 

violations. Consequently, the contingency analysis objective 

(39) is to minimize the load shed and the load surplus, when an 

outage occurs. Constraints (40) and (41) restrict the deviation 

of the power generation from the pre-contingency to the post-

contingency by the scheduled reserve obtained from the DA 

ESCUC models. The generator output limit constraint in post-

contingency state is represented by (42). The node balance 

constraint in the post-contingency state is ensured by (43), 

while (44) ensures power balance at system level. Constraint 

(45) limits the post-contingency transmission line flows to be 

within the emergency limits for generation and transmission 

contingencies. In model (39)-(46), only one 𝑁1𝑘 and 𝑁1𝑔 is set 

to zero while the rest of 𝑁1𝑘 and 𝑁1𝑔 are equal to one. 

B. Impacts of imprecise estimation in probabilities 

The second issue that should be investigated when it comes 

to design of a stochastic market model is the implications of 

inaccuracy in the estimation of probability of outages. These 

analyses are also very necessary to be performed as it is difficult 

to exactly estimate the probability of outages, which itself can 

lead to different pricing implications and market solutions. In 

order to realize the impact of this inaccuracy, procedure shown 

in Fig. 6 is proposed in this paper.  

Market solutions

Model 1: ESCUC-base Model 2: ESCUC-expected 

Generate cases via monte Carlo simulation:
Error in probabilities

Compare new costs of model 

1 & 2 

New costs of model 2 due 
to probabilities modification 

New costs of model 1 due 
to probabilities modification 

 
Fig. 6: Procedure of analysis of imprecise probabilities estimation. 

C. Testing & Results of objective function design   

IEEE 118-bus test system that was explained in detail at 

section III.A is used to perform the simulations. First, ESCUC-

base and ESCUC-expected models are solved with relative MIP 

gap set to 0% to compare their benchmark solutions. The 

formulations are evaluated based on DA operational scheduling 

cost and the realized operation cost during N-1 contingency 

scenarios (i.e., contingency analysis with violation 

minimization). Fig. 7 (a) compares the two different costs, i.e., 

original costs versus realized N-1 costs for two market auction 

models. It is clear that the original DA expected costs of the 

ESCUC-expected model are lower than those of ESCUC-base 

model, as the objective function of the ESCUC-expected is to 

minimize the costs over all scenarios while the ESCUC-base 

minimizes just the base-case costs. However, the realized N-1 

costs of two models are almost the same (the difference is only 

0.002 percent). These results reveal that minimizing post-

contingency costs in the ESCUC-expected does not represent 

operators’ actions and may not result in lower N-1 realized costs 

in the emergency conditions. Similar results are obtained when 

the scenario costs of the two models are compared as shown in 

Fig. 7 (b). It is pertinent to note that the scenario costs include 

the expected variable cost of generators for post-contingency 

scenarios (all scenarios excluding the base-case scenario).   

Moreover, the industry practice of considering a non-zero 

MIP gap is implemented here to achieve 30 various solutions 

(all within 1% MIP gap) for the two ESCUC models, for the 

sake of further comparison. By pairing the solutions of two 

ESCUC models, the total number of pairs is equal to 



30×30=900, each of which includes a possible markets 

outcome from two different models to be compared.  

Table I lists the percentage of pairs that the ESCUC-base 

model results in lower cost compared to ESCUC-expected. It 

can be observed that, as expected, the DA base-case cost of 

ESCUC-base is lower in 85 percent of pairs compared to the 

ESCUC-expected model. Fig. 8 (a) presents the histogram of 

costs difference calculated from subtracting the base-cost cost 

of ESCUC-base from that of ESCUC-expected. It can be seen 

that the density of the pairs cost difference tends to be toward 

positive values. Moreover, Table I presents that the original DA 

expected costs of ESCUC-base are lower in 30 percent of the 

pairs as expected (see Fig. 8 (b) for histogram illustration of 

difference in original DA expected costs). Finally, Table I 

shows that in almost 86 percent of pairs, the realized N-1 costs 

of ESCUC-base model are less than those of ESCUC-expected 

model during N-1 contingency scenarios. Fig. 8 (c) illustrates 

realized N-1 costs difference (i.e., realized {𝑁 −
1} costsESCUC−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − realized {𝑁 − 1} costsESCUC−𝑏𝑎𝑠𝑒) 

for the 900 pairs.  
TABLE I: PERCENTAGE OF PAIRS WITH LOWER COST FOR ESCUC-BASE MODEL 

COMPARED TO ESCUC-EXPECTED MODEL. 

