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Resilience Assessment for Power Systems Under
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Abstract—The information and communication technology
enhances the performance and efficiency of cyber-physical power
systems (CPPSs). However, it makes the topology of CPPSs more
exposed to malicious cyber attacks in the meantime. This paper
proposes a double deep-Q-network (DDQN) based resilience
assessment method for power systems under sequential attacks.
The DDQN agent is devoted to identifying the least sequential
attacks to the ultimate collapse of the power system under
different operating conditions. A cascading failure simulator
considering the characteristics of generators is developed to
avoid a relatively optimistic assessment result. In addition, a
novel resilience index is proposed to reflect the capability of the
power system to deliver power under sequential attacks. Then, an
improved prioritized experience replay technique is developed to
accelerate the convergence rate of the training process for DDQN
agent. Simulation results on the IEEE 39-bus, 118-bus and 300-
bus power systems demonstrate the effectiveness of the proposed
DDQN-based resilience assessment method.

Index Terms—Resilience assessment, cyber-physical power
system, cascading failure simulation, double deep-Q-network,
prioritized experience replay.

I. INTRODUCTION

A
DVANCED information and communication technology

has been integrated into power systems for the en-

hancement in performance and efficiency, which turns elec-

trical grids into cyber-physical power systems (CPPSs) [1]–

[3]. However, the complex interconnectivity between differ-

ent devices and elements makes CPPSs more exposed to

malicious cyber and physical attacks [4], [5]. Specifically,

the topology attacks could cause the power line outages,

which would lead to the widespread power flow transfer and

further cascading failures [6]. It can create severe damage

in CPPSs, for example, the 2015 Ukraine blackout caused

by false data injection attacks [7]. Hence, it is necessary to

conduct the resilience assessment in advance [8], in order to
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provide guiding suggestions for the investment in resilience-

enhancement countermeasures [9], [10].

In spite of the not-yet-standardized definitions of resilience

of CPPSs [11], there is a relatively widely recognized defini-

tion: the ability of CPPSs to tolerate cyber-based and power-

based disturbances or recover from disturbances by operation

technology [12]. There have been plenty of researches on

the resilience assessment of power systems under power-

based attacks or extreme weather events [13], [14]. However,

compared with the power-based faults, the cyber-based attacks

on topology require less attack resources and can be conducted

more flexibly. It can also lead to severe blackouts [6], [15],

[16], which is launched by tampering the status data [17], [18]

or malicious line-switching operation [19], [20]. Usually, there

are two main kinds of topology attacks: synchronous attack

[21]–[23] and sequential attack [24]–[27]. The sequential

attack is proposed in [24] firstly and proved that it may result

in severer blackouts than the synchronous attack. Besides, it

requires less coordination on attack resources, which means

the higher flexibility in the choice of attack lines [27]. Hence,

this paper will focus on the resilience assessment of CPPSs

under the sequential cyber attacks on the power topologies.

Generally, the resilience assessment of power systems iden-

tifies the least sequential attacks for the system failure. It

consists of two main parts: the cascading failure simulator

(CFS) and the design of contingency/attack. CFS is pro-

posed to simulate the cascading failure and corresponding

recovery operation strategies of the power systems under

attack/disturbance [28]. Basically, they are designed using the

dc power flow (DC-PF) model [29]–[32] or the computa-

tionally efficient AC model [33]. Some stochastic cascading

failure models [34], [35] are further proposed to simulate the

cascading failures considering the high uncertainty of load

and renewable generations. However, the characteristics of

generators are sometimes not sufficiently considered for the

generator rescheduling during the cascading failure process

in the above researches. For example, Ref. [29]–[31] ignored

the lower power limits of generators. Ref. [33]–[35] ignored

the governor droop coefficients, which reflected the primary

frequency regulation. Ref. [32] considered the characteristics

of generators, but ignored the power loss when deciding the

load shedding. These insufficient considerations might lead to

a relatively optimistic result of the resilience assessment under

sequential attacks. The post-contingency evolution simulator

proposed in [36] made up for these deficiencies. Whereas, due
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to the ac power flow and various modelled control measures, it

is too computationally intensive for the resilience assessment

under sequential attacks. Moreover, there are few resilience

indexes to describe the functionality of the power system to

deliver power under sequential attacks [11].

On the other hand, the contingency/attack for resilience

assessment is usually designed by operation experience. The

resilience of critical electrical power infrastructure is analyzed

under extreme weather events in [37], or evaluated by Monte

Carlo simulation in [38]. However, the rarely occurred extreme

weather events and blackouts caused by cyber-attacks in

practice may lead to the scarcity of historical data. Besides,

numerous simulations would bring a considerable computa-

tional burden in modern complex power systems.

With the rapid development of reinforcement-learning (RL)

theory [39], [40], some RL algorithms are introduced to

design the contingency/attack for the resilience assessment

of power systems. The RL-based agent can be trained with

the experience data through the interaction with CFS, rather

than the historical data of extreme weather events. Ref.

[41] proposed a table-based Q-learning method to identify

the critical sequential topology attacks. However, the branch

operating state is discrete, which means the Q-table needs to

be retrained for another new operating condition. Thanks to

the development of deep learning in recent years, the deep

neural network can be used to evaluate actions with respect

to continuous states [42]. A deep-Q-network (DQN) based

cyber-physical coordinated attack strategy is proposed in [43]

to attack the critical line with the minimal cyber resources.

Nevertheless, the DQN agent in [43] still cannot deal with

different operating conditions due to the same state design

as [41]. Moreover, the threshold of practical grids collapse

might be higher than that in [41], [43]. It means that the

Markov Decision Process (MDP) lasts relatively longer, and

the action space would be huge. As a result, a much larger

Q-table is required to save the Q value of different state-

action pairs. Besides, numerous transitions with low rewards

would be generated by the exploration. It would make the

DQN agents trained with the conventional experience replay

technique spend a lot of time converging to the approximate

optimal, especially when the computing and training resources

are limited.

Considering the aforementioned problems, this paper pro-

poses a double deep-Q-network (DDQN) based method for

resilience assessment of power systems under sequential at-

tacks using improved prioritized experience replay (PER).

The proposed DDQN based agent is supposed to identify the

least sequential attacks resulting in the system collapse under

different operating conditions. Numerous simulation results

on the IEEE 39-bus, 118-bus and 300-bus power systems

verify the effectiveness of the proposed DDQN based agent

for resilience assessment under sequential attacks.

The main contributions of this work are summarized here:

• A DDQN based agent using an improved PER technique

is proposed for the resilience assessment of power sys-

tems under sequential attacks among different operating

conditions.

• A DC-PF based CFS is proposed to simulate the complex

failure and corrective manipulations of power systems

under sequential attacks, which can consider the char-

acteristics of generators. In addition, a novel resilience

index is designed to reflect the capability of CPPSs to

deliver power under sequential attacks.

• The improved PER technique is proposed to accelerate

the convergence of the training process for DDQN based

agents. It scores the priority of experience in replay buffer

with the combination of temporal difference (TD) error

and the average episode reward.

The rest of this paper is organized as follows. The CFS

considering generator characteristics is briefly introduced in

Section II. Section III presents the MDP formulation of the

DDQN based agent for resilience assessment followed by the

introduction of improved PER technique. Section IV discusses

the simulation results on three IEEE benchmarks and Section

V concludes the paper.

II. CASCADING FAILURE IN POWER SYSTEMS UNDER

SEQUENTIAL ATTACKS

A. Cascading Failure Simulator Under Sequential Attacks

Malicious line-switching attacks on critical lines can turn

their status from in-service to out-of-service. It can trigger

large-scale power flow transfer and lead to severe cascading

failure. When the number of out-of-service lines reaches a

certain threshold, it can be regarded as a collapse of the

power system [41]. After that, the line maintenance and power

recovery will take a long time. Referring to the architecture

of the MATCASC toolbox in MATLAB [44], the cascading

failure simulator based on the DC-PF model is shown in Fig.

1. It is expected to make the power system collapse through

the least topology attacks during the resilience assessment. To

this end, the malicious sequential topology attacks and the

cascading failures resulting from the attacks are conducted in

turn. Note that the branch short time emergency ratings of

transmission lines are set as the thermal capacity and their

augmented values. The detailed information refers to [6]. The

procedures of the cascading failure simulation based power

system resilience assessment under sequential attacks are as

follows:

1) Load the initial operating condition of the power system,

including the bus data, line data, and generator data.

2) Calculate the power flow on lines with the DC-PF model.

3) Attack one of the operating lines and update the topology

of the power system.

4) Detect whether the whole power system turns into several

sub-grids after the attacked line is tripped out. All the

lines in the sub-grid without generators turn into out-of-

service state.

5) Re-dispatch the active generations and loads to ensure the

active power balance in each sub-grid.

6) Update the power flow with the re-dispatched data using

the DC-PF model. If there exist overloaded lines, trip the

overloaded lines with minimal capacity and turn to 4).

7) Check whether the total line-outages Ntotal are less than

the threshold Nc. If yes, turn to step 3) and attack another
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Sub-grid detection and 
outage for passive grid

Re-dispatch 
the PF 

calculating 
data in all 
sub-grids

PF update for post-
contingency condition

Overloaded line outage

Overloaded 
lines exist

Trip out the overloaded 
line with smallest capcity

Re-dispatch generation to 
balance the load

Generator shedding
Insufficient down-regulation 
capacity of generator

Line outage

Cascading failure process

Load shedding
Insufficient up-regulation 
capacity of generator

Normal operating condition

No overload lines
No forced line outage

Malicious sequential attack

Relay misoperation
Deny of reclose service

System collapse
Large-scale blackouts
Slow recovery

Fig. 1. System collapse caused by sequential attacks and cascading failure

operating line. Otherwise, output the attack sequence. The

number of attacks will reflect the resilience of the power

system under this operating condition.

B. Re-dispatch Strategy During Cascading Failure

Different from the Cascading Failure Simulation module

in [44], the re-dispatch strategy in this paper additionally

considers the governor droop coefficient and the lower power

limits of generators. The details of the re-dispatch strategy are

given as follows:

1) Calculate unbalanced power: Summarise the total load

PL, active power of each generator Pi
g and the corresponding

upper limit Pi
max, and lower limit Pi

min in the concerned sub-

grid. Calculate the unbalanced power ∆P as follow:

∆P = PL−ΣPi
g (1)

2) Load shedding: If ∆P> Σ(Pi
max−Pi

g), the power shortfall

will still exist after increasing all the generations to their upper

limits. In this situation, cut off the load in amount of ∆PL:

∆PL = 0.1PL⌈
∆P−Σ(Pi

max−Pi
g)

0.1PL

⌉ (2)

It means that the load would be cut off at internals of 10% of

the current load. Although the CFS in this paper is based on

the DC-PF model, the ⌈•⌉ function considers the power loss on

the transmission lines in practical grids. Then the unbalanced

power goes to ∆P = PL−∆PL−ΣPi
g.

3) Generator tripping: If |∆P| > Σ(Pi
g−Pi

min), the power

surplus will still exist after decreasing all the generations to

their lower limits. In this situation, trip off the generator in

ascending order of (Pi
g−Pi

min) until |∆P| ≤ Σ(Pi
g−Pi

min). Then

re-calculate the unbalanced power ∆P. This is because the

heat generated by the friction of valve and steam cannot be

taken away in time at a low operating point. It could cause

the damage to the blade of steam turbine of generator when

the generator operates under the lower power limit. It is also

uneconomical for generators to operate at a fairly low power

point with the consideration of generating cost, like auxiliary

power consumption.

4) Power generation adjustment: Adjust the power of each

operating generator according to its droop coefficient Ri. Dur-

ing the primary frequency regulation for the unbalanced power,

the governor droop coefficient approximately determines how

much the generator responds to the frequency deviation [36].

Note that the frequency dynamics is ignored here. The power

adjustment is formulated as follows:





∆Pi
g =

1

Ri

∆P/Σ
1

Ri

Pi
min < Pi

g < Pi
max

(3)

If Pi
g reaches its own upper or lower limit, the rest adjustment

amount will be apportioned to other generators.

C. Resilience Index Based on the Number of Attacks

Since the resilience of the power system in this paper

reflects the capacity to tolerate malicious attacks and continue

to deliver affordable power, the resilience index is defined

based on the number of attacks as follows:




RIk =
ke

∑
k=1

F(k)1/k

F(k) = (N−Ntotal
k )/N

1≤ k ≤ ke,k ∈ N
+,ke ∈ N

+

(4)

where RIk is the resilience index of power system after k

attacks. N is the number of operating lines in the initial

operating condition, while Ntotal
k is the total out-of-service lines

caused by k attacks. F(k) is the ratio of the number of the

remaining operating lines to the number of the initial operating

lines, which reflects the damage to the structure of the power

system after k attacks. Note that F(k) is positive and in the

range of [0,1), while k is a positive integer. ke is the number

of attacks when the system collapses (Ntotal
k ≥ Nc).

Since RIk is the cumulative value of F(k) to the power

of 1/k, it increases with the attack times k until the power

system collapses. It is reasonable that the more attacks the

power system can tolerate, the more resilient the system is.

In addition, the power operator is no greater than 1, which

is a kind of amplification of F(k) in the integration. The

amplification increases with the attack times k. It means that

the capability to tolerate multiple attacks are more precious

and counts more in the resilience assessment of power system.
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III. DEEP REINFORCEMENT LEARNING BASED

RESILIENCE ASSESSMENT

The DDQN based resilience assessment method is intro-

duced in the following section. Firstly, the resilience assess-

ment of the power system under sequential attacks will be

formulated as an MDP problem. Then, the DDQN agent

using the improved PER technique is developed to make

decisions of sequential attacks. The end of this section gives

the training procedures of the DDQN based agent for resilience

assessment.

A. Markov Decision Process Formulation of Resilience As-

sessment under Sequential Attacks

Fig.2 shows the MDP of the resilience assessment for

the power system which reflects the interaction between the

agent and the proposed cascading failure simulator. The key

elements of MDP are state sk, action ak, reward rk, terminal

Tend and the state transformation function. In detail, the agent

firstly decides the attacking line ak when it received the current

power flow state sk from the concerned power system. Then

the DC-PF based cascading failure simulation is conducted

with the state sk and action ak until there is no overloaded

line. That represents the state transformation completes and

the next power flow state sk+1 is obtained. The corresponding

reward is made according to the reward function which is

designed in prior. The MDP continues as the current state sk

is replaced by sk+1, until the terminal state of the MDP arrives

and Tend is true.

Q evaluation 

network

Q* target 

network

Cascading failure 

simulator

Cascading failure

DDQN based agent for power system 

resilience assessment

Attack line 

Power system state

Reward

Transition

Current state

Attack line

Next state

Reward

Terminal flag

Replay buffer

Save transitions Terminal flag

Experience replay
Loss

Load state, 

generator state,

branch state

Interaction 

through MDP

Malicious attack

Fig. 2. The framework of the DRL based resilience assessment method

1) State: The state sk refers to the power flow state of power

system at decision step k, which can be described as:

st =
[
P1

L(k), ...,P
x
L(k),P

1
g (k), ...,P

m
g (k),P1

b (k), ...,P
y
b (k)

]
(5)

where Px
L(k) represents the active power load of bus x at step

k. Pm
g (k) represents the active power generation of generator m

at step k. P
y
b (k) represents the active power transmitted on the

branch y at step k. x, m and y are the number of the observed

buses, generators and branches, respectively.

2) Action: The action ak refers to the index of the power

transmission lines that the agent decides to attack at decision

step k. Accordingly, ak can be described as:




ak ∈ AAAkkk,AAAkkk =
{

i|i ∈ AAA000∩Bi
k = 1

}

AAA000 = {1, i, ...,N}

BBBkkk =
[
B1

k ,B
i
k, ...,B

N
k

]
,Bi

k ∈ {0,1}

(6)

where, AAAkkk represents the collection of available attacking lines

in power system at decision step k. AAA000 represents the initial

collection at step 0 when all the transmission lines are under

operation. N is the corresponding number of lines in the initial

collection which is also the dimension of the output layer of

the agent. BBBkkk refers to the operating state of all the branches

listed in AAA000 and Bi
k is the operating state of branch i at

decision step k, where 0 means out-of-service and 1 means

under operation. In this way, the transmission line selected by

the agent at every decision step is guaranteed under operation.

In addition, the ε-greedy strategy is also adopted for action

selection, which is beneficial to make a balance between

exploitation and exploration during the training process. It is

formulated as follows:




P(ak = a∗k) = 1− εk,ak ∈ AAAkkk

a∗k = argmax
ak∈Ak

Q(sk,ak)
(7)

where a∗k is the action with the biggest value evaluated by Q

network. P(ak = a∗k) is the probability of selecting the most

valued action at decision step k, which is 1− εk. It means

that there is a probability of εk for randomly selecting a

transmission line in AAAkkk.

εk = min
{

ε0−ns×∆ε,ε f

}
(8)

where ε0 and ε f are the initial and final value of ε . ns is

the training step and ∆ε is the attenuation of the ε . Usually,

1≥ ε0 ≥ εk ≥ ε f ≥ 0. Note that the ε-greedy strategy is only

applied in the training stage. For the action selection in the

evaluation stage, the greedy strategy is adopted instead.

3) Reward and Terminal: The reward rk(sk,ak), referred to

rk, is designed according to the state transition and the terminal

flag. The formulation of rk is obtained as:

rk =−k1 + k2×No
k + k3×Tend (9)

where k1 and k2 are the coefficients for the attack cost and

effect, respectively. k3 is the reward when the MDP terminates.

The attack effects No
k refers to the number of newly increased

transmission lines that are out of service after the cascading

failure simulation under the attack ak. It can be obtained as:

No
k =

N

∑
i=1

Bi
k−

N

∑
i=1

Bi
k+1 (10)

The terminal Tend can be formulated as:

Tend =

{
0,Ntotal

k < Nc

1,Ntotal
k ≥ Nc

(11)

where Ntotal
k is the number of line outages, Ntotal

k = N −

∑N
i=1 Bi

k+1. Nc is the threshold of the out-of-service lines that

represents the power system collapse. When the total out

of service lines are less than Nc, Tend equals 0. It means

that the MDP has not yet terminated and the agent will

continue deciding the attack transmission line. Otherwise, Tend

equals 1, which means the MDP has terminated and the

resilience assessment is completed. The number of attacks in

the sequence [a1,a2, ...,ak] reflects the resilience of the power

system under this operating condition.
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B. Double Deep-Q-Network Algorithm

The deep Q network (DQN) algorithm uses the Q-target

network to not only select the action at the next state ak+1

but also evaluate the corresponding Q value Q(sk+1,ak+1). It

could result in the over-high evaluation of the Q value at the

next decision step. To this end, the double deep Q network

is proposed in [42] to separate the selection of ak+1 and

evaluation of Qk+1. It can be described as:

Qi
j(sk+1,ak+1) = Qi

j(sk+1, argmax
ak+1∈AAAk+1

Q∗ij (sk+1,ak+1|θ
∗i)|θ i)

(12)

where Qi and θ i represent the evaluation network and its

parameters at i-th iteration, respectively. Qi∗ and θ i∗ repre-

sent the target network and its parameters at i-th iteration,

respectively. ak+1 refers to the attacking transmission line at

the next decision step. j is the number of transitions. As shown

in (12), ak+1 is firstly determined by maximizing the output

Q value of Q target network with state sk+1. Then the Q value

for (sk+1, ak+1) is evaluated by Q evaluation network. In this

way, the training process of the Q evaluation network will be

more stable. Note that, the ε-greedy strategy is not used during

the parameters update with replayed transitions.

The purpose of training is to minimize the difference

between evaluated Q value Qi
j(sk,ak|θi) and target Q value

Q̂i
j(sk,ak), which is represented by temporal-difference (TD)

error eTD(θ
i):

eTD j
(θ i) = Qi

j(sk,ak|θ
i)− Q̂i

j(sk,ak) (13)

Q̂i
j(sk,ak) =

[
r j +(1−Tend)×Qi

j(sk+1,ak+1)
]

(14)

where Qi(sk+1,ak+1) obtained in (12) is the evaluated Q value

of the next attack. Note that, if the MDP terminates after

decision step k, the target Q value Q̂i
k(sk,ak) equals to the

reward r(sk,ak). Then, an Adam optimizer is adopted to update

the parameters of the Q evaluation network to minimize the

mean-square TD-errors of the replayed batch of cascading

failure transitions. Thus, the gradient of the network parameter

is obtained as:

∆ j(θ
i) = eTD j

(θ i) ·∇θ Qi
j(sk,ak|θ

i) (15)

where ∆ j(θ
i) is the gradient for Q evaluation network param-

eter θ i brought from transition j at i-th iteration.

C. Improved Prioritized Experience Replay

The cascading failure transitions are saved in the replay

buffer in form of (sk, BBBkkk, ak, sk+1, BBBk+1, rk, Tend). They will

be replayed to update the parameter of Q evaluation network,

which improves the exploitation of transitions and decreases

the relevance of these cascading failure transitions. Thanks

to the reward design in (9), the actions that cannot terminal

the MDP of resilience assessment still get non-zero reward. It

means that the hindsight experience replay proposed for the

sparse-reward MDP problem is not needed here [45].

In general, the experience replay adopts uniform random

sampling (URR), which means the sampling probability of

each cascading failure transition is similar. However, those

transitions with higher TD errors apparently are more un-

expected to the agent and should be sampled with higher

probability [46]. In [47], the transitions with higher rewards

are replayed with higher probability in the training of the

DRL based agent for automatic generation control (AGC)

dispatch. When it comes to the resilience assessment of

the power system, the transitions from the shorter attacking

sequences, rather than the transitions that terminal the MDPs,

are more valuable for the training of resilience assessment

agents. Hence, the improved PER, which scores the prior-

ity of transition with the combination of TD-error and the

average episode reward, is introduced here to accelerate the

convergence rate of the training for DDQN based resilience

assessment agents.

Fig. 3 shows the diagram of the improved PER, which

includes stochastic prioritization replay, importance sampling

weight correction, priority update, and transition replacement.

Concretely, it is designed as follows:

1) Stochastic prioritization replay: The stochastic prioriti-

zation replay samples a batch of transitions from the replay

buffer according to their probabilities, which depend on the

priorities of transitions. The priority of the cascading failure

transition is formulated as:

{
p j = max{ηα ,(|eTD j

|+R j)
α}

R j = RT j/NT j

(16)

where p j is the priority of cascading failure transition j.

Pj = p j/∑k pk is the sampling probability of transition j,

which is proportional to the priority p j. ∑k pk is the sum of the

priorities of all transitions in replay buffer. |eTD j
| and R j are

the absolute value of the TD error and reward of transition

j, respectively. RT j and NT j are the total reward and the

number of attacks of the episode that the transition j belongs

to. η is the upper limit of priority, which is set to restrict

the replay frequency of those transitions with extremely high

priority. α is the priority coefficient representing how much

the prioritization get involved in experience replay. Especially,

the stochastic prioritization replay becomes uniform random

replay when α = 0.

2) Importance-sampling weight correction: Since the distri-

bution of the cascading failure transitions replayed by PER is

different from that of URR, the stochastic prioritization replay

inevitably introduces bias to the training process. In order to

compensate for the bias, the importance-sampling (IS) weight

is introduced to correct the gradient of the replayed transitions.

w j = (Pj/min{Pj|1≤ j ≤ nbatch})
−β (17)

where w j is the IS weight of cascading failure transition j.

min{Pj|1≤ j ≤ nbatch} is the minimal priority of the replayed

batch of transitions, while nbatch is a training hyper-parameter,

the batch size. β is the coefficient of the IS weight correction

, which represents how much the gradients resulting from

the replayed transitions get corrected. β is set as 0 ≤ β ≤ 1.

Obviously, there is no IS correction for β = 0, while the IS

correction is fully conducted for β = 1.

It can be seen in (17) that the higher the transition priority

Pj, the lower the IS weight of the transition w j, the more
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Fig. 3. The prioritized experience replay adopted in the DDQN training process (The size of circles around transitions represents the priority. The transitions
in yellow are sampled as a batch to update the Q evaluation network. Then the priority of these transitions is recalculated by the latest updated networks
according to (13) and (16). And the corresponding circles shrink from dashed ones to solid ones.)

the corresponding gradient magnitude decays. In this way, the

gradient of the network parameter is corrected as:

∆ j(θ
i) = w j · eTD j

(θ i) ·∇θ Qi
j(sk,ak|θ

i) (18)

3) Priority update and transition replacement: As shown

in Fig. 3, once the parameters of the Q evaluation network is

updated with the sampled cascading failure transitions, the TD

errors of this batch transitions need to be re-calculated with the

latest Q evaluation network. The overall decline in the priority

of these transitions is foreseeable owing to the shrink of TD

errors.

On the other hand, when the replay buffer is full of tran-

sitions, the old ones with the lowest priority will be replaced

by the newly generated transitions. Thanks to the introduction

of the average episode reward, the valuable transitions even if

replayed frequently could be kept to some degree.

D. Training Process of the DDQN Based Resilience Assess-

ment Method

The DDQN based model needs to be well-trained offline

before it is used to assess the resilience of the power sys-

tem under different operating conditions (OCs). The pseudo-

code of the training process is given in Algorithm 1, which

is conducted through the interaction with cascading failure

simulator, experience replay, and network parameters update.

With the performance of the agent converging gradually, the

output sequential attacks will assess the resilience of the power

system more accurately.

IV. CASE STUDY

Simulations are conducted on IEEE 39-bus, 118-bus and

300-bus power systems to verify the effectiveness of the

proposed DDQN based method for the resilience assessment

of power systems under sequential attacks. The detailed data

of these test benchmarks refer to Matpower [48].

The IEEE 39-bus power system, which consists of 10 gen-

erators, 39 buses, 21 loads, 12 transformers and 34 branches.

Algorithm 1 Training process of DDQN based agent for

resilience assessment

1: Generate different initial OCs and divide them into train-

ing collection Ct and evaluation collection Ce.

2: Set total training episodes NT , transition capacity M, train-

ing batch size B, learning rate lr, network synchronization

frequency fs, agent evaluation frequency fe, discount

factor γ , greedy coefficient ε and other parameters.

3: Initialize the cascading failure simulator (CFS); initialize

the networks of the agent; set the training step ns = 0.

4: while ns ≤ NT do:

5: Update greedy coefficient ε .

6: Randomly select an initial OC in Ct ;

7: s1, BBB111← CFS.reset(). ◃ Reset the CFS and get the initial

state s1 and branch operating state BBB111.

8: Set total reward RT = 0, terminal flag Tend = False,

attacking sequence aaa =[ ].

9: while Tend = False do:

10: at ← agent.actionSelect(st , BBBttt , ε). ◃ Decide the

attacking line according to (7).

11: aaa← [aaa,at ].
12: st+1, BBBt+1, rt , Tend← CFS.simulate(at ).

13: st ← st+1, BBBttt ← BBBt+1, RT ← RT + rt .

14: end while

15: Output attacking sequence aaa.

16: Calculate priorities of transitions according to (16).

17: transition.add(). ◃ Add the transition (st , BBBttt , at , st+1, BBBt+1, rt ,

Tend ) into the replay buffer.

18: transition.prioritizedReplay().

19: θ i← θ i +∆ j(θ
i). ◃ Update θ i according to (18) with Adam

optimizer.

20: transition.update(). ◃ Update the priorities of the replayed

transitions with the latest θ i.

21: ns← ns +1.

22: θ ∗i← θ i. ◃ Update θ ∗i every fs times for which θ i updates.

23: agent.eval(). ◃ Evaluate the agent with all OCs in Ce every fe

times for which θ i updates.

24: end while

25: Save the best and latest agent.
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Note that the short time emergency ratings of those trans-

formers connecting generators are designed according to the

capacity of the connecting generators. All the loads are divided

into three groups except for load 9, 12 and 31, which are less

than 10 MW in the standard OC. The load level of each group

is set to be 0.8, 0.9, 1.0 and 1.1, respectively. Then 64 different

initial OCs in total are obtained, among which 54 OCs are

randomly selected as training collection Ct and the rest ten

OCs are regarded as the evaluation collection Ce.

A. Comparison of Cascading Failure Simulators

In order to verify the important role that the governor droop

coefficient and the lower power limit of generators play in

cascading failure simulation, two types of CFS are designed

as follows:

1) CFS1: the proposed CFS in this paper.

2) CFS2: the same as CFS1 without consideration of the

governor droop coefficient and the lower power limit of

generators.

Table I gives the shortest attack sequences resulting in power

system collapse, which are obtained by traversal method with

CFS1 under all evaluation operating conditions Ce. Note that

the threshold for the collapse of the 39-bus power system is set

to 50%, which is 23 lines being out of service. The sequential

attacks are conducted on CFS1 and CFS2 respectively. The

resilience indexes and the corresponding numbers of lines

out of service after every attack are also shown in Table I.

The power system adopting CFS1 can collapse within three

attacks under all Ce, except for OC.1 under which only two

attacks can make it. In contrast, the power system adopting

CFS2 cannot collapse after the sequential attacks under any

Ce. The resilience indexes verify that the assessment of the

proposed CFS1 is relatively more conservative. Fig. 4 shows

the comparison of the lines out of service resulting from the

shortest sequential attack simulated by CFS1 and CFS2.

TABLE I
THE RESULTS OF RESILIENCE ASSESSMENT CONDUCTED WITH CFS1 AND

CFS2 UNDER EVALUATION OPERATING CONDITIONS Ce

OC. Load level
Attacked CFS1 CFS2

lines Ntotal
k RI3 Ntotal

k RI3

1 [1.0, 0.8, 0.8] 10⃝- 16⃝ 1-24 1.67 1-16 1.79
2 [0.9, 1.1, 0.9] 16⃝- 35⃝- 10⃝ 1-6-23 2.70 1-6-17 2.77
3 [0.9, 0.8, 0.9] 16⃝- 35⃝- 10⃝ 1-6-23 2.70 1-6-17 2.77
4 [0.8, 1.1, 0.8] 4⃝- 11⃝- 9⃝ 1-6-23 2.70 1-6-14 2.80
5 [0.8, 1.0, 0.9] 16⃝- 35⃝- 10⃝ 1-6-23 2.70 1-6-17 2.77
6 [1.1, 0.9, 0.8] 35⃝- 38⃝- 32⃝ 8-21-23 2.36 7-15-16 2.54
7 [1.0, 0.8, 1.1] 35⃝- 38⃝- 32⃝ 8-21-23 2.36 7-15-16 2.54
8 [0.9, 0.8, 1.1] 35⃝- 38⃝- 32⃝ 8-21-23 2.36 7-15-16 2.54
9 [1.0, 1.0, 0.8] 14⃝- 17⃝- 35⃝ 12-13-23 2.38 7-8-11 2.67
10 [1.0, 1.0, 1.0] 35⃝- 11⃝- 15⃝ 13-14-23 2.35 13-14-15 2.43

B. Characteristics of Generator Considered in CFS

Taking the OC.10 in Table I as an example, the numbers

of lines out of service for CFS1 and CFS2 are the same after

the first and second attacks. It is after the third attack that the

power system simulated with CFS1 collapse, where attacking

transmission line 15⃝ resulting in eight more lines out of service

N
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CFS1

Fig. 4. The number of lines out of service caused by the same attacking
sequence with different CFSs under different operating conditions (There are
two bars shown at every time attack along the axis of attack. Among them,
the left ones represent the number of lines out of service for CFS2, while the
right ones represent that for CFS1. The light blue surface parallel to the xy

plane represents the threshold of the collapse, whose value is 23.)

in CFS1 than that in CFS2. Fig. 5 shows the power of each

generator under OC.10.

The main difference between CFS1 and CFS2 lies in

whether the power is less than the lower power limit of the

generator. For CFS1 in Fig. 5(a), G1 and G7 have been tripped

off before the third attack, while G2 and G3 also get tripped

off after the attack. As for CFS2 in 5(b), G2, G3, and G7

keep connected to the power system but with fairly low power,

which could cause the potential damage to the blade of steam

turbine of generator and the uneconomical operation. Hence,

the resilience assessed with CFS1 is closer to the practical

operation of a power system, which considers the governor

droop coefficient and lower power limit of generators.

Fig. 6 shows the whole cascading failure process simulated

by CFS1 under the sequential attack for OC.10. The first attack

aims at line 35⃝ (connecting bus 21 and bus 22), which is one of

the two main power delivery paths of G2 and G3. The outage

of line 35⃝ led to the overload of line 38⃝ (connecting bus 23 and

24), which was tripped out later. Then all the power delivery

paths of G6 and G7 were out of service and the power was

far too much for the only load on bus 23 in this sub-grid.

As a result, the power system lost about 39.75% power, and

G7 was tripped off. Then the second attack did not result in

power loss. Before the third attack, line 15⃝ (connecting bus 7

and bus 8) was the only power delivery path for G2 and G3.

When it was attacked, the left loads in this area were too low

to keep anyone of the generators operating economically and

safely. It resulted in the tripping off of G2 and G3 and about

another 1.97% power loss. In the end, over 23 transmission

lines were out of service and the power system collapsed. The

simulation results indicate that the governor droop coefficient

and the lower power limit of generators play an important role

in cascading failure simulation.

C. DDQN Agent v.s. Q-Table Agent

In order to verify the capability of the DDQN based agent

to assess resilience of power systems under different operating
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Fig. 5. The power of generators under the sequential attacks for OC.10 in
39-bus system

conditions, comparison simulations are conducted with differ-

ent collapse thresholds for the Q-table based agent and the

DDQN based agent, respectively. The collapse thresholds are

set to Nc = 10, Nc = 14, Nc = 19 and Nc = 23, which are 20%,

30%, 40% and 50% of the total transmission lines in 39-bus

power system, respectively. All the simulations are conducted

with CFS1, so are the simulations in the next subsection.

The learning parameters of table-based Q-learning agent are

set the same as that in [41]. Since the discrete state of the Q-

table cannot represent different operating conditions with the

same transmission line status, the Q-learning agent is trained

and evaluated under each operating condition individually.

Then the numbers of attacks required for all operating con-

ditions in evaluation collection are summed to compare with

that of DDQN based agent.

As for the DDQN based agent, there are 5 fully connected

layers in the deep Q evaluation network. The number of

neurons in each layer is set as 28-256-256-256-46. The hyper-

parameters of the agent is set as follows: total training steps

NT = 30000, memory capacity M = 10000, training batch size

B = 256, learning rate lr = 0.001, model synchronization fre-

quency fs = 20, model evaluation frequency fe = 100, discount

factor γ = 0.9, greedy coefficient ε0 = 1.0, ∆ε = 0.0001 and

εf = 0.1. The DDQN based agent is trained under the training

OC collection Ct and evaluated the performance of resilience

assessment under evaluation OC collection Ce.

Fig. 7 shows the performance comparison of the Q-table

and the DDQN based agent for resilience assessment with

different collapse thresholds. It can be seen that the numbers

of attacks required by both agents for threshold Nc = 10 are

almost the same. However, when the threshold increases to

Nc = 23, the number of attacks required by Q-table agent is

almost twice that required by DDQN based agent. That is to

say, the number of attacks required to result in collapse under

all of Ce increases with the increase of the threshold for power

system collapse. What is more, the increase of attacks required

by the Q-table based agent is much more obvious than that

required by the DDQN based agent.

Meanwhile, it is noticed that the training process of the

DDQN agent is relatively more stable than that of the Q-table

agent. This is because the increase of threshold leads to the

longer MDP of resilience assessment for the power system. As

a result, the Q-table needs to explore a larger state-action space

for the training process and requires more cache to save and

update the Q values corresponding to the explored state-action

pairs, which greatly increases the difficulty of the training

process convergence and increases the time consumption. In

contrast, the DDQN based agent can exploit the transitions

more efficiently with the help of experience replay, which is

beneficial to the convergence of the training process. Besides,

the well trained agent can be used to assess the resilience of

power system under different operating conditions.

D. Improved PER v.s. URR

In order to verify the effectiveness of prioritized experi-

ence replay for the training of the DDQN agent, comparison

simulations are conducted for the DDQN based agent using

PER (marked as “PER-DDQN”) and DDQN based agent using

uniform random replay (URR). The hyper-parameters of PER

are set as: the upper limit of priority η = 15, the priority

coefficient α = 0.6, and the initial value of IS correction

coefficient β0 = 0.4, which are recommended in [46]. β
increases 2.5×10−3 every 100 times of experience replay and

the final value is β0 = 1. The rest hyper-parameters are the

same as that of the DDQN agent. The threshold of power

system collapse is Nc = 23. Simulations are repeated five times

for both PER-DDQN agent and DDQN agent.

Fig. 8 shows the number of attacks required by different

resilience assessment methods. The smallest number goes to

the traversal method, which is only 29 for ten OCs as sum-

marised in Table I. However, it takes from tens of thousands to

millions of trials for the traversal method to find the shortest

attