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Abstract

Urban data mining can be identified as a highly potential area that can enhance the

smart city services towards better sustainable development especially in the urban resi-

dential activity tracking. While existing human activity tracking systems have demon-

strated the capability to unveil the hidden aspects of citizens’ behavior, they often come

with a high implementation cost and require a large communication bandwidth. In this

paper, we study the implementation of low-cost analogue sound sensors to detect out-

door activities and estimate the raining period in an urban residential area. The ana-

logue sound sensors are transmitted to the cloud every 5 minutes in histogram format,

which consists of sound data sampled every 100ms (10Hz). We then use wavelet trans-

formation (WT) and principal component analysis (PCA) to generate a more robust and

consistent feature set from the histogram. After that, we performed unsupervised clus-

tering and attempt to understand the individual characteristics of each cluster to iden-

tify outdoor residential activities. In addition, on-site validation has been conducted to

show the effectiveness of our approach.
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1. Introduction

Smart cities allow integrated systems to monitor the human and environmental be-

haviors in real-time have been looked upon as a potential solution to fulfill the re-

quirements of modern urbanization. These statistics related to behaviors and knowl-

edge are then used to make more effective decisions to further improve the urban de-

sign and living standards of people. With the recent enhancements of wireless net-

works, large-scale systems for various sectors can be realized easily, which resides

an enormous amount of spatial-temporal data that can be harvested. These data con-

tain many interesting aspects of day-to-day utilization of an urban space or life of

citizens[1, 2, 3, 4, 5, 6]. With the advancement of machine learning and data mining

technique, different platforms have been developed to cater different usages of monitor-

ing in a smart city. Various aspects have to be taken into consideration when deploying

a smart city project, such as deployment and maintenance cost, system and data scale,

sensor coverage and resolution, user privacy, data storage, etc. Take all these factors

into design and implementation consideration, urban monitoring in a smart city is ex-

tremely challenging. The increasing population density has driven more efficient real

estate planning and at the same time needs to balance out aspects of liveable space in

a dense area. Hence, the urban designer needs to understand the residential behavior

of the existing urban area. Common technique such as outdoor activity detection is

often used and it related to occupancy detection (can be indoor also). Such activity

detection can be identified using sensors such as thermal imaging [7], camera [8, 9],

motion[6, 10], mobile devices[11, 12, 13], and sound sensor [14, 15, 16]. A lot of

the aforementioned techniques require high computation cost or communication band-

width, which may not be suitable for continuous smart city monitoring. Not to mention,

privacy intrusion is also another concern among researchers [17, 18].

In this paper, we focus on discovering human outdoor activity detection techniques

and patterns in an urban point of interest (PoI) using low-cost analogue sound sen-

sors. We want to show that using a low-cost analogue sensor is able to capture human

outdoor activity while maintaining the sustainability of a sensor node and reducing

communication overhead. However, the challenge in using the sound sensor is that
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the outdoor environment tends to have a larger variance in ambient noise and hence

it is harder to distinguish outdoor activity as well as background noise. Also, another

huddle in collecting sound data is the sampling rate of the sensor, which may consume

more power as well as constant communication between the gateway to transmit data.

Thus, our motivation is to design a system model that process the histogram data from

sound sensors to extract insights such as human activity and raining period of an urban

PoI through compressed information such as sound histograms.

We leverage the idea of edge computation to achieve self-sustainability of the sen-

sor node (using energy harvesting) at the same time to minimize the communication

bandwidth between sensor nodes and gateway. The analogue sound sensor capture

sound intensity collected from the surrounding environment, which can be composed

of people chatting, children playing, pass-by vehicles, rain, etc. The sound data col-

lected are complied at the sensor node into a sound histogram and uploaded to the

cloud database every 5-minute for off-line processing. We first preprocess the sound

histogram data using wavelet transformation (WT) and principal component analysis

(PCA) to extract a more robust feature sets. WT has been extensively studied in area

of speech recognition [19], outliers detection [20], and image processing [21]. Based

on the literature, it seems like a natural selection to use WT for developing a richer

feature space for sound histogram by allowing changes in the temporal aspect. Next,

we use PCA to convert the transformed sound histogram into a set of uncorrelated val-

ues, which can be further utilized for insights extraction. PCA is studied in [22, 23, 24]

and shows effective in generating uncorrelated values while reducing data dimension

for easier visualization. Here, we divide the insights extraction process into two parts,

which are raining period estimation and outdoor activity detection. The raining period

is an example of a common event impact multiple sensors when compared to outdoor

activity, where the event only can be detected by a single sensor. In addition, the

raining period estimation is important in outdoor activity detection as raining day af-

fects outdoor public space utilization. Similar principle can be extended to detect large

area events such as explosion or party of a large group of participants, where multiple

sensors are impacted simultaneously. To detect outdoor activity, we utilize the clus-

tering method to group sound samples with high similarity and attempt to understand
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background sound according to the time of the day and day of the week. Through

the identified background sound, the different period has been defined and chi-square

statistic is used for distinguishing the background sound and activity. The key chal-

lenge here is to classify the human outdoor activity and background sound accurately

with a simple and effective method. Ground-truth data is also collected for validating

the system model and show its effectiveness in a real-world scenario.

The contributions of our work in this paper are three-fold:

• We introduce the concept of compressing the sound samples of an urban envi-

ronment as a histogram leveraging edge-computation techniques.

• We propose a system with preprocessing (WT and PCA) as well as clustering

techniques to obtain useful feature set for identifying background noise and hu-

man outdoor activity. We show that the proposed system model is capable to

achieve accuracy of 85.8% distinguishing background sound and human outdoor

activity.

• Using multiple sensor nodes, we can estimate events that cover large areas, where

we use the raining period estimation as an example, to show that using our pro-

posed method we can get a better estimation than using a resistive water droplet

sensor.

The remaining of this paper is organized as follows: Section 2 presents the system

for processing the sound data as well as the details of the sound histogram data. Next

in Section 3, we discuss the details used for preprocessing the sound histogram and

methods for clustering processed sound samples. Section 4 describes the raining period

estimation and human outdoor activity detection method, followed by Section 5, which

validates our outdoor detection method against ground-truth. Lastly, we conclude our

work in Section 6.

2. System Model

The system model consists of three different stages, which are (1) data collection

phase, (2) data preprocessing and features generation phase, as well as (3) insight ex-
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traction phase. The overall system model is shown in Fig. 10.
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Figure 1: Sound Data Processing System Model

The first stage involves data collection using sensor nodes in an urban residential

area, which is first introduced by [2, 6]. The following describes the methodology

of generating sound histograms from sound samples: we use an analogue sound sen-

sor (dfrobot Analog Sound Sensor SKU: DFR0034) and it is capable of detecting the

ambient sound intensity using LM386 amplifier and electret microphone. The output

5



of the sensor (noise intensity level) is an analog value, and we use a 10-bit ADC to

quantize it into 1024 levels. It covers the range of 0 to 1023 with a higher value that

indicates higher noise intensity. The sound sensor data is then sampled in the rate of

every 100ms (10Hz sampling frequency). For every 5 minutes, we would have 3000

sound samples collected and this will be fitted into histogram h(m).

h(m) = [s1, ..., sm] (1)

where h is denote as the vector notation. sm is the mth bin value and m ∈ {1, ..., 5}.

These 3000 sound samples are divided into 5 bins of a histogram based on the value

ranges. The rationality of choosing 5 bins of the histogram is that the majority of

idling time (without any human activity), noise intensity has a lower range of value.

Therefore, any higher value denotes chances of activity presence regardless of value

number (i.e. value of 50 vs 333), which varies on noise source distance. Also, through

the number of bin values, we can observe the duration of human activity. The following

Table 1 show the range of quantifying the 0 to 1023 noise value:

Table 1: Sound Sensor Intensity Ranges

Range 1 Range 2 Range 3 Range 4 Range 5

0 ≤ i ≤ 6 6 < i ≤ 10 10 < i ≤ 20 20 < i ≤ 50 i > 50

To further elaborate the consolidation process of sound samples, an example as fol-

lows is presented: Using 1 second sampling time as a baseline, we have a 10 sound

samples collected, such as [11, 2, 7, 33, 55, 80, 28, 7, 9, 13]. Based on the collected

samples, we consolidate them into a histogram of [1, 3, 2, 2, 2]. The rationality of

choosing this method is to help to cope with the communication bandwidth require-

ments and reduces the communication overhead. Whenever the histogram has been

consolidated, it will be uploaded to the cloud database via a wireless sensor network

gateway every 5 minutes.

