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Abstract—Owing to energy liberalization and increasing pene-
tration of renewables, renewable energy trading among suppliers
and users has gained much attention and created a new market.
This article investigates a double-auction scheme operated by an
aggregator with limited supervision for energy trading. To ensure
beneficial bidding for renewable generators and end users (EUs)
considered as agents, a multiagent Q-learning (MAQL) based bid-
ding strategy is developed to maximize their cumulative reward.
Each agent first provides their information about renewable supply
or demand to an aggregator who will then return the information
about aggregate supply and demand. Without knowing the business
model of the aggregator, the agents use Q-tables to estimate the
expected cumulative reward and determine their bidding prices
accordingly. Finally, the aggregator coordinates energy trading be-
tween agents who will then update their Q-tables on the basis of the
amount of power bought or sold at the prices they bid. The proposed
approach can avoid some unnecessary or unrealistic assumptions
generally made by model-based approaches, such as the assump-
tion on the knowledge of others’ bidding profiles or the assumption
of an oligopoly; it can consider the influence of bidding strategies on
the market, which cannot be properly addressed by a conventional
proportional allocation mechanism. A numerical analysis using
real-world data and considering a profit maximization model for
the aggregator shows that the proposed approach outperformed
comparable methods in terms of profits of renewable generators
and energy satisfaction level of EUs: iterative double auction by
approximately 29%, heuristic bidding by 39.9%, random bidding
by 38.1%, NSGA-II-based multiobjective approach by 62%, and
MOEA/D-based multiobjective approach by 83.1% on average.

Index Terms—Double auction, energy aggregator, multiagent Q-
learning (MAQL), multiagent systems, renewable energy trading.

I. INTRODUCTION

ENERGY liberalization and recent technological advance-
ment in electricity markets have created much interest in

energy trading through bidding mechanisms [1], [2]. Among
various mechanisms, peer-to-peer trading [3] has attracted much
attention because it can provide much freedom to market par-
ticipants. For instance, the participants are allowed to determine
their own trading prices, thereby improving price elasticity [4].
Peer-to-peer energy trading seems to be promising, yet chal-
lenging at the same time. Because a peer-to-peer platform is a
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trustless system with no mediating agent, it can be an arduous
task to optimize the decision making process for various trading
parameters with a huge number of participants [5]. In addition,
peer-to-peer trading may reveal participants’ information to
public or a third party. That information can be further used
to deduce the participants’ living habit or lifestyle, raising a
privacy concern.

Aggregate trading can address a few issues faced by peer-
to-peer trading. In an aggregate trading scheme, an aggregator
is an impartial mediator to foster energy trading [6]–[9]. An
aggregator can, for example, ensure data privacy in end-to-end
communication and data integrity during aggregation process;
avoid end-to-end communications that may incur system delays
when a large number of end users (EUs) and power genera-
tors are involved; and reduce price risks for small generators
and undertake EUs’ task of selecting generators. In general,
an energy aggregator groups participants such as renewable
generators and EUs in a power system into a single entity and is
responsible for various tasks such as information management,
service bundling, matching participants, market clearing, and
transaction guarantee [10].

However, market participants under the coordination of an
aggregator can have limited control over market parameters such
as the market prices for buying or selling energy [11]. In certain
cases, an aggregator has full control over both the prices and
energy quantity to be bought or sold. One example is the use
of a contract theory approach for small-scale renewable energy
trading that maximizes the revenue of an aggregator [12]. To
incentivize power suppliers and consumers to join this aggregate
market, individual rationality constraints, incentive compatibil-
ity constraints, and opportunity cost constraints are imposed.
Consumers then follow the contract items including the price
and power quantity determined by the aggregator to meet their
power demand.

A double-auction scheme operated by an aggregator with
limited supervision seems to be a better alternative. Like a
peer-to-peer bidding scheme, power generators and EUs can
have freedom and control over their bidding prices and power
quantities to maximize their individual utility functions. Like
an aggregate energy trading scheme, the aggregator determines
the trading quantities and coordinates the trading process, facil-
itating energy service based business models. In the literature,
however, when double auction has been investigated, the primary
focus is generally the auction scheme itself instead of bidding
strategies of generators and EUs. In [2], for example, authors
claimed that any preferred bidding strategies that maximize the
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benefits of generators can be incorporated into their hierarchical
market structure, but only the base and minimum offers of
bidding prices were examined. Some studies even employed
uniform bidding strategies to evaluate the developed auction
scheme [13], [14].

Meanwhile, one bidding agent, a micorgrid central controller
in particular, has been considered in an energy market [15],
[16]. Extensions from one bidding agent to multiple ones are
possible, such as using a proportional allocation mechanism,
but agents are generally modeled as price takers in the sense
that their bids have little or no influence on the resource price
of the market [17]. From this perspective, multiple agents’
bidding strategies having an impact on market behaviors in a
double-auction scheme need further investigation.

To fill this research gap, this article considers the develop-
ment of bidding strategies of renewable generators and EUs
in a double-auction scheme operated by an aggregator. Both
generators and EUs are considered as agents that are treated
equally to foster the market activities. To maximize the applica-
bility of the proposed methodology, the business model of the
aggregator is considered as unknown to the agents. During the
bidding process, EUs and renewable generators can only use
aggregate information about demand and supply, i.e., minimal
knowledge, to generate bidding prices and quantities without
knowing others’ bidding profiles.

The scenario considered in this article brings much diffi-
culty to existing model-based approaches that have required
some knowledge of the model or made some additional as-
sumptions about the market behaviors in order to formulate
bidding strategies for renewable generators and EUs. In [18],
for example, a game theoretic approach was applied and a Nash
equilibrium was investigated using linear supply functions, but
others’ bidding profiles must be assumed to be known. In [19],
bidding prices were assumed to drop linearly with the increasing
level of demand. Although a Stackelberg game approach has
gained much attention recently [20], [21], a leader–follower
framework is often assumed and the energy market is modeled as
an oligopoly, jeopardizing the market parity between generators
and EUs [17]. To some extent, model-based approaches can also
suffer from their dependency on model uncertainty and can be
computationally expensive [22].

Considering the complexity, dynamics, and uncertainty of the
electricity auction market, model-free reinforcement learning al-
gorithms have advantages over model-based approaches because
of their ability to address nonstationary and stochastic tasks [23],
[24]. Using a reinforcement learning algorithm, an agent in the
market can learn from experience and maximize their profits
in a long run. To realize beneficial bidding to both renewable
generators and EUs in consideration of intermittent and stochas-
tic properties of renewable energy sources, this article develops
a multiagent Q-learning (MAQL) based bidding strategy, in-
volving dedicated designs of states, actions, and rewards.1 A
renewable generator or an EU is considered as a bidding agent.
In the proposed approach, the state of a renewable generator is
the difference between the predicted renewable generation and

1R.O.C Patent No. I687890 (2020)

total power demand; the action is the bidding price for selling
power to the aggregator; and the reward is the revenue generated
by the action. The state of an EU can be either a scalar or a
2-D vector. The difference between local power demand and
predicted power generation from all renewable generators is
used as a state. If the EU possesses an energy storage system,
then the state of charge is the other state. The action is the bidding
price for buying power from the aggregator. The reward is a ratio
that reflects the satisfaction level for meeting a basic renewable
demand and pertains to the energy cost.

Using the proposed MAQL framework, an agent first observes
the states and then determines its price and power quantity
for bidding. After the agent is notified of the bidding result,
i.e., the amount of power that can be sold or bought at the
bidding price, it adjusts its pricing policy. This experience is
mathematically learned by the update of a Q-table that indicates
the value of staying at a particular state-action pair. Given a
state, the action that maximizes the Q-value is often preferred.
Furthermore, the proposed framework can readily generalize to
a more complicated situation in which an infinite number of
states are involved, if necessary. This can be done by function
approximation: parameterizing the value function using a weight
vector. The update of Q-values in a Q-table becomes the update
of the weight vector.

The main contributions of this article are as follows. We
develop the MAQL-based bidding algorithms for renewable
generators and EUs with dedicated designs of states, actions,
and rewards in a double-sided auction market coordinated by
an aggregator. The algorithms can address the uncertainty of
renewable generation and learn to benefit the generators and
EUs without knowing the business model of the aggregator.
While the impact of bidding agents on market prices has not
been modeled in some existing approaches, this article addresses
the interactions between agents and their influence on market
prices during the bidding process. In contrast with model-based
approaches that require some knowledge of the model or make
some additional assumptions, the proposed model-free approach
can formulate bidding strategies using minimal information;
bidding agents adopting the proposed strategies only use in-
formation about aggregate renewable demand or supply without
knowing others’ bidding actions. Finally, a numerical analysis
using real-world data is performed to show that the proposed
MAQL-based bidding strategies outperform comparable meth-
ods in terms of profits of renewable generators, energy costs and
satisfaction level of EUs, and price elasticity.

The rest of this article is organized as follows. Section II
describes the renewable energy market, relevant models, and
associated problem formulation. The proposed MAQL-based
bidding strategies are developed in Section III. In Section IV,
the proposed methodology is compared with existing methods
using real-world data. Finally, Section V concludes this article.

II. SYSTEM MODELS AND PROBLEM FORMULATION

This section describes the system operating models of a
real-time renewable energy market consisting of renewable
generators, EUs, and an aggregator. In each time slot t, both
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Fig. 1. Structure of the real-time renewable market. The aggregator can
purchase power from renewable generators and sell it to EUs in response to
bidding prices.

renewable generators and EUs submit their bids to the aggrega-
tor. The renewable generators desire to sell power at high prices,
and EUs aim to buy a suitable amount of power at low prices. The
aggregator dictates the amount of power to be exchanged in order
to maximize its own profit. A real-time scheduling problem is
considered. Fig. 1 depicts the renewable energy trading scheme
in which several renewable generators and EUs are connected to
an aggregator [11]. Related models and our problem formulation
are described in the following sections. Table I summarizes the
notation used throughout this article.

A. Renewable Generators

In a real-time electricity market, power demand depends on
EUs’ behaviors, and power supply from renewable generators
varies with changing environments, such as the weather condi-
tions and sunshine duration, incurring generation uncertainty.
Let Gmax

m,t denote the actual power generation and Ĝm,t denote
the predicted power generation. The generation cost for the mth
renewable generator mainly comes from the maintenance and
installation cost, which can be considered as independent of sup-
ply quantities and treated as a constant Lres

m . The mth renewable
generator determines price qm,t for selling the predicted power
generation Ĝm,t, and the aggregator determines the amount of
electricity Gm,t bought from the generator. Thus, the power
Gm,t sold by the generator is a function of qm,t and is upper
bounded by the predicted generation Ĝm,t, i.e.,

0 ≤ Gm,t(qm,t) ≤ Ĝm,t. (1)

TABLE I
NOTATION

From the perspective of a renewable generator, an analytical
form of Gm,t is not available; the generator only knows the
value of Gm,t after submitting the price qm,t in each time slot t.
To simplify our notation, we will omit the controlling variable
qm,t from the controlled variable Gm,t.

The optimal bidding price for the mth renewable generator
can be achieved by maximizing its profit as follows [7]:

max
qm,t

E

{
T∑

t=1

qm,tGm,t − Lres
m − U(qm,t)

}

subject to qmin
m ≤ qm,t ≤ qmax

m

(2)

where E{·} represents the expectation with respect to the ran-
dom variable Gm,t, and qmin

m and qmax
m represent the minimum

and maximum bidding prices, respectively. The penalty function
U(qm,t) for generators in (2) can be calculated as

U(qm,t) = {qmax
m (Gm,t −Gmax

m,t ), 0} (3)

which is the penalty paid to the aggregator if the generator cannot
provide power it promises to deliver to the aggregator. If the
penalty occurs, we have

Gm,t > Gmax
m,t . (4)

To some extent, the penalty can be interpreted as the imbalance
settlement pricing in a spot market [25].

If Gm,t was deterministic and its explicit form is given to re-
newable generators, then (2) would be an optimization problem.
In our scenario, however, Gm,t is only available after price qm,t

is submitted in each time slot t, so (2) is a learning problem.
The minimum price qmin

m can be related to feed-in tariff prices;
in such a case, there is no reason for selling power at a price that
is less than a feed-in tariff price. If qm,t < qmin

m , the renewable
generator can simply sell all its generated power to the market
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regulated by a local government with the feed-in tariff price,
which is more beneficial than staying in the trading market
coordinated by an aggregator.

B. End Users

Suppose that N EUs are involved in the real-time bidding
market, some of which are equipped with an energy storage
system, a battery in particular. Let βn,t denote the energy level
at time t. The battery dynamics can be expressed as

βn,t+1 =

{
βn,t + ηcΔβn,t, Δβn,t � 0

βn,t + ηdΔβn,t, Δβn,t < 0

subject to βmin
n ≤ βn,t ≤ βmax

n

(5)

where Δβn,t is positive/negative for a charging/discharging
event, βmin

n and βmax
n represent the minimum and maximum

capacity, and ηc < 1 and ηd > 1 represent the charging and
discharging efficiency, respectively.

Let Dbase
n,t denote the basic renewable demand at time t and

D̂n,t denote the desired demand, where D̂n,t ≥ Dbase
n,t . The basic

renewable demand Dbase
n,t is related to the required quota of

green consumption, and the desired demand D̂n,t is related to
Dbase

n,t , β
min
n , βmax

n , and βn,t.
The nth EU determines price pn,t for purchasing the desired

renewable demand D̂n,t, and the aggregator determines the
amount of power Dn,t sold to the EU. Thus, the power Dn,t

purchased from the aggregator is a function of the bidding price
pn,t offered by the nth EU and is upper bounded by D̂n,t, i.e.,

0 ≤ Dn,t(pn,t) ≤ D̂n,t. (6)

To simplify our notation, we will omit the controlling variable
pn,t from the controlled variableDn,t. In general, increasing the
price pn,t increases the chance of making Dn,t close to D̂n,t.

The goal of each EU is to minimize the total expenditure
while the basic renewable demand is met in consideration of the
battery status if any. The objective function of an EU can be
mathematically expressed as

max
pn,t,D̂n,t,Δβn,t

E

{
T∑

t=1

Dn,t

D̂n,t

(1− pn,t
pmax

)

}

subject to pmin
n ≤ pn,t ≤ pmax

n

(7)

where E{·} represents the expectation with respect to the ran-
dom variable Dn,t, and pmin

n and pmax
n represent the minimum

price for making a bid and maximum affordable bidding price,
respectively. The term Dn,t

D̂n,t
∈ [0, 1] indicates the energy satis-

faction level and the term (1− pn,t

pmax ) ∈ [0, 1) is related to the
reciprocal of the energy cost, which is larger when the bidding
price pn,t is closer to the minimum price pmin

n . Maximizing the
objective function in (7) implies more power purchased at a
lower price. In our scenario, an EU acts as a flexible load.

C. Aggregator

An aggregator ensures data privacy in end-to-end communi-
cation and data integrity during aggregation process, and avoids

end-to-end communications that may incur system delays when
many EUs and power generators are involved. In our scheme,
requests of renewable power demand D̂n,t and supply Ĝm,t

along with bidding prices pn,t and qm,t are sent to the aggregator.
The aggregator then determines the amount of power bought
from renewable generators (Gm,t,m = 1, 2, . . .,M ) and the
amount of power sold to EUs (Dn,t, n = 1, 2, . . ., N ) at each
time step t in order to balance the supply and demand, i.e.,

N∑
n=1

Dn,t =

M∑
m=1

Gm,t. (8)

Several business models have been developed to maximize
the profit of the aggregator. For example, strategic curtailment of
generation in an electricity market was proposed in [26] by max-
imizing curtailment profit subject to locational marginal prices
and curtailment constraints. A double-auction scheme has been
widely used to maximize the social welfare [2]. When the role
of market institution in the double-auction scheme is replaced
by an aggregator, the social welfare can be considered as the
profit for the aggregator. Many variations on the double-auction
scheme are also possible. In [27] and [26], nonlinear objective
functions in a microgrid controller optimization problem were
examined. In [7], the difference between the reward received
from electric utility operator and the compensation provided to
EUs was maximized.

This article assumes that the business model of the aggre-
gator is unknown to renewable generators and EUs. Under
this assumption, the development of bidding strategies for the
generators and EUs without considering the aggregator model is
the primary focus. Meanwhile, the aggregator can benefit from
the proposed market mechanism by maximizing its own profit
during the coordination of energy trading.

Because energy trading is coordinated by the aggregator given
predicted power generation Ĝm,t from renewable generators, it
is possible that true power generation is less than the predicted
power generation, i.e.,Gmax

m,t < Ĝm,t. If this occurs, a renewable
generator can be asked to provide more power than what it is
able to produce, leading to the supply shortage. In this case,
the penalty U(qm,t) in (3) is given to the generator and the
aggregator must compensate this individual supply shortage
through various ways. For example, the aggregator may have
to use its own energy storage system for the compensation.

III. PROPOSED BIDDING STRATEGIES

This section describes the bidding scheme in which renewable
generators and EUs can have their impacts on their own profits
and costs while the aggregator can coordinate the energy trading
process. The concept is to allow renewable generators and EUs
to submit their bidding prices in response to their supply and de-
mand, respectively. Beneficial bidding prices are learned using
the proposed MAQL. The bidding procedure is first examined,
followed by various designs on states, actions, and rewards of
the MAQL in the framework of reinforcement learning.

Fig. 2 presents the bidding procedure consisting of four steps.
In the first step, information about individual power supply Ĝm,t
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Fig. 2. Information and power flows of the proposed bidding scheme for
aggregate renewable energy trading at time t.

and demand D̂n,t is sent to the aggregator. Let us denote

D̂t =
N∑

n=1

D̂n,t Ĝt =
M∑

m=1

Ĝm,t. (9)

In the second step, the aggregator provides information about
total power demand D̂t and total power supply Ĝt to renewable
generators and EUs, respectively. Information exchange in the
first two steps is coordinated by the aggregator. The aggregator
only reveals the aggregate information of demand and supply
during the trading process. The individual privacy of power users
and suppliers can be preserved to some extent. In the third step,
renewable generators and EUs submit desired prices qm,t and
pn,t to the aggregator on the basis of the total demand and supply,
respectively. This step is similar to peer-to-peer energy trading
through a typical bidding process. In the final step, the aggregator
buys powerGm,t from renewable generators and sell powerDn,t

to EUs in response to the bidding prices. The following sections
present detailed designs for steps 1 and 3 in Fig. 2.

The double-auction scheme and the developed bidding strate-
gies form a distributed control architecture. The aggregator
distributes information about aggregate renewable demand and
supply to EUs and generators while EUs and generators make
their own control decision (bidding prices) individually. In this
article, we assume that some formalized contractual agreements
exist for the aggregator to match participants and maintain its
commitments and obligations. For instance, Universal Smart
Energy Framework allows the aggregator to match the contracts
between supplying and demanding participants [28]. The infor-
mation exchange mechanism in Fig. 2 can then be part of the
contracts between the participants.

A. Desired Demand in Step 1

In step 1, EUs need to submit their power demand to the
aggregator. In our scheme, the EUs are encouraged and designed
to purchase the power quantity

D̂n,t = Dbase
n,t + (βmax

n − βn,t) (10)

so as to meet their basic renewable demand and have a fully
charged battery, if any. For EUs with batteries, the charg-
ing/discharging control Δβn,t is designed as

Δβn,t = max{Dn,t −Dbase
n,t ,−(βn,t − βmin

n )}
subject to Δβmin

n,t ≤ Δβn,t ≤ Δβmax
n,t (11)

where maximum power Δβmax
n,t and minimum power Δβmin

n,t in
charging and discharging activities, respectively, are calculated
as

Δβmax
n,t = Dn,t −Dbase

n,t (12)

Δβmin
n,t = βmin

n − βn,t. (13)

In this case, if the power bought from the aggregator is larger
than the power needed for the basic renewable demand, then
the excessive energy is stored in the battery; otherwise, the
insufficient amount of power is compensated by discharging
the battery. Theorem 1 shows that the battery constraints in (5)
with ideal charing and discharging can be satisfied using (10)
and (11).

Theorem 1: For the demand in (10) and battery control in (11)
with ηc ≈ ηd ≈ 1, the battery constraints βmin

n ≤ βn,t ≤ βmax
n

in (5) are satisfied for all t.
Proof: For discharging, we have Δβn,t ≥ −(βn,t − βmin

n )
according to (11). According to (5), we have

βn,t+1 = βn,t + ηdΔβn,t ≥ βn,t − ηd(βn,t − βmin
n ) ≈ βmin

n .
(14)

For charging, we have

Δβn,t = Dn,t −Dbase
n,t . (15)

By (5), (6), and (10), we have

βn,t+1 = βn,t + ηc(Dn,t −Dbase
n,t ) ≤ βn,t + ηc(D̂n,t −Dbase

n,t )

= βn,t + ηc(D
base
n,t + βmax

n − βn,t −Dbase
n,t ) ≈ βmax

n

(16)

which completes the proof. �
For those EUs without batteries, the associated operation is

relatively simple. The desired demand is then set to equal to the
basic renewable demand

D̂n,t = Dbase
n,t . (17)

B. Learning Algorithms in Step 3

In step 3, a way of submitting bidding prices that benefit
individual renewable generators and EUs is required. We pro-
pose to use the concept of Q-learning, a reinforcement learn-
ing algorithm. Reinforcement learning [29] is a mathematical
framework that explores or learns optimal policies to address
stochastic and nonstationary tasks. The decision maker, also
known as the agent, interacts with an environment by observing
the current state and taking an action in a sequence of time steps.
At each time step, the agent receives a reward signal from the
environment with regard to the execution of the action selected.
The agent learns to make decisions in order to maximize the
cumulative reward obtained from the environment.
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The concept of reinforcement learning can be formalized
using a Markov decision process. Let S be the state space in
the environment and st denote the state at time t (current state),
where st ∈ S . Given st, the agent selects an action at from the
action set A. The transition from st to a next state st+1 occurs
and the environment returns a numerical reward rt+1 used to
evaluate the action at executed by the agent at state st. A policy
π(at|st) is a probability function for selecting action at given
state st. The goal of the agent is to find an optimal policy that
maximizes the expected cumulative reward from time t. Define
an action-value function Qπ(st, at) under policy π as

Qπ(st, at) = Eπ

[
T∑

k=t+1

γk−t−1rk|st, at
]

∀st ∈ S, ∀at ∈ A
(18)

where γ ∈ (0, 1] represents a discount rate. The optimal action-
value function Q∗(st, at) satisfies

Q∗(st, at) = max
π

Qπ(st, at). (19)

The optimization process of (19) can be achieved using a Q-
learning algorithm without knowing state transition probabili-
ties [30], [31].

In Q-learning, an agent uses a Q-table Q(st, at) to estimate
Q∗(st, at) and has two strategies to select an action: For ex-
ploitation, the agent selects the best action at the current state
that yields the highest Q-value with probability 1− ε; for explo-
ration, the agent gathers more information by randomly selecting
actions with probability ε. This method is called ε-greedy action
selection. The update rule for the Q-table is given by

Q(st, at) = (1− λ)Q(st, at)

+ λ

(
rt+1 + γ max

at+1∈A
Q(st+1, at+1)

)
(20)

where λ ∈ (0, 1) represents a learning rate. To implement Q-
learning as bidding strategies, we need to define our states st,
actions at, and the corresponding rewards rt.

In our scheme, renewable generators and EUs are considered
as agents. For a renewable generator, the state sgen

m,t is designed
as the difference between the predicted supply and total demand

sgen
m,t = Ĝm,t − D̂t (21)

where D̂t is defined in (9). The bidding price will depend on
sgen
m,t that is generally discretized over a range of interest. The

state in (21) contains information about multiple agents in an
aggregate way, i.e., D̂t; knowledge of individual D̂n,t is not
known to the mth generator.

For an EU, a 2-D state (sEU
n,t, s

SoC
n,t ) is designed, one state sEU

n,t

for the difference between its power demand D̂n,t and total
power supply and the other state sSoC

n,t for battery information, if
any. The state sEU

n,t is defined as

sEU
n,t = D̂n,t − Ĝt (22)

where Ĝt is defined in (9). State sEU
n,t contains information about

other agents in an aggregate way as well, i.e., Ĝt; knowledge

of individual Ĝm,t is not known to the nth EU. The other state
sSoC
n,t is related to the state of charge (SoC) and defined as

sSoC
n,t =

βn,t − βmin
n

βmax
n − βmin

n

. (23)

Similarly, sEU
n,t and sSoC

n,t are discretized over a range of interest.
Submitted prices are the actions taken by the agents. Let

agen
m,t = qm,t ∈ R+ and aEU

n,t = pn,t ∈ R+ (24)

be the actions taken by renewable generators and EUs, respec-
tively. Their action spaces (price ranges) of agen

m,t and aEU
n,t are

discretized over [qmin
m , qmax

m ] and [pmin
n , pmax

n ], respectively.
From the perspective of renewable generators, they seek to

sell power Gm,t at high prices qm,t in order to maximize their
profits. For generator m at time slot t, the following reward
function can be used:

rgen
m,t = qm,tGm,t − U(qm,t), ∀t ∈ [1, T ] (25)

where U(qm,t) represents the penalty if the generator can-
not provide enough power for the aggregator as it originally
promised. From the perspective of EUs, satisfying the desired
power demand and charging the battery, if any, at low prices are
the goal. The reward function of the nth EU at time slot t is then
designed as

rEU
n,t =

Dn,t

D̂n,t

(
1− pn,t

pmax

)
, ∀t ∈ [1, T ]. (26)

In this case, a larger reward generally implies more power
purchased at a lower price.

We summarize the steps in the proposed MAQL bidding
algorithm as follows. At time step t, the generator and EU receive
the reward rt+1 from the bidding environment by disclosing
their price at using ε-greedy action selection in current state st,
and are then transferred to next state st+1. Next, at time step
t+ 1, the algorithm updates the Q-value for the pair (st, at) by
(20). With the designs of states in (21)–(23), actions in (24),
and rewards in (25) and (26), the learning algorithm for price
bidding is presented in Algorithm 1. The algorithm is valid for
both renewable generators and EUs. For renewable generators,
st = sgen

m,t in (21), at = agen
m,t in (24), and rt = rgen

m,t in (25) are
used. For EUs, st = (sEU

n,t, s
SoC
n,t ) in (22) and (23), at = aEU

n,t

in (24), and rt = rEU
n,t in (26) are used. The MAQL algorithm

adopts the Q-learning framework and uses states involving
information about multiple agents. Because this information
is gathered and provided by the aggregator in an aggregate
way, privacy of individual renewable generators and EUs can
be preserved to some extent.

Remark 1: In Fig. 2, the desired demand in step 1 as expressed
in (10) was calculated by each EU; in step 2, information about
the aggregate demand and supply in (9) was collected by the
aggregator and then sent to individual EUs and generators; in
step 3, bidding prices were produced by EUs and generators by
running Algorithm 1, including the calculations of (22)–(24),
and (26) at EUs and the calculations of (21), (24), (25) at gener-
ators; finally, in step 4, the amount of power flow was determined
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Algorithm 1: Proposed MAQL for Renewable Generators
and EUs.

Input: Learning rate λ.
Output: Learned bidding strategy derived from Q.
1: Initialize Q(s, a) randomly for all s ∈ S , a ∈ A. Set

t := 0.
2: While st is not a terminal state do
3: Choose a desired price at using policy derived from

Q(st, ·), i.e., ε-greedy action selection.
4: Submit the price to the aggregator and receive a

reward rt+1.
5: Update Q(st, at) using (20).
6: t := t+ 1
7: end while

by the aggregator, for example, through the maximization of its
own profit.

Remark 2: Renewable generators and EUs determine their
bidding prices using ε-greedy action selection, as shown in line
3 of Algorithm 1. They record their outcomes of past bidding
in Q-tables, and then select the best prices that maximize the
Q-values most of the time accordingly. The best prices depend
on the aggregate information about power supply and demand.
From time to time (with a small probability of ε), they randomly
select prices to explore better actions if any.

IV. NUMERICAL RESULTS

This section presents the numerical analysis on the proposed
MAQL-based bidding strategies for renewable energy trading. A
real-time bidding market consisting of an aggregator, renewable
generators, and EUs was examined [32], [33]. For the purpose
of numerical analysis, the aggregator maximized its own profit
by solving the following [34]:

max
Dn,t,Gm,t

N∑
n=1

pn,tDn,t −
M∑

m=1

qm,tGm,t

subject to 0 ≤ Gm,t ≤ Ĝm,t

0 ≤ Dn,t ≤ D̂n,t

N∑
n=1

Dn,t =
M∑

m=1

Gm,t. (27)

However, renewable generators and EUs were not aware of
such a profit maximization model. EUs were randomly selected
to be equipped with batteries. Real-world data from Euro-
pean Network of Transmission System Operators for Electric-
ity (ENTSO-E) [35] were used, including renewable demand
and renewable generation from biomass (18.43%), hydropower
(7.62%), wind offshore (10.86%), wind onshore (44.76%), and
photovoltaics (18.33%), to produce Dbase

n,t and Gmax
m,t . A quarter-

hourly resolution and optimization horizonT = 96were consid-
ered. Fig. 3 shows the data distribution of average quarter-hourly
power generation and demand from 2019 to 2020.

To model the generation uncertainty, we considered a state-
of-the-art prediction method of renewable generation from [36]

Fig. 3. Distribution of average power generation and demand.

Fig. 4. Cumulative reward of the proposed MAQL algorithm with variations
of learning rate from 0.1 to 0.9.

that yielded at most a 5% prediction error on average. As such,
Ĝm,t was randomly sampled from [0.95Gmax

m,t , 1.05G
max
m,t ] in our

simulations.

A. Learning Rate Tuning

The learning rate λ = 0.1 was set in our proposed MAQL
algorithm. The learning rate defines how much the updated Q-
value learns from the new state-action pair. In general, there is no
explicit rule how this parameter should be chosen. Fig. 4 shows
the variations of learning rate from 0.1 to 0.9. The proposed
learning algorithm performed well when λ was below 0.5.

B. State Design

To illustrate the use of information about total power demand
and supply, we examined the following two conditions:

1) generators have or have no information about total demand
(EUs have information about total supply);

2) EUs have or have no information about total supply (gen-
erators have information about total demand).
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Fig. 5. Cumulative reward of different state designs for the proposed MAQL-
based bidding algorithm over 100 days.

Fig. 5 shows that information regarding total power demand
and supply was important for participants to formulate a decent
bidding strategy. For a renewable generator, the proposed state
sgen
m,t was designed as in (21), indicating the difference between

the predicted supply and total demand; whereas the comparable
state of generator ignoring information about the total demand
was sgen-ignor

m,t = Ĝm,t. For an EU, the proposed state sEU
n,t was

designed as in (22), indicating the difference between its power
demand D̂n,t and total power supply; whereas the comparable
state of EU ignoring information about the total supply was
sEU-ignor
n,t = D̂n,t.

C. Computation Study of MAQL

It is worth mentioning that the framework presented in Algo-
rithm 1 can readily generalize to approximate solution methods.
In that case, the Q function is parameterized by a weight vector
that is updated in each time slot using stochastic gradient descent
methods. Furthermore, the proposed learning framework can be
combined with any existing approaches that are applicable in
a real-time market to reduce the time cost if necessary; in line
3 of Algorithm 1, action at will be produced by any approach
employed. This is possible because the multiagent framework
adopts an off-policy method, providing flexibility to use other
behavior policies that generate data.

Fig. 6 shows the performance of the proposed MAQL with and
without function approximation via tile coding. Both algorithms
were trained over 408 days and their learning curves converged
approximately in five days. In general, function approximation
generalizes better than Q-learning and can learn faster. Never-
theless, our simulation results did not show such an advantage
of function approximation. This can be due to the fact that the
state space is not large and our state design provides compact
information sufficient for an agent to learn well.

Fig. 7 illustrates battery control using (11) in the proposed
MAQL-based bidding scheme. When bidding prices were low,
batteries were charged for later use. When bidding prices were

Fig. 6. Cumulative reward of the proposed bidding algorithm using MAQL
over 500 days.

Fig. 7. Average bidding prices at EUs and battery SoC using MAQL. Batteries
were charged at low prices and discharged at high prices to reduce the energy
cost.

high, batteries were discharged to reduce the cost. This justified
the effectiveness of our battery control design.

D. Comparison With Existing Approaches

Our approach was compared with the following:
1) an iterative double auction (IDA) that maximized the

overall benefit of market participants [27];
2) a heuristic pricing strategy modified from [37] that used a

bidding policy represented by a linear function;
3) a random policy submitting a price uniformly at random

without using any information;
4) a multiobjective optimization approach that employed

evolutionary algorithms to jointly address conflicting
objectives of the renewable generators, EUs, and aggre-
gator [33].
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Fig. 8. Performance comparison at the renewable generators and EUs given
the profit maximization model of the aggregator. The best but ideal performance
was attained by the MAQL given perfect information on renewable generation.
The proposed MAQL-based bidding scheme in the presence of prediction errors
for renewable generation yielded the highest profits for the renewable generators
and highest rewards for the EUs, as shown in (a) and (b), and achieved the highest
satisfaction level of EUs, as shown in (c).

For the heuristic pricing strategy, renewable generators
and EUs tended to bid low prices as power generation and
demand increased, which was modeled as monotonically
decreasing linear functions. For the multiobjective approaches,

Fig. 9. Bidding prices at EUs with respect to the excessive supply quantity
(right y-axis). The excessive supply quantity is positive when there is more supply
than demand. Our MAQL-based bidding strategy presented an elastic property;
price variations of comparable approaches with respect to the excessive supply
quantity presented price inelasticity.

optimization was performed at the aggregator, and decision vari-
ables qm,t, pn,t, Gm,t, and Dn,t were determined by solving the
multiobjective optimization problem comprising (2), (7), and the
profit maximization problem of the aggregator in (27); batteries,
if any, were controlled by the same rule described in (11). Two
state-of-the-art multiobjective evolutionary algorithms called
NSGA-II and MOEA/D [38], [39] were employed to find Pareto
optimal solutions, and the resulting knee solution was selected.
For algorithm MOEA/D, prior information was employed to
normalize each objective.

Fig. 8 shows the average profits and rewards of the gen-
erators and EUs using various methods. The best but ideal
performance was attained by our MAQL algorithm given perfect
information on renewable generation. In Fig. 8(c), the satis-
faction level percentage is defined as min{Dn,t, D

base
n,t }/Dbase

n,t .
The MAQL outperformed IDA, heuristic strategy, random bid-
ding, and multiobjective approaches in the presence of pre-
diction errors for renewable generation. The IDA focused on
social welfare optimization, and thus the bidding strategy of
EUs was suboptimal. The multiobjective approaches involved
a large number of decision variables, including the bidding
prices, to be determined at the aggregator, and thus algorithm
convergence was difficult to attain. In addition, multiobjective
optimization was performed in each time slot rather than over
the optimization horizon T , yielding a suboptimal design. By
contrast, our learning-based bidding focused on the bidding
strategy and addressed fewer parameters than the multiobjective
approaches; it learned the data trends and maximized the cumu-
lative reward of the agents, thereby producing a superior level of
performance.

Average numerical results from Fig. 8 are summarized as
follows. For the renewable generators, the proposed approach
outperformed IDA by 28.74%, heuristic bidding by 32.55%,
random bidding by 20.64%, NSGA-II-based approach by
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Fig. 10. Performance comparison at the renewable generators and EUs given
the microgrid controller optimization model of the aggregator. The best but ideal
performance was attained by the MAQL given perfect information on renewable
generation. In (a) and (b), the proposed MAQL-based bidding scheme achieved
highest profits and rewards for renewable generators and EUs; in (c), the MAQL
attained approximately a 100% satisfaction level for EUs.

52.89%, and MOEA/D-based approach by 78.42%. For the
EUs, the proposed approach outperformed IDA by 29.29%,
heuristic bidding by 47.26%, random bidding by 57.54%,

NSGA-II-based approach by 64.64%, and MOEA/D-based ap-
proach by 87.97%. On average, the proposed bidding strate-
gies were better than IDA by approximately 29%, heuris-
tic bidding by 39.9%, random bidding by 38.1%, NSGA-
II-based approach by 62%, and MOEA/D-based approach
by 83.1%.

In an elastic market, small changes in prices yield large
changes in supply and demand. Fig. 9 illustrates bidding price
variations at EUs in which the excessive supply quantity is
the difference between the total renewable generation and to-
tal demand. The excessive supply quantity is positive if the
renewable supply is higher than the demand and is negative
if the supply is lower than the demand. For the proposed ap-
proach, higher/lower bidding prices occurred when the exces-
sive supply quantity is negative/positive, and a change of the
excessive supply quantity is sensitive to a change of prices,
presenting the elastic property. For the random bidding, bid-
ding prices were irrelevant to the excessive supply quantity.
For multiobjective optimization approaches, price variations did
not elastically reflect the difference between the supply and
demand.

Finally, to illustrate that the proposed approach is not re-
stricted to a particular model of the aggregator, we replaced the
profit maximization model in (27) with a microgrid controller
optimization model [26], [27]. Fig. 10 presents the performance
comparison. The proposed MAQL implemented at renewable
generators and EUs was able to learn superior bidding strate-
gies than the comparable approaches. This indicates that our
learning-based bidding approach should be applicable regard-
less of the aggregator’s business model.

V. CONCLUSION

This article proposed a learning-based bidding strategy for
renewable energy trading in double-sided auctions. A real-time
renewable market consisting of an aggregator, renewable gener-
ators, and EUs was examined. Renewable generators and EUs
were considered as agents aiming to maximize their individual
utility functions. Owing to the lack of information about the
business model of the aggregator and other agents’ bidding pro-
files, learning problems were formulated and the MAQL-based
solution method was developed accordingly. Information about
the power quantity bought or sold and the associated prices was
then used to update Q-tables. The agents employed their Q-tables
that represent the cumulative reward for price bidding in two
ways: to explore possible better pricing strategies, the agents
determine the prices uniformly at random from time to time; to
exploit the available knowledge, the agents greedily select prices
that maximize the Q-values most of the time. The main findings
from our numerical analysis are as follows.

1) The learning-based bidding strategies were not sensitive
to the learning rate once the rate was below a reasonable
threshold.

2) The bidding strategies fully exploited state information
about aggregate renewable supply and demand.
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3) The learning-based framework can readily generalize to
include function approximation that addresses a large state
dimension, if necessary.

4) The bidding strategies outperformed iterative double auc-
tion by approximately 29%, heuristic bidding by 39.9%,
random bidding by 38.1%, NSGA-II-based approach by
62%, and MOEA/D-based approach by 83.1% on average.

The major benefit of using our model-free approach is that
it is general and can be applied to various bidding scenarios
given minimal information. By contrast, existing model-based
approaches, for example, must use models about other agents’
bidding profiles, assume an oligopolistic market, or assume that
agents are merely price takers. As such, several future areas
for research based on the proposed methodology are possible,
including the consideration of risk-constrained bidding in micro-
grids. However, learning-based bidding incurs time cost during
the learning process. Although an off-policy method was used,
implying that any heuristic but effective bidding approaches can
be used while the Q-tables are updated in order to reduce the time
cost, such a combination of heuristic and learning-based bidding
strategies needs further investigation to justify its effectiveness.

REFERENCES

[1] M. Pilz and L. Al-Fagih, “Recent advances in local energy trading in the
smart grid based on game-theoretic approaches,” IEEE Trans. Smart Grid,
vol. 10, no. 2, pp. 1363–1371, Mar. 2019.

[2] M. M. Esfahani, A. Hariri, and O. A. Mohammed, “A multiagent-
based game-theoretic and optimization approach for market operation
of multimicrogrid systems,” IEEE Trans. Ind. Informat., vol. 15, no. 1,
pp. 280–292, Jan. 2019.

[3] S. Wang, A. F. Taha, J. Wang, K. Kvaternik, and A. Hahn, “Energy
crowdsourcing and peer-to-peer energy trading in blockchain-enabled
smart grids,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8,
pp. 1612–1623, Aug. 2019.

[4] K. Zhang et al., “Incentive-driven energy trading in the smart grid,” IEEE
Access, vol. 4, pp. 1243–1257, 2016.

[5] W. Tushar, T. K. Saha, C. Yuen, D. Smith, and H. V. Poor, “Peer-to-peer
trading in electricity networks: An overview,” IEEE Trans. Smart Grid,
vol. 11, no. 4, pp. 3185–3200, Jul. 2020.

[6] S. Burger, J. P. Chaves-Ávila, C. Batlle, and I. J. Pérez-Arriaga, “A review
of the value of aggregators in electricity systems,” Renew. Sustain. Energy
Rev., vol. 77, pp. 395–405, Sep. 2017.

[7] L. Gkatzikis, I. Koutsopoulos, and T. Salonidis, “The role of aggregators
in smart grid demand response markets,” IEEE J. Sel. Areas Commun.,
vol. 31, no. 7, pp. 1247–1257, Jun. 2013.

[8] P. Gope and B. Sikdar, “An efficient privacy-friendly hop-by-hop data
aggregation scheme for smart grids,” IEEE Syst. J., vol. 14, no. 1,
pp. 343–352, Mar. 2020.

[9] F. Ahmad, M. S. Alam, and M. Shahidehpour, “Profit maximization of
microgrid aggregator under power market environment,” IEEE Syst. J.,
vol. 13, no. 3, pp. 3388–3399, Sep. 2019.

[10] F. Khnlenz, P. H. J. Nardelli, and H. Alves, “Demand control manage-
ment in microgrids: The impact of different policies and communication
network topologies,” IEEE Syst. J., vol. 12, no. 4, pp. 3577–3584, Dec.
2018.

[11] Y. Okajima, K. Hirata, T. Murao, T. Hatanaka, V. Gupta, and K. Uchida,
“Strategic behavior and market power of aggregators in energy demand
networks,” in Proc. IEEE Conf. Decis. Control, Melbourne, Australia,
Dec. 2017, pp. 694–701.

[12] Z. Li, L. Chen, and G. Nan, “Small-scale source trading: A contract theory
approach,” IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1491–1500,
Apr. 2018.

[13] D. An, Q. Yang, W. Yu, X. Yang, X. Fu, and W. Zhao, “SODA: Strategy-
proof online double auction scheme for multimicrogrids bidding,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 48, no. 7, pp. 1177–1190, Jul. 2018.

[14] D. Li, Q. Yang, W. Yu, D. An, Y. Zhang, and W. Zhao, “Towards differential
privacy-based online double auction for smart grid,” IEEE Trans. Inf.
Forensics Secur., vol. 15, pp. 971–986, Aug. 2019.

[15] A. Mehdizadeh and N. Taghizadegan, “Robust optimisation approach
for bidding strategy of renewable generation-based microgrid under de-
mand side management,” IET Renewable Power Gener., vol. 11, no. 11,
pp. 1446–1455, 2017.

[16] J. Wang et al., “Optimal bidding strategy for microgrids in joint energy and
ancillary service markets considering flexible ramping products,” Appl.
Energy, vol. 205, pp. 294–303, Nov. 2017.

[17] M. N. Faqiry and S. Das, “Double-sided energy auction in microgrid: Equi-
librium under price anticipation,” IEEE Access, vol. 4, pp. 3794–3805,
2016.

[18] N. Li, L. Chen, and M. A. Dahleh, “Demand response using linear supply
function bidding,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1827–1838,
Mar. 2015.

[19] H. Wu, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “A game
theoretic approach to risk-based optimal bidding strategies for electric
vehicle aggregators in electricity markets with variable wind energy
resources,” IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 374–385,
Jan. 2016.

[20] W. Wei, F. Liu, and S. Mei, “Energy pricing and dispatch for smart grid
retailers under demand response and market price uncertainty,” IEEE
Trans. Smart Grid, vol. 6, no. 3, pp. 1364–1374, Dec. 2015.

[21] E. Nekouei, T. Alpcan, and D. Chattopadhyay, “Game-theoretic frame-
works for demand response in electricity markets,” IEEE Trans. Smart
Grid, vol. 6, no. 2, pp. 748–758, Nov. 2015.

[22] N. Rezaei, A. Ahmadi, A. Khazali, and J. Aghaei, “Multiobjective risk-
constrained optimal bidding strategy of smart microgrids: An IGDT-based
normal boundary intersection approach,” IEEE Trans. Ind. Informat.,
vol. 15, no. 3, pp. 1532–1543, Mar. 2019.

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, Massachusetts, London, England: MIT Press, 2018.

[24] D. Li and S. K. Jayaweera, “Machine-learning aided optimal customer
decisions for an interactive smart grid,” IEEE Syst. J., vol. 9, no. 4,
pp. 1529–1540, Dec. 2015.

[25] J. Hou et al., “An energy imbalance settlement mechanism considering
decision-making strategy of retailers under renewable portfolio standard,”
IEEE Access, vol. 7, pp. 118146–118161, 2019.

[26] N. Azizan Ruhi, K. Dvijotham, N. Chen, and A. Wierman, “Opportunities
for price manipulation by aggregators in electricity markets,” IEEE Trans.
Smart Grid, vol. 9, no. 6, pp. 5687–5698, Nov. 2018.

[27] M. N. Faqiry and S. Das, “Double auction with hidden user in-
formation: Application to energy transaction in microgrid,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 49, no. 11, pp. 2326–2339,
Nov. 2019.

[28] Universal Smart Energy Framework. [Online]. Available: https://www.
usef.energy/

[29] A. Gosavi, “Reinforcement learning: A tutorial survey and recent
advances,” INFORMS J. Comput., vol. 21, no. 2, pp. 178–192,
2009.

[30] R. Bellman, Dynamic Programming. New York, NY, USA: Dover, 2003.
[31] D. E. Kirk, Optimal Control Theory: An Introduction. New York, NY,

USA: Dover, 2012.
[32] S. Chen and R. S. Cheng, “Operating reserves provision from resi-

dential users through load aggregators in smart grid: A game theoretic
approach,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1588–1598,
Mar. 2019.

[33] D. Li, W.-Y. Chiu, H. Sun, and H. V. Poor, “Multiobjective optimization
for demand side management program in smart grid,” IEEE Trans. Ind.
Informat., vol. 14, no. 4, pp. 1482–1490, Apr. 2018.

[34] N. K. Yadav, M. Kumar, D. Sharma, A. Bala, and G. Bhargava, “Devel-
opment of bidding strategies using genetic algorithm in deregulated elec-
tricity market,” in Proc. Int. Conf. Control, Comput., Commun. Materials,
Allahabad, India, Oct. 2016, pp. 1–5.

[35] German electricity market. [Online]. Available: https://www.smard.de/en
[36] L. Gigoni et al., “Day-ahead hourly forecasting of power generation

from photovoltaic plants,” IEEE Trans. Sustain. Energy, vol. 9, no. 2,
pp. 831–842, Apr. 2018.

[37] Y. Tang, J. Ling, T. Ma, N. Chen, X. Liu, and B. Gao, “A game theo-
retical approach based bidding strategy optimization for power producers
in power markets with renewable electricity,” Energies, vol. 10, no. 5,
May 2017, Art. no. 627.

[38] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Aug. 2002.

[39] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Nov. 2007.

https://www.usef.energy/
https://www.smard.de/en


996 IEEE SYSTEMS JOURNAL, VOL. 16, NO. 1, MARCH 2022

Wei-Yu Chiu (Member, IEEE) received the Ph.D.
degree in communications engineering from National
Tsing Hua University (NTHU), Hsinchu, Taiwan, in
2010.

He is currently an Associate Professor of electrical
engineering with NTHU. His research interests in-
clude multiobjective optimization and reinforcement
learning, and their applications to control systems,
robotics, and smart energy systems.

Dr. Chiu was the recipient of the Youth Automatic
Control Engineering Award bestowed by Chinese

Automatic Control Society in 2016, the Outstanding Young Scholar Academic
Award bestowed by Taiwan Association of Systems Science and Engineering
in 2017, the Erasmus+Programme Fellowship funded by European Union (staff
mobility for teaching) in 2018, and Outstanding Youth Electrical Engineer Award
bestowed by Chinese Institute of Electrical Engineering in 2020. From 2015 to
2018, he had been serving as an Organizer/Chair for the International Workshop
on Integrating Communications, Control, and Computing Technologies for
Smart Grid (ICT4SG). He is a Subject Editor for IET Smart Grid.

Chan-Wei Hu received the B.S. and M.S. degrees
in electrical engineering from National Tsing Hua
University, Hsinchu, Taiwan. He is currently working
toward the Ph.D. degree in computer science at Texas
A&M University, Texas, USA.

His research interests include machine learning and
computer architectures.

Kun-Yen Chiu received the B.S. degree in electrical
engineering from Northeastern University, Boston,
MA, USA, in 2018. He is currently working toward
the M.S. degree in electrical engineering with Na-
tional Tsing Hua University, Hsinchu, Taiwan.

His research interests include reinforcement learn-
ing algorithms and smart grids.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