Type of cost Percentage 

DA base-case costs 85% 

Original DA expected costs 30% 

Realized N-1 costs (violation minimization) 86% 

The summarized results in Table I as well as Fig. 8 confirm 

that the realized N-1 costs from the DA dispatch solution of 

ESCUC-base are lower than the realized N-1 costs of ESCUC-

expected in most of the pairs regardless of N-1 cost 

minimization in the ESCUC-expected. Moreover, the base-case 

costs of ESCUC-base are lower than those of the ESCUC-

expected in the most of  pairs. As one can see, the ESCUC-base 

performs better in general compared to the ESCUC-expected 

model based on the base-case costs and realized N-1 final costs.  

Moreover, the impact of inaccuracy in the contingency 

probability estimation is evaluated. It is assumed that there is 

an error in the estimation of probabilities that follows a 

Gaussian distribution with zero mean, and the standard 

deviation of 20% and 40%. For each standard deviation, 2000 

cases are generated, each of which includes a set of 231 

contingency probabilities (for generator and non-radial 

transmission line contingencies). Then, the probability of base 

case is calculated through following equation.   

𝜋𝐵𝐶,𝑠 = 1 − ∑ 𝜋𝑐,𝑠𝑐∈𝐶𝑘
− ∑ 𝜋𝑐,𝑠𝑐∈𝐶𝐺

, ∀𝑠 (47) 

where 𝑠 is the index of cases, and 𝜋𝐵𝐶,𝑠 and 𝜋𝑐,𝑠 are 

probability of base-case scenario and contingency event 𝑐 in 

case 𝑠. Since the range of probability of base-case scenario is 

more known for the system operators for a specific electric 

system, the cases that lead to a base-case probability out of the 

range 0.948 and 0.944 have been eliminated (perfect estimation 

has a base-case probability of 0.946). The 2000 cases are 

applied based on the procedure presented in Fig. 6 to each of 

the 30 solutions of ESCUC-base and ESCUC-expected models 

mentioned earlier. Therefore, there is 30×2000=60,000 

solutions (costs) for each market model.  By pairing the 

solutions of two different stochastic market model, total number 

of pairs is equal to 3,600,000,000, i.e., 60,000×60,000. It is 

worth mentioning that each pair has two market outcomes, one 

from ESCUC-base model and one from ESCUC-expected that 

can be compared.  

TABLE II: EFFECTS OF ERROR IN ESTIMATION OF PROBABILITIES ON 

PERCENTAGE OF PAIRS THAT ESCUC-BASE MODEL HAS LOWER COST 

COMPARED TO ESCUC-EXPECTED MODEL. 

 Perfect 

estimation 

20% error in 

estimation 

40% error 

estimation 

% of pairs with lower 

original expected cost  
30 36.6 43.0 

% of pairs with lower 

scenario cost 
0 7.8 22.2 

Table II presents the impacts of error in estimation of 

probabilities on the percentage of the pairs that ESCUC-base 

model has lower cost (original expected cost and scenario cost) 

compared to the ESCUC-expected model. From Table II, it can 

be seen that the percentage of pairs where ESCUC-base model 

has lower original expected cost increase from 30% to 36.6% 

and 43% as the accuracy in estimation of probabilities moves 

from being perfect to have 20% and 40% estimation errors, 

respectively. The percentage of pairs in which the ESCUC-base 

model has lower scenario cost in comparison with the other 

model increases from 0% for perfect estimation to 7.8% and 

22.2% for 20% and 40% error in estimation, respectively. These 

results demonstrate that after the solutions of two models are 

affected by the inaccuracy in probabilities estimation, the 

                                    
                                       (a)                                                                                  (b)                                                                                  (c) 

Fig. 8: Histogram of cost difference (𝑐𝑜𝑠𝑡ESCUC−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑐𝑜𝑠𝑡ESCUC−𝑏𝑎𝑠𝑒) of the pairs: (a) base-case costs (b) original expected costs (c) realized N-1 costs. 

