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Abstract—Resilience is a system’s ability to maintain its
function when perturbations and errors occur. Whilst we un-
derstand low-dimensional networked systems’ behaviour well,
our understanding of systems consisting of a large number
of components is limited. Recent research in predicting the
network level resilience pattern has advanced our understanding
of the coupling relationship between global network topology
and local nonlinear component dynamics. However, when there
is uncertainty in the model parameters, our understanding of
how this translates to uncertainty in resilience is unclear for
a large-scale networked system. Here we develop a polynomial
chaos expansion method to estimate the resilience for a wide
range of uncertainty distributions. By applying this method to
case studies, we not only reveal the general resilience distribution
with respect to the topology and dynamics sub-models, but also
identify critical aspects to inform better monitoring to reduce
uncertainty.

Index Terms—Uncertainty; Resilience; Dynamic Complex Net-
work

I. INTRODUCTION

O
RGANIZED behaviors in economics, infrastructure,

ecology and human society often involve large-scale

networked systems. These systems couple together relatively

simple local component dynamics to achieve sophisticated

systematic behaviour. A critical part of the organized behavior

is the ability of a system to be resilient - e.g. to recover some

desirable performance or state after a perturbation. A system’s

resilience is a key property and plays a crucial role in reducing

risks and mitigating damages [1] [2]. Research on resilience of

dynamic networks have arisen in diverse application domains

ranging from communication network failures [3], blackout

in power systems [4], to loss of biodiversity [5]. Due to

the different research contexts, up to now, over 70 detailed

definitions of resilience have appeared in scientific research

[6]. In this paper, we are interested in the general bi-stable

networked system described by ordinary differential equation

(ODE) dynamics which are common in social (e.g. population

logistic model [7], conflict system [8]), ecological (e.g. soil

health [9]), climate (e.g. ocean circulation [10]) systems. In

such complex networked systems, resilience is defined as the

ability to retain original functionality after a perturbation of

failure [11].
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A. Review of Resilience Methods

Existing performance-based methods [12] [13] [14] have

been proposed to quantify system’s macro resilience with met-

rics associated with different research domains. These methods

proposed before did not use explicit network metrics [15].

Such work promotes our understand of system performance

when perturbations happen but do not give us insight into

how network topology structure, interaction strength between

nodes affect dynamics in complex systems consisting of a

large number of components. What they are interested in

is the macro performance of the system with optimization

metrics but not pay attention to the topology of the networked

system. Understanding the relationship between topology and

dynamics in complex systems is important for us to augment

network topology, design structure or monitor critical nodes

to prevent loss of resilience. That is to say, while, current

methods make us understand low-dimensional models with

a few interacting components well [2], our understanding of

complex systems consisting of a large number of components

that interact through a complex network is limited.

These limitations are rooted in a theoretical gap that most

frameworks are designed to analyze a few interacting com-

ponents and not suited for complex systems with a large

number of components interacting through a complex network.

A general network-based theoretical framework is proposed

to explore and predict the multiple roots and dimensions

of resilience in complex networks [11]. Recent research in

predicting the network-level [11] [16] and node-level resilience

patterns [17] has advanced our understanding of the coupling

relationship between topology and dynamics. In this paper,

we propose a network-based method to quantify resilience in

complex network systems, which could characterize the rela-

tionship between network topology and system resilience in

mathematical expressions as well as the effects of uncertainty

on system dynamics. The method proposed in this paper could

be directly applied in bi-stable systems with ODE dynamics

in different domains.

To simulate the dynamics and estimate resilience of complex

networks with dynamical effects, we need to define dynam-

ical models with parameter values. However, in practice,

uncertainty on the model form and parameters are inher-

ently present. Uncertainty can originate from latent process

variables (process noise), e.g., inherent biological variability

between cells which are genetically identical [18] or from a

parameter estimation procedure based on noisy measurements

(measurement or inference noise) as well as from incom-

plete information of the model. For example, recent research
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proposed an analytical framework for exactly predicting the

critical transition in a complex networked system subjected to

noise effects [16]. In this research, the roles of the original

large-scale system dynamics, network topology and noise are

well separated and the linear noise approximation is used

to estimate the effect of noise. Actually, in many cases

of networked dynamical systems, uncertainty could exist in

system dynamics as well as network topology. In our research,

we consider the situation that uncertainty inherently exists

in system dynamics and network topology, and Polynomial

Chaos Expansion method is used in our research to estimate

the effect of these uncertainties.