The second processing stage involves preprocessing techniques previously intro-

duced in [2, 6] such as data acquisition and TimeSync. After performing cleaning up

on the data, cleaned up histogram data are further processed to generate more features
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for insights extraction. In this paper, we focus on two kinds of insights extraction from

the sound sensor‘s histograms data format, which are (1) human outdoor activity detec-

tion and (2) raining period estimation. However, the former will be given more focus

as it is the main purpose of this paper - to detect human outdoor activity in an urban

area using analogue sound sensor. The latter will only be briefly discussed as we dis-

cover that it is possible to estimate the raining period using the histogram sound data

aggregated from multiple sensors. Further details of both insights extraction methods

will be elaborated in the upcoming session.

3. Sound Histograms Preprocessing and Clustering Phase

In this section, we discuss the in-depth techniques used to process the sound his-

togram. First, we explain the WT approach applied to transform the sound histograms

into feature spaces. Subsequently, we utilize the PCA method to generate richer feature

sets from WT applied sound histograms.

3.1. Wavelet Transformation

WT based feature extraction method is used to develop the feature space for sound

histograms. Wavelet coefficients for a sound histogram are computed using a series of

dilation and translation of the mother wavelet [25, 26]. We can represent the mth bin

of a sound histogram as follows:

h(m) =
∑
j

∑
k

dj,kψj,k(m), (2)

where ψj,k(m) is the scaled and dilated mother wavelet function, the dj,k is the wavelet

coefficient that represents how much translated and dilated mother wavelet describes

the given sound histogram h(m), and j, k ∈ Z. from there, we can formulate the

following equation:

dj,k =
∑
m

h(m)ψj,k(m) =< h,ψj,k >, (3)

since wavelets are orthogonal to each other.
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Wavelets are simply mathematical functions that exhibit only localized oscillations,

which decay quickly. This allows us to study local undulations of the sound histograms

sound sample. For example, if the given sound histogram h(m) has a discontinuity,

then it will only influence the ψj,k(m) that is in the vicinity. Only those coefficients

{dj,k}j,k∈Z whose associated wavelet ψj,k(m) overlaps the discontinuity will be influ-

enced. Moreover, it should be noted that the bases of other common transformations

are affected by the discontinuity, regardless of where it is located.

The localized behavior of the WT is important in generating the feature set for the

histograms sound data. Thus, we use the Haar basis function as the mother wavelet

due to its discontinuous nature. It can be used to analyze histograms effectively and

efficiently at various resolutions and used to get the approximation coefficients and

detail coefficients at various levels as shown in [25]. Besides, it is also served as a

low-pass filter and a high-pass filter simultaneously. The Haar basis function can de

denoted as follows:

ψj,k(x) =


1 if x ∈ [0, 1/2)

−1 if x ∈ [1/2, 1)

0 otherwise

. (4)

In our system model, 5 minutes sound histogram sound samples will be represented in

Haar basis function, and those wavelet coefficients {dj,k}j,k∈Z are used as the feature

vector. Subsequently, discrete Haar wavelet coefficients can be calculated as

w = B−1h, (5)

where B is the wavelet basis matrix and w is the wavelet coefficient vector for the

sound histogram. Being restricted to dyadic sequences, traditional Haar wavelet con-

struction is not sufficient. The reason due to the number of sound histogram bins is

non-dyadic. Therefore, the intuition behind this method is to use a non-dyadic Haar

construction, which is more accurate than the zero paddings.

Let us denote the elements at level i, interval j by Ti,j and |Ti,j | = ni,j . Here,

the elements can be consists of the following: T0,1 = {s1, s2, s3, s4, s5}, T1,1 =

{s1, s2, s3}, T1,2 = {s4, s5}, T2,1 = {s1, s2}, and T2,2 = {s3}. The length of in-

tervals being n0,1 = 5, n1,1 = 3, n1,2 = 2, n2,1 = 2, n2,2 = 1. We can represent the
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elements of B that corresponds to detailed coefficients as follows:

Bl,m =



(
√
n

1

2

√
na + nb
nanb

)
2nb
nanb

if sm ∈ Ti+1,k

−(
√
n

1

2

√
na + nb
nanb

)
2na
nanb

if sm ∈ Ti+1,k

0 otherwise

. (6)

where the elements of B are represented by Bl,m (B1 to B4) and na = ni+1,k , nb =

ni+1,k+1. B0 i.e., the elements corresponds to average coefficients can be given as

B0 = {1, 1, 1, 1, 1}.

Elements of B in the Equation 6 can be calculated using the following matrix:

B =



B0

B1

B2

B3

B4


=



1 0.82 0.91 1.58 0.00

1 0.82 0.91 −1.58 0.00

1 0.82 −1.82 0.00 0.00

1 −1.22 0.00 0.00 1.58

1 −1.22 0.00 0.00 −1.58


(7)

This concludes our work on the wavelet transforms for the sound histogram. Subse-

quently, we will perform a dimension reduction technique for the wavelet transformed

histograms sound samples using PCA.

3.2. Principle Component Analysis

Histogram sound samples provide compressed information about ambient sound

intensity but also induces a high correlation between each bin. This causes instability

in distance metric calculation when performing clustering. Moreover, we can simply

prove that this high correlation is not affected by the WT by given the fact that it is a

linear transformation (by using the fact W [X] = aX + b then, W [X̄] = aX̄ + b). The

result of such is displayed in Fig. 2.

Fig. 2(a) illustrates the correlation between dj,k, which is calculated for a given sen-

sor node. It is observed that applying PCA, the high correlation between data has been
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Figure 2: Comparing the correlation coefficient between wavelet coefficients (a) before PCA (b) after PCA.

removed. Note that, the column and row represent the coefficients and the scattered

plot represents the correlation between two different coefficients. Thus, it is not hard

to see that there is a high correlation between dj,k. We transform the sound histogram

into an uncorrelated space using PCA to remove the high correlation in between. Con-

sequently, PCA provides an optimal solution for the following optimization problem:


max eTi Σei

subject to eTi ei = 1

eTj Σei = 0, for j < i,

(8)

where Σ is the covariance matrix of calculated dj,k for sound histogram (for one day

of a given sensor node). ei,ej are the eigenvectors associated with Σ in the optimal

solution, which only satisfies the Karush Kuhn Tucker (KKT) optimality conditions.

We denote the sound histograms for a one day (288 represents data collected for 5-

minute windows over 24 hours) single sensor node as H = {w1,w2, . . . ,w288} and

w is the wavelet coefficient vector for each sound histogram. Afterward, the projection
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of H onto PCs can be represented as follows:

Z =



e1

.

.

.

e5


H (9)

where Z is the projection of H. Fig. 2 shows the transformation of sound histograms

into uncorrelated space after applying PCA.

Let U = {e1, ..., e5} then the reconstructed sound histograms Ĥ from PCs can be

rewritten as shown below:

Ĥ = UZ (10)

Mathematically Ĥ = H when we reconstruct the sound samples by including all the

PCs. Using this method, a truncated reconstruction with only a selected subset of PCs

would yield some components being discarded. This can be used to remove redundant

information and hence a cleaner data. This method has been used in [27, 28], where

redundant information is removed while preserving a relatively low variation of data.

As shown in [29, 30], there is a few formal ways of selecting the optimal subset of

PCs {pc1, ..., pck}. We select k by minimizing the projection error between Ĥ and H

given that k < 5. Fig. 3 (a) and Fig. 3 (b) illustrate the H and Ĥ respectively. The

reconstructed sound histograms Ĥ are constructed using a subset of principal compo-

nents from Z. We select k = 4 (4 principal components) and the simple illustration of

such can be found in Fig. 3. It can be observed that Ĥ has successfully removed the

low variational components across all five sound histogram bins when compared with

the H. By removing the low variational components, it also removes the redundant

information inside the sound histograms. Therefore, Ĥ can guarantee a more robust

and accurate feature representation of sound histograms.

To validate the efficiency of the aforementioned data processing technique, we per-

form a simple hierarchical clustering method to show the difference between WT and

PCA in terms of feature extraction based on sound histograms’ similarity. Fig. 4 illus-

trates how the WT and the PCA enhance feature extraction based on the similarity of
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Figure 3: Comparison of sound data using different data processing techniques. The first two dimension of

the histograms are shown in x and y axes, while magnitude of the 3rd dimension is given by the area of each

circle. The 4th dimension is shown by the color intensity level of the perimeter of each circle and the 5th

dimension is presented by the color intensity level of the area for each circle.

data.

Note that, the main focus here is to show the clustering result performed on different

processing techniques rather than the technical detail of clustering (will be discussed

in the next section). In addition, the markers presented in the figure do not yield any

similarity between data processing despite the markers are using the same colors. It

only represents the similarity corresponding to the exact data sample throughout the

day, where it forms a different clustering group. Once again, this does not show the

activities being detected but rather displays the group of similar processed sound sam-

ples. Fig. 4(a) shows that most data points are quite similar to each other for most

of the time. Despite 4 clusters being generated, it does not yield any meaningful in-

sight. In Fig. 4(b), we observe there is a different cluster that appears in the morning

to the evening period. However, this still does not show the variation between morning

and evening. Lastly, after performing PCA and WT as shown in Fig. 4(c), we notice

there are variations in the morning, afternoon, and evening. But this requires further

investigation, which we will discuss in the subsequent sub-section. Here, we show that
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(a) Clustering result using normalized unprocessed sound histograms

(b) Clustering result using wavelet coefficients

(c) Clustering result using principal components scores in wavelet domain
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Figure 4: Clustering result using different preprocessing techniques: (a) using only normalized unprocessed

sound histograms. (b) using wavelet coefficients. (c) using principal components scores in wavelet domain.

by applying WT and PCA techniques, it is possible to extract more variation in the

histogram sound samples for further insights’ extraction.

3.3. Sound Histograms Clustering

In this sub-section, we focus on the clustering technique for processed sound data

using the aforementioned techniques. First, we calculate the average value for each 5-

minute sound histogram, and we noticed there is a latent hierarchical structure in sound

histograms despite variation of behavior for different days of the week (Weekday, Sat-

urday, and Sunday). Therefore, it is crucial to trench this hidden structure in order

to establish a model for daily usage using the agglomerative hierarchical clustering

method [31].

Agglomerative hierarchical clustering method provides variation to the distance

measure between two sound histograms samples, where the only measurement is needed

to formulate the cluster. This simplifies the clustering process for the PCA and WT re-
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Figure 5: Comparison of distortion of metric space for sound histograms.

sults, while provide a visual clue to diagnose the clustering result. In our study, we

generate distortion based on the distance between two sound histogram samples using

Euclidean distance. We observe such behavior in sound histogram samples and it varies

depending on different environmental conditions and time of the days. Therefore, it is

crucial to find the correct similarity measurements for sound histograms on each day

for each individual sensor nodes, so that we can reduce the distortion of the metric

spaces. We calculate the Cophenetic Correlation Coefficient (CCC) as a goodness of

fit static for the hierarchical dendrogram for each similarity measurement type. We

study two different CCC values as illustrated in the Fig. 5.

The x and y axes denote the normalized index of the sound histogram, which can

be calculated through min-max normalization of sound histogram w.r.t the number of

sound histograms samples collected in a day. By visually observing the distortion

of metric space, it is not hard to see that higher CCC value resembles the original

metric space provides a more meaningful clustering outcome. Next, we choose the

dendrogram that has the highest CCC value that shows the best clustering consistency

as the foundation for clustering similar background noise.

4. Detection Phase

After defining the data preprocessing methods, we analyze the clustered data in

order to detect events such as (1) raining period, (2) background noise, and (3) human

outdoor activity.
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4.1. Raining Period Estimation

Weather plays an important role in affecting human outdoor activity. Hence, it is

critical to avoid including the raining period as part of human outdoor activity detection

by estimating the raining period. To better estimate the raining period, multiple sensors

(7 sensor nodes that are co-located in the same playground in our case) within the

same PoI are used. The rationality of using multiple sensor nodes is that the rain

is the common event that will be captured by all the sensors in the vicinity at the

same time-line. To provide a comparison for raining period detection, resistive water

droplet sensors are used for validation. The resistive water droplet sensors output a

value ranging from 0 to 1023, where lower value denote presence of water droplet

while higher value denote the opposite. Note that, the actual raining period detected by

resistive water sensors can be shorter due to the remaining water droplet on the sensor

surface.

We use the clustering method for 7 sensor nodes’ sound histogram, and we ob-

serve that are cluster that resembles raining period compared to non-raining period. To

further validate the accuracy of the raining period, we investigate the resistive raining

sensor against the estimated raining period as shown in Fig. 6.

The solid line represents resistive rain value for each sensor and the diamond mark-

ers denote raining period detected using sound sensor. We notice there is a slight delay

in identifying the raining period when compared it to the resistive rain sensor. How-

ever, in term of actual raining period, sound sensor can estimate the time of rain stop

more accurate than the resistive round sensor. To better separate the raining period

detection and human outdoor activity, prolong period of high ambient noise intensity

is one of the significant characteristic. Any other short impulse of noise periods (e.g.

heavy trucks, car, thunder, train, etc.) would be discarded when compared to the actual

raining period. Thus, we show that the raining period estimation is possible using the

clustering method given the interval of data samples is sufficient.

4.2. Background Noise Detection

Before identifying the human outdoor activity, we need to understand the character-

istic of background noise period for each sensor node at the given PoI. First, we define
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Figure 6: Comparing rain detection method using (a) rain sensor data (solid line) and (b) noise sensor data

(diamond markers) based on the data collected on 28th July 2016.

the ambient background noise in our system model given the human activity is absent.

The most straightforward approach to understand the background noise is to restrict

any potential human activities for weeks to record a human activity free background

noise, but this method would prevent the resident to utilize the PoI. Thus, we attempt to

understand the background noise based on an assumption that the human activity does

not occur at the same time throughout the week and months. Based on this assumption,

we can detect the human activity using the outliers detection method (will be further

elaborated in the next sub-section 4.3). In order to identify the background noise, we

use the aforementioned clustering technique with the processed data (applying WT and

PCA) for each day. An example of the background noise periods throughout different

day of the week can be found in Fig. 7.

By observing the general patterns of the background period, we divide it into the

following categories in Table 2 to match their characteristic:
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Figure 7: Background noise periods detection for sensor Node 7 and 10. (Top: Weekday 2nd August 2016.

Middle: Saturday 16th July 2016. Bottom: Sunday 10th July 2016.)
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Table 2: Background Period Definition and Description

Background Period Description

Quiet/Night (NP )
There is minimal or no human outdoor

activity going on.

Active (AP )
There is some outdoor activities going

on.

Rush Hour period (RP )
There is large number of outdoor activities

going on.

(a) Clusters Pattern of Node 7 over two months           (b) Clusters Pattern of Node 10 over two months
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Figure 8: Average of periods pattern over a two months period (1st July 2016 - 31st August 2016) for Node

7 and 10.

After defining individual background noise periods, we observed some background

noise behavior from the data shown in Fig. 8. For instance, there is long NP on

weekend, which is possible due to the majority of the residents are not working at

weekend. This also contributed to a shorter RP at weekend. In addition, there is an

increment of the outdoor activities (scattered points) on Sunday compared to Saturday

and weekday. In the Fig. 8(a), there is two obvious rush hour periods during morning

and evening, where in Fig. 8(b), it only shows the evening rush hour period. The reason

why sensor node 7 have two peaks detected is because it is located in the proximity of

road, railway line, and pedestrian path. Meanwhile, sensor node 10 is located far away

from these locales (roughly 400m apart) and capture less background noise compared

to sensor node 7.
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However, if we attempt to detect human outdoor activity only with the noise level,

we are not able to differentiate the background noise and human outdoor activity. In-

stead, we try to understand the background noise across different time of the day and

week to provide a noise pattern study before detecting any outdoor activity.

4.3. Outdoor Activity Detection

After identifying the background period for each sensor, we need to further inves-

tigate methods to distinguish an outdoor activity and background noise using outlier

detection. Outdoor activity can be defined as the presence of human outdoor activity

in a particular PoI. This includes kid’s playing and large group chatting, which hap-

pens in the vicinity of the sensor node. As observed, the average value level of RP is

much higher compared with AP and NP with different deviation values. In Fig. 7, we

notice that the average noise value varies through different times of the day, and it is

hard to draw a meaningful conclusion out of it. Therefore, a simple and robust method

such as applying a threshold is not suitable under these constraints. In addition, the

variation of background noise collected in each sound sensor is quite high, requiring

different thresholding values and it is not efficient to manually devise a threshold for

each sound sensor. The chances of This further increase of false-positive (falsely label

background noise as outdoor activity) and false negative (falsely label outdoor activity

as background noise) in the outdoor detection model. Therefore, data samples from dif-

ferent background noise periods need to be taken into consideration when identifying

the outdoor activities separately.

In the outdoor activity detection module, we calculate a chi-square statistic for each

sound histograms samples to distinguish background noise and human outdoor activity.

Chi-square distribution with k degrees of freedom is described as a distribution of the

squares for k independent standard normal random variables. The corresponding of the

Chi-square distribution with k degrees of freedom can be calculated when optimal k

PCs are achieved through independence between PCs. For example, we can show two

PCs are independent by proving the product of two eigenvectors is zero by applying

the symmertricity of two covariances as follows:

Suppose λi 6= λj and Σei = λjei and Σej = λjej where λi, λj are eigenvectors
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of the symmetric matrix Σ, with corresponding eigenvectors, ei and ej respectively.

Then We have the following:

(λi − λj)(ei − ej) =(λiei, ej)− (ei, λjej)

=(Σei, ej)− (ei,Σej)

By using the symmetricity of Σ we can rewrite the equation as below:

(Σei, ej)− (ei,Σej) =Σei.ej − ei.Σej

=eiΣ
T ej − ei.Σej

=eiΣej − ei.Σej = 0

Since λi 6= λj , it shows that product of any two eigenvectors of a symmetric matrix is

zero.

After denoting zero symmetric matrix and optimality of k PCs, we compute the

corresponding chi-square statistic χ2
(i) of k degrees of freedom for sound histogram

samples as follows:

χ2
(i) = pc2(1,i) + pc2(2,i) + ...+ pc2(k,i), (11)

where pc2(n,i) is the standardized PC score of the ith sound histogram (all sound his-

tograms correspond to the same background noise period) and n ∈ {1, ..., k}.

If the background noise remains stationary (sound histograms within the same clus-

ter yields similar property) between sound histograms corresponding to the same time

of the day, we can denote that particular data sample has a lower probability of being

classified as outdoor activities. The intuition behind is that a sound histogram, which

possesses lower probability values represents the outdoor activities that deviate signif-

icantly from a background noise period. Using the aforementioned concept, we can

further formulate a binary output for activity detection using the following equation:

hactivity =

1 if χ2
(i) ≥ β

0 if χ2
(i) < β

(12)

where β is a critical value in k degrees of freedom chi-square distribution and hactivity

is a binary value that represents the outdoor activity for a given sound histogram sam-

ples. In addition, χ2
(i) denotes the activity level for each sound histogram sample. As
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Figure 9: Quantile-Quantile plot of the chi-square distribution for the active period on Saturday 16th July

2016 (Node 7)

a remark of the outdoor activity detection, the period detected as raining would be

labeled as zero outdoor activities, so that both events do not overlap with each other.

Next, we need to determine the value of β, which it is required to define the lower

probability separation of the sound histograms sample into outdoor activity and back-

ground noise. We devise the approach of using quantile-quantile (q-q) plot [32, 33, 34]

of a background noise period to visually identify the deviation sound sample at a given

day of study. In the q-q plot, computed chi-square quantiles are plotted against the the-

oretical chi-square quantiles, and we can assess whether our computed values plausibly

come from the same theoretical distribution. If the value does not fall in the same theo-

retical distribution, it implies that particular interval has a higher probability of outdoor

activity.

We chose a Saturday (16th July 2016) as one of the days to study outdoor activity

using sensor node 7. The q-q plot of the noise samples is illustrated in Fig. 9. From

the q-q plot, we observe chi-square values begin to deviate significantly from the ∠45

line beyond a certain threshold T . Based on the patterns, we observe some sound

samples are related to a different distribution compared to a chi-square distribution.

For instance, the period of 18:00 to 21:00 is supposed to be a rush period, but one point

that is highlighted by the orange arrow shows an active period instead. These data

point that falls outside the red dotted line, it is considered as outliers and it has a higher

probability of an outdoor activity being detected. Meanwhile, those located within the
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red dotted line or close to 45 deg line is either background noise or lower probabilities

labeled as outdoor activities. By tracing back the sound histograms temporal element,

we can obtain the occurrence time for data samples and reconstruct the time series data

with a label for each sound histogram samples. Note that, the same procedure can be

repeated for other sensor nodes and obtain a similar result.

Apart from the q-q plot approach, T also can be estimated from other change point

estimation methods such as the hybrid approach [35], Bayesian change point estima-

tion [36], and wavelet methods [37], etc. Nonetheless, we use the T = 0.43 as β for

the outdoor detection method for our system model. Thus, this concludes the outdoor

activity detection module, and we will perform validation in the next section.

5. Evaluation

In this section, we validate the detected events by the proposed method against the

ground truth to verify the accuracy of the proposed outdoor activity detection model.

The same open space playground located near the residential area studied in the pre-

vious section is also used to collect ground-truth data. There are a total of 7 sensor

nodes installed throughout the playground area (1650m2), which is also next to the

metropolitan railway line, bus-stop, and main road. These combinations of nearby

amenities produce a PoI with noisy ambient noise varying from time to time, which is

an ideal test case to prove the effectiveness of our model. We collect the ground-truth

data on a Saturday evening (20th July 2017) for 5 hours starting from 14:00 to 19:00,

where there is a high probability of human outdoor activities. Although there are 7

sensor nodes located at the PoI, we only focus on 4 sensor nodes around the premises

that are within our range of sight as shown in Fig. 10(2) with the magenta arrow. We

captured the video for 5 hours and invited 3 volunteers to label the outdoor activity

time stamp in the video as ground-truth data. Throughout the data collection, there are

roughly two hours (16:00 - 18:20) of activities being recorded as shown in Fig. 10.

Using a similar threshold from the previous section, we identified the outdoor ac-

tivity and compared them to the ground-truth. The aggregation of 4 sensors is achieved

through a “or” function, where one sensor detected outdoor activity represents the pres-
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Figure 10: Obtained chi-square values with the ground truth images (snipped from the recorded video) for

each sensor nodes on 20th July 2017 evening (only four out of seven sensor nodes are presented here).

ence of human outdoor activity in that PoI at that particular timestamp. After compar-

ing the computed result and ground-truth data, it is not hard to see that the number of

people in each image closely resembles the aggregated output of the sensor nodes.

Table 3: Experimental Results

Methods
True

Detected

False

Positive

False

Negative

Raw data 65.0% 35.0% 0.0%

Raw data + WT 60.2% 34.3% 5.5%

Raw data + PCA 50.0% 33.5% 16.5%

Raw data + PCA + WT 85.8% 3.5% 10.7%

Next, we generate the confusion matrix based on the comparison of different pro-

cessing methods and ground-truth. The result is shown in Table 3. It can be observed

that approaches without applying WT and PCA (raw data only, raw data and PCA as
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well as raw data and WT) yields higher false positive, which contributes to lower true

detected values (65.0%, 60.2%, and 50% respectively). To understand the reason be-

hind false-negative rates of 10.7% for proposed approach using PCA and WT, we study

the ground-truth at the corresponding timestamps. It reveals that these false-negative

events corresponded when there are less than one or two people within the PoI that is

quiet. An example of the false-negative event can be found in Fig. 10(4). It shows

there is only one person in the PoI at that time-stamp and remains quiet and hence not

adequate sound information to capture the event accurately. As for other occupancy

detection, it remains quite accurate most of the time. Thus, we can draw a conclusion

that the system model we proposed work effectively and requires less human effort to

provide training data.

6. Conclusion

In this paper, we have shown how the sound histogram can be used as a data re-

duction method to collect insights about the residential area rather than sending data

samples frequently. Using methods such as WT and PCA, we demonstrate it is possi-

ble to generate more robust and meaningful feature sets before performing a clustering

algorithm to group similar data patterns. In order to further extract insights from the

sound histogram data, we devise a system model to detect background noise period,

human outdoor activity, and raining period. Lastly, we validate our model against

ground-truth data and managed to identify human outdoor activity with an accuracy of

85.5% using only sound sensor.

In future works, we expect the system model to adapt different sources of data to

enrich the outdoor activity detection patterns. Multiple sensors will be used as a foun-

dation of the sensor fusion to generate more accurate data is also part of the study.

Moreover, the trade-off between normal sampling rate versus sound histograms could

be further investigated from a hardware or information theory perspective is quite inter-

esting. Also, the optimal histogram bin size and range choices also can be throughout

investigated in order to increase detection accuracy. This will provide us a more op-

timal system to design data collection platforms from different aspects such as energy
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consumption of sensor nodes, communication overhead, and data quality.
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