 
                         (a)                                                          (b) 

Fig. 7: Cost comparison for N-1 reliable solutions obtained from ESCUC-
expected and ESCUC-base models: (a) expected costs (b) scenario costs. 
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likelihood that ESCUC-base outperforms the other model in 

having less original expected cost and scenario cost increases. 

V. CONCLUSION 

A comprehensive framework incorporating various 

procedures was proposed in this paper to: (i) conduct a fair 

comparison of pricing and settlements between different market 

models that ensure different levels of security, and (ii) examine 

efficient objective formulation for stochastic market design. 

To compare various market models: (i) the concept of 

securitized LMP was developed for ESCUC model, (ii) an 

OMC procedure was implemented on the solution of market 

models with proxy reserve requirement and with LODF to 

obtain N-1 reliable dispatch. The ISO practice of calculating 

market settlements based on the original market prices and N-1 

reliable schedule after performing OMC was implemented. 

Newly committed generators during OMC do not have direct 

impact on the value of LMP for their location. At this stage, it 

is unclear whether this mechanism (a SCUC model following 

with OMC) enables opportunities for market exploitation. 

Using this mechanism, the market model is not purely a pool; 

instead, it is a combination of a pool and pay-as-bid model. This 

practice is limited and not transparent for all market 

participants; therefore, the market participants will not change 

their bidding strategy accordingly (as they would in a pay-as-

bid model). Although this is an accepted market manipulation, 

some participants might receive less than deserved benefits and 

some might receive more. However, with more accurate 

representation of contingencies in the ESCUC compared to 

SCUC models with approximation on N-1 security criteria, N-1 

grid security requirements are originally captured, thereby, the 

value of service (contingency-based reserve) provided by 

generators is reflected in the LMPs to achieve grid security. In 

other words, if the market SCUC includes the reliability criteria 

more adequately, prices can better reflect the true marginal cost 

associated with the provision of the reliable electricity.  

Furthermore, it was shown that the stochastic market design 

with expected objective function does not give solutions that 

ensure minimum realized operating costs at N-1 contingency 

states. Instead, the stochastic market design with base-case 

objective function had better performance compared to the 

market model with expected objective function in terms of the 

base-case costs and realized N-1 costs. Moreover, inaccuracy in 

estimated probability results in larger differences in the original 

DA expected costs and the costs of scenarios of ESCUC-base 

and ESCUC-expected, where ESCUC-base further outperforms 

ESCUC-expected. It can be concluded that evidently the 

stochastic market design with base-case objective function can 

be more efficient compared to the stochastic market design with 

expected objective function. 

REFERENCES 

[1] National Academy of Engineering, “Modernizing and Protecting the 
Electricity Grid,” Spring 2010. [Online]. Available: 

https://nae.edu/18627/Modernizing-and-Protecting-the-Electricity-Grid.  

[2] NERC, “Reliability concepts,” Mar. 2016. [Online]. Available: 
http://www.nerc.com/files/concepts_v1.0.2.pdf. 

[3] M. Sahraei-Ardakani and K. W. Hedman, “Day-Ahead Corrective 
Adjustment of FACTS Reactance: A Linear Programming Approach,” 

IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2867–2875, Jul. 2016. 

[4] Y. Chen, P. Gribik, and J. Gardner, “Incorporating Post Zonal Reserve 
Deployment Transmission Constraints Into Energy and Ancillary Service 

Co-Optimization,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 537–549, 

Mar. 2014. 
[5] M. Abdi-Khorsand, M. Sahraei-Ardakani, and Y. Al-Abdullah, 

“Corrective transmission switching for N-1-1 contingency analysis,” 

IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1606–1615, Mar. 2017. 
[6] CAISO, “Market Performance Metric Catalog,” Nov. 2019. [Online]. 

Available: http://www.caiso.com/Documents/MarketPerformanceMetric 

CatalogforNovember2019.pdf. 
[7] B. F. Hobbs, M.-C. Hu, J. G. Inon, S. E. Stoft, and M. P. Bhavaraju, “A 

Dynamic Analysis of a Demand Curve-Based Capacity Market Proposal: 

The PJM Reliability Pricing Model,” IEEE Trans. Power Syst., vol. 22, 
no. 1, pp. 3–14, Feb. 2007. 