In recent years, the modelling and numerical simulation of

practical problems with uncertainty have received unprece-

dented attention, which is called Uncertainty Quantification

(UQ). UQ methods have been applied in widespread fields like

fluid dynamics [19], weather forecasting [20], etc. At present,

UQ methods are shown as follows [21]:

B. Review of Uncertainty Quantification

Monte Carlo Methods [22] are based on samples. In these

methods, samples are randomly generated according to the

probability distribution. For each sample, the problem to be

solved becomes a definite problem. By solving these deter-

mined problems, representative statistical information about

the exact solution can be discovered. These methods are

easy to use but need large sample data and computationally

expensive [23]. For arbitrarily large dynamical networks, it

is difficult to sample appropriately without a foundation UQ

theory.

Perturbation Methods [24] expands a function into a Taylor

series around its mean value and then make a reasonable

truncation. Normally, at most, we can truncate the second-

order expansion because, for higher-order cases, the resulting

solution system will become very complicated. Besides, it is

suitable to be applied in problems with small perturbations

since it may magnify the uncertainty.

Moment Equation Methods [25] attempt to directly solve the

equations satisfied by the moments of the random solution.

These equations about moments need to be derived from

the original stochastic problem. For some simple problems,

such as linear problems, this method is more effective. But

usually, when we derive a certain moment equation, we need

to use the information of higher moments. Besides, in most

cases, Moment Equation Methods need considerably large

computational cost to achieve a good result when it is applied

in nonlinear systems, especially in strongly nonlinear systems,

such as bi-stable systems [26].

Polynomial Chaos Methods [27] are standard methods for

UQ in singular dynamical systems. The basic idea is to

perform polynomial expansion of the exact solution in random

parameter space. This method could solve problems with

any type of random parameter inputs. First, we need to

perform a finite order expansion of the exact solution in the

random parameter space and then take this expansion into the

original problem and do Galerkin projection in the expansion

polynomial space. After that, we get simultaneous equations

about the expansion coefficient. By solving the equations, we

can get all the statistical information of the exact solution. If

the exact solution has good regularity for random parameters

and this method can achieve exponential convergence.

In Table (I), we make a comparison of the above methods

according to algorithm computing efficiency and accuracy.

Monte Carlo Methods need a large number of samples and are

computationally expensive in nonlinear systems. Perturbations

Methods are suitable to be applied in small perturbations.

Perturbations Methods may enlarge the perturbations in com-

plex systems with nonlinear dynamics and could not achieve

high accuracy. Moment Equation Methods are suitable for

simple problems, such as linear problems. Considering the

nonlinear dynamics of complex systems, Polynomial Chaos

Methods could be applied in analysing the uncertainty. Poly-

nomial Chaos Methods could achieve very similar results with

computational saving comparing with Monte Carlo Methods

[28] and have been successfully used in nonlinear dynamical

system [29].

C. Contribution

The contribution of this paper is to propose a method to

quantify bi-stable networked system resilience and character-

ize the explicit mathematical relationship between network

topology and resilience. The uncertainty quantification in this

space is also lacking. As such, polynomial chaos expansion

method is used to quantify uncertain propagation to quantify

the uncertainty when estimating the resilience. Then, we an-

alyze how parameters and network topology with uncertainty

affect the resilience of dynamic networked systems, which

gives us more insight into dynamic networked systems.

II. SYSTEM SETUP

A. Saddle-node bifurcation

The traditional mathematical treatment of resilience used

from ecology [30] to engineering [31] approximates the be-

havior of a complex system with a one-dimensional nonlinear

dynamic equation

ẋ = f(β, x). (1)

The functional form of f(β, x) represents the system’s

dynamics, and the parameter β captures the changing environ-

ment conditions (show in Figure 1 (a)). The system is assumed

to be in one of the stable fixed points, x0 of equation (1),

extract from

f(β, x0) = 0 (2)

df

dx

∣∣∣∣
x=x0

< 0, (3)

where equation (2) provides the system’s steady state and

equation (3) guarantees its linear stability. The solution of

equations (2) and (3) provides the resilience function of x(β),
which represents the possible states of the system (Figure

