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Abstract—DC microgrids can be operated under a hierarchical
control strategy, and it needs a communication-based layer. The
implementation of digital controllers and the communication in-
frastructure can make a dc microgrid vulnerable to cyber-attacks.
This article introduces an approach based on Artificial Intelligence
(AI) to detect and mitigate cyber-attacks in a dc microgrid. The
proposed method is based on the artificial neural network (ANN),
which can be categorized as an AI-based method. The proposed
application implements an ANN to detect and mitigate false data
injection attacks (FDIAs). FDIAs try to inject false data into the
system to affect the control application of the dc microgrid, and
it can shut down the dc microgrid. The proposed method can
calculate the value of the false data, and it can detect and re-
move the attack simultaneously. The proposed method is tested
in a MATLAB/Simulink environment. Also, to have more accurate
results, the introduced approach is examined under different condi-
tions and cyber/physical disturbances (e.g., communication delay,
noise, plug-and-play of additional units, and time-varying FDIAs).
Besides, a comparison is considered to evaluate the effectiveness
of the proposed strategy. The obtained results can conclusively
prove the effectiveness, accuracy, and authenticity of the proposed
method to successfully detect the FDIAs and remove the cyber-
attack.

Index Terms—Artificial neural network (ANN), cyber-attack,
cyber-physical systems (CPSs), dc–dc converters, dc microgrid,
false data injection attack (FDIA).

I. INTRODUCTION

DC MICROGRIDS consist of power devices and structures
such as dc bus, dc–dc converters, dc sources, and loads [1]–

[3]. In order to make an effective coordination between power
components, dc microgrids are controlled by a hierarchical
control strategy to satisfy certain control objectives, i.e., current
sharing and voltage regulation [4]. The hierarchical control layer
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is made by three control levels, i.e., primary, secondary, and
tertiary controllers, and because of the use of controllers, voltage
and current sensors are implemented to gather input data of the
controllers and send gathered data to the controllers [5], [6].
The implementation of a cyber network and digital controllers
causes that dc microgrids are under a risk to be vulnerable to
cyber-attacks. Because of the vulnerability of dc microgrids
to cyber-attacks, it is highly recommended to have a plan to
detect cyber-attacks as well as mitigate them in dc microgrids.
There are some types of cyber-attacks, e.g., false data injection
attacks (FDIAs) [7], man-in-the-middle (MITM) attacks [8],
replay attacks [9], hijacking attacks [10], and denial-of-service
(DoS) attacks [11]–[15]. In the case of FDIAs, the attackers try
to inject false data into the system, and the injected false data
go to be added to the real data, and consequently, wrong data
are used in the system [16]. For the MITM attack, the attacker
tries to target data, which are transmitted between two units,
which are connected directly, and data transmission between
them exists [17]. In the replay attacks, data are gathered and
recorded for a given time, and the recorded data will be used to
deceive the operator of the system [18]. Also, in the hijacking
attacks, the real data are replaced with the false data by the
attacker [19]. Also, in the DoS attack, the goal of the attacker is to
make the communication network unavailable [20]. In addition,
some works have been done related to the distributed-DoS
attacks, e.g., [21]. The goal of this article is to detect and remove
FDIAs in dc microgrids, which are made by parallel dc–dc
converters.

