
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works. Access to this work was provided by the University of Maryland, Baltimore County
(UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-
SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Blockchain-enabled and Data-driven Smart
Healthcare Solution for Secure and

Privacy-Preserving Data Access
Mohamed Younis∗, Wassila Lalouani∗, Noureddine Lasla‡, Lloyd Emokpae§, Mohamed Abdallah‡,
∗ Dept. Computer Science & Elec. Eng., University of Maryland, Baltimore County, Baltimore, MD, USA

‡Division of Information and Computing Technology, College of Science and Engineering, HBKU, Doha, Qatar
§LASARRUS Clinic and Research Center LLC., Baltimore, Maryland, USA

Email: {younis, lwassil1}@umbc.edu; {nlasla, moabdallah}@hbku.edu.qa; lloyd.emokpae@lasarrus.com

Abstract—The major advances in body-mounted sensors and
wireless technologies have been revolutionizing the healthcare
industry, where patient’s conditions can be remotely monitored
by medical staff. Such a model is gaining broad support due
to its economic and social advantages. However, the wealth of
sensor measurements pose major technical challenges on where
to store the collected data, how to ensure its integrity, who
control access permissions, and how to enable secure interaction
between patients and medical facilities and professionals. This
paper aspires to provide a holistic solution based on Blockchain
technology. Our solution puts the patient in charge for granting
and revoking access permissions and makes it easy for healthcare
organizations and providers to meet privacy regulations. The
sensor data is to reside on cloud storage while access control and
session logs are maintained on Blockchain. In addition, a novel
data-driven authentication and secure communication protocol is
proposed to mitigate the risk of fraud and identity theft. In order
to enforce such a protocol, all interactions between the cloud and
patients, and healthcare providers are regulated through smart
contracts. The security properties of our solution are analyzed
using AVISPA; it is also shown to be computationally efficient.

Index Terms—Smart healthcare, blockchain, data-driven se-
cure communication, key management, authentication.

I. INTRODUCTION

Motivation: Recent years have witnessed major technological
advances in the development of wearable sensors, both body-
mounted and implants. These sensors enable collection of
a broad range of vital measurements, e.g., pulse rate, and
temperature, and non-vital measurements such as blood pres-
sure, and electrocardiogram (ECG). By incorporating radio
transceivers, wearable sensors allow the collected data to be
checked in real-time by a remote medical professional [1].
Such a model, is often referred to as tele-health, allows patients
and people at risk to be continuously monitored while living
normally and alleviates the demand for hospitalization and
clinic visits. Overall, tele-health applications are becoming
more popular given the rising cost of healthcare. Such popular-
ity is even expected to increase massively given the COVID-
19 pandemic, where access to medical facilities has been
constrained due to the contagious disease [2].

The challenge in supporting such a transformed healthcare
system will be how to manage access to medical data given

the volume of recorded sensor measurements and how to
protect the privacy of patients [3]. Basically, the increased
sophistication of wearable medical devices and their ability
to practically monitor patients at all times will lead to the
generation of a large volume of data. Some of such data
cannot be consumed instantaneously since variations over
time is what matters; also the data would often need to
be stored to track the patient history. Furthermore, the data
may be tracked by multiple healthcare providers that are not
necessarily associated with the same organization. Not only
hosting the data is an issue, but also imposing access and
update restrictions will be a challenge. It is necessary to
respect the patient’s right of determining who is allowed to
access the data. Cloud storage, such as Amazon AWS, would
be a prime choice since the maintenance overhead will be
offloaded and high availability will be provided in a seamless
way to both the patients and healthcare providers.
Challenges: Nonetheless, additional provisions are required to
ensure data integrity and confidentiality, and put the patient in
charge of authorizing access to the data. An attacker can be
someone who wants to steal the identity of a patient, or use
patient data for fraud or blackmail. For example, the data could
be used to fool an insurance company to pay for expenses
of faked services. Moreover, the data could also be used to
unjustly raise premiums and diminish the competitiveness of
certain health insurance providers. To achieve these objectives,
the attacker may eavesdrop on data transmissions: (i) between
the devices (patients) and the storage system, or (ii) between
the storage system and the authorized medical professionals.
An attacker could also try to impersonate a medical pro-
fessional to gain access to the stored patient records and
potentially manipulate the data.

The use of encryption keys is the conventional approach
to achieve the desired protection; yet has the following
shortcomings: (i) advanced computational architectures have
increased the success probability of cryptanalysis, and thus
frequent changes of encryption keys will be necessary, some-
thing that will be quite burdensome for patients and medical
professionals unless it is automated, and (ii) access to the
data may be needed by multiple medical professionals; using

distinct keys for each professional will be unrealistic for a
patient, while using the same key will elevate the risk of
cryptanalysis. Furthermore, a medical professional is generally
monitoring the health of multiple patients, ranging from tens
to thousand, which make the management of the respective
patient’s encryption keys a very complex task that is prone
to key theft, and consequently jeopardizes the privacy and
the security of the whole system. Therefore, the use of
dynamic encryption keys that are generated automatically is of
paramount importance in tele-health systems. A cloud storage
system enables a user (a patient) to authorize access to his/her
own data, yet provides little support for key management and
potentially constitutes a single point of failure. Also it does
not counter identity thefts through hacking usernames and
passwords, or even stealing crypto-identities.
Contribution: This paper opts to fulfill the requirements
and tackles the shortcomings of contemporary solutions by
developing an effective and robust data storage and access con-
trol system for tele-health applications. The proposed system
promotes a novel data-driven mechanism for safeguarding the
integrity of the patient’s data and authenticating the identity
of the healthcare providers who are given access permissions.
Unlike the conventional approach of using a session key for
encrypting transmitted data, our system varies the key per
packet in a coordinated manner between the communicating
pairs, namely, the patient and storage host, and the healthcare
provider and storage host. Such coordination is enabled by a
novel machine learning model that uses previously transmitted
data to generate new encryption keys. Such a time-varying
data-driven key generation mechanism allows the system to be
very robust against eavesdropping and cryptanalysis attempts.

Our solution employs Blockchain technology, particularly
smart contracts to define access rules, store session logs and
maintain primitives for authenticating the identity of patients
and healthcare providers. The incorporation of Blockchain
allows users to define access rights and supports fault-tolerance
for such a critical function. As a secure distributed ledger,
Blockchain will also enable billing, accounting, and handling
of malpractice disputes by logging session activities. Our
system prevents the central role of the cloud from making
the system vulnerable to a single point of failure. Even if the
cloud becomes subject to a successful intrusion attempt, the
adversary cannot benefit from the compromised packet keys
as they are only for one-time use and depend on the data.
Moreover, the adversary cannot actually capture the data since
the cloud agent does not know the patient’s storage key.

The contribution of the paper can be summarized as follows:
• Develop novel Blockchain-based architecture for tele-

health applications. The role of cloud services is limited
to supporting secure storage and retrieval of patient’s
data. The use of Blockchain enables decentralized access
control and logging.

• Develop a data-driven security mechanism to safeguard
transmission of patient’s data to and from the cloud.

• Develop an agile mechanism for enforcing patient’s ac-
cess rules and authenticating authorized users. Such a

mechanism leverages smart contracts to enable person-
alized configuration per patient and healthcare provider.

• Verify the security of our system using the AVISPA
toolset [4].

• Validate the performance in terms of the computational
complexity and the strength of cryptographic keys.

The next section provides an overview of the state of the
art and highlights the technical gaps. Section III discusses the
required features and provides an overview of the proposed
system. The detailed design of our system can be found in
Section IV. Section V analyzes the security properties of our
proposed system. The computational overhead is studied in
Section VI. Finally the paper is concluded in Section VII.