1(a)). At some critical point βc the resilience function may

feature a bifurcation (Figure 1(a)), indicating that the system

loses its resilience by undergoing a sudden transition to a
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TABLE I
UNCERTAINTY QUANTIFICATION METHODS

UQ Methods Computing efficiency Accuracy

Monte Carlo Methods Computationally expensive with large sample data Accuracy increase with sample data scale
Perturbation Methods Very complicated for higher-order cases (order N >

2)
Accuracy in small perturbation since it may magnify
uncertainty

Moment Equation Methods Effective in simple problems like linear problems
but large computational cost in nonlinear such as bi-
stable systems

High accuracy in simple problems like linear prob-
lems

Polynomial Chaos Methods Computationally efficient when truncate order is low High accuracy when probability distributions of un-
certainty parameters are defined

Fig. 1. It shows dynamics of a single node and the coupled dynamics in a complex network. (a) In 1D systems resilience is captured by the resilience function
x(β), which describes the state(s) of the system as a function of the tunable parameter β. The system exhibits a single stable fixed point for β > βc and two
(or more) stable fixed points, a desired state and an undesired state for β < βc. (b)In a coupled dynamic system, the single parameter β is replaced by the
complex weighted network wi, whose characteristics depend on both environmental conditions and the specific pairwise interaction strengths. Consequently,
the resilience function, now capturing the behaviour of the vector state x(wi).

different [32] [33], often undesirable, fixed point of equation

(2) [11].

The saddle-node or fold bifurcation is a bifurcation in which

two equilibria of a dynamical system collide and annihilate

each other. The simplest example of such bifurcation is

ẋ = x2 − c. (4)

If c > 0, then there are 2 equilibria, stable one at −√
c and

unstable one at
√
c. If c < 0, there are no equilibria for the

system since x2 − c is always positive. For c = 0, we have

the bifurcation point and only one equilibrium exists, which

is not hyperbolic.

We are in dynamics system ẋ = f(x,A), with f smooth. We

will assume that this system always has a stable equilibrium

xd > 0 that is not close to the origin and the saddle-node

bifurcation can happen close to the origin, see Figure 2. Note

that here A denotes a vector of parameters and not just one.

The stable equilibrium away from the origin is a desirable

state of the system and will it be called healthy. The possible

stable equilibrium close to the origin is an undesirable state of

the system and it will be called unhealthy. If in the system the

unhealthy equilibrium is absent, then we say that the system is

resilient. We illustrate this concept by exploring the abundance

of species in an ecological network [34]. When there only

exists a health equilibrium away from the origin, in which the

average abundance is high, the system maintains its resilience.

However, when there exists an unhealthy equilibrium close

to the origin and a healthy equilibrium, a bifurcation will

happen, resulting in a desirable high-abundance state and

an undesirable low-abundance state. Under these conditions

the system loses its resilience, potentially transitioning to the

undesirable low-abundance state.

As it can be seen from the Figure 2, in order to detect

whether the system is resilient or not, we can look at the value

of the local minimum and check its sign. If it is negative, then

we are in the case shown in Figure 2(a). If it is positive, then

we are in the case shown in Figure 2(b). We do this by simply

finding the smallest positive root of the equation f
′

(x,A) = 0,

we will denote this by ρ(A).
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(a) A non-resilient system.

(b) A resilient system

Fig. 2. In Figure 2(a) we can see a system before the saddle-node bifurcation,
where both the unhealthy and the healthy equilibria are present. In Figure
2(b), we see a system after the saddle-node bifurcation, where the unhealthy
equilibrium has been annihilated

B. Dynamics on graph

Real systems are usually composed of numerous compo-

nents linked via a complex set of weighted, often directed,

interactions(show in Figure 1(b)). Let G be a weighted directed

graph of n vertices and m edges and let M be its weighted

adjacency matrix. Using G we couple n one-dimensional

dynamical systems. The dynamics of each one-dimensional

system is described by the differential equation ẋ = f(x,A),
where f is a smooth function and A is a vector of param-

eters. The coupling term is described by a smooth function

g(x, y,B), where B is a vector of parameters. A = {a1, ..., ai},

B = {b11, ..., bij}. The dynamics of the system is described

by

ẋi = f(xi, ai) +

n∑

j=1

Mjig(xi, xj , bij). (5)

We assume that each parameter of the equation (5) is a i.i.d

random variable that gets a different realization on each node.

