© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or |
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/JSYST.2021.3090306

Workload-Aware Placement Strategies to Leverage
Disaggregated Resources in the Datacenter

Aaron Call*t, Jorda Polo*, David Carrera*, Member, IEEE,
*Barcelona Supercomputing Center, Barcelona, Spain
TUniversitat Politecnica de Catalunya - BarcelonaTECH, Barcelona, Spain
E-mail: {aaron.call,jorda.polo,david.carrera} @bsc.es

Abstract—Disaggregation of resources is a data center strategy
that aims to decouple the physical location of resources from
the place where they are accessed, as opposed to physically
attached devices connected to the PCle bus. By attaching and
detaching resources through a fast interconnection network, it
is possible to increase the flexibility to manage data center
infrastructures while keeping the performance of the pooled and
disaggregated devices. This paper introduces workload schedul-
ing and placement policies for environments with disaggregated
memories. These policies are driven by accurate pre-built perfor-
mance degradation models. We focus on the use of Non-Volatile
Memory to store data and/or to provide memory extensions.
Following a software-defined approach, persistent memories are
combined to provide higher capacity and/or bandwidth devices,
or used by multiple workloads to increase the number of
running workloads. Different combinations of workloads and
associated soft-deadlines are used to evaluate the placement
policies using a system simulator. Using a first fit policy, results
show a disaggregated system can reduce missed deadlines up
to 49% when compared to a physically-attached system. When
our proposed policy with workload-awareness is enabled in a
disaggregated system, missed deadlines can be reduced up to
100% (no deadlines missed).

Index Terms—IO pooling, Model-Aware, Software Defined
Infrastructrures, Workload Placement, Resource Disaggregation,
Composability, Scheduling, NVMe, Orchestration

I. INTRODUCTION

Traditional datacenter architectures comprise sets of mostly
homogeneous compute platforms (also referred to as com-
puting nodes or servers). Resources statically compose these
platforms: compute, memory, storage, network fabric, and
accelerators. They also access remote resources over the net-
work, such as blob storage or network file systems. In a typical
batch processing context, workloads are associated with a
completion time goal or soft-deadline. They are managed by
a scheduling subsystem that defines many queues or server
pools used to place workloads admitted for execution.

Generally, the scheduling queues or pools provide access to
a limited amount of pre-defined platform configurations, re-
sulting in a homogeneous datacenter architecture in an attempt
to make it easier to maintain and manage the infrastructure.
However, homogeneous datacenters also lack adaptability,
reconfigurability, malleability, and extensibility, which has an
impact on the workloads.

The conventional datacenter design target is to include
enough infrastructure capacity to meet peak demands or to
arrange the datacenter platform for bursting when needed

while keeping in mind the total cost of ownership. Both
of those methods depend on having enough foresight about
what peak demands will be, as well as the trickier problem
of predicting what possible bottlenecks might arise when
applications approach capacity. Both are risky and do not
account for the unexpected.

Datacenters based on Software-Defined Infrastructures
(SDI) aim to disaggregate resources over a network fabric
to enable increased management flexibility. On SDI, instead
of pools of nodes, the pools consist of individual units of
resources (storage, GPUs, FPGAs). When an application needs
to be executed, SDI identifies the computational requirements
and assembles all the required resources, creating a composite
node. Then, the operating system is booted, and the appli-
cation is instantiated. Unlike previous mechanisms to access
remote resources (e.g. RDMA, or distributed filesystems),
SDI resources are exposed as local to the software stack
running on the composite node. Thereby, the SDI architecture
virtualizes access to the pools of resources, exposing platform
configurations that match the user requirements. Once the
application finishes its execution, nodes are decomposed, and
resources are placed back in their corresponding queues. Re-
source disaggregation also enables [1] increased malleability
to exploit datacenter resources through sharing them across
multiple workloads or by dynamically composing new ones
with larger capacity or increased bandwidth.

To demonstrate the importance of disaggregation-aware
workload placement policies, we will consider a simple yet
illustrative example with two nodes and three workloads, as
shown in Figure 1. Workload J1 requires 100% of the cores of
one node (pictured green), J2 requires 50% of the cores (blue),
and J3 requires one core and NVMe device (red). We consider
two scenarios. In the first scenario, as shown in Figure la,
only one node has physically-attached NVMe. When J1 and
J2 arrive, they are placed in nodes 0 and 1, respectively. When
J3 arrives, it only has enough cores to run in node 1. However
node 1 does not have an NVMe, so J3 has to wait until J1
finishes to run on node 0. In the second scenario, in Figure 1b,
the NVMe is pooled, so either node can attach and share the
resource on-demand. In this case, J3 can be placed in node 1
due it can attach the disaggregated NVMe on-demand from the
remote pool. Thus, disaggregation leads to more efficient use
of available resources and quicker completion of jobs. While
this is a simple example of basic placement strategies, similar
situations arise in many placement policies.

Node 1

Node 0(w/NVMe)

0 50 60 100
Execution time (s)

(a) Physically-attached NVMe in node 0. Job J3 (red) has to wait until node
0 is available.

Node 1(p/NVMe)

Node 0

0 50 60 100
Execution time (s)

(b) Disaggregated NVMe in node 0. Job J3 (red) is executed in node 1 with
NVMe pooled and remotely attached.

Fig. 1. Timeline showing the execution of three jobs in two nodes with
physically-attached NVMe (top) and disaggregated NVMe (bottom)

When the behavior of workloads under disaggregation is
known, it is possible to develop policies to take maximum
advantage of the resources.

This paper uses a performance model for disaggregated
workloads based on previous work on [1], in which assigning
more resources than the strictly required leads to performance
improvements. Using this model, we propose strategies to
address the challenges of managing pools of disaggregated
resources. This paper will attempt to answer questions such
as when and where to attach/detach resources, how many
workloads should be allowed to run using the same device,
and whether or not compositions should be made. The main
contributions of this paper are:

« Two novel model-aware placement policies: maximize
composition and minimize fragmentation. The former
enables resource sharing (at hardware level) and resource
composition to optimize workload execution and is espe-
cially suited for IO bandwidth-bound loads. The latter
aims to globally minimize resource fragmentation in the
datacenter for capacity-bound loads.

e A novel disaggregation-aware scheduling policy that
decides which of the two previously proposed placement
policies should be applied at each time.

o A comparative analysis of benefits of resource disaggre-
gation versus physically-attached resources.

II. DISAGGREGATION CHALLENGES

To study the impact of resource disaggregation on a data-
center, we focus on an architecture where several nodes can
access a set of disaggregated resources. In this paper, we
only consider nodes with a set of CPUs, which all workloads
require, and NVMe as the main disaggregated resource.

Figure 2 depicts the described architecture. We have a set of
nodes, each of which has some CPUs (in the depicted example,
20), and a pool of NVMe resources with given bandwidth and
capacity. The architecture allows splitting into many pools
of resources. However, resources from different pools can’t
be composed into a single one. In this paper, we base our
infrastructure on NVMe over Fabrics [2]. This technology
allows exposing NVMe devices attached to a host node to
target nodes. The target node is unaware that the NVMe is
not physically attached to it and can use it as a regular block
device, managing it as if it were physically-attached. It also

Compute Rack 10 Pool Rack

Compute Node:
20 cores

ToR - .7 T ToR

] L
B
fl I

CPU Mem NIC

1 I

NVMe drive:
26B/s w.__ . l

Data Center
Fabric

Fig. 2. Overview of datacenter with a disaggregated IO architecture, with
pooled NVMe devices over the fabric

enables to compose several NVMe devices on the host node
and expose the combination as a single NVMe device on the
target nodes. This technology allows us to experiment with
workloads and resource disaggregation in this paper.

Our infrastructure is different from traditional remote net-
work storage. Traditional storage resource pooling usually
involves either a shared filesystem over the network, or shared
volumes made of storage devices accessed via iSCSI or similar
protocols. The approach used in this paper is closer to the
latter, but still differs in a number of ways, including: 1) per-
formance, in particular lower latency leading to more use-cases
based on using NVMe directly as block device or memory
extension; 2) dynamicity and frequency at which devices can
be expected to be reconfigured, attached and detached; and 3)
flexibility of resource sharing and composition. All of these
lead to significant changes in terms of resource management.
In particular, the proposed disaggregated datacenter allows for
full dynamic reconfiguration. It is expected to be attaching and
detaching devices with high frequency, depending on the de-
mand. This malleability is not expected on traditional storage
systems, and so current tools are not able to properly manage
this kind of infrastructure yet. Morevoer note that accessing
the device as a block device enables HPC workloads to use
this disaggregated environment. Traditional cloud systems are
file-based, which limits application for many HPC workloads.

The proposed infrastructure presents some challenges:

1) Resource sharing: when a node attaches a resource from
any of the pools, it is not aware that it is disaggregated. It
perceives the resource as physically-attached, and it enables
simultaneous sharing of the same hardware resource across
many nodes and workloads without any modification of their
default behavior.

2) Resource composition: disaggregation also enables the
possibility to attach multiple resources and expose them as
if they were a single one. Thus, a node can believe it has
a single physically-attached resource, when in fact has a set
of resources remotely attached and composed together. This is
what we define as resource composition. [1] discusses how the
number of resources that can simultaneously share the device
can be increased through this mechanism in some throughput-
oriented workloads, even improve its performance.

3) Fragmentation: finally, resource pooling also introduces
system fragmentation. Whenever a resource is requested,
which one should be provided? A resource already attached to
some other node, a composition of resources, or a resource not
currently pooled to any other node? Our policies will explore
different alternatives. Depending on the situation, it might lead
to fragmentation. Figure 1 shows this situation. In scenario
la, when J1 and J2 are scheduled, node O has its cores fully
utilized, while its NVMe resources are completely free. Thus,
the system has unused areas (NVMe) that are at the same time
inaccessible. It has ”’split” half of the resources, fragmenting
the system. Intermediate cases are relevant as well. Imagine
in the same example, when J3 is finally scheduled, J3 utilized
10% of the cores, and it utilized the NVMe at 80%. It would
be using most of the NVMe, however, at the same time
leaving most of the available cores free. This situation implies
that NVMe-dependent workloads will hardly be allocated in
this node. Only compute-intensive workloads will likely use
the node. In this situation, if compute-intensive workloads
presence is low, the cores will be unused for long periods.
Thus, a better scenario would have been that either most of the
cores were as well used, or the NVMe was less utilized. Notice
fragmentation is inherent of such systems and many times
is impossible to avoid. However, our proposed policies and
following evaluation will explore the usefulness of minimizing
fragmentation.

Regarding the network, this paper evaluates InfiniBand
transport and protocol only. The datacenter should have ded-
icated networking lanes between the pool of resources and
the computing nodes to avoid potential conflicts of congestion
with other users and data transmitted through the datacenter.
Moreover, pools of resources should not have more device
bandwidth than aggregated network bandwidth available for
the pool. The datacenter can scale by adding more pools and
InfiniBand links.

III. STRATEGIES FOR SDI ORCHESTRATION

Based on the described challenges, this paper proposes
two placement policies: one exploiting resource sharing and
composition, and a second one reducing system fragmentation.
Finally, a disaggregation-aware scheduler is proposed to decide
how to switch between both policies. The policies described
focus on a homogeneous set of resources. However, a hetero-
geneous environment could be managed using heuristics when-
ever a group of unused resources meeting the requirements
(NVMe capacity and bandwidth) is needed. Nevertheless, such
modification in the policies is low, as the strategy doesn’t
change. Hence the focus on homogeneous architectures.

As stated previously, our policy design assumes knowledge
of the workloads’ impact under resource sharing and com-
position, this is the critical difference between our proposal
and traditional data centers. Traditional data centers assume
workloads are static, and they do not possibly benefit from
having more resources than requested. This paper considers
it is possible to know about some workloads’ behavior under
resource sharing and composition. Thus, if a known workload
may take advantage of it, our placement policies will be aware.

With those models, it is possible to develop the right placement
policies to use both properties. If a workload is unknown, the
proposed policies will work calculating its completion time
based on the provided execution time.

A. Maximize Composition Placement Policy

Some workloads benefit from having more NVMe band-
width than available. When this over-provisioning occurs, they
might improve their performance. On the other hand, on the
higher availability of bandwidth and capacity, the sharing ratio
of resources without performance degradation also increases.
Thus, combining resources into large compositions helps the
system’s overall performance for this kind of workload. This
behavior can be observed in our previous experiments [1].
Consequently, the idea behind the first proposed policy is,
when unused resources must be found and allocated to work-
loads, to compose many resources into a single one, over-
provisioning, as long as the workload will benefit from it.
The policy is described in pseudo-code on algorithm 1.

Algorithm 1 Maximize composition placement
1: procedure MAXIMIZE COMPOSITION PLACEMENT(job, deadline)

2 parameters = {bandwidth, capacity, cores}

3 for all ¢ in compositionsInUse() do

4 if meetCompletionSLA(c, job, deadline) then

S: ttl=TTL(job) — TTL(c)

6: f = fitness(c,job)

7: insertSortedAscending(candidateList, ttl, f, c)

8 end if

9 end for

10: if mempty(candidateList) then

11: composition = first(candidateList)

12: assignResources(job, composition, assignedCoresNode(composition))
13: else

14: request = calculateRequestForMinimalTime(job,parameters)
15: composition = findFreeResources(request)

16: coresNode = FirstFitFindCores(job)

17: assignResources(job, composition,coresNode)

18: end if

19: end procedure

20: procedure CALCULATEREQUESTFORMINIMALTIME(job, parameters)
21: prevTime = baseTime(job)

22: request = Set()

23: for all p in parameters do

24: for i = 0; i < maxJobParameter(job, p); i+ = 1 do
25: curTime = workloadPer formanceParameter(job, p, i)
26: if prevTime > curTime then

27: prevTime = curTime

28: else

29: request.add(p,i)

30: continue

31: end if

32: end for

33: end for

return request
34: end procedure

Lines 2-9 iterate over compositions in use (resources already
allocated and being used by other workloads). As long as the
assignment meets the deadline and SLA (NVMe bandwidth,
capacity, cores), the composition becomes a fitting candidate.
To decide among candidates, time to live of the composition
if the placement would be made is calculated (line 5), and as
a tie-breaker parameter, the fitness is computed as described
on equation 1 (line 6). Let bw. be the bandwidth available
in composition ¢, bw; be the bandwidth demand for job j,
sto. be the storage capacity of ¢ and sto; be the storage
capacity demand for job j. Then, fitness represents how
much bandwidth and capacity would be left in the composition

after satisfying job job demands. Both parameters (fitness
and composition) are ordered in ascending order (line 7). The
policy attempts to free resources quickly, and as a secondary
priority to compress them as much as possible. If placing
the workload would significantly increase the composition’s
lifetime, it rather creates a new composition.

fitness = (bwe — bw;) + (sto. — sto;) (1)

Lines 10-12 allocate the best-fit candidate composition
(already existing, if any). Otherwise, it is necessary to search
among free resources (from the pool of NVMes) and create
a new composition. Lines 14-17 show the latter. The priority
is to make compositions with more resources than needed,
that is, over-provisioning. However, over-provision is made
as long as workloads’ performance improves. If making a
composition of three or four resources makes no difference,
the smallest one is chosen. The achieved performance is
estimated using the performance models. Thus, becoming a
model-aware policy. The calculus for this is made on lines 20-
33. Lines 24-30 check if over-provisioning by each parameter
would improve workloads’ performance respect to smaller
ones. Once increasing the composition size stops improving
performance, the last parameter value is chosen (line 29).
Line 24 also limits some parameters. A model may indicate
workload will not improve its performance past a certain
bandwidth or capacity of the resources. Hence the policy
does not attempt to increase the parameter beyond it. As
an example, as described, storage-based workloads will not
achieve any performance upgrade past its base capacity and
bandwidth. Thus, for this kind of workload, the parameters
chosen will be the minimum workloads’ request. Once the
parameters’ values are elected, the policy looks into the pool
of free resources for the minimal set of resources fulfilling the
requirements (line 15). This line’s algorithm is not described
as finding the optimal set in a homogeneous set of resources is
trivial. Last, a node with enough available cores is found using
a first-fit strategy (line 16). Finally, the set of free resources
selected turns into a new composition and is attached to the
node with enough cores previously found (line 17).

B. Minimize Fragmentation Placement Policy

This policy aims to minimize fragmentation, based on
situations like shown in the introductory example in figure
1 and explained in section II-3. To minimize fragmentation
we need to carefully consider the allocation. On which node
the job will run in, and which NVMe resource will it use.
If we are not careful enough it might be the remaining
free space resulting of the allocation is such any incoming
workload can use it. This is what we previously defined as
fragmentation. As fragmentation is inherent on the system,
we develop this policy to try minimizing, making a better use
of the available space which can lead to better performance of
the system. For it, we require a metric that defines how much
fragmentation an allocation introduces. In this regard we make
two considerations: on the one hand the internal fragmentation
resulting to allocating a job to a specific composition. If the
allocation makes a composition fully utilized, this particular

composition will not have internal fragmentation. On the other
hand, how many free cores will remain in the node where the
composition becomes attached to. Again, if the node we decide
to attach the composition ends up having all its cores utilized,
will be a better placement than one leaving spare resources.
With these considerations in mind, the ratio of fragmentation
o between the NVMe bandwidth and capacity requested,
plus the remaining cores after scheduling the workload, is
estimated. This computation is made according to equation 2.
Let bw, be the unallocated bandwidth available in composition
¢, bw; be the bandwidth demand for job j, sto. be the
unallocated storage capacity for composition ¢, sto; be the
storage capacity demand for job j, core, be the unallocated
cores in node n and core; be the core count demand for job
7. Then « is defined as:

bw;
1— (54
o= 1o o) 2)

coren

sto;)

The numerator calculates the amount of a composition
utilization after the allocation of job j. This is subtracted by 1
to calculate the remaining spare space on composition c. The
denominator computes the utilization of cores on the node if j
is run on node n. The reasoning behind setting this division is
the following: given a certain fixed percentage of cores to use
from the available cores in the node, the lower the attached
resource’s left-over, the lower the fragmentation. If cores usage
is fixed, minimizing fragmentation is simply making the most
use of the attached resource (we want low left-over). So the
numerator computes this free space on the pooled resource. We
do have two parameters on NVMe, bandwidth and capacity. As
different workloads might want more bandwidth or capacity,
we can’t prioritize either of them. So we consider both equally
important and add them up. For the denominator the reasoning
is similar: given a fixed spare space on the pooled resource,
the higher the cores used, the lower the fragmentation. Indeed,
if resource’s available space is fixed, the only way to minimize
fragmentation is to make the most use of the cores. We can
then conclude that the higher the value of alpha, the higher
fragmentation of the system.

This equation serves for deciding among the already at-
tached and in use of resources. However, when there is a
need to make a new attachment among free resources, a new
formula is needed. The goal of this paper is to orchestrate
disaggregated resources and is not possible to fragment (by
definition) the pool of disaggregated resources. Thus, finding
a set of free resources meeting a workloads’ requirements
is trivial. However, the available cores are not disaggregated
but physically-attached to actual physical nodes. Thus, it
is possible to introduce cores fragmentation when finding
cores to execute workloads on. Thus, when deciding which
node to attach our resources, we attempt to maximize the
utilization of the physically-attached cores. To achieve this
goal, we compute cores’ slack using equation 3. This equation
is similar to the concept of resource’s slack provided by [3].
The equation computes the percentage of free cores remaining
in the node, thus becoming our slack. Let core, be the
unallocated cores in the node, and tcore,, the total cores in

the node, 8 computes the percentage of utilized cores (as we
made the reverse). Thus, the lower S more cores available in
the node. Therefore, the resource strategy will place workloads
first on the most under-utilized nodes, progressively utilizing
all of the nodes as workloads are placed. This proposal helps
to minimize cores fragmentation for the scenario of a large
amount of compute-intensive workloads present in the system.
This situation belongs to the second consideration in II-3.

coren,

3)

=1-
B tcore,

Algorithm 2 shows the pseudo-code for the policy:

Algorithm 2 Minimize fragmentation placement
1: procedure MIN-FRAGMENTATION PLACEMENT(job, deadline)

2 parameters = bandwidth,capacity,cores

3 for all ¢ in compositionsInUse() do

4 if meetCompletionSLA(c, job, deadline) then
5: a = a(job,c)

6: insertSortedAscendent(candidateList, o)

7 end if

8 end for

9 if "empty(candidateList) then

10: placement = first(candidateList)

11: assignResources(job, placement)

12: else

13: composition = findFreeResources(job,parameters)
14: coresNode = minFragCoresNode(cores)

15: assignResources(job, composition, coresNode)
16: end if

17: end procedure
18: procedure MINFRAGCORESNODE(cores)

19: for all n in nodes do

20: if freeCores(n) >= cores then
21: B = Bm)

22: insertSortedAscendent(candidateList, 3)
23: end if

24: end for

25: if —empty(candidateList) then
26: return first(candidateList)

27: else

28: return false

29: end if

30: end procedure

Lines 2-15 are very similar to maximize composition policy.
However, in this case, the o parameter is used to determine
the fitness of elements and reduce fragmentation. In case
there are no candidate compositions, and free resources need
to be used, as described first available resources meeting
the requirements are found (line 13) following the same
strategy as in maximizing composition. Finally a node with
available cores is found. This search is done according to the
algorithm in lines 18-26, and it selects the node minimizing
fragmentation of cores following equation 3 (lines 21-22).

C. Disaggregation-aware Scheduling Policy

This paper focuses on the QoS of workloads in terms
of deadlines, deciding between high-priority workloads and
regular-priority workloads. For this reason, our proposed
disaggregation-aware policy takes Earliest Deadline First
(EDF) as a base scheduling policy. This is a widely known
policy that is good in scenarios where deadlines are the
priority, enabling differentiation between priority and non-
priority workloads. We run a set of experiments choosing
one or the another strategy throughout the simulation in the
same scenarios as the following evaluation of this paper. Dur-
ing those experiments we concluded that whilst minimizing

fragmentation is a good strategy if there is high presence
of non-IO bound workloads, it does not behave that well
when those workloads are a majority. Likewise with maximize
composition, it behaves well when 10-bound workloads are the
most, however it worsens when this situation does not happen.
For this reason, and as stated at the beginning of this paper, our
proposed policy does switch between both proposed placement
policies dynamically. The conditions that must be meet to
apply one or the other were obtained out of the aforementioned
experiments. We define (NVMe) bandwidth and capacity load
factors as the relationship between demanded and total avail-
able bandwidth and capacity, respectively. Let LFy,, be the
bandwidth load factor and LF,,, the capacity load factor.
Our scheduler applies Maximize Composition (Max. Comp.)
or Minimize Fragmentation (Min. Frag.) according to function
4.

Max. Comp. LF,<50% and LF,,,<50%

Policy = { Max. Comp. LF},,>70% and LF,,<70%
Min. Frag. Otherwise
IV. EVALUATION S

In this section, our proposed policies and disaggregated
environment’s performance are compared against a basic
one. First, we describe the environment (infrastructure and
workloads) used to perform the evaluation. It follows with a
definition of some metrics that will help to define our concept
of performance. Finally, experiments are made using those
metrics. The experiments are split into two. On the one hand,
resource disaggregation versus physically-attached infrastruc-
tures, and on the other hand, a comparison of our proposed
strategy versus a basic strategy simulating a traditional data-
center. On the latter, further experiments are made to assess
the different metrics.

A. Methodology

We built a simulator to evaluate the impact of the proposed
strategies. The simulator emulates the architecture described
in figure 2. The simulator only considers NVMe resources
for disaggregation. We chose to build our simulator as our
requirements were rather simple, and we considered the effort
to be smaller than adapting a previously existing simulator for
computing architectures to our architecture and needs. More-
over, to the best of the authors’ knowledge, no simulators are
emulating disaggregated environments. The existing simula-
tors are generally complex and emulate generic infrastructures.
Our simulator code can be found online in [4].

The simulated infrastructure comprises five nodes with 25
cores each, and a pool of 10 disaggregated NVMe devices,
featuring a bandwidth of 2GB/s and 600GB of storage capac-
ity. On the physically-attached infrastructure, only two of the
five nodes have NVMe. Of those two, the first has attached
six of them and the remaining four at the second.

To evaluate the impact of our strategies in a wider scenario,
three types of workloads are established:

1) Bandwidth-bound: represents workloads that are sensi-

tive to bandwidth, and so multiple concurrent workloads
running in the same the device may have an impact on

3500
3000
2500
2000
1500
1000
500
0

Execution time (s)

Cop,
CUrpe
Urrepe Tung 13 *

Fig. 3. Execution times for a bandwidth-bound workload showing how execu-
tion time evolves when running multiple SMUFIN instances: sharing a single
device (1xXNVMe), or sharing on composed nodes (2xNVMe, 3xNVMe).

TABLE 1
WORKLOADS’ REQUESTED RESOURCES
Workload | Base NVMe NVMe CPU
type execution | band- capacity cores
time width

Bandwidth-| 1600s 1800MB/s | 43GB 6
bound

Capacity- | 800s 160MB/s 600GB 6
bound

Compute- | 900s N/A N/A 15
bound

performance if bandwidth capacity is exceeded. We use
our work on SMUFIN [5] [6], to model the behavior of
this workload and the results presented in [1], summa-
rized in figure 3. The figure shows the execution times
for real, SMUFIN runs on compositions of 1, 2, and 3
NVMe devices, with up to 6 concurrent executions were
sharing the same composition. This model shows how
over-provisioning the workload may have some benefits
both in terms of performance as well as workload’s
concurrence threshold increase without experiencing
degradation. The model is fed to our placement policies.

2) Capacity-bound: represents workloads that have signif-
icant storage capacity requirements and relatively low
bandwidth requirements. Unlike bandwidth-bound work-
loads, these do not perceive any performance degra-
dation from sharing the device with other workloads,
as long as the demanded capacity does not exceed the
available capacity. A real-world example of such would
be TPCx-IoT [7], a TPC benchmark that attempts to
emulate an Edge Computing scenario. It provides the
mentioned characteristics: uses NVMe mostly for stor-
age and performing random reads on the data. However,
we do not use a model about its performance in the
current evaluation for simplicity reasons.

3) Compute-bound workload: we emulate the situation
where we have CPU-consuming workloads that do not
require NVMe usage. We introduce this synthetic work-
load to emulate situations where workloads not using the
NVMe might prevent other workloads from using them

in non-disaggregated scenarios. It could be any compute-
bound real-world workload, for example, mathematical
computations of weather forecasting.

We do not possess a performance model for capacity-bound
and compute-bound workloads. Thus, its performance does
not degrade or improves modifying sharing or composition
ratio, as long as the capacity and bandwidth requirements
are met. However, notice that if we possessed it, placement
policies would use it. Sharing and composition only impact
bandwidth-bound workloads, for which, as mentioned, the
SMUFIN model is used to estimate the performance in such
situations. This scenario becomes the main target to evaluate
in this paper.

The considered workloads utilize NVMe (bandwidth and
capacity) and cores. Workloads specify their base performance
(assuming their SLA is met). Table I describes the resources
used by each kind of workload.

To consider a wide spectrum of situations, three different
distributions (from now on scenarios) of the workloads’ are
taken. Table II presents the distribution settings for each
scenario. It also summarizes the default settings used. The
scenarios are as follows: a high-bandwidth scenario (S1)
with 70% bandwidth-bound, 10% capacity-bound, and 20%
compute-bound workloads. A high-capacity scenario (S2)
with 70% capacity-bound, 10% bandwidth-bound, and 20%
compute-bound workloads. Finally, a high-compute scenario
(S3) with 70% compute-bound, 20% bandwidth-bound, and
10% capacity-bound workloads.

The simulator generates the arrivals for the requested work-
loads within a requested timeframe. In our evaluations, we
simulate 1500 workloads are arriving in a period of 3 days. The
inter-arrival time of the workloads follows a Poisson process.
Poisson is chosen as it introduces periods when the inter-
arrivals are much shorter (emulating rush hours) and periods
with larger inter-arrivals (regular hours).

Moreover, across all the workloads a randomly selected 20%
of them are considered high-priority and are assigned a tight
deadline whereas the rest have a relaxed deadline. Let ¢,, be
the base execution time of the workload, ¢ the deadline factor,
and a,, the arrival time of the workload, then the deadline is
computed according to equation 5:

deadline,, = €4,0 + ay 5)

The deadline factor & defines the tightness of them. A
relaxed deadline factor is 4 (400% the base execution time
ew). Later an evaluation is presented, modifying the factor
for high-priority deadlines. The default high-priority deadline
factor is 1.2 (120% of the base execution time e,,).

B. Load factor

A key element of analysis is the load factor of the system.
An ideal load factor is calculated to evaluate the impact of this
distribution of workloads. The load factor is described in this
paper as the ratio between resources requested and available.
As we have three different kinds of resources (bandwidth,
capacity, and cores), three load factors can be calculated. In
this paper, we put particular emphasis on the CPU load factor

TABLE II
DEFAULT SIMULATION PARAMETERS ON THREE SCENARIOS

Bandwidth-| Capacity- | Compute- | Non- deadline High- Number Cores per | NVMe NVMe Number
bound bound bound(%) | priority factor priority of nodes node band- capacity NVMe
(%) (%) deadline work- width on pool
factor loads
(%)

S1. High- 70% 10% 20%

bandwidth 4 1.2 20% 5 25 2 GB/s 600GB 10

S2. High- 10% 70% 20%

capacity

S3. High- 20% 10% 70%

compute

(cores). Let ¢, be the cores available in the system, c; the
cores requested by a job, and J the set of jobs currently active
(arrived but not completed) on the system the CPU load factor
is calculated on equation 6 as the quotient between c, and the
sum ¢; of all jobs J running the system.

Cs
ZjeJ Gy

It is only necessary to replace cores with bandwidth or
capacity to calculate bandwidth and capacity load factors.
Notice, however, that the results of the equation are subject to
the scheduling and placement policy. Depending on the policy,
specific jobs will complete later or earlier. Thus, the set J of
jobs running on the system will vary, and so will the load
factor. This makes it hard to compare the load factor between
strategies. For this reason, in order to calculate the load factor
of the system, we use an artificial scheduler assuming an ideal
infrastructure where all resources are aggregated into a single
fat-node. Thus, no fragmentation is possible. In this scheduler,
whenever a workload arrives, if resources are available, it is
run and completes after its base execution time. Otherwise, it
must wait until some workload frees enough resources. With
this formulation, we can calculate a load factor independent of
the policy. Therefore given the distribution of workloads and
a set of resources, our strategies will evaluate the same load
factor.

As stated, to evaluate our strategies, we take the CPU load
factor as our target load factor. Depending on the target, the
performance of the strategies will vary. An over-saturated
system with a very high load factor implies that it will be
impossible to fit all jobs as soon as they arrive. Therefore
deadlines will be inevitably missed regardless of the strategy.
On the other hand, a very relaxed system with a low load
factor implies that even the dumbest strategy will achieve
good performance, as there are plenty of resources available.
However, deciding which load factor is appropriate to evaluate
is a challenging problem. For this reason, the three scenarios
of workloads’ distributions are evaluated for different targets.
Notice, however, that for every distribution, to achieve the
same load factor, the inter-arrivals time of workloads needs
to be different (A parameter in our Poisson distribution),
due that every topology of workloads has different resource
requirements. Moreover, all metrics utilized are only measured
once an ideal CPU load factor has reached 0.7, and the
measurement window stops as soon as the latest workload
arrives.

LF.p = (©)

C. Impact of disaggregation

This evaluation compares our three scenarios on the follow-
ing experiments:

1) Load factor and physically-attached versus disaggre-
gated environment: evaluates how system saturation im-
pacts the strategies. Its behavior is compared between
physically-attached NVMe and disaggregated NVMe.

2) High-priority deadlines factor: evaluates the impact of
pressure due to high-priority workloads.

As a comparison base, a First Fit policy is implemented with
an EDF scheduler. As its name indicates, this policy performs
the first resource allocation possible for a workload. Moreover,
it assumes a traditional data-center where over-provisioning
is not possible, thus is not using our model, assuming any
workload can share a resource neither benefits from resource
composition. It is chosen as a comparison baseline due it
does not consider any state of the system, as long as the
allocation fulfills the workloads’ requirements. Thus, it allows
us to understand the impact of considering the infrastructure’s
characteristics over not doing so.

This paper assesses the impact of disaggregation by compar-
ing the infrastructure against an infrastructure with physically-
attached resources. On the latter, only two of the five nodes
have NVMe attached. The first with four and six on the second.
The other three nodes do not have any NVMe attached. In
tables III, IV and V we present the results for our strategies
in both a disaggregated and a physically-attached (PA) infras-
tructures. All the results are shown for different target CPU
load factors in order to show a wide spectrum of situations.
The metrics definitions shown in the tables are as follows:

o Target CPU load factor: is the average CPU load factor
on an ideal infrastructure with no fragmentation.

o Observed load factor: real load factor in the system under
the given strategy.

o Missed deadlines: percentage of workloads missing its
deadline.

o Missed high-priority deadlines: percentage of high-
priority workloads missing its deadline. The absolute
value cannot be higher than workloads missing its dead-
line.

o« NVMe usage: in percentage, average of NVMe usage
across simulation.

o Avg. Waiting time: average waiting time of workloads.
The waiting time is defined as the time elapsed from
arrival until resources are allocated.

TABLE III
HIGH-BANDWIDTH SCENARIO: 70%I0 WORKLOADS

Target CPU| Polic Obs. resources’ utilization | % Missed % Missed NVMe Waiting Compositions| Sharing
load factor Y CPU [BW | Cap deadlines high-prio usage(%) time (avg.) size (avg.) ratio (avg.)

First Fit 0.84 | 0.84 0.14 96.71% 19.52% 99.81% 45916s 1.00 1.00

0.9 PA First Fit 0.74 | 0.67 0.11 98.05% 20.19% 79.75% 63108s 1.00 1.00

Disagg-Aware 0.84 | 0.94 0.16 92.42% 17.51% 99.91% 38428s 1.02 1.26

PA Disagg-Aware | 0.74 | 0.66 0.12 97.18% 19.58% 78.T1% 57668s 1.02 1.06

First Fit 0.72 | 0.84 0.14 89.13% 18.71% 99.91% 18088s 1.00 1.00

0.8 PA First Fit 0.65 | 0.67 0.11 75.99% 19.79% 79.75% 34302s 1.00 1.00

Disagg-Aware 0.87 | 1.08 0.18 4.70% 0.40% 92.51% 569s 1.24 1.96

PA Disagg-Aware | 0.65 | 0.67 0.11 75.05% 19.25% 77.98% 29150s 1.04 1.12

First Fit 0.69 | 0.84 0.14 47.55% 11.80% 99.72% 3888s 1.00 1.00

0.7 PA First Fit 0.60 | 0.67 0.11 72.43% 18.85% 79.97% 20616s 1.00 1.00

Disagg-Aware 0.70 | 0.85 0.14 0.47% 0.47% 76.07% 29s 1.36 2.06

PA Disagg-Aware | 0.60 | 0.67 0.11 71.43% 18.31% 76.88% 155285 1.04 1.18

First Fit 0.60 | 0.74 0.12 0.07% 0.07% 87.92% 53s 1.00 1.00

0.6 PA First Fit 0.56 | 0.67 0.11 64.52% 17.00% 79.90% 79865 1.00 1.00

Disagg-Aware 0.58 | 0.70 0.12 0.00% 0.00% 60.79% 3s 1.51 2.27

PA Disagg-Aware | 0.56 | 0.67 0.11 50.81% 13.37% 70.06% 3712s 1.15 1.57

First Fit 0.50 | 0.62 0.10 0.00% 0.00% 73.16% Is 1.00 1.00

0.5 PA First Fit 0.50 | 0.62 0.10 0.54% 0.54% 73.16% 124s 1.00 1.00

Disagg-Aware 0.48 | 0.58 0.10 0.00% 0.00% 51.34% 0Os 1.58 2.28

PA Disagg-Aware | 0.48 | 0.59 0.10 0.07% 0.07% 44.78% 74s 1.58 2.71

PA: Physically-attached.
TABLE IV
HIGH-CAPACITY SCENARIO: 70% 10T WORKLOADS

Target CPU| Polic Obs. resources’ utilization | % Missed % Missed NVMe Waiting Compositions] Sharing
load factor y CPU [BW | Cap deadlines high-prio usage(%) time (avg.) size (avg.) ratio (avg.)

First Fit 0.84 | 0.29 0.76 90.68% 18.51% 99.86% 11396s 1.00 1.00

0.9 PA First Fit 0.74] 0.23 0.61 95.51% 19.85% 79.83% 21947s 1.00 1.00

Disagg-Aware 0.84 | 0.28 0.78 90.01% 18.44% 99.95% 10614s 1.00 1.00

PA Disagg-Aware | 0.74 | 0.22 0.62 94.97% 19.72% 79.87% 21018s 1.00 1.00

First Fit 0.79 | 0.28 0.76 10.26% 5.16% 98.56% 945s 1.00 1.00

0.8 PA First Fit 0.70 | 0.23 0.61 72.10% 18.98% 79.91% 10391s 1.00 1.00

Disagg-Aware 0.79 | 0.27 0.76 0.27% 0.27% 90.86% 154s 1.00 1.00

PA Disagg-Aware | 0.70 | 0.22 0.62 72.37% 19.18% 79.78% 9635s 1.00 1.00

First Fit 0.69 | 0.24 0.66 0.07% 0.07% 85.73% 65s 1.00 1.00

0.7 PA First Fit 0.66 | 0.23 0.61 63.45% 16.90% 79.87% 3965s 1.00 1.00

Disagg-Aware 0.69 | 0.24 0.66 0.47% 0.47% 79.97% 29s 1.00 1.00

PA Disagg-Aware | 0.66 | 0.22 0.62 60.63% 15.96% 79.29% 3215s 1.00 1.00

First Fit 0.58 | 0.20 0.56 0.00% 0.00% 71.93% 8s 1.00 1.00

0.6 PA First Fit 0.58 | 0.20 0.56 1.27% 1.27% 71.93% 118s 1.00 1.00

Disagg-Aware 0.58 | 0.20 0.56 0.34% 0.34% 68.92% 8s 1.00 1.00

PA Disagg-Aware | 0.58 | 0.20 0.56 0.74% 0.74% 69.50% 109s 1.00 1.00

First Fit 0.52 | 0.18 0.50 0.00% 0.00% 64.16% 3s 1.00 1.00

0.5 PA First Fit 0.52 | 0.18 0.50 0.54% 0.54% 64.16% 31s 1.00 1.00

Disagg-Aware 052 | 0.17 0.50 0.27% 0.27% 63.22% 3s 1.00 1.00

PA Disagg-Aware | 0.52 | 0.17 0.50 0.80% 0.80% 64.15% 44s 1.00 1.00

PA: Physically-attached.
o Avg. Compositions’ size: average number of NVMe
composed together across the simulation.
o Avg. resource sharing: average number of workloads
sharing an NVMe (or composition of NVMe) across the
simulation.

Figure 4 summarizes the results’ for missed deadlines of
the tables, comparing Disaggregation-Aware strategy versus
First Fit. The y-axes show the strategies’ missed deadlines
for the different load factors (x-axes) of the three scenarios
shown in the tables. On 4a disaggregated infrastructure is
shown whereas 4b shows the physically-attached one. Observ-
ing the disaggregated infrastructure, Disaggregation-Aware
strategy performs better on high-bandwidth scenarios until
the system becomes highly saturated. However, it performs
roughly equal in the two other scenarios (slightly worse in
some situations, but the absolute numbers show this difference
is neglectable). This is due in the high-bandwidth scenario,
most of the workloads (bandwidth-bound) take advantage of

sharing and composition. Our performance model enables the
knowledge that composing resources may benefit bandwidth-
bound workloads. Thus, a model-aware strategy being able to
make compositions and raise sharing ratios outperforms tradi-
tional data-centers. In the other two scenarios, however, most
workloads do not benefit from that. Thus, the Disaggregation-
Aware strategy slightly helps mitigating fragmentation, but it
does not show a significant impact versus not doing so. Special
emphasis should be made on that having a model for the other
two kinds of workloads could enable composition on those
scenarios and enhance our performance. Comparing to having
a physically-attached infrastructure, it is clear that all scenar-
ios and strategies perform much worse on the mid to high
saturation levels. On low saturation levels, the performance is
close to optimal regardless of the infrastructure or scenario,
as in such relaxed systems, it does not matter how bad the
decisions are, as there is plenty of room for error.

In figure 5 we present the amount of workloads run on each

TABLE V
HIGH-COMPUTE SCENARIO: 70% CPU INTENSIVE
Target CPU| Polic Obs. resources’ utilization | % Missed % Missed NVMe Waiting Compositions| Sharing
load factor y CPU [BW | Cap deadlines high-prio usage(%) time (avg.) size (avg.) ratio (avg.)
First Fit 0.79 0.30 0.10 70.46% 4.69% 40.74% 13968s 1.00 1.00
0.9 PA First Fit 0.70 0.25 0.07 94.91% 18.29% 32.38% 27096s 1.00 1.00
Disagg-Aware 0.78 0.28 0.10 68.85% 1.88% 63.51% 144375 1.35 1.03
PA Disagg-Aware 0.71 0.28 0.10 95.24% 18.96% 38.52% 24523s 1.04 1.04
First Fit 0.77 0.26 0.09 62.22% 1.61% 34.82% 4983s 1.00 0.98
0.8 PA First Fit 0.70 0.24 0.08 92.83% 18.49% 31.53% 14116s 1.00 1.00
Disagg-Aware 0.76 0.24 0.09 59.54% 0.74% 56.89% 4774s 1.44 0.98
PA Disagg-Aware 0.70 0.23 0.08 88.88% 16.14% 33.41% 12734s 1.10 1.03
First Fit 0.69 0.22 0.07 0.00% 0.00% 29.30% 186s 1.00 0.97
0.7 PA First Fit 0.68 0.22 0.07 19.36% 6.77% 29.26% 1581s 1.00 0.98
Disagg-Aware 0.68 0.20 0.07 0.00% 0.00% 40.67% 169s 1.50 1.13
PA Disagg-Aware 0.67 0.20 0.07 11.86% 3.21% 3321% 1409s 141 1.22
First Fit 0.57 0.18 0.06 0.00% 0.00% 24.38% 20s 1.00 0.94
0.6 PA First Fit 0.57 0.18 0.06 0.47% 0.47% 24.38% 34s 1.00 0.94
Disagg-Aware 0.56 0.17 0.06 0.00% 0.00% 30.36% 19s 1.53 1.19
PA Disagg-Aware 0.56 0.17 0.06 0.00% 0.00% 27.82% 26s 1.53 1.26
First Fit 0.50 0.16 0.06 0.00% 0.00% 21.46% 2s 1.00 0.92
0.5 PA First Fit 0.50 0.16 0.06 0.50% 0.50% 21.46% 8s 1.00 0.92
Disagg-Aware 0.50 0.14 0.05 0.00% 0.00% 26.61% 1s 1.53 1.16
PA Disagg-Aware 0.50 0.15 0.05 0.00% 0.00% 24.69% 4s 1.54 1.25
PA: Physically-attached.
Disaggregation-Aware 21 Disaggregation-Aware 71
First Fit m— First Fit m—
100 100
g 80 g 80
3 4
£ 60 £ 60
o e
g 40 § 40
: 3
é 20 + § 20
0 S S I— 1 0
m e~ o® o n e~ @ o n e~ @ o n e~ o® o m e o~ ® o n @ o~ ® o
o o o o o o o o o o o o o o o o o O©o o o o o o o o o o o o o
S1. High-bandwidth S2. High-capacity S3. High-compute S1. High-bandwidth S2. High-capacity S3. High-compute

Load factor

(a) Disaggregated layout

Load factor

(b) Physically-attached

Fig. 4. Performance of the strategies on different load factors for the three scenarios. Disaggregated and physically-attached infrastructures.

400 T T T T T
S1. High-bandwidth &=z
S2. High-capacity m—

350 | S3. High-compute =—=2

300

250

200

150

100

Amount of workloads run on node

50

0

Node 0 Node 1 Node 2 Node 3 Node 4

(a) Disaggregated layout

600 T T T T T
S1. High-bandwidth &z
S2. High-capacity m—
9] L S3. High-compute =—=3
< 500
o
[=
c
o
c 400
2
n
?
S 300 -
<
o
s
s 200 F
o
c
3
o
£ 100}

Node 0 Node 1 Node 2 Node 3 Node 4

(b) Physically-attached

Fig. 5. Distribution of workloads-type run on each node of the infrastructure during a simulation. Disaggregated and physically-attached infrastructures. Nodes

0 and 2 have physically-attached NVMe on (b).

of the compute nodes by its kind, comparing the disaggregated
infrastructure (figure 5a) and the physically-attached (5b) one.
It can be observed how disaggregation allows balancing all
the workloads, regardless of their need to use NVMe across
all the nodes. Simultaneously, the physically-attached is more
restrictive and forces all the workloads requiring NVMe to
be allocated on the only two nodes with NVMe availability,
thus limiting scheduling flexibility and therefore performing

worse. In these figures, a high-bandwidth scenario is shown
with a target CPU load factor of 0.7. However, the remaining
scenarios and load factors have the same behavior.

Notice that low load factors are not represented due to such
situations. The saturation of the system at any point reaches
70%. Thus we can never start the measurement window on
which we compute the metrics.

On the other hand, as previously stated, our scheduling pol-

Minimize Fragmentation
Maximize Composition

1400
1200
1000 -

Workloads using policy
5 O @
o o o
o O o
T T T
SO

OO0

OO0

N

o

o
T

o

n o~ 9 9 n o N~ 9 a n o~ Q@ a
o O ©o o o o o o o o ©o o o o
S1. High-bandwidth S2. High-capacity S3. High-compute

Load factor

Fig. 6. Amount of workloads’ resources allocated by each placement policy,
load factor, and scenario.

icy is designed to shift between placement policies according
to observed capacity and bandwidth utilization. To show this
behavior, we depict in figure 6 the number of workloads’
resources placed with each policy on each load factor and
scenario. It can be observed how in the high-bandwidth and
high-compute scenarios, almost only the “maximize compo-
sition” policy is used. This is due bandwidth requested is
either very high (high-bandwidth) or both bandwidth and
capacity requests are really low (high-compute), provoking
the use of only one of the policies. However, in the high-
capacity scenario, as the target CPU load factor increases,
the amount of request for capacity increases, provoking an
escalated shift to using only minimize fragmentation policy.
This shows the expected behavior, as in such situations,
minimizing fragmentation either slightly improves results (0.8
target CPU load factor) or does not worsen performance.

D. Scheduling with tight deadlines

An alternative to analyzing the system’s performance in
tight situations is to set a specific load factor and add pressure
by changing the deadline factor of high-priority workloads.
Previously we established a high-priority workload has a
deadline factor of 1.2 times its base execution time to com-
plete. The lowest the deadline factor is, the sooner workloads
need to be completed and the more pressure the system has.
This experiment explores how setting this parameter impacts
performance while maintaining the target CPU load factor in
0.7. 0.7 is chosen as we consider the optimal scenario a not
relaxed but not saturated system.

Disaggregation-Aware Z—~21
First Fit mm—
100

60

40

a

Deadline factor
Fig. 7. High-priority workloads’ deadline factor impact on high-priority
deadlines missed. Results are categorized per each scenario and deadline
factor.

(%) High-priority deadlines missed

Disaggregation-Aware CZ—2
First Fit H—

Average sharing ratio

Deadline factor

Fig. 8. High-priority workloads’ deadline factor impact on workloads’ sharing
ratio. Results are categorized per each scenario and deadline factor.

Figure 7 presents the high-priority deadlines missed (per-
centage) as the deadline factor changes. From left to right,
the lowest factor the hardest to fulfill the deadlines are. The
figure shows Disaggregation-Aware performs better in the
high-bandwidth scenario and has a similar performance in the
high-capacity scenario. However, the high-compute scenario
outperforms First Fit when the high-priority coefficient is very
tight (1.0). Thus, Disaggregation-Aware performs correctly
in the target scenario (having high-bandwidth model-enabled
workloads) and does not worsen a general scenario with a low
presence of such workloads.

Figure 8 depicts the average amount of workloads sharing
the same resource. This figure allows us to observe how the
sharing ratio increases when Disaggregation-Aware performs
better (high-bandwidth scenario). While the high-capacity
scenario, with equal performance, does not benefit from it.
Thus, not being able to exploit the advantages of resource
disaggregation. The sharing ratio is increased thanks to a
greater presence of bandwidth-bound, modeled workloads.
However, the high-compute scenario also benefits from this,
due there is a lower amount of workloads using NVMe (neither
capacity-intensive NVMe nor bandwidth-bound). The presence
of such workloads allows to exploit composition for the arriv-
ing bandwidth-bound workloads, as using more NVMe than
needed will not prevent incoming capacity-intensive workloads
from running due to lack of NVMe, as there are not so many
workloads requiring it. This can be verified through figure 9. It
depicts the average composition size on the different deadline
factors for high-priority workloads. It is indeed observed
how Disaggregation-Aware makes greater compositions on the
high-bandwidth scenario and does some amount of them in
the high-compute scenario. In both scenarios, performance is
better compared to first fit. Therefore enabling a model on
workloads allowing to share resource’s that otherwise would
not be possible enhances system’s performance.

E. Resources availability

In the described experiments, the simulated systems had 10
NVMe devices. To understand if the availability of resources
impacts performance, we run experiments diminishing the
number of devices. Results are displayed on figure 10. On
the x-axes the number of devices on the simulated system.
The y-axes represent the percentage of missed deadlines.
The results shown are for a fixed target CPU load factor of

Disaggregation-Aware CZ—2
First Fit m—

Average size of compositions

Deadline factor

Fig. 9. High-priority workloads’ deadline factor impact on average compo-
sition size. Results are categorized per each scenario and deadline factor.

Disaggregation-Aware 221
First Fit m—
100

Missed deadlines (%)

— o o ~ ©o
S2. High-capacity

— o [ee) ~ o
S1. High-bandwidth

NVMe resources

Fig. 10. Performance of strategies for different nunmber of NVMe devices
on the three different scenarios. Results based on a target CPU load factor of
0.7.

0.7. The three scenarios are displayed. It can be observed
how, for the high-bandwidth scenario, where workloads are
mostly sensitive to bandwidth, there is a significant difference
between both policies in many cases. Having more resources
available implies more options to make larger compositions,
increasing provided bandwidth and thus sensitive workloads’
performance. As the amount of available resources diminishes,
this difference diminishes as well. As more constrained the
system is on resources, while maintaining the demand, im-
plies less flexibility to make compositions (which uses more
resources for the same workload), thus the less our policy
benefits the system. Scenarios up to one single device are
omitted for simplicity, due the tendency to behave equally is
already observable.

F. Mixing bandwidth-bound modeled workloads

As a final experiment, we add a second modeled workload
into the high-bandwidth scenario. This workload is the syn-
thetic benchmark fio [8]. This benchmark is intended to check
for performance failures on storage devices, thus generating
high and steady bandwidth loads. Due to the synthetic nature
of the workload, we observed an almost perfectly linear nature
after running the same set of experiments we run for SMUFIN.
That is, let ¢ be the execution time of the workload on a
single nvme-device; when composing two devices together,
the execution time becomes #/2. Despite its synthetic nature, it
demonstrates how bandwidth-intensive workloads may benefit
our proposed policy, even when mixed. For this purpose, we
repeated the experiments shown in figure 4 for the high-

Disaggregation-Aware [Z—Z1
First Fit m—
100

20

Missed deadlines (%)
B o o2
o o o o
T T T T
09 EEE——

R S,

L L m oo ~ 9 9 nmo9 ~N 9 9

S o oo o © o o oo o © o o o o
M1. FIO-only M2.70-30 M3. Half-Half

70% FIO Bl%% SMUFIN 50% FIO 50% SMUFIN

Load factor

Fig. 11. Performance of the strategies on different load factors for three
FIO-SMUFIN workloads” mixes. Disaggregated infrastructure.

bandwidth scenario S1. However, instead of consisting of a
70% only SMUFIN workloads, we take three mixes on this
70% high-bandwidth workloads:

e MI1. FIO-only: 100% FIO, no SMUFIN.
e M2. 70-30: 70% FIO, 30% SMUFIN.
o M3. Half-Half: 50% FIO, 50% SMUFIN.

Notice the percentages are relative to the 70% total bandwidth-
bound workloads. The remaining, as in previous experiments,
are composed of capacity and compute-bound workloads.
Figure 11 shows the missed deadlines on different load factors
for each of the described mixes. It can be noticed how our
policy outperforms first-fit, particularly on saturated systems.
It can also be observed how, in some combinations, on relaxed
systems, there is no gain due the overall performance is nearly
optimal, as almost no deadlines are missed on either policy.

V. RELATED WORK

The idea of SDI has been increasingly studied in the
literature over the past few years. In [9], the authors provide
a conceptual definition focused on scalability and dynamic
infrastructure changes depending on workload demands. An-
other, more recent, proposal of an SDI architecture can be
found at [10], highlighting the need to scale over heteroge-
neous groups of resources and emphasizing the role of the
SDI manager.

Intel has also developed Rack Scale [11], one of the first
SDI frameworks that are closing the gap between academic
research and real data centers. Rack Scale allows the dynamic
composition of nodes, fully disaggregating its resources in
pools, such as CPU, storage, memory, FPGA, GPU, etcetera.
Facebook has engaged with Intel to explore this SDI imple-
mentation, developing the Facebook Disaggregated Rack [12].
On the other hand, HP is also conducting its own SDI data
center implementation with ”The Machine” [13]. An industrial
prototype exposing PCle over the network can be found on
[14], additionally, a proposal for enabling resource pooling
through device lending is made on [15].

In terms of resource disaggregation, [16] evaluates NVMe.
Unlike the work presented in this paper, the authors do not
focus on NVMe over fabrics and use a custom software
layer to expose the devices. FPGAs disaggregation is ex-
plored in [17], evaluating the impact of such disaggregation.
In [18], the authors examine the network requirements for

disaggregating resources at rack and data center and levels.
Minimum requirements are measured in terms of network
bandwidth and latency. Those requirements must be such that
a given set of applications does not experiment performance
degradation when disaggregating memory or other resources
over the fabric. [19] presents some performance challenges and
issues while using RDMA over Converged Ethernet (RoCE)
due to PFC protocol. [20] presents an alternative to PFC to
avoid such issues. In our paper, however, we use InfiniBand
transport and protocol, which allows us to bypass any PFC
issue. Finally, [21] presents a scheduling proposal for in order
to help allocate resources on-demand, trying to maximize the
number of resources being used and minimizing node latency.
To the best of authors’ knowledge, there is not literature about
strategies for disaggregation on similar terms as this paper.

VI. CONCLUSIONS

This paper has shown that providing a performance model
for workloads under disaggregation allows for better place-
ment strategies. Such models enable the designing of place-
ment strategies aware of the workloads’ requirements to fully
leverage the disaggregation of resources in datacenters.

The paper has proposed two model-aware placement poli-
cies that benefit from disaggregation. One policy enables re-
source composition and resource sharing, whereas the second
one deals with system fragmentation. Minimizing such frag-
mentation helps not to degrade performance on the scenarios
where our modeled workloads are marginally represented. All
of these are relevant to help meet workload requirements in
datacenters. As observed through simulation, resource compo-
sition increases resource sharing up to 2x. The paper shows
how these advantages are critically enabled by resource disag-
gregation. It has compared results to a physically-attached in-
frastructure, where performance is significantly slower. When
using the first fit policy, results show that a disaggregated
system can reduce missed deadlines up to 49% when compared
to a physically-attached system. Enabling disaggregation helps
to meet all deadline on mid-relaxed systems with trivial first
fit strategy, while our proposed strategy can deal with more
saturated systems as well. On the other hand, when workload-
awareness is enabled in a disaggregated system, our proposed
policy reduces missed deadlines up to 100% (no deadlines
missed) under load factors of 0.7 or less. When the system is
more saturated (load factor of 0.8), this reduction is of 18.96%,
still becoming a significant improvement. These results show
that not being able to dynamically allocate resources into
the compute-nodes limits orchestration flexibility leading to
performance degradation, demonstrating the advantages of
resource disaggregation.

ACKNOWLEDGMENTS

This work was partially supported by the Ministry of
Economy of Spain under contract TIN2015-65316-P, the
Ministry of Science under contract PID2019-107255GB-
C21/AEI/10.13039/501100011033, and the Generalitat de
Catalunya under contract 2014SGR1051.

[1]

[2]

[3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]
[13]

[14]
[15]

[16]

(171

(18]

[19]

[20]

[21]

REFERENCES

A. Call, J. Polo, D. Carrera, F. Guim, and S. Sen, “Disaggregating non-
volatile memory for throughput-oriented genomics workloads,” in Euro-
Par 2018 International Workshops, Revised Selected Papers, 01 2019,
pp. 613-625.

N. express, “Nvme over fabrics overview,” NVM express, Tech.
Rep., 2017. [Online]. Available: http://www.nvmexpress.org/wp-
content/uploads/nvme_over_fabrics.pdf

K. Kambatla, V. Yarlagadda, 1. Goiri, and A. Grama, “Ubis: Utilization-
aware cluster scheduling,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2018, pp. 358-367.
A. Call, “Simulator for disaggregated data-center environments,” Dec.
2019. [Online]. Available: https://github.com/MortI2C/simulator

V. Moncunill, S. Gonzalez, S. Bea, L. O. Andrieux, I. Salaverria,
C. Royo, L. Martinez, M. Puiggros, M. Segura-Wang, A. M. Stiitz
et al., “Comprehensive characterization of complex structural varia-
tions in cancer by directly comparing genome sequence reads,” Nature
biotechnology, vol. 32, no. 11, pp. 1106-1112, 2014.

N. Cadenelli, J. Polo, and D. Carrera, “Accelerating k-mer frequency
counting with gpu and non-volatile memory,” in Proceedings of the 19th
IEEE International Conference on High Performance Computing and
Communications (HPCC). 1EEE Computer Society, Dec 2017.

T. P. P. Council, “Tpcx-bb,” http://www.tpc.org/tpcx-bb/default.asp,
2017.

FIO, “Fio,” https://fio.readthedocs.io/en/latest/, 2020.

G. Kandiraju, H. Franke, M. D. Williams, M. Steinder, and S. M.
Black, “Software defined infrastructures,” IBM Journal of Research and
Development, vol. 58, March 2014.

H. Bannazadeh, A. Tizghadam, and A. Leon-Garcia, “Smart city plat-
forms on multitier software-defined infrastructure cloud computing,” in
ISC2 ’16: Proceedings of the 2016 Second International Smart Cities
Conference, Trento, Italy, 2016.
Intel, “Intel rack scale
Tech. Rep. 332937-004, aug

Intel
[Online].

design,”
2016.

Corporation,
Available:

http://www.intel.com/content/dam/www/public/us/en/documents/guides/platform-

hardware-design-guide.pdf

1. Facebook, “Facebook disaggregated rack,” http://goo.gl/6h2Ut, 2016.
I Hewlett-Packard, “Hp the machine,”
http://www.hpl.hp.com/research/systems-research/themachine, 2016.

E. Consoritum, “Expether,” http://www.expether.org/, 2019.

J. Markussen, L. B. Kristiansen, R. J. Borgli, H. K. Stensland,
F. Seifert, M. Riegler, C. Griwodz, and P. Halvorsen, “Flexible device
compositions and dynamic resource sharing in pcie interconnected
clusters using device lending,” Cluster Computing, Sep 2019. [Online].
Available: https://doi.org/10.1007/s10586-019-02988-0

A. Klimovic, H. Litz, and C. Kozyrakis, “Reflex: Remote flash & local
flash,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS °17, 2017.

J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Disag-
gregated fpgas: Network performance comparison against bare-metal
servers, virtual machines and linux containers,” in Proceedings of the
8th IEEE International Conference on Cloud Computing Technology and
Science, Dec 2016.

P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation. Berkely, CA, USA:
USENIX Association, Nov 2016.

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, ser. SIGCOMM °15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
523536. [Online]. Available: https://doi.org/10.1145/2785956.2787484

R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S. Rat-
nasamy, and S. Shenker, “Revisiting network support for rdma,” 2018.
A. D. Papaioannou, R. Nejabati, and D. Simeonidou, “The benefits
of a disaggregated data centre: A resource allocation approach,” in
Proceedings of the 35th IEEE Global Communications Conference
(GLOBECOM), Dec 2016.