[8] P. Gribik, W. Hogan, and S. Pope, “Market-Clearing Electricity Prices 

and Energy Uplift,” 2007. [Online]. Available: 
http://www.lmpmarketdesign.com/papers/Gribik_Hogan_Pope_Price_U

plift_123107.pdf. 

[9] J. M. Arroyo and F. D. Galiana, “Energy and reserve pricing in security 
and network-constrained electricity markets,” IEEE Trans. Power Syst., 

vol. 20, no. 2, pp. 634–643, May 2005. 

[10] F. Bouffard, F. D. Galiana, and A. J. Conejo, “Market-clearing with 
stochastic security-part I: formulation,” IEEE Trans. Power Syst., vol. 20, 

no. 4, pp. 1818–1826, Nov. 2005. 
[11] F. Bouffard, F. D. Galiana, and A. J. Conejo, “Market-clearing with 

stochastic security-part II: case studies,” IEEE Trans. Power Syst., vol. 

20, no. 4, pp. 1827–1835, Nov. 2005. 
[12] S. Wong and J. D. Fuller, “Pricing Energy and Reserves Using Stochastic 

Optimization in an Alternative Electricity Market,” IEEE Trans. Power 

Syst., vol. 22, no. 2, pp. 631–638, May 2007. 
[13] B. Stott, J. Jardim, and O. Alsac, “DC Power Flow Revisited,” IEEE 

Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, Aug. 2009. 

[14] CAISO, “Draft final proposal: Generator contingency and remedial action 
scheme modeling,” Jul. 2017. [Online]. Available: 

https://www.caiso.com/Documents/DraftFinalProposal-

GeneratorContingencyandRemedialActionSchemeModeling_updatedjul
252017.pdf. 

[15] N. G. Singhal, N. Li, and K. W. Hedman, “A Data-Driven Reserve 

Response Set Policy for Power Systems With Stochastic Resources,” 
IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 693–705, Apr. 2019. 

[16] C. Li, K. W. Hedman, and M. Zhang, “Market pricing with single-

generator-failure security constraints,” IET Gen. Trans. & Dist., vol. 11, 
no. 7, pp. 1777–1785, 2017. 

[17] R. Fernández-Blanco, Y. Dvorkin, and M. A. Ortega-Vazquez, 

“Probabilistic Security-Constrained Unit Commitment With Generation 
and Transmission Contingencies,” IEEE Trans. Power Syst., vol. 32, no. 

1, pp. 228–239, Jan. 2017. 

[18] C. J. López-Salgado, O. Añó, and D. M. Ojeda-Esteybar, “Stochastic Unit 
Commitment and Optimal Allocation of Reserves: A Hybrid 

Decomposition Approach,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 

5542–5552, Sep. 2018. 
[19] V. Guerrero-Mestre, Y. Dvorkin, R. Fernández-Blanco, M. A. Ortega-

Vazquez, and J. Contreras, “Incorporating energy storage into 

probabilistic security-constrained unit commitment,” IET Gen. Trans. & 
Dist., vol. 12, no. 18, pp. 4206–4215, 2018. 

[20] J. Wang, M. Shahidehpour, and Z. Li, “Contingency-Constrained Reserve 

Requirements in Joint Energy and Ancillary Services Auction,” IEEE 
Trans. Power Syst., vol. 24, no. 3, pp. 1457–1468, Aug. 2009. 

[21] Z. Guo, R. L. Chen, N. Fan, and J. Watson, “Contingency-Constrained 

Unit Commitment With Intervening Time for System Adjustments,” 
IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3049–3059, Jul. 2017. 

[22] Y. M. Al-Abdullah, M. Abdi-Khorsand, and K. W. Hedman, “The Role 

of Out-of-Market Corrections in Day-Ahead Scheduling,” IEEE Trans. 
Power Syst., vol. 30, no. 4, pp. 1937–1946, Jul. 2015. 

[23] University of Washington, “Power systems test case archive,” 1999. 

[Online]. Available: 
http://www.ee.washington.edu/research/pstca/index.html. 

[24] A. T. Saric, F. H. Murphy, A. L. Soyster, and A. M. Stankovic, “Two-

Stage Stochastic Programming Model for Market Clearing With 
Contingencies,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1266–1278, 

Aug. 2009. 