The increasing complexity of cyber-physical systems (CPSs)
can lead to motivation for introducing new methods to in-
crease the security of the systems [22]. Coupling the power
and cyber layers can improve the functionality of the system,
but it can increase the vulnerability of the power-based CPSs
to cyber-attacks [23]. The concept of CPSs can be used for
microgrids [24]. Also, a dc microgrid is a type of microgrid,
and as a result, a dc microgrid can be classified as a type
of cyber-physical microgrid. Security threats and issues can
be emerged in CPSs [25]. Recently, some works have been
done about FDIAs in power-based CPSs (e.g., dc microgrids).
For example, in [26], an FDIA detection method is proposed
based on identifying a change in a set of candidates, which
called invariant, and they do not change. The FDIA, which
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is considered in [26], tries to destroy the consensus protocol
in dc microgrids, which are controlled based on a distributed
control scheme. Also, the method proposed in [26] has tried
to mitigate the attack in three different ways, i.e., making the
attacked converter offline, disconnecting the communication
link of the attacked unit, and the control-based approach to
suppress the false data. In [27], an approach has been introduced
to detect two types of FDIAs and DoS in dc microgrids, which
are controlled in a distributed manner. To detect the attack, the
voltage and current are monitored against certain specifications,
which are defined (e.g., operational bounds). Also, Beg et al. [27]
suppress the FDIA using a strategy by adjusting a parameter in
a low-pass filter. Also, a method based on a recurrent neural
network (RNN) is introduced by Habibi et al. [28] to detect
the FDIAs in dc microgrids. Based on the proposed method
in [28], RNNs are trained to be used to estimate the output dc
voltage and current of converters. Then, the error of estimation
is considered as a parameter to detect the existence of the FDIA
in the dc microgrid. In [29], another method has been proposed
to detect FDIAs on current measurements in dc microgrids. The
proposed method in [29] is modeling the attack considering the
consensus protocol, and based on a discordant element strategy,
the attack in cooperative dc microgrids is detected. Furthermore,
a decentralized method has been introduced in [30] to remove
FDIAs, which try to inject false data on current measurement.
The strategy proposed by Habibi et al. [30] introduced a secure
control layer, which is based on a reference tracking appli-
cation, and it has a controller and an RNN. Besides, in [31],
an attack-resilient intelligent-soft-computing-based method has
been proposed to have a secure control strategy for more-electric
aircraft applications. In [31], the proposed strategy has been
implemented adaptive neuro-fuzzy inference system and RNNs.
In addition, a secure control strategy has been proposed by
Habibi et al. [32] to remove cyber-attacks in a dc microgrid.
In [32], the proposed strategy has implemented a controller
and an artificial neural network (ANN) to make a collaboration
between them to mitigate cyber-attacks. In addition, in [33],
a decentralized ANN-based approach has been developed to
detect and mitigate FDIAs on current measurements of a dc
microgrid. It is important to note that the strategy proposed by
Habibi et al. [33] has been examined on a dc microgrid, which
has been made by distributed dc sources, which are controlled
based on a consensus approach.

Some previous works have attempted to detect the FDIAs,
and they did not work on both detection and mitigation of
attacks. In addition, some of them have generally focused on
dc microgrids, which are controlled in a distributed manner and
based on a consensus-based protocol. Furthermore, the majority
of them need to know enough information about the system, the
relations in the model, and complex mathematical equations and
concepts of the cyber-physical dc microgrid. This article pro-
poses a strategy to detect and mitigate FDIAs in dc microgrids,
simultaneously. Also, in this article, dc microgrids are structured
by parallel dc–dc converters, and they are controlled based on
a droop-based strategy. Furthermore, this article implements an
ANN to detect and remove the FDIAs. ANNs can be considered
as a data-based technique, and by using them, there is no need to

have information about all parts of the system, the mathematical
equations, and relations in the system, and this can reduce the
complexity of the proposed method. In this article, the attack
is on the dc-bus voltage, and the attacker tries to inject false
data to the value of the dc-bus voltage. As a result, a wrong
value of the dc-bus voltage goes to the secondary controller. By
adjusting the domain of the false data by the attacker, the real
value of the dc-bus voltage can exceed the allowed bounds, and
it can shut down the dc microgrid. To implement the proposed
ANN-based method, an ANN is trained and used to estimate
the exact value of the false data to detect that, and based on
the output of the ANN, data are injected into the system to
remove the false injected data.

Briefly, the proposed method introduces a fully ANN-based
secure layer to detect and remove the FDIAs at the same time. It
is important to note that the proposed application is a data-based
technique, and it does not need mathematical-based information
of the system. The introduced method is implemented in a dc mi-
crogrid, which is structured by parallel dc–dc converters. Also,
in this article, the FDIAs try to change the value of the dc-bus
voltage to shut down the dc microgrid. In addition, the proposed
strategy can estimate the value of the false data. Furthermore, the
proposed strategy can work under different cyber and physical
disturbances, e.g., communication delay, noise, load changing,
and time-varying FDIAs.

The rest of this article is organized as follows. Section II
elaborates on the basic concepts of ANNs. Section III describes
the structure of dc microgrids, their control application, and
the effect of FDIAs on them. Section IV explains the pro-
posed cyber-attack detection and mitigation strategy. Section V
presents the simulation results and comparison. Finally, Sec-
tion VII concludes this article.

II. BASIC CONCEPTS OF ANNS

ANNs can be considered as a part of artificial intelligence
(AI). They are well-known and powerful data-based techniques
to be used in different types of applications, such as model-
predictive control of a three-phase inverter [34], design of
weighting factors for a model-predictive controller to control
power converters [35], detection of cyber-attacks in dc micro-
grids [28], and application of power calculations to improve
power sharing in microgrids [36]. Fig. 1 illustrates the basic
architecture of an ANN with n inputs and one output. An ANN
has input, hidden, and output layers, and the input and output
layers of the ANN can be considered as its first and last layers,
respectively. The output signal of the kth neuron in themth layer
(2 ≤ m) of the ANN can be calculated as follows:

γk,m = fm

⎛
⎝bk,m +

Nm−1∑
j=1

γj,m−1 × wjm−1,km

⎞
⎠ (1)

where γk,m is the output signal of the kth neuron in the mth
layer, fm(.) is the activation function of the mth layer, bk,m is
the bias weight of the kth neuron in the mth layer, Nm−1 is the
number of neurons in the (m− 1)th layer, and wjm−1,km

is the
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Fig. 1. Architecture of an ANN with input, hidden, and output layers, as well
as the structure of neurons. Here, xi (1 ≤ i ≤ n) and y are the input and the
output of the ANN, respectively.

connection weight between jth neurons of the (m− 1)th and
kth neurons of the mth layer.

In addition, matrices ofWm andBm represent the connection
weights between (m− 1)th and mth layers and the bias factor
of neurons in the mth layer, respectively. Matrices of Wm and
Bm can be defined as follows:

Wm =

⎡
⎢⎣
w1m−1,1m · · · wNm−1,1m

...
. . .

...
w1m−1,Nm

· · · wNm−1,Nm

⎤
⎥⎦ (2)

Bm =
[
b1,m b2,m · · · bNm,m

]
. (3)

To use the ANN, the training phase should be done. The goal
of the training is to calculate proper values of Wm and Bm

(2 ≤ m ≤ n). To train the ANN, the dataset, which has the inputs
and the output, are gathered. Then, the gathered dataset is used
in an optimization problem to find the optimized values of the
connection and bias weights (Wm and Bm for 2 ≤ m ≤ n) to
have a well-tuned ANN. Finally, the tuned ANN can be used to
estimate the output.

III. FDIAS IN CONVENTIONAL DC MICROGRIDS

In Fig. 2, the physical architecture and the control layer of a
dc microgrid with n parallel dc–dc converters are shown. The
secondary controller sends a value to the primary controller
to regulate the dc-bus voltage. If the output of the secondary

Fig. 2. Control layer and physical architecture of a dc microgrid with n units.

controller is ΔV , the reference voltage of the primary controller
for the jth unit is adjusted as follows:

Vrj(t) = Vr +RDjij(t) + ΔV (t) (4)

where Vrj is the adjusted reference voltage for the jth unit.
Also, Vr, RDj , and ij are the reference dc-bus voltage, droop
coefficient, and the output current of the jth unit, respectively.

The secondary controller is a proportional–integral (PI) con-
troller, and its task is to keep the dc-bus voltage (Vdc) to its
reference value. In other words, we have

lim
t→∞Vdc(t) = Vr. (5)

Also, an FDIA may inject false data into the system. In this
article, the FDIA is considered on the secondary control layer to
take the dc-bus voltage out of the allowance bounds, which can
shut down the dc microgrid. If the system is under the attack,
the model of the FDIA can be considered as follows:

Va(t) = Vdc(t) + Vf (t). (6)

In (6), Vf represents the false data, which are injected by
the attacker to the system, and Va is the nonreal value of the
dc-bus voltage, which goes to the secondary controller. If the dc
microgrid is not under the FDIA, then we have

Vf (t) = 0 (7)

and

Va(t) = Vdc(t). (8)

If the FDIA exists in the dc microgrid, Vdc is replaced by Va.
So, in the case of attack, (6) can be converted into (9) as follows:

lim
t→∞Va(t) = Vr. (9)
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As a result, we have

lim
t→∞ (Vdc(t) + Vf (t)) = Vr (10)

and consequently

lim
t→∞Vdc(t) = Vr − lim

t→∞Vf (t). (11)

If the false injected data have a constant value of α (Vf (t) =
α), (11) can be altered as follows:

lim
t→∞Vdc(t) = Vr − α. (12)

Therefore, based on (12), by adjusting α, the dc-bus voltage
can converge to a value, which is out of the allowed bounds, and
it can shut down the system.

IV. PROPOSED SECURE CONTROL STRATEGY

In this article, the FDIA is considered on the secondary
controller, and the attacker tries to inject false data (Vf ) into the
dc-bus voltage. The goal of this article is to show how ANNs can
be used to detect and remove the FDIA in the system very fast.
The ANN is used to calculate the false data, which are injected
by the attacker. Then, the output of the ANN is implemented to
remove the attack. To implement the ANN, the inputs and output
of the ANN should be selected, and after that, input and output
data should be gathered to train the ANN to reach a well-tuned
ANN. Finally, the tuned ANN can be used in the dc microgrid to
detect and mitigate the FDIA. To avoid more measurements, the
inputs of the ANN use the existing measured values, i.e., dc-bus
voltage, output dc voltages, and currents of units.

Furthermore, the current as well as the historical value of the
data is considered as the input of the ANN, and as will be shown
later, it improves the behavior of the ANN. Also, as mentioned
earlier, the task of the ANN is the calculation of the false injected
data. As a result, the output of the ANN is the estimated value
of the false injected data. Therefore, the input data (X) set and
the output (Y ) of the ANN are defined as follows:

lX(t) = {vj(t− kΔt), ij(t− kΔt), . . .

Vdc(t− kΔt)|1 ≤ j ≤ n and 0 ≤ k ≤ D} (13)

Y (t) =
{
V̄f (t)

}
(14)

where vj and ij are the output voltage and current of the jth
dc–dc converter. Also, V̄f is the estimated value of the false
injected data by the ANN. Furthermore,D is the memory, which
is considered for the input, and Δt is the sampling time width. It
is important to note that, in this article, the ANN has one input
layer, one hidden layer, and an output layer. As will be shown
later, the ANN with one hidden layer works properly, and as a
result, to avoid more complexity, the number of hidden layers is
not increased. Therefore, considering that the number of hidden
layers is one, the ANN has three layers. So, V̄f will be calculated
by the ANN as follows:

V̄f (t) = f3
(
B3 + f2

(
B2 +X(t)WT

2

)
WT

3

)
. (15)

To use the ANN, it should be trained to calculate the optimized
values of B2, B3, W2, and W3. To train the ANN, the dataset

of the inputs and the output should be gathered. To gather the
dataset for the training, the required data should be produced.
For producing the dataset of the training, several load changes
and attacks with different values are simulated and considered
in the system. Then, while the system is operated under different
conditions (i.e., load changes and FDIAs), the required data for
collecting the training dataset are gathered. After the training,
the ANN can be implemented in the system online to detect
and remove the FDIA. It is important to note that the training
is done offline, and then, the trained ANN can be implemented
online to detect and mitigate FDIA. Fig. 3 shows how the ANN
can be trained offline and also how it can be implemented
online to calculate the value of false injected data in the dc
microgrid.

The output of the ANN is the estimated value of the false
injected data, which is called V̄f . After the calculation of V̄f ,
authentic data, called Vauth, are injected into the system to
mitigate the FDIA. Vauth is calculated as follows:

Vauth(t) = −V̄f (t). (16)

The value of Vauth is added to the input of the secondary
controller. If the dc microgrid is under the FDIA, the input of
Hs, which is called Vs, is as follows:

Vs(t) = Vauth(t) + Va(t). (17)

The PI controller tries to converge the input of the controller
to the reference value. Then, we have

lim
t→∞Vs(t) = Vr. (18)

Based on (6), (17), and (18), it can be concluded that

lim
t→∞(Vauth(t) + Vdc(t) + Vf (t)) = Vr. (19)

If the ANN works properly, the estimated value of the false
injected data (V̄f ) is very close to the real value of the false
injected data (Vf ). Therefore, based on (16), it can be obtained
that Vauth(t) = −Vf (t).

Remark 1: Vauth can be used as an index to detect the existence
of the FDIA in the dc microgrid. If the dc microgrid is not under
the attack, it can be considered thatVf (t) = 0, and consequently,
Vauth(t) = 0. Therefore, ifVauth(t) �= 0, it can be stated that there
is FDIA in the system.

In addition, (19) can be converted as follows:

lim
t→∞(−Vf (t) + Vdc(t) + Vf (t)) = Vr. (20)

By simplifying, (20) can be changed to (5), and it means that
the voltage of the dc bus is converging to the reference voltage.
In other words, the dc microgrid is operated normally with a
normal dc-bus voltage even when the system is under FDIA by
the attacker.

Remark 2: If the dc microgrid is under the attack, −Vf is
injected into the system to remove the FDIA. Therefore, the
dc-bus voltage will converge to the reference value.
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Fig. 3. Offline and online phases to use the ANN to estimate the false injected data in a dc microgrid. The offline phase is for the training of the ANN, and the
online phase is related to the implementation of the ANN to estimate the value of the false injected data. The value of the false injected data is represented by Vf ,
and the estimated value of the false injected data, which is calculated by the ANN, is V̄f .

Fig. 4. Implementation of the proposed ANN-based FDIA mitigation strategy.

For more clarification, Fig. 4 shows the proposed mitigation
method to detect and mitigate the FDIA in the system.

V. RESULTS

The proposed method is examined on a modeled dc micro-
grid in a MATLAB/Simulink environment. The dc microgrid

is structured by six units, which are connected to the main dc
bus by resistive lines. In addition, each unit consists of a dc
source (120 V) and one buck dc–dc converter that connects the dc
source to the dc microgrid by connecting to the resistive line. The
reference voltage for the dc bus is 48 V. In addition, the values
of the resistive lines are as follows: R1 = 1.5 Ω, R2 = 1.4 Ω,
R3 = 1.65 Ω, R4 = 1.55 Ω, R5 = 65 Ω, and R6 = 1.70 Ω.
Before the exploitation of the ANN, it should be trained. To train
the ANN, the simulated dc microgrid was run for 20 s with a sam-
pling time of 20 μs. Then, 106 samples of inputs and the output
were gathered to train the neural network. To gather data related
to the inputs and the output, the dc microgrid was operated under
different conditions, i.e., different load changes and also FDIA
with variable values. In addition, during the operation of the
dc microgrid, the number of dc sources and connected dc–dc
converters to the dc microgrid also varied. All elements of the
set A (A = {1, 2, 3, 4, 5, 6}) were considered as the number of
connected dc–dc converters to the dc microgrid. So, the number
of connected dc–dc converters to the dc microgrid was a variable
number to have a more dynamic gathering data for the training
phase. To evaluate the proposed strategy, eight case studies are
considered. It is important to note that the memory for the input
(D) is considered 2.

In case studies 1–5 and 7, the number of connected dc sources
is three, and for case studies 6 and 8, it is six. Table I gives a
preview of the case studies.

It is important to note that, for better evaluation of the pro-
posed method, the index e, which is related to the domain of
the error of estimation by the ANN, is shown in the simulated
scenarios to have more effective evaluation. Also, e is calculated
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TABLE I
PREVIEW OF THE CASE STUDIES

Fig. 5. Voltage of the dc bus in case study 1.

Fig. 6. Currents of the dc–dc converters in case study 1.

as follows:

e[%] =

∣∣V̄f − Vf

∣∣
Vf

× 100. (21)

A. Case Study 1: Constant FDIAs

In this scenario, the performance of the proposed strategy is
examined under an FDIA with constant false data. The false
data (Vf ) with the value of +10 are injected into the system at
t = 1 s. Figs. 5 and 6 show the dc-bus voltage and currents of
the converters. As can be seen from Figs. 5 and 6, the FDIA is
removed immediately, and the FDIA cannot have a destructive
effect on the dc-bus voltage and also currents of dc–dc convert-
ers. Also, Fig. 7 illustrates the real value of the false data (Vf )

Fig. 7. Real and estimated values of the false data (i.e., Vf and V̄f , respec-
tively) in case study 1.

Fig. 8. Percentage of the error of estimation (e) by the ANN during the FDIA
in case study 1.

and the output of the ANN (V̄f ). Based on Fig. 7, the ANN can
calculate the injected false data successfully. Furthermore, Fig. 8
shows the error of the estimation by the ANN, and it shows the
percentage of the error of estimation for the ANN. Based on
Fig. 8, the domain of the error is about 0.01% in the steady state
and less than 1.3% for the transient time. Besides, the duration
of the transient time is 40 μs, which is twice the sampling time.
Briefly, the proposed method can estimate the value of the false
data properly, and the FDIA can be removed by the proposed
strategy with an excellent and proper performance.

B. Case Study 2: Nonsimultaneous as well as Simultaneous
FDIA and Load Changing

The goal of this scenario is to show the effectiveness of the
proposed method under an FDIA and also load changing. In
this scenario, first, a load is added to the dc microgrid at t =
1 s. Then, at t = 3 s, another load is added to the system, and
an FDIA is initialized simultaneously to have a more complex
FDIA. Fig. 9 illustrates the dc-bus voltage, and it shows that the
dc-bus voltage is converged to the reference value. Also, Fig. 10
depicts the output currents of the dc–dc converters. When the
loads are added to the dc microgrid, the currents are increased.
Furthermore, Fig. 11 shows the real and estimated false data.
Based on Fig. 11, the ANN is operated properly to estimate the
value of the false data. Also, Fig. 12 shows the value of e during
the attack, and as it is illustrated, the domain of the error is
less than 6% in the transient time and around 0.01% during the
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Fig. 9. Voltage of the dc bus in case study 2.

Fig. 10. Currents of the dc–dc converters in case study 2.

Fig. 11. Real and estimated values of the false data (i.e., Vf and V̄f , respec-
tively) in case study 2.

steady state. Also, the duration of the transient time is twice the
sampling time, and thereby, it is 40 μs.

C. Case Study 3: Time-Varying FDIA

In this case, the proposed strategy is examined under a time-
varying cyber-attack. The model of the injected false data is as
follows:

Vf (t) = 3 (cos(πt+ π) + cos(2πt) + cos(4πt)) + 10. (22)

Figs. 13 and 14 show the dc-bus voltage and currents of
converters. Figs. 13 and 14 illustrate that the time-varying FDIA
can be removed easily without disruptive effect. Furthermore,
Fig. 15 depicts Vf and V̄f . Based on Fig. 15, the ANN can
estimate the time-varying false data properly. Also, Fig. 16 is
related to the error of estimation. Fig. 16 shows that the error
of the transient time is less than 4% and less than 0.02% in the
steady state.

Fig. 12. Percentage of the error of estimation (e) by the ANN during the FDIA
in case study 2.

Fig. 13. Voltage of the dc bus in case study 3.

Fig. 14. Currents of the dc–dc converters in case study 3.

D. Case Study 4: Plug-and-Play of Additional Unit

In this scenario, the proposed strategy is tested under the
plug-and-play of an additional unit (dc–dc converter). For this
purpose, false data with the value of +20 are injected into the
system at t = 1 s. Then, at t = 3 s, the outage of unit 2 happens.
Figs. 17 and 18 depict the dc-bus voltage and the currents of
units, respectively. Also, Fig. 19 illustrates the real and estimated
values of the false data, and it shows that the ANN can calculate
the value of the false data successfully. Furthermore, Fig. 20
describes the error of the estimation. Based on Fig. 20, e is
approximately less than 0.003 in the steady state.

E. Case Study 5: FDIA and Communication Delay

In this scenario, the dc microgrid is operated under a delay
with value of 10 ms, which is considered for the output of the
secondary controller. So, the output of the secondary controller
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Fig. 15. Real and estimated values of the false data (i.e., Vf and V̄f , respec-
tively) in case study 3.

Fig. 16. Percentage of the error of estimation (e) by the ANN during the FDIA
in case study 3.

Fig. 17. Voltage of the dc bus in case study 4.

is sent to the primary controllers with a delay of 10 ms. The false
data are injected into the system at t = 1 s with the value of+25.
Fig. 21 shows the dc-bus voltage. In the steady state, the dc-bus
voltage is between 47.75 and 48.25 V. Furthermore, Fig. 22
illustrates the output currents of the converters. Also, Fig. 23
shows that the ANN has a proper performance to calculate the
value of the false data. Fig. 24 illustrates the estimation error, and
it is less than 0.006% in the steady state. Based on the achieved
results, the proposed approach can remove the FDIA under the
time delay.

F. Case Study 6: FDIA and Complex DC Microgrid

In this scenario, the performance of the proposed ANN-based
method is tested in a more complex dc microgrid. In this sce-
nario, the dc microgrid has six dc sources. At t = 1 s, false data
with the value of +10 are injected into the system. Then, the

Fig. 18. Currents of the dc–dc converters in case study 4.

Fig. 19. Real and estimated values of the false data (i.e., Vf and V̄f , respec-
tively) in case study 4.

Fig. 20. Percentage of the error of estimation (e) by the ANN during the FDIA
in case study 4.

outage of unit 6 is happening at t = 3 s, and a load is added
to the dc microgrid at t = 5 s. Fig. 25 illustrates the voltage of
the dc bus, and Fig. 26 shows the output currents of the dc–dc
converters. As shown in Figs. 25 and 26, when the dc microgrid
is operated under the proposed strategy, the FDIA could not
have a destructive effect in the dc microgrid even the system is
under the load changing or an outage of the unit. Also, Fig. 27
depicts the real and estimated values of the false data, and as it
is depicted, the ANN is successful in estimating the value of the
false data. Also, Fig. 28 illustrates the estimation error, and it is
less than 0.014% in the steady state.

G. Case Study 7: Comparison of Nonhistorical and
Historical-Based ANNs

In this article, the goal is to show the importance of the
existence of a proper strategy to remove the cyber-attack and
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Fig. 21. Voltage of the dc bus in case study 5.

Fig. 22. Currents of the dc–dc converters in case study 5.

Fig. 23. Real and estimated values of the false data (i.e., Vf and V̄f , respec-
tively) in case study 5.

also to show the advantage of using the historical values of data
in the input of the ANN. In this scenario, false data with a value
of +12 are injected into the system at t = 1 s. This scenario is
operated under three different conditions, i.e., Plans 1, 2, and 3,
as follows.

Plan 1: The dc microgrid is controlled hierarchically [6] like
shown in Fig. 2 and without the proposed FDIA mitigation
strategy.

Plan 2: The same method as Plan 1 but operated under the
proposed cyber-attack strategy.

Plan 3: The same method related to Plan 2 is used, but the
parameter D is set to zero. In other words, the historical values
of data are not used in the input of the ANN. So, the input of the
ANN in this method is changed as follows:

X(t) = {v1(t), . . . , vn(t), i1(t), . . . , in(t), Vdc(t)} . (23)

Fig. 24. Percentage of the error of estimation (e) by the ANN during the FDIA
in case study 5.

Fig. 25. DC-bus voltage in case study 6.

Fig. 26. Currents of the dc–dc converters in case study 6.

Fig. 29 shows the dc-bus voltage during the operation of the
dc microgrid under the mentioned methods. Based on Fig. 29,
after initializing the cyber-attack, in Plan 1, the dc-bus voltage
starts to change, and it converges to 36 V that is expectable based
on (12). However, for Plans 2 and 3, the dc-bus voltage still is
converging to a reference value, which is 48 V. Furthermore, for
a better comparison of Plans 2 and 3, the domain of errors for the
ANN is compared based on the implemented index DE, which
is as follows:

DE =
ePlan3

ePlan2
(24)

where ePlan2 and ePlan3 are the percentage of error in the es-
timation using ANNs in Plans 2 and 3, respectively, which is
calculated based on (21). If DE is less than 1, the domain of the
error of estimation by Plan 2 is less than that by Plan 3. Also, if
DE is more than 1, the domain of the estimation error by Plan 2
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Fig. 27. Real and estimated values of the false data (i.e., Vf and V̄f , respec-
tively) in case study 6.

Fig. 28. Percentage of the error of estimation (e) by the ANN during the FDIA
in case study 6.

Fig. 29. Voltage of the dc bus in case study 7 for Plans 1–3.

is more than that by Plan 3. Fig. 30 showsDE. Based on Fig. 30,
by injecting the false data, the DE starts closely from zero, and
it reaches to a value around 4, approximately. Therefore, based
on Fig. 30, it can be concluded that in the transient state, if the
ANN does not use the historical value of the data in the input,
the error of estimation is very small but, in the steady state, it
has more errors compared to the proposed method.

H. Case Study 8: Evaluation of the Trained ANN Under Noise

In this part, the accuracy and performance of the trained ANN
are evaluated. To train the ANN, as mentioned before, the sim-
ulated dc microgrid is operated for 20 s with a sampling time of
20 μs. Therefore, a dataset with 106 samples of the inputs and the
output is made. In addition, different load changes are considered
during the simulation to gather the training dataset. Besides, the
outage of different units is simulated during the operation of

Fig. 30. Value of DE in case study 7.

Fig. 31. Mean squared error (mse) of the ANN for the microgrid under noise
in case study 8.

the dc microgrid to prepare the dataset. In addition, to make the
situations closer to the real world and make the results more
accurate, white noise is considered on the measurement of the
dc-bus voltage. Therefore, in case study 8, a new ANN is trained
under the noise to have more accurate results.

Briefly, the goal of case study 8 is to evaluate the performance
of the trained ANN. In addition, to make the results more
accurate, white noise is implemented on the value of the dc-bus
voltage.

To train the ANN, 106 samples of the voltages and currents of
the dc–dc converters and the dc-bus voltage are gathered to create
the input dataset for the training. The dc microgrid has six dc–dc
converters, and the voltages and currents of the converters are
needed to create the input dataset (12 elements). In addition, the
value of the dc-bus voltage is needed. So, 13 elements are needed
to create the input dataset. But, the memory (D) is two, and as
a result, the number of elements is increased to 39 (13×(2+1)).
To create the input dataset, a matrix with 106 samples of 39
elements is created. Also, the output dataset is made based on
106 samples of false data, which is injected into the system
during the operation of the dc microgrid. To train the ANN, the
Levenberg–Marquardt algorithm is implemented. Furthermore,
70% of the samples are implemented for training, 15% of them
are used for validation, and 15% of them are implemented for
testing.

In Fig. 31, the mean squared error (mse) during the training is
illustrated. In addition, the error histogram of the ANN is shown
in Fig. 32. The error histogram includes 20 bins. Also, in Fig. 32,
the Targets represent the real values of the false data and Outputs
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Fig. 32. Error histogram of the ANN for the dc microgrid under noise in case
study 8.

Fig. 33. Regression of the ANN for the dc microgrid under noise in case
study 8.

are the output of the ANN. Besides, Fig. 33 shows the regression
diagram of the ANN.

VI. DISCUSSIONS AND FUTURE WORKS

This article proposed a method based on the ANN to increase
the cyber-security of dc microgrids by the detection and miti-
gation of cyber-attacks. The type of studied cyber-attack in this
article is considered FDIA. The ANN is used to estimate the
value of the false data, which is injected into the system when
the system is under FDIA. Based on the output of the ANN, an
authentic value is produced to inject into the system to remove
the false injected data. Due to the implementation of the ANN,
the system can be considered as a black box, and there is no need
to have mathematical-based information about the system to
identify and mitigate the cyber-attack. In addition, the proposed
strategy can mitigate the FDIA with constant and time-varying
false data. In future works, the proposed method can be extended
to more improvement of the cyber-security of dc microgrids
by identifying and removing other types of cyber-attacks. In

addition, an AI-based application can be introduced to detect and
mitigate FDIAs in dc microgrids, which are made by distributed
dc sources with multiple dc buses.

VII. CONCLUSION

This article introduces an ANN-based method to detect and
mitigate FDIA in a dc microgrid. The proposed method is
based on the ANN, and the ANN is implemented to calculate
the value of the false data, which are injected to the system
by the attacker. Then, the calculated value of false data is
used to remove the cyber-attack. The proposed method can re-
move the attack quickly, and it has very fast performance to mit-
igate the attack. In this article, no additional controllers (e.g., PI
and model-predictive controllers) are used, and because of that,
it has reduced complexity. Furthermore, the proposed strategy
was examined under different cyber and physical disturbances
and events (i.e., load changing, communication delay, and
plug-and-play of additional units). Besides, both constant and
time-varying FDIAs were considered to evaluate the proposed
approach. In addition, the performance of the ANN was eval-
uated under white noise in a separate case study. The obtained
results show that the proposed strategy can calculate the value
of the false injected data and remove the FDIA very fast and
properly.
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