II. RELATED WORK

We propose a holistic security and privacy solution for tele-
health systems where access to sensor data is authorized only
by the patient, data transmission is secured against eavesdrop-
pers using data-driven encryption keys, patient’s data is stored
and exchanged only in an encrypted form, authentication and
access control are managed in a decentralized manner, and
access log is maintained through a high integrity ledger. Ex-
isting work on tele-health data management can be categorized
based on the scope into: (i) data storage handling without
consideration of security issues [5], (ii) defining biometric
fingerprints to enable authentication and data ownership [6],
and (iii) security and privacy aware data storage and access
architectures [7]. Given our contribution we focus on the third
category and the use of biometrics in key generation.

Facilitating secure data access for tele-health systems has
been subject to a number of studies in recent years [8]. These
studies pursued one of the following three configurations:
(1) employ the cloud as data storage and applying conven-
tional single/multi-factor authentication to control access [9],
or attribute-based encryption to enable search and query of
encrypted patient data [10], (2) use Blockchain to store data
and manage access privilege [11], [12], and (3) use the cloud
to store the data and Blockchain to handle security and
privacy [13], [14], [15]. The first configuration requires direct
interaction between a patient and a caregiver for each session,
which is often impractical from a scheduling point of view; it
also puts the burden on the patient for tracking the credential
of caregivers. Meanwhile, the second configuration imposes
excessive storage and management overhead since the data will
be replicated and consensus has to be reached for writing each
data sample. Our approach pursues the third configuration.

The use of Blockchain for authentication and access control
has been exploited in multiple tele-health application. Most
published architectures have put the Blockchain network as a
layer between the users and cloud resources [13], or among
multiple healthcare providers [14]. Such an approach is not
efficient since Blockchain becomes an intermediary for estab-
lishing user connections and constitutes a bottleneck; we avoid
such a shortcoming and use Blockchain for session logging
and access control rules; thus, Blockchain will be engaged only
when a valid user credentials are presented to the cloud and

additional level of authentication/authorization is to be applied.
Like [14], Nguyen et al. [15] uses Blockchain for sharing
patient’s data among healthcare facilities; however, the patient
is kept out of the loop. Some work also used Blockchain to
ensure integrity of patient’s health records [16].

Shamshad et al. [17] use Blockchain to achieve security and
privacy goals. Every medical facility, e.g., a hospital, sets up
a private Blockchain using its own computer, where data is
stored in an encrypted form using the patient’s private key. In
addition, a consortium Blockchain is to be established between
all medical facilities to simplify search for patient’s data using
search-able keywords. A proxy re-encryption (PRE) technique
is proposed, where the search results are re-encrypted such that
the user can retrieve the data without revealing the private
key of the patient. However, such an approach suffers serious
shortcomings. First the private Blockchain will require exces-
sive storage by imposing unwarranted replication of patient’s
data; since the execution of consensus protocol is not needed,
a simple database would suffice. Second, access to patient’s
data involves a computationally-heavy asymmetric encryption
scheme, i.e., PRE.

Manzoor, et al. [18] puts Blockchain in charge of user au-
thentication and key management. The considered application
assumes that the data generated by a sensor is accessed by a
user in return for a fee, where the Blockchain also manages
transaction recording and billing. The data is stored on the
cloud in an encrypted form, yet when access is approved and
paid for by a user, the Blockchain instructs the cloud agent to
re-encrypt the data using a PRE scheme and store it for the user
to download. However, the use of such an asymmetric crypto-
system for all relevant operations imposes excessive overhead.
Finally, the Blockchain is involved based on the justification
of handling sales of data (user accounts); such justification
does not apply in the realm of tele-health applications.

Given that tele-health systems involve sensors that are
attached or implanted in the human body, some work has
used biometric signatures of patients as fingerprints for au-
thenticating the source/owner of the data [6] , or to include
watermarks [19]. Other studies have utilized the biometric
signals to generate encryption keys [20], [21]. Unlike prior
work, our approach authenticates users and generates encryp-
tion keys based on multiple consecutive data samples, which
introduces more variability and makes the crypto-system more
robust against attacks. In addition, our approach employs
advanced deep networks, specifically, LSTM (Long Short-
Term Memory), which factors in both the data sequence
and values, and thus it is impossible for an eavesdropper or
unauthorized user to guess the key without mimicking the
entire process and using the same LSTM parameters.

III. SYSTEM MODEL AND APPROACH OVERVIEW

A. System Requirements and Design Goals

A typical operation of a tele-health system involves in-
teraction with both patients and healthcare providers. The
relationship is fundamentally many-to-many, where one patient
could be monitored by more than one caregivers; similarly,

a physician or medical facility is serving multiple patients.
Moreover, the various caregivers could be interested in certain
sensor modality and/or data collected at specific time of the
day, or when the patient is doing specific activities, e.g., during
sleep hours. Therefore, direct pairwise connections between a
caregiver and patient’s wearable sensors would be impractical,
and an intermediate entity is needed to buffer/store the data and
serve the individual caregivers based on their interest. On the
patient side, sensor measurements will be streamed, through a
gateway, to a secure storage facility. Such a gateway node has
significantly more communication and computation resources
than the wearable sensor nodes [22]. A patient will also specify
which healthcare providers are allowed to retrieve the stored
measurements. Accordingly, the storage facility will provide
those authorized healthcare providers access to the data.

1) System Requirements: The growing adoption of wear-
able technologies and the advantages of tele-health services
motivate the development of a holistic solution that supports:

• Flexibility: People switch their primary care physicians and
testing facilities over time. This could be due to personal
preference and experience, emerging health conditions that
necessitate consultation with specialists, or changes in health
insurance coverage and providers. Thus, a tele-health system
should facilitate adjustment in access permissions to adapt
to evolving patient associations with the various caregivers.

• Dependability: Tele-health constitutes a mission-critical ser-
vice since it affects the well-being of people. Therefore,
ensuring robust and secure data storage and retrieval is a
core requirement. The system should avoid the presence of a
single point of failure and should be able to simultaneously
serve multiple patients and healthcare providers. The pa-
tient’s data should also be safeguarded against attacks while
being stored and shared with authorized users.

• Scalability: With the prevalence of wearable technologies
a patient could have multiple body-attached or implanted
sensors; each is collecting data at various rates. Thus, the
storage requirement is high, especially for a large patient
population. Moreover such diverse data modality could be
examined by multiple physicians and/or medical facilities.
Thus, maintaining access rights and managing confidential-
ity primitives, e.g., encryption keys, are quite challenging.

2) Design Goals: From a security point of view, the tele-
health system should sustain privacy and enables data access
based on patients’ consent. The system should thus ensure
that the data cannot be intercepted during transmission while
being collected from a patient and being sent to a caregiver.
Moreover, the data should also be stored in encrypted form to
prevent privacy breaches through intrusion. Specifically, the
system should counter the following forms of attacks:

(i) Eavesdroppers who intercept transmissions from a patient
to the storage facility and from the storage facility a
doctor or hospital, in response to a legitimate data request.

(ii) Identity theft for an owner or an authorized user of data.
(iii) Breaches to the storage system for retrieving or modifying

the data records.

Blockchain Network

Cloud Server

Patients Caregivers

St
or

e
en

cr
yp

te
d

m
ed

ic
al

re
co

rd
s

M
an

ag
e

access control

Read access rights
Get last session info

R
eq

ue
st

ac
ce

ss
to

m
ed

ic
al

re
c o

rd
s

M
L

-B
as

e d
e n

cr
yp

tio
n

s e
s s

io
n

Session logs

Fig. 1: An overview of the BeDaSH architecture.

Finally, the security solution should withstand increased and
sustained attack attempts. Particularly, the major growth in
computational power in recent years poses a threat to cryp-
tosystems. The tele-health system should stay robust to crypt-
analysis while at the same time continue to be conscious about
resource constraints at the communication ends, specifically
the limited capabilities of wearable sensors on the patient’s
side and the fact that caregivers may be using portable personal
devices, e.g., smart phones, to access patients data.

B. Approach Overview

The main objective of our proposed Blockchain-enabled
Data-driven access control and management system for Smart
Healthcare applications (BeDaSH) is to bedash, i.e., ruin,
attacker’s attempts to intercept, retrieve and manipulate pa-
tient’s data. Fig. 1 shows an articulation of the overall system
architecture and highlights the various components and play-
ers. There are four players, namely, the patients, Blockchain,
storage system and caregivers. The patient’s data is stored in
an encrypted form using a patient-picked key. An agent at
the cloud will serve as the interface to the users (both data
owners and requesters). A smart contract at the blockchain will
enable the data owner to specify access rights for authorized
caregivers. The blockchain also maintains session logs to
facilitate billing, track caregiver access, and provide primitives
for future data-driven authentication. No data is stored on the
Blockchain to ensure user privacy. All security provisions are
applied by the cloud agent. We note that BeDaSH is concerned
with the security architecture, which is fully decentralized. The
storage of the patient data can be on either a centralized or
decentralized platform. In other words, the cloud agent in Fig.
1 is a functional module and could be regulating access to a
centralized server or a distributed data center.

BeDaSH opts to enable: (i) robust, high-integrity and
privacy-persevering storage, and (ii) secure and controlled
access to the stored data. To achieve these goals, BeDaSH
employs ML-based encryption key generation and Blockchain
technology with smart contracts. Blockchain will mainly serve
as a means to decentralize access control management by
giving data owners (patients) the exclusive right to grant

and revoke access permission to their data. Thanks to the
smart-contract functionality, Blockchain can empower patients
to efficiently define and update conditions for data retrieval
from the cloud. Blockchain also stores logging information
to ensure the integrity and ordering of data records, which
are invaluable for supporting streamed data from wearable
sensors, managing accounting and billing, handling services
disputes, and investigating malpractice cases. Both public and
consortium blockchains can be used by our system [23]. The
use of public blockchain will not require building a new
specific blockchain network for tele-health, and well known
public platforms, such as Ethereum can be directly used,
instead. However, the use of a public blockchain will incur a
fee for each submitted transaction. On the other hand, the use
of consortium blockchain can guarantee free transactions, but
a special setup is needed to design and build the consortium
network among participants.

In our proposed BeDaSH system, the patient’s data is stored
on the cloud rather than in the Blockchain. The reason is that
storing the data on the Blockchain implies replication of poten-
tially voluminous data which is not resource efficient and also
raises concerns about privacy [24]. Therefore, the architecture
of BeDaSH decouples the data storage from the Blockchain in
order to enable scalable operation, efficient resource usage and
privacy. All patient’s data will be stored on the cloud while
Blockchain will be supporting user authentication, managing
access rights and defining the security parameters for the data
transmission protocol. Nonetheless, Blockchain will maintain
a log of user access and index to the data records in order to
expedite data retrieval and update. Such a capability safeguards
the patient’s data against manipulation. In addition, by leverag-
ing smart contracts, a patient will have full control on defining
data access policies and granting authorization permissions to
certain healthcare providers. The access policies can be based
on the patient’s privacy preferences. Such flexibility and high
integrity features are not supported by conventional cloud-
based storage systems.

BeDaSH achieves data confidentiality through three pro-
visions: (i) encrypted storage, (ii) robust user authentication,
and (iii) encrypted transmission using time-varying data-driven
keys. First, all the patient’s data will be stored on the cloud
in an encrypted form using a patient-picked key. Symmetric
encryption is pursued for such a storage purpose since the data
could be accessed by multiple caregivers; by using symmetric
keys the involvement of the patient in the data retrieval process
will be limited to sharing the storage key with authorized
caregivers and data gets directly sent from the cloud to the
physician or medical facility. We note that the storage key
is not shared with the cloud agent. User authentication in
BeDaSH, on the other hand, involves asymmetric cryptog-
raphy. Each patient and caregiver is identified by a public-
private key pair and a Blockchain address. Each patient will
maintain a list of user (caregiver) identifiers to be authorized
for data access. Such a list is patient-specific and is part of
the individualized smart contract of the patients. When access
is requested, first the identity of the user will be authenticated

Fig. 2: Overview of the data transmission between the patient and the
cloud agent (storage system) according to BeDaSH. A similar process is
followed when the storage system responds to data access request made by
an authorized healthcare provider.

using its digital signature. This applies for both patients and
healthcare providers. However, for the latter, an additional
check with the smart contract is made to ensure that such
a provider is indeed authorized by the patient who owns the
data. In order to mitigate the threat of identity theft, BeDaSH
further employs an additional verification step where the most-
recently accessed data items by a user are factored in to
generate a data-driven user signature, as explained below.

Data is transmitted from the patient to the cloud using a
novel data-driven encryption mechanism. At the patient side,
e.g., at the gateway node, BeDaSH employs a deep network
model that considers the sensor samples as a time series.
Based on the previous m − 1 samples, the model predicts
what the next, mth, sample is. Such a predicted sample will
be further used to generate a key Km

D for encrypting the next
packet, which includes the actual value of the mth sample. The
access agent at the cloud side will apply the same process,
to regenerate Km

D so that it can decrypt the packet. Such
a process, which is articulated in Fig. 2, is very powerful
since in essence every packet could be encrypted by a distinct
key. The fact that the communicating parties are able to
implicitly agree on the keys, based on prior data transmissions,
enables successful retrieval of the data while making it almost
impossible for an eavesdropper to succeed in uncovering the
data. Cryptanalysis fundamentally is not applicable since there
are not sufficient intercepted packets that use the same key
where every packet will use a different one.

The patient feeds the deep network with an encrypted
version of the samples; for that a patient-picked storage key,
Kstore
P , is used. Such a key is not shared with the cloud in

order to protect the patient’s privacy; yet the patient gives
Kstore
P to authorized caregivers based on a confidentiality

agreement. After retrieving the (encrypted) patient data from
the received packet, the access agent will save it, as is, on
the cloud. A similar process is applied when a healthcare

provider requests data of a certain patient. We note that unless
the provider is given the parameters of the deep network
and Kstore

P , data cannot be decrypted. This provision enables
BeDaSH to counter the threat of identity theft and is thus used
for authentication as noted above. The smart contract at the
Blockchain will log the last set of data samples accessed by a
user in a session; such data is provided by the cloud agent, i.e.,
in the encrypted form stored by the patient, in order to sustain
privacy. When a request is made, the cloud agent retrieves the
last accessed data samples from the smart contract to apply
the aforementioned authentication procedure.

The data-driven keys suffice for sustaining data integrity and
confidentiality during transmission against an external attacker
who may know the approach but does not know the exact
parameters, i.e., had no prior access to the data. In order
to achieve forward secrecy and protect the patient data from
access by a previously authorized caregiver, BeDaSH includes
a random number in the key generation process. The seed for
a pseudo random number generator is provided by the cloud
agent at the time of session establishment. In essence, the
generated random numbers constitute a time series so that a
former user of the system cannot predict the packet key despite
knowing some data records. Thus, a former caregiver will not
succeed in intercepting and decoding messages of other users.
In addition, the random number will further ensure packet key
variability in case the patient’s sensor measurements do not
significantly change, e.g., staying at normal levels, which leads
to having a sequence of similar data samples. We note that
relying on the seed only would not suffice as the key sequence
could become predictable to an outsider, as explained in IV-B.

IV. DETAILED DESIGN

BeDaSH consists of three modules, namely, measurement
prediction, data-driven key generation, and smart contract
based access and communication protocol, as explained below.

A. Measurement Prediction

BeDaSH enables transmission of the measurements of the
patient’s wearable sensors while obscuring them from the at-
tacker. The idea is to deprive an eavesdropper from uncovering
the data payload of an intercepted packet by employing time-
varying encryption keys. Since the key needs to be known to
the communication pair, BeDaSH derives the key from the
data itself. Basically, the key for packet m, depends on the
measurements that were transmitted in packet (m−1), (m−2),
..., (m− µ), where µ is a parameter that is set by the patient
at the time of registration and can only be changed by the
patient. The value of µ affects the complexity and performance
of BeDaSH. Increasing the number of samples (LSTM inputs)
will increase the number of parameters and consequently the
run time; yet it becomes more difficult for the adversary to
guess the LSTM output or mimic its operation. In Section VI,
we study the effect of µ using an ECG dataset.

BeDaSH predicts the next sensor measurement and derives
from it an encryption key for transmitting the next packet,
which includes the actual data. We will describe how the

keys are generated in Section IV-B. BeDaSH leverages the
prediction capabilities of LSTM networks by viewing the
sensor measurements as a time series. Our model consists of
one input layer, one LSTM layer with four LSTM cells, one
dense layer and one output layer. Fig. 3 shows the architecture
of the LSTM cell with three gates: forget, memory and output.
The following is performed in each cell at time epoch t [25].

it = σ(Wi.[Ht−1, xt] + bi) (1)

ft = σ(Wf .[Ht−1, xt] + bf) (2)

Ĉt = tanh (WĈ .[Ht−1, xt] + bĈ) (3)

Ct = Ct−1.ft + it.Ĉt (4)

ot = σ(Wo[Ht−1, xt] + bo) (5)

ht = ot.o(ct) (6)

where:
• xt is the input sequence (vector) for a LSTM cell and con-

stitutes the nth previous sample encrypted using Kstore
P .

• Ct is the new state vector at t.
• Ht is the cell output, which depends on Ct−1 and xt.
• it, ft, ot are input, forget, and output gate sub-tensors.
• Ĉt is a new cell candidate in an input sequence at t.
• b is bias for appropriate input sub-tensor.
• Wi, Wo, and WĈ are the weight vectors for the three

gates, respectively. They are determined through training.
First, the forget gate determines what information is to be

discarded based on Ht−1 and the input vector, i.e., samples,
and generates the output ft. Then, the memory gate decides
on what to store in the cell state. The input gate sub-tensor
calculates the new value of i, while the tanh layer creates
a vector of new candidate values, Ĉt, to be included in the
state. The new value of the state is obtained by multiplying
the previous state by the forget gate output and adding it×Ĉt.
To calculate the output, we use a sigmoid layer to determine
the parts of the cell state affecting the output. Then, we pass
the cell state through tanh and multiply it by the output of
the sigmoid gate, so that we only output the relevant parts.

The communicating pair, i.e., patient and storage system,
or storage system and healthcare provider, needs to employ
the same LSTM architecture. A wearable sensor collects
measurements (samples) periodically. For each period t on
the patient side, BeDaSH forecasts the current sample using
LSTM based on the µ previous sequential samples in the time
series. All input samples are in fact encrypted using Kstore

P ,
and thus the same LSTM can be applied at the cloud agent
side, which in essence have access only to the encrypted
version of the data using the patient-specific storage key,
Kstore
P . The output of the LSTM is used to derive the packet

key, as discussed in the next subsection; such a key is used
to encrypt the actual patient data sample. By running the
same LSTM and key generation process, the cloud agent will
generate the packet key and decrypt the payload to retrieve
the actual data. We again note that all patient data sent to
the cloud are encrypted using Kstore

P . The same process is

Forget Gate Memory Gate Output Gate

× +

× ×

tanh

Ht

σ σ tanh σ

Ct−1 Ct

Ht−1 Ht

Xt

ft

it

Ĉt

ot

Fig. 3: Showing the detailed design of the LSTM cell.

TABLE I: Definition of the used notation.

Symbol Description
IDx The identity of the patient (x = P), data requester (x = R),

and cloud agent (x = C); this could be determined at the
time of user registration.

KPriv
x Private key for the patient (x = P), data requester (x = R),

and cloud agent (x = C)
KPub
x Private key for the patient (x = P), data requester (x = R),

and cloud agent (x = C)
Sm Data sample #m
Kstore
P Storage key for patient’s data

ESm Encrypted version of PSm using Kstore
P

PSm Predicted value for data sample #m using the LSTM
Km
D Encryption key for the packet of data sample #m

H One way hash function, with g bits input and q bit output.
Seedα A distinct seed for a random number generator for session

α in the cloud (for either patient or caregiver); the random
numbers is factored in when forming the packet key.

followed when an authorized medical professional requests
access to the patient’s measurements. In such a case the cloud
agent will use LSTM to predict the next stored sample and
generate keys, while the receiver side will again employ the
same LSTM model to regenerate the key and retrieve the data.

B. Key Generation and Management

BeDaSH opts to employ mostly symmetric keys in order to
keep the computational complexity low, especially as the data
volume in tele-health applications is often large and involves
many packets. The use of asymmetric primitives is confined to
just user authentication. The data owner (patient), cloud agent
and caregiver (data consumer) are assumed to have a private-
public key pair. Meanwhile, data exchange relies on symmetric
keys generated based on the data, user identity, and random
numbers, as we explain below. Table I enlists all keys and
defines the notation. The employed keys can be categorized
as static and time-varying. The storage key, KStore

P , is set up
by the patient and does not get updated. Similarly the private
and public key pairs for each patient and caregiver are fixed
and do not change. On the other hand, the per-packet key,
Km
D , varies for each data sample and for each data receiver.
BeDaSH sustains the confidentiality of the patient’s data

through the use of data-driven keys. The generation process
of such a data-driven key will virtually make each packet
encrypted by a distinct key. As discussed in the previous
subsection, the LSTM will factor in the most recent µ data
samples to predict the next sample. We note that since the

Fig. 4: Illustrating the generation process for the packet encryption key Km
D

for data sample m. In addition to the patient’s ID, the caregiver ID is factored
in generating the packet key during data retrieving from the cloud.

LSTM is fed with encrypted versions of Sm, semantically the
LSTM is not predicting the next data sample unless homo-
morphic encryption machine learning (HEML) is used [26].
A homomorphic encryption function φ holds the property that
φ(i� j) = φ(i)� φ(j), where � is a mathematical operator,
e.g., multiplication. Given the complexity of HEML, BeDaSH
simply feeds the LSTM with ESm−µ, ..., ESm−2, ESm−1 and
uses the output to generate the packet key Km

D . However, there
are two issues to be addressed. First, if the data is accessed
by multiple caregivers, the keys should be different; therefore
we factor in the identity of the users as well. The second
issue is to ensure forward secrecy against a former user whose
access credentials are revoked. To elaborate, let’s consider the
case of a caregiver X whose service is terminated by the
patient. User X could be aware of the latest patient’s data,
i.e., just after termination, and can thus perform data sample
prediction correctly, i.e., infer the output of the LSTM. If such
a terminated caregiver knows (or steals) the identity of another
legitimate user Y , it would be possible to generate the next
Y ’s key and intercept the data traffic directed to Y . To tackle
such a concern, BeDaSH employs a randomly-picked session
identifier. The main requirement here is that sessions for the
same user should have different identifiers in order to ensure
variability of the packet keys. The session identifier should
also be mutually known to the communicating parties.

BeDaSH avoids the exchange of messages to agree on the
session identifier; instead it gets the cloud agent, to pick the
session identifier using a pseudo-random number generator
(PRNG) at the time of user authentication. BeDaSH employs
the same PRNG at all user sessions; yet with different seeds.
Basically the seed used in a session will be logged on the
Blockchain when the session is terminated. When authenticat-
ing a user U , the cloud agent will receive the Seedα−1 of the
last session α of U from the smart contract; such a seed is
then used for generating Seedα. The important note is that the
seeds should vary among consecutive sessions.

The session identifier is used by BeDaSH as a factor for
determining the packet key, Km

D as stated above. Thus, for a
patient there are three essential factors, namely, the predicted
data sample and the patient identity, and the random number

corresponding to the session identifier. To access the data, the
caregiver identity is also factor in. BeDaSH uses an H : g → q
one-way hash function to generate the key, as illustrated by
Fig. 4. The input to the hash function reflects the concatenated
bit-patterns of the three (four) factors, and the output is the key
with some desired length q. The key length will be determined
based on the capabilities of the involved user devices in
order to balance the high security and low overhead goals.
Obviously, the same function H should be employed at the
two ends of the communication, i.e., cloud and caregiver, or
patient and cloud; yet different H can be used for the patient
link and caregiver. We again note that the caregiver ID is not
a factor in generating keys for the cloud-patient sessions.

C. Access and Communication Protocol

BeDaSH facilitates interactions between two distinct pairs
of players, specifically, (i) a patient and the cloud, and (ii)
the cloud and healthcare entity. Communication between a
pair follows a two-phase process by authenticating the identity
and confirming access authorization, and then establishing an
attack-resilient communication link for streaming data. First a
new user, patient or caregiver, needs to register in the system.

Initialization: In BeDaSH, each user has to create a pair of
public and private keys, KPub

x , and KPriv
x , and a crypto-

identifier (Blockcahin address) derived from the public key,
e.g., Hash(KPub

x). For a patient, the value of µ is also
provided. Meanwhile, for a caregiver, two smart-contracts are
deployed to the Blockchain network, one for access-control
and the other for session information logging. The pseudo code
of access-control is shown in in Algorithm 1. Due to space
constraints, the code for the session-logging smart contract is
not included, yet it can be found at [27]. A patient interacts
with the access-control smart-contract to create a new entry
for their list of authorized caregivers by sending a transaction
that makes a call to the authorizeNewUsers() function which
requires as input the crypto-identifiers of authorized caregivers.
Similarly, to revoke an already-authorized caregiver, the pa-
tient sends a transaction to call the revokeUsers() function
with crypto-identifiers of the caregivers to revoke.

In order to create a new account with the cloud provider, the
patient’s crypto-identity needs to be provided. The cloud will
use the patient’s crypto-identity to consult with the Blockchain
about the list of authorized caregivers before granting access to
the patient’s data. The cloud agent reads the list of authorized
caregiver by sending a transaction that invokes the function
getAuthorizedUsers(), with the patient’s crypto-identity as an
input. It can also ask if a particular caregiver is authorized
by calling isAuthorized() function with the crypto-identities of
both the patient and the caregiver as inputs. The cloud agent
interacts with the session-logging smart-contract to update and
retrieve the last session logging information of a specific user.

User Authentication and Authorization Verification: All ac-
cess requests are to be made to the cloud agent, which in turn
consults with the Blockchain to authenticate and validate the
authorization of the requester. The blockchain authenticates

Algorithm 1 Pseudo code for access-control contract.

contract AccessControl {
struct MyAuthUsers {

bool registered; address [] users; }
mapping (address => MyAuthUsers) public authUsers;
function authorizeNewUsers(address [] users_) {

if (!authUsers[msg.sender].registered) {
authUsers[msg.sender].registered = true; }

for (i = 0; i < users.length; i++) {
authUsers[msg.sender].users.push(users_[i]);} }

function revokeUsers(address [] users_) {
for (i = 0; i < users.length; i++) {

authUsers[msg.sender].users.remove(users_[i]); } }
function getAuthorizedUsers(address patient_) public view

returns(address []) {
require(authUsers[patient_].registered == true);
return authUsers[patient_].users;}

function isAuthorized(address patient_, address user_)
public view returns(bool) {

require(authUsers[patient_].registered == true);
for (i = 0; i< authUsers[patient_].users.lenght; i++) {

if (authUsers[patient_].users[i] == user_) {
return true; } }

return false;}
}

the cloud agent based on its public key using conventional
protocols. The authentication process is summarized in Fig. 5
and slightly differs based on whether the patient or caregiver
is requesting access. A patient’s request is handled as follows:

(i) A patient’s request includes its identity, IDP , and public
key KPub

P , as well as the last session identifier, Seedα−1.
The patient will feed the last stored µ data samples, i.e.,
Sm−µ, ..., Sm−2, Sm−1, to the LSTM to predict EPm, as
described in Section IV-A. The request will be encrypted
using the public key of the cloud agent, KPub

C .
(ii) Upon receiving the request, the cloud agent will decrypt

the packet using its private key, KPriv
C , and extract IDP .

(iii) The cloud agent will consult with the session-logging smart
contract to get the last session information for patient IDP .

(iv) The smart contract will respond to the cloud agent by
sending an encrypted version of the last µ data samples
provided by IDP during the most recent session, i.e.,
ESm−µ, ..., ESm−1. These values are to be provided by
the cloud agent at the end of each session. Again these
values reflect the µ samples encrypted by KStore

S , which
neither the cloud agent nor the smart contract knows. The
response of the smart contract will also include Seedα−1.

(v) If the patient’s identity is verified, the cloud agent will
complete the authentication process by feeding ESm−µ,
..., ESm−1 to the LSTM to get EPm.

(vi) If the agent’s generated EPm matches what is included
in the patient’s request, and the identifier of last session,
Seedα−1, is equal to what the smart contract provided, the
access is approved where the cloud agent sends a message
encrypted using the public key of the patient, KPub

S . The
agent will also generate Seedα and include in the message.

In case the request is made by a caregiver, the packet
will include the crypto-identity of the data owner (patient)
since the provider may be serving multiple patients. When
the access-control smart contract is consulted, it will verify

Smart-Contract

Cloud Agent

Patients Caregiver

[I
DP
,
K
P
ub

P

,
Se
ed
α
−1
P
Sm

] K
P
u
b

C

[I
DC
,
Y/
N
,
Se
ed
α
] K

P
u
b

P

Y
/N

,S
ee
d
α
−
1
,E

S
m

−
µ

,.
.. ,
E
S
m

−
1

Is
I
D
P

au
th

o r
iz

ed
?

I s
I
D
R

a u
t h

or
iz

e d
?

Y
/N

,S
ee
d
α
−
1
,E

S
m

−
µ

,E
S
m

−
1

[ID
R ,
K
P
ubR
,
ID
S ,
Seed

α−
1 ,
P
S
m]
K

P
u
b

C

[ID
C ,
Y/N

,
Seed

α
]
K

P
u
b

R

Fig. 5: Summary of the authentication process for both a data owner (patient)
and healthcare provider. The smart contract validates the authenticity of the
crypto-identity and the authorization of the user. If the user is validated, the
encrypted values of the last data samples accessed by the user are sent to the
agent to complete the authentication process.

that the caregiver IDR is indeed authorized by the patient
IDS . Again the session-logging smart contract will provide
ESm−µ, ..., ESm−1 for the last session of such a caregiver.
The remaining steps are similar to their patient authentication
counterpart. Finally, We note that the crypto-identity of each
message sender is included in the corresponding packet in
order to achieve non-repudiation. Also, each transmission will
be acknowledged to ensure successful delivery.
Data Transmission Protocol: Unlike user authentication, con-
fidentiality of the transmitted data is safeguarded through
the use of symmetric cryptography. The advantage of such
an approach is clearly the major reduction in computational
overhead, which scales massively given the volume of sensory
data in tele-health applications. BeDaSH mitigates the risk
of cryptanalysis by employing time-varying keys. As stated
in Section IV-B, the key is a function of the µ previously
transmitted data samples, the identity of the patient, and a
random number (RND). The latter is incorporated in order
to mitigate the possibility of having the same measurements,
which could be happening under normal health conditions. The
steps for collecting data from a patient go as follows:

(i) The patient uses its LSTM to get PSM based on
ESm−1, ..., ESm−µ.

(ii) The key Km
D is calculated using H(IDS , RND,PSm).

(iii) A packet payload is [IDS , Sequence#, (Sm)KStore
P

]Km
D

.
The sequence number is included as a means for ordering
the delivery of packets and indicating lost ones. The
current time at the source can be used instead if the
data sampling is periodic. The sequence number enables
countering replay attacks as discussed in Section V.

The cloud agent will apply the same steps to calculate PSM
and Km

D in order to decrypt the packet payload and retrieve
ESm, i.e., (Sm)KStore

P
and store it on the cloud. We note

that the smart contract is not involved here, which avoids
unwarranted delay that could degrade the freshness of the
data. A similar process to the one outlined above is pursued
for data transmission from the cloud to a caregiver. The only
difference could be in the incorporation of the patient identifier
in the key generation process. Finally, we note that all data

transmissions are to be acknowledged in order to make sure
that the communicating parties continue to be synchronized
and calculate the encryption keys consistently.

Session Logging: In BeDaSH, the Blockchain plays two im-
portant roles, namely, authenticating users and session log-
ging. Here, we focus on the logging aspect since it enables
authorized data access. Basically, the last accessed data is con-
sidered for authenticating users and determining the session
identifier, as we explained earlier in this section. Blockchain
is proven as a robust ledger that does not suffer a single point
of failure; BeDaSH leverages such a capability in logging
relevant user activities. Specifically, for every session the
involved user, either a patient or caregiver, is noted as well as
the last µ data samples being sent. These samples constitute
the most recent data provided by the patient or the last record
retrieved by the caregiver for such a patient. The cloud agent
reports these data to the smart contract when the session is
terminated by the user. Again, the data stays in an encrypted
form, i.e., the agent sends ESm−1, ..., ESm−µ. In addition,
the seed of the PRNG used in the session is also logged.
Such a seed is further retrieved the next time the same user
requests the establishment of a new session, as discussed
above. We note that Bloackchain will never get access to
the patient’s data or know any secret related to the data
exchanges; therefore, the privacy of the patient will continue
to be sustained. In addition to supporting secure tele-health
applications, the involvement of Blockchain enables billing for
medical services and accountability of the caregivers. BeDaSH
logs relevant session information such as duration, volume of
retrieved data, and time of data access; such information can
be used to estimate and validate charges, and settle liability
claims in case of malpractice or failure of wearable sensors.

V. SECURITY ANALYSIS

A. Informal Analysis

Variability of encryption keys: A distinct feature of BeDaSH
is encrypting data packets with time varying keys by factoring
in: (1) a predicted data value based on a subset of the recently
shared biomedical data items, (2) a pseudo random number
that is generated using an evolving function, i.e., using new
seed every session, with different initial state for each user, and
(3) the unique crypto-identity of the user. The concatenation of
these three values constitute a combined vector that is provided
as input to a one-way hash function. The output of the hash
function is of the same length of the input. We analyze the
potential for having similar keys for the possible scenarios:
• Different users: Since each user has a distinct crypto-identity,

the input to the hash function will be different for any pair of
users and consequently the keys will be different. Moreover
the seed of the random number generator is independently
picked for each user and for each session. Thus, the proba-
bility for two users having the same random number for their
sessions is in fact the probability of setting the parameters
for their sessions similarly, which is quite small given the
independence in seed selection for the corresponding PRNG.

Moreover, users may not be synchronized and their most
recently accessed data items could be different. Although the
predicted data and random number variability diminish the
probability of having two similar keys used by two users at
the same time, the crypto-identity suffices as a discriminator
among keys employed for the packets of different users.

• Consecutive Packets for a user: In this case, the crypto-
identity stays the same, yet the data sample and the random
number would vary. The predicted data value is expected
to change unless the patient conditions are very stable and
the precision of the measurements is low. To illustrate, if
the resolution of the measurements is 3 decimal digits, the
probability for having two similar predictions in a row is
lower than when the resolution is only a single decimal digit.
Nonetheless, even if the data sample does not change over
time, the incorporated random number will.

Resilience against eavesdroppers: For an eavesdropper to re-
trieve the patient’s data during transmission, the intercepted
packet needs to be successfully decrypted. Since BeDaSH
employs a time varying encryption key, cryptanalysis will fail
due to the unavailability of sufficient encrypted data for each
key. The only option for the eavesdropper is to regenerate the
keys. We distinguish between outsider and insider attackers.
• An outsider is someone who never used the system but

knows the security provisions used. To regenerate the key,
such an attacker needs to guess/acquire all three inputs for
the key generation hash function, namely, the crypto-identity
of a legitimate user, the last data such a user received (or
sent in case of a patient), and the setting for the seed for
the PRNG. Such information cannot be obtained except
through collusion with a legitimate user. According to our
system model, caregivers who are given access to the data
are assumed to be trustworthy. In fact, a colluding user can
simply give away the data without burdening the attacker
by eavesdropping and cracking the security of the system.

• Internal attacks reflect the case that some who used the
system continue to retrieve the data despite losing access
privilege. Consider for example, a caregiver who no longer
is associated with the patient. In such a scenario, the
attacker will know the system well and could also have the
latest data, e.g., the attacker starts right after losing access
permission, which implies that the attacker can predict the
data value used as input to the hash function. However,
such an attacker will still fail since the crypto-identity used
in the intercepted packets will be different (and unknown
to the attacker). In the extreme worst case, the attacker
steals the crypto-identity of a legitimate user. However, the
PRNG seed varies across users and the attacker will fail to
overcome such a hurdle unless the legitimate user colludes.

Resilience against replay and impersonation attacks: Being
unable to decrypt intercepted packets and manipulate the data,
an attacker may replay a message as is, in order to get the
communicating parties out of sync. To illustrate, replaying the
packet for a data sample Sm can lead to one of the following
two scenarios: (1) the predicted sample PSm+1 happens to

match Sm, allowing the receiver to successfully decrypt the
packet payload and wrongfully assume the included data to
reflect Sm+1, or (2) PSm+1 differs from Sm causing the
receiver to reject the packet. Obviously the second scenario
is harmless; yet the first scenario needs further consideration.
As discussed in Section IV-C, a sequence number (or time
stamp) is included in each data packet. Consequently, the
receiver will detect the duplication and discard the replayed
packet. In summary, DeBaSH is resilient to replay attacks.

On the other hand, an adversary could try to impersonate
one of the communicating parties. Such impersonation may
take the form of requesting access using a stolen crypto-
identity of a legitimate user or sending malicious data packets
while masquerading as the patient or cloud agent. Our data-
driven authentication process will thwart the first scenario
since the attacker does not have the LSTM model used
to predict the next data sample. Referring back to Fig. 5,
the adversary will not know PSm. For the same reason,
masquerading a data source or the cloud agent will fail. The
only possible serious scenario is when an internal attacker,
as defined earlier, takes advantage of the data samples that
were received before access termination and a stolen crypto-
identifier of a legitimate user in order to make a request for
a new session. To illustrate let’s assume that a user X is
a freshly terminated caregiver, and user X has stolen IDY

of an active caregiver Y . It is also not difficult to know
KPub
Y since it is not generally secret. In such a case, X

could send a request to access the data of patient S. Although
such a scenario is not impossible, it is impractical since both
X and Y should have been synchronized in terms of what
data of S they have received overtime. Nonetheless, such an
attack scenario can be easily countered by BeDaSH. Recall
that the access request from a caregiver Y takes the form
[IDY ,K

Pub
Y , IDS , Seedα−1, PSm]KPub

C
. Since X does not

know Seedα−1 for the last session α−1 of user Y , the cloud
agent will detect the impersonation attack.

B. Formal Verification

We have verified the security properties of BeDaSH us-
ing AVISPA [4], which is a widely used formal security
verification framework to assess vulnerability to active and
passive attacks such as impersonation, message relay. etc. We
have described BaDeSH’s authentication and data exchange
protocols using HLPSL, which is a High Level Protocol
Specification Language used by AVISPA. First, we have
defined the communicating parties in a session, i.e., patient,
cloud, Blockchain and caregiver. We have then specified for
each party all possible states and transitions, as well as its
initial state, keys and data records and machine learning
function. Transitions between states can involve transmission
and reception of messages and other security properties.
The environment role includes the possible sessions and the
specification of initial role session parameters. A role session
may involve an intruder. We assume that the intruder knows
the communicating parties and their public keys. The HLPSL
based description of BeDaSH can be found in [27].

We have validated BeDaSH using a multi-step analysis to
cover the different operations. We have created two parallel
sessions for caregivers and patients. The security goals for
the AVISPA simulation are the authentication of patients and
caregivers and the secrecy of the data and the keys. This allows
the detection of any outsider/insider attack. The proposed
protocol is simulated using the SPAN (Security ANimator for
AVISPA) simulation tool and tested using the OFMC backend
checker. The output of is shown in Fig. 6, where:
− SUMMARY: reports whether the protocol is SAFE or

UNSAFE, or INCONCLUSIVE.
− DETAILS: indicates the settings of the tested protocol.
− PROTOCOL: names the name of the protocol.
− GOAL: indicates default security goals or user defined.
− STATISTICS: reports the execution time, search-time,

visited nodes (state) and the depth of the state transition
graph analyzed by the OFMC backend checker.

The OFMC results confirm the safety of the different phases
of BeDaSH, implying robustness against eavesdropping, man-
in-the-middle, replay and impersonation attacks.

Fig. 6: A screenshot of the OFMC output, confirming BeDaSH robustness.

VI. PERFORMANCE ASSESSMENT

The performance of the tele-health system, e.g., data access
latency, depends on the underlying cloud system, the specific
Blockchain, and communication infrastructure, which is exten-
sively covered in the literature. Hence, in this section we focus
on studying the effect of µ on the precision of the predicted
data. We also confirm the dissimilarity among the generated
keys. Then, we assess the computational overhead of BeDaSH
and show that it is significantly less than conventional methods
and will positively impact the latency.

A. Similarity of Data-Driven Keys

Encrypting each packet with a distinct key would achieve
ultimate resilience to cryptanalysis. To validate the effec-
tiveness of our key generation approach, we use a popular
dataset from PhysioNet [28]. The dataset contains 24 hours
ECG measurements, collected during patient monitoring. In
the validation, we have used the ECG data for ten patients.
We compare the performance of BeDaSH in terms of key
uniqueness over time for the same patient and among multiple
patients. The metric used to assess the key similarity is the

(a) (b)

Fig. 7: The similarity of data-driven keys for: (a) the same patient, and (b)
multiple patients.

Levenshtein distance between the keys of the same user, and
the least Levenshtein distance among the keys of user pairs.
The Levenshtein distance is a string metric for measuring
the difference between two sequences based on the minimum
number of characters to insert, delete or substitute in order
to match two given strings. Fig. 7(a) shows the similarity
matrix for keys used for the same patient. The matrix is simply
diagonal implying the uniqueness of the generated keys, e.g.,
each key is only similar to itself. The figure shows the results
for 100 keys. Fig. 7(b), on the other hand, reports the similarity
of keys of every pair of patients. The matrix is again diagonal
implying that none of the 10 patients has similar keys.

B. Complexity of LSTM Model

Recall that BeDaSH factors in the most recently accessed
µ data samples in generating the per-packet key and in
authenticating users when establishing a new session. The
larger µ gets, the more difficult for the adversary to guess the
encryption key becomes. Yet, growing µ boosts the complexity
of the LSTM model. We have studied such a trade-off using
the ECG dataset; here we use unencrypted samples as we are
interested in the convergence of the LSTM for various settings
of µ. A dataset of 50,000 ECG records is divided into two
subsets of 80% for training and 20% for testing. Assuming the
current time is t, we want to predict the data value at epoch
t+ 1 given the measurements for current and µ− 1 previous
time epochs. The LSTM is trained for 1000 epochs with
ECG measurements of a single patient. The experiment tracks
the required execution time using the time.time() function
in Python while executing the LSTM model on a windows
desktop computer with 4 cores of Intel Core i7 and 16G RAM.

Fig. 8 reports the observed variation of the prediction
accuracy and run-time for each setting of µ. The run-time
does not include training since it is done once. The results
indicate that µ does not affect much the test time for LSTM.
Fig. 8 also shows that considering more than three samples
is unwarranted and will grow the session log unnecessarily.
Basically, a key that is created based on three samples will
be similar to that generated while considering fours samples.
Hence, having µ > 3 will not contribute any confusion for
the adversary if the number of samples are incrementally tried
(assuming that the adversary could know some samples).

(a) (b)

Fig. 8: The effect of µ on the data (a) sample prediction accuracy and (b)
LSTM execution time including key generation.

C. BeDaSH Computational Overhead

BeDaSH uses patient-picked and data-driven symmetric
keys for storage and communication, respectively. Such an
approach makes BeDaSH lightweight compared to alternatives
that use asymmetric cryptography, e.g., [17] and [18]. Fig. 9
shows the execution time for BeDaSH in comparison to when
either RSA or ECC is applied for encrypting the data using
1024-bit keys. For BeDaSH, each generated symmetric key
is used to encrypt a packet of 70 ECG records using the
DES (Data Encryption Standard) algorithm. To capture the
computation overhead over time, we have progressively in-
creased the size of the overall data transmitted and captured the
execution time. The results clearly demonstrate the advantage
of BeDaSH where the performance gap grows wider as more
data is handled. Fig. 9 testifies for the scalability of BeDaSH.

We have also estimated BeDaSH overhead using an Arduino
microcontroller that has an active current of 1.23mA when
clocked at 16 MHz; the average power consumed during
processing is approximately 5mW. We have used the Valgrind
profiler with Verrou tools to estimate the set and the number
of instructions for the applied algorithms while handling the
prediction. Such instruction count is further multiplied by the
number of cycles per instruction to estimate the runtime. We
note that the model is trained offline. The estimated execution
for predicting a data sample by our LSTM is approximately
0.4496 ms, and corresponding energy is 22.5µJ. The estimated
time for key generation and encryption is 13.18s for 10000
bytes data size. The comparative results are found to be
consistent with those of the Inter Core i7 PC.

D. Smart-contract Performance

We have validated the AccessControl and SessionLogging
contracts on a public and consortium blockchain network. Both
smart-contracts are compiled in the Remix IDE and deployed
to the Ethereum official public and private test networks
Rinkeby and Kovan, respectively. Rinkeby uses the Proof-
of-Work (PoW) consensus algorithm, whereas Kovan uses a
Proof-of-Authority (PoA) algorithm. The average execution
time for these contracts is found to be 16 and 4 sec for Ropsten
and Kovan, respectively. Such time is not deemed a bottleneck
since in BeDaSH transactions are sent to the blockchain only
during the initialization, authentication and session logging
and are not needed during data transmission. Moreover, the

Fig. 9: Comparing the time complexity of BeDaSH to a baseline approach
that uses RSA or ECC algorithms for data storage and communication.

measurements are made on a test network; using a customized
blockchain network would provide better performance.

A public blockchain applies PoW and thus incurs more
transaction latency than a consortium blockchain. Moreover,
transaction fees in public networks depends on the underlying
cryptocurrency, which is not stable in value. For instance, the
fee for deploying AccessControl to the Ethereum network is
about $166; such fee would have been less than $1, few years
ago. Hence, we recommend building a consortium blockchain
with the help of medical institutions to run BeDaSH.

VII. CONCLUSIONS

Tele-health systems have been gaining popularity in re-
cent years that even peaked with the COVID-19 pandemic.
While these systems offer numerous advantages for patients,
caregivers, and insurance providers, they introduce major
challenges in secure handling of the voluminous data while
preserving privacy. To tackle these challenges, this paper
has presented BeDaSH, a novel solution that enables secure
storage and dissemination of patient data and puts patients in
charge of defining access rules. BeDaSh exploits the storage
capability of the cloud while ensuring complete privacy preser-
vation by keeping the data encrypted using a patient-controlled
key. To counter potential data leaks through eavesdropping
on the wireless communication links, BeDaSH promotes a
new data-driven key generation mechanism that enables every
packet to be encrypted using a distinct key. Furthermore,
BeDaSH exploits the smart contract features of Blockchain
to offer user authentication and access control. The overall
system mitigates the most prominent attacks on tele-health
systems, including impersonation, message replay, and data
forgery. The effectiveness of BeDaSH has been confirmed
through performance validation and formal security analysis.
Acknowledgement: Younis, Lalouani, and Emokpae are sup-
ported by the National Science Found., Contract #2030629.

REFERENCES

[1] C. Koziatek, et al., “Use of a telehealth follow-up system to facilitate
treatment and discharge of emergency department patients with severe
cellulitis,” The American Journal of Emergency Medicine, 2020.

[2] N. Liu, et al., “Telehealth for noncritical patients with chronic diseases
during the covid-19 pandemic,” J Med Internet Res, vol. 22, no. 8, p.
e19493, Aug 2020.

[3] C. Thapa and S. Camtepe, “Precision health data: Requirements, chal-
lenges and existing techniques for data security and privacy,” Computers
in Biology and Medicine, vol. 129, p. 104130, 2021.

[4] L. Viganò, “Automated security protocol analysis with the avispa tool,”
Electronic Notes in Theoretical Comp. Sc., vol. 155, pp. 61 – 86, 2006.

[5] A. Celesti, et al., “Information management in iot cloud-based tele-
rehabilitation as a service for smart cities: Comparison of nosql ap-
proaches,” Measurement, vol. 151, p. 107218, 2020.

[6] S. Pirbhulal, P. Shang, W. Wu, A. K. Sangaiah, O. W. Samuel, and G. Li,
“Fuzzy vault-based biometric security method for tele-health monitoring
systems,” Computers & Electrical Eng., vol. 71, pp. 546 – 557, 2018.

[7] J. J. Hathaliya and S. Tanwar, “An exhaustive survey on security and
privacy issues in healthcare 4.0,” Computer Communications, vol. 153,
pp. 311 – 335, 2020.

[8] S. Shi, D. He, L. Li, N. Kumar, M. K. Khan, and K.-K. R. Choo,
“Applications of blockchain in ensuring the security and privacy of
electronic health record systems: A survey,” Computers Security,
vol. 97, p. 101966, 2020.

[9] S. Challa, et al., “An efficient ecc-based provably secure three-factor
user authentication and key agreement protocol for wireless healthcare
sensor networks,” Computers & Elec. Eng., vol. 69, pp. 534 – 554, 2018.

[10] Y. Bao, W. Qiu, and X. Cheng, “Secure and lightweight fine-grained
searchable data sharing for iot-oriented and cloud-assisted smart health-
care system,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[11] H. Huang, P. Zhu, F. Xiao, X. Sun, and Q. Huang, “A blockchain-based
scheme for privacy-preserving and secure sharing of medical data,”
Computers Security, vol. 99, p. 102010, 2020.

[12] B. S. Egala, A. K. Pradhan, V. R. Badarla, and S. P. Mohanty, “Fortified-
chain: A blockchain based framework for security and privacy assured
internet of medical things with effective access control,” IEEE Internet
of Things Journal, pp. 1–1, 2021.

[13] C. Lin, D. He, X. Huang, K.-K. R. Choo, and A. V. Vasilakos, “Bsein: A
blockchain-based secure mutual authentication with fine-grained access
control system for industry 4.0,” Journal of Network and Computer
Applications, vol. 116, pp. 42 – 52, 2018.

[14] R. Kumar, et al., “An integration of blockchain and ai for secure data
sharing and detection of ct images for the hospitals,” Computerized
Medical Imaging and Graphics, vol. 87, p. 101812, 2021.

[15] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Bedge-
health: A decentralized architecture for edge-based iomt networks using
blockchain,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[16] Q. Zhao, S. Chen, Z. Liu, T. Baker, and Y. Zhang, “Blockchain-
based privacy-preserving remote data integrity checking scheme for iot
information systems,” Information Processing & Management, vol. 57,
no. 6, p. 102355, 2020.

[17] S. Shamshad, Minahil, K. Mahmood, S. Kumari, and C.-M. Chen, “A
secure blockchain-based e-health records storage and sharing scheme,”
Journal of Info. Security and Applications, vol. 55, p. 102590, 2020.

[18] A. Manzoor, A. Braeken, S. S. Kanhere, M. Ylianttila, and M. Liyanage,
“Proxy re-encryption enabled secure and anonymous iot data sharing
platform based on blockchain,” J. of Net. Comp. App., p. 102917, 2020.

[19] A. Anand and A. K. Singh, “An improved dwt-svd domain watermarking
for medical information security,” Computer Communications, vol. 152,
pp. 72 – 80, 2020.

[20] S. Pirbhulal, O. W. Samuel, W. Wu, A. K. Sangaiah, and G. Li, “A
joint resource-aware and medical data security framework for wearable
healthcare systems,” Future Gen. Comp. Sys, vol. 95, pp. 382–391, 2019.

[21] G. Zheng, et al., “Multiple ecg fiducial points-based random binary
sequence generation for securing wireless body area networks,” IEEE J.
of Biomedical & Health Informatics, vol. 21, no. 3, pp. 655–663, 2017.

[22] M. Usman, M. R. Asghar, I. S. Ansari, and M. Qaraqe, “Security in wire-
less body area networks: From in-body to off-body communications,”
IEEE Access, vol. 6, pp. 58 064–58 074, 2018.

[23] M. J. M. Chowdhury, et al., “A comparative analysis of distributed ledger
technology platforms,” IEEE Access, vol. 7, pp. 167 930–167 943, 2019.

[24] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues and
challenges.” IJ Network Security, vol. 19, no. 5, pp. 653–659, 2017.

[25] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and
R. Jenssen, “Recurrent neural networks for short-term load forecasting,”
in SpringerBriefs in Computer Science, 2017.

[26] A. Vizitiu, C. I. Niă, A. Puiu, C. Suciu, and L. M. Itu, “Applying deep
neural networks over homomorphic encrypted medical data,” Comp. and
Math. Methods in Medicine, vol. 2020, no. 3910250, p. 26, 2020.

[27] [Online]. Available: https://github.com/noureddinel/BC-SmartHealth.git
[28] V. Novak, et al., “Cerebral flow velocities during daily activities depend

on blood pressure in patients with chronic ischemic infarctions.” Stroke,
vol. 41, no. 1, pp. 61–66, 2010.

	sheet2
	6f9c6e79-5d9a-40db-9ce2-aafea4e1aabf