This assumption is suitable for homogeneous models but not

for heterogeneous models.

We denote that X = {x1, ..., xn} ∈ RN and we define

F : RN → RN by

(F (X,A,B))i = f(xi, ai) +

n∑

j=1

Mjig(xi, xj , bij). (6)

Then the system of equations (6) can be written as

Ẋ = F (X,A,B). (7)

The equilibrium of the system satisfies F (Xe,A,B) = 0.

Generally, we do not know very well when Ẋ = F (X,A,B)
will be resilient in a large-scale network. It is more difficult

to know the resilience of Ẋ when considering uncertainty on

parameters of vectors A,B and uncertainty on topology (e.g.

properties of Mij) in dynamic network.

III. APPROACH AND METHODOLOGY

A. Dynamic network with uncertainty

Uncertainty in dynamic network may exist in self-dynamics

of each component in f(xi, ai) and each component in cou-

pling term g(xi, xj , bij) as well as the network topology. We

assume that each parameter is a random variable that gets a

different realization on each node and moreover the value of

any parameters has to be within a range of its true value. So

we have ai = ai(1+ e1ui), bij = bij(1+ e2vij),M = M(1+
e3r),where ui, vij , r are random variables uniform in [a, b] and

e1, e2, e3 are constants. U = {u1, ..., ui}, V = {v11, ..., vij}.

The mathematics model of dynamic network with uncertainty

is showed as:

ẋi = f(xi, ai(1 + e1ui))+
n∑

j

Mji(1 + e3r)g(xi, xj , bij(1 + e2vij)).
(8)

Fig. 3. Steps to estimate resilience with uncertainty

B. Two-step method to estimate resilience with uncertainty

The proposed method to estimate resilience with uncertainty

is shown in a flowchart (Figure (3)). The first step is to

use mean-field dynamics and central limit theorem to get the

expression which describes the probability of resilience of

dynamic networked systems. The second step is to use Poly-

nomial Chaos Expression (PCE) to calculate the probability.
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1) Mean field dynamics: In order to find the mean field

approximation of the equilibrium of the system, we define

1 := 1, ...1 ∈ RN

Ξ(x) := Mean[F (x1, A, B)] =

1

n

n∑

i=1

(f(x, ai)) +
1

n

n∑

i,j=1

Mjig(x, x, bij).
(9)

Note that Ξ(x) depends on parameters in A and B. Since

parameters in A and B are random variables, for any x, Ξ(x)
is a function depending on these random variables. Then we

search for r such that Ξ(x) = 0.

Because, the parameters ai are assumed to be iid random

variables, for fixed x, f(x, ai) are also iid random variables.

We define

µf(x) := E[f(x, ai)] (10)

δf(x) :=
√

Var[f(x, ai)]. (11)

This means that by Central Limit Theorem, for big enough

n, 1
n

∑n

i=1 f(x, ai) can be approximated by a normally dis-

tributed random variable with mean µf(x) and standard devi-

ation 1
n
δf(x), i.e

1

n

n∑

i=1

f(x, ai) ∼ N(µf(x),
1

n
δ2f(x)). (12)

Similarly, the random variables g(x, x, bij) are i.i.d, we define

µg(x) := E[g(x, x, bij)] (13)

δg(x) :=
√

Var[g(x, x, bij)]. (14)

Then we have

1

n

n∑

i,j=1

Mjig(x, x, bij) ∼ N(
m

n
µg(x),

m

n2
δ2f(x)). (15)

For dynamic network with uncertainty, we define the aux-

iliary functions:

φ(x,U) = f(x,E[A](1 + e1U)) (16)

ϕ(x, r,V) = E[M ](1 + e3r)g(x, x,E[B](1 + e2V)). (17)

Let k be the dimension of A and l be the dimension of B,

then for the function f we define

µf(x) =

∫

[a,b]k

1

(b− a)k
φ(x,U)dU (18)

and

δ2f(x) =

∫

[a,b]k

1

(b− a)k
(φ(x,U)2 − µ2

f(x))dU. (19)

Similarly, for g we define

µg(x) =

∫

[a,b]l+1

1

(b− a)l+1
ϕ(x, r,V)drdV (20)

and

δ2g(x) =

∫

[a,b]l+1

1

(b− a)l+1
(ϕ(x, r,V)2 − µ2

g(x))drdV. (21)

Since Ξ(x) is the sum of 2 normally distributed random

variables, when we combine the above we get

Ξ(x) ∼ N(µf(x) +
m

n
µg(x),

1

n
δ2f(x) +

m

n2
δ2g(x)). (22)

We can get a realisation of Ξα(x) by drawing ζα from N(0, 1).
and setting

Ξα(x) = µf(x) +
m

n
µg(x) +

√
1

n
δ2
f(x) +

m

n2
δ2
g(x)ζα. (23)

We assume that every realisation of Ξ(x) has the shape de-

scribed in Figure 2, i.e. it is close to a saddle-node bifurcation.

We find that the smallest positive root ρ of Ξ
′

(x). Finally we

set τ = Ξ(ρ).
Since Ξ(x) is a random variable, both ρ and τ are functions

based on this random variable. Moreover, τ is an indicator for

the saddle-node bifurcation. For a given realization of ζα, if

τα > 0, then there is only one equilibrium and the dynamics is

resilient and if τα < 0, then there are three equilibria and the

dynamics is non-resilient. Thus the probability of the system

being resilient is P(τ > 0). We can use a Polynomial chaos

expansion (PCE) truncated to degree n to approximate τ(ζ),
we will denote this PCE by τ̃n(ζ). We define the function

pos(x) =

{
1 if x > 0
0 otherwise

. (24)

Then, the probability that the system is resilient is given by

the integral

1√
2π

+∞∫∫

−∞

pos(τ̃n(ζ)) dζ. (25)

2) Polynomial chaos expansion: Let Ξ be random variable

with known probability distribution function (PDF) w. More-

over let X = φ(ζ), with φ a function that is square integrable

on R with w as weight function, let us call this space L2
w. Our

goal is to approximate X by a polynomial series of ζ.

For this we need a family of polynomials Pn such that P0

is not 0, for all n the polynomial Pn has degree n and are

orthogonal with respect to w, i.e. the inner product

< Pn, Pm >w=

∫ +∞

−∞

Pm(x)Pn(x)w(x) dx (26)

is 0 when m 6= n. Moreover we assume that P0 is normalized

so that < P0, P0 >w= 1. The polynomials Pn can be used as

a basis for L2
w. So we can write

φ(ζ) =
∑

n≥0

cnPn(ζ). (27)

In order to get the expression of φ(ζ), we need to define the

orthogonal basis Pn and the coefficients cn. What kind of

orthogonal basis should be chosen depends on the distribution

of random variable ζ. If random variable ζ obeys a Gaussian

distribution, we can choose the Hermite polynomial as the
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orthogonal basis. If random variable ζ obeys uniform distri-

bution, we can choose Legendre polynomial as the basis [35].

Because Pn is an orthogonal basis, we can get the coeffi-

cients by projecting on each basis vector

cn =
< φ,Pn >w

< Pn, Pn >w

. (28)

In order to do any computation with a PCE series, we need

to truncate it. First, we notice that if the series converges, then

the size of each coefficient goes to 0 if we take the limit of any

index to infinity. This means that for such convergent series

we can ignore terms with order higher than some N . However,

for a given problem it is not trivial to find which exactly this

N is. Usually, this is done by trial and error, where we can

calculate more terms until the size of the new terms is smaller

than the precision we need.

For the computation of the coefficient, we will use a non-

intrusive method. We start by truncating the series to an

arbitrary order N , φn(ζ) =
∑N

n=0 cnPn(ζ) and assume that

this is enough for the wanted precision. Then we observe that

this is a linear relation with respect to cn. So we generate

M > N instances of the random variable ζ, {ζ1, ζ2, ..., ζM}.

Then for every ζi we have the equation

φ(ζi) =

N∑

n=0

cnPn(ζi). (29)

Notice that φ(ζi) and Pn(ζi) are just numbers and now we

can compute the coefficients cn by solving a linear regression.

After that we compute supζ |cnPn(ζ)| and if it is smaller than

the precision we stop, otherwise we increase N and repeat the

process.

IV. RESULTS

The method proposed in this paper could be directly applied

in bi-stable systems with ODE dynamics in different domains.

Application examples include population logistic models, soil

health ecology, etc. For other dynamical systems, the definition

of a healthy equilibrium and unhealthy equilibrium may need

to be adjusted. The limitation of proposed method is that it

is not suitable for complex system with Partial Differential

Equation (PDE) at this point in development.

A. Case study: mutualistic dynamics

We will apply the above method in the case of mutualis-

tic dynamics among species in the plant-pollinator network.

Here equation (30) tracks the abundance xi(t) of species i,

following [11]. We set

f(x,B,C,K) = B + x(
x

C
− 1)(1− x

K
) (30)

g(x, y,D,E,H) =
xy

D + Ex+Hy
, (31)

where B, C, K, D, E and H are positive parameters. The

first term on the right hand of equation(30) account for the

incoming migration of species at a rate B from neighbouring

ecosystems. The second term describes logistic growth with

the Allee effect C, according to which for low abundance (x <

C), the system features negative growth [36]. The third term

describes the system carrying capability K, according to which

for high abundance (x > K), the system features negative

growth [37]. Equation (31) describes mutualistic interactions,

captured by a response function that saturates for large x, y,

indicating that y’s positive contribution to x is bounded [11].

We assume that some of them are random variables that

get different realization on each node. We set E[B] = 0.1,

E[C] = 1, E[D] = 5, E[K] = 5, E = 0.9, H = 0.1.

We moreover assume that the value of any parameter has to

be within 10% its mean, so we have B = E[B](1 + 0.1U),
C = E[C](1 + 0.1U) and so on, where U a random variable

uniform in [−1, 1].
We define auxiliary functions

φ(x, U1, U2, U3) = f(x,E[B](1 + 0.1U1),

E[C](1 + 0.1U2),E[K](1 + 0.1U3))
(32)

and

ϕ(x, U4, U5) =
E[M ](1 + 0.1U5)x

2

E[D](1 + 0.1U4) + Ex+Hx
. (33)

Then for the function f we define

µf(x) :=

∫∫∫

[−1,1]3

1

8
φ(x, U1, U2, U3) dU1 dU2 dU3 (34)

and

δ2f(x) :=

∫∫∫

[−1,1]3

1

8
(φ(x, U1, U2, U3)

2 − µ2
f(x)) dU1 dU2 dU3.

(35)

Similarly for g we define

µg(x) :=

∫∫

[−1,1]2

1

4
ϕ(x, U4, U5) dU4 dU5 (36)

and

δ2g(x) :=

∫∫

[−1,1]2

1

16
(ϕ(x, U4, U5)

2 − µ2
g(x)) dU4 dU5. (37)

According to the above method, we can get a realisation of

Ξα(x) = µf(x)+
m
n
µg(x)+

√
1
n
δ2
f(x) +

m
n2 δ

2
g(x)ζα. The figure

of the function Ξα(x) is shown in Figure 4 when ζα has

different values.

So we can see that every realisation of Ξ(x) has the shape

described in Figure 2. We can then find the smallest positive

root ρ of Ξ
′

(x), then use PCE to approximate τ(ζ).

B. Convergence test of PCE

Since ζ obeys Gaussian distribution, we choose Hermite

polynomial as the orthogonal basis. We truncate the series to

arbitrary orders N from 2 to 5 shown in Figure 5. Increasing

the order (N ) of the polynomial improves the convergence of

the function. However, increasing the order of the polynomial

means that a substantially higher number of simulations is

required. Therefore, a compromise between accuracy and the

required computational time is necessary.
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(a) graph of function Ξα

(b) ζα has different values

Fig. 4. (a) graph of function Ξα(x) (b) Graph of function Ξα(x) projects
to XZ plane. When ζα has different values, graphs of function Ξα(x) are
different and the smallest positive root ρ are different. Whether the system is
resilient could be estimated through the figure.

Reference to the graph in Figure 5, it is impossible to

infer which order of N yields sufficient convergence of the

PCE process. According to PCE in Figure 5, we can get

the PDF with different truncation order in Figure 6. We can

easily find the difference among different order especially

N = 2. In order to estimate the probability of resilience,

we obtain a graph of Cumulative Distribution Function (CDF)

with different truncation in Figure 7. It can be seen that the

results for N = 3, N = 4, N = 5 almost overlap while there

is significant difference for N = 2 in comparison to N = 3.

When N = 2, the result is 0.3576. The results are respectively

0.357182, 0.357134 and 0.35707 for N = 3, N = 4, N = 5.

Therefore, N = 3 can be considered as the appropriate

choice for the polynomial order since choosing higher order

polynomials substantially increases the required simulation

time with only minor effects on improving the accuracy of

the results.

C. Analysis

In order to know how topology of network influence re-

silience of the system, we need to do parameter sensitivity

analysis of the system, such as weight of edges. In Figure 8(a),

we can see that probability of resilience is correlated to the

weight of the system. Strong connectivity promotes resilience

since the effect of perturbation are eliminated through inputs

from the broader system. In the mutualistic system, the first

term on the right-hand side of equation (30) accounts for the

incoming migration at a rate B from neighbour ecosystems.

In Figure 8(b), we can see that the probability of resilience

is positively correlated to the parameter B, which means that

Fig. 5. Approximate τ(ζ) by Hermite Polynomials. We truncate the series
of polynomial to arbitrary orders N from 2 to 5 and estimate the smallest
value of Ξα(x) when ζα has different values. In order to show the difference
between estimation when the order N has different value, we enlarge the
partial details of the above figure.

Fig. 6. According to the PCE of τ(ζ), we can get the PDF of resilience
of the system. We truncate the series of polynomial to arbitrary orders N
from 2 to 5 and get the PDF of resilience of the system. In order to show
the difference between estimation when the order N has different value, we
enlarge the partial details of the above figure.
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Fig. 7. Get CDF of resilience of system by PDF. When the order N has
different value, the probability of resilience estimated by PCE is different. And
it is clearly show that the results for N = 3, N = 4, N = 5 almost overlap
while it is significant different for N = 2 in comparison to N = 3, 4, 5.

(a)

(b)

Fig. 8. (a) shows that probability of resilience is positive correlated to
the weight of network. (b) shows that probability of resilience is positive
correlated to the parameter B.

the increase of incoming migration from neighbour ecosystems

could make the system more possible to be resilient. This is

because incoming migration from neighbour ecosystems could

help the abundance of species recover from perturbation. To

show the advantage of PCE, Monte Carlo Method is used to

estimate the uncertainty and we compare the results of Monte

Carlo Method and PCE. When the sample size is larger than

1000, Monte Carlo Method can achieve an accuracy result

[38]. In Figure (9), it shows the results when we use different

sample size from 1000 to 10000. We know that for Monte

Carlo Method, the accuracy of the result increases with the

sample size. The probability is 0.3570 when the sample size

is 10000. The computational cost increases rapidly with the

increasing of sample size. We can see that PCE could achieve

a very approaching result for N = 3. Therefore, comparing

with Monte Carlo Method, PCE could achieve an approaching

result with much more computationally efficient.

2000 4000 6000 8000 10000

Sample Size

0.360

0.365

0.370

0.375

P

Fig. 9. Probability of resilience estimated by Monte Carlo Method. The
sample size is from 1000 to 10000. It is clearly show that convergence of
Monte Carlo Method is slow.

V. CONCLUSION AND FUTURE WORK

Currently, we do not understand how to estimate the re-

silience of dynamic networked systems with multiple model

parameter uncertainty. In this paper, we built a mean-field in-

formed Polynomial Chaos Expansion (PCE) model to quantify

the uncertainty for a wide range of uncertainty distributions.

This approach can effectively estimate the resilience behaviour

of an arbitrarily large networked system and analyze the

effect of both topological and dynamical parameters on the

system. The current research has developed the framework

to analysis the relationship between macroscopic dynamics,

like network-level resilience and network topology. However,

we still do not understand the effect of mesoscopic topology,

like the community structure of some components, on the

local and global dynamics, even though these components with

different mesoscopic topology may share the same network-

level dynamics. Therefore, in the future, we will develop

multi-resolution algorithms to achieve local to global resilience

prediction.

.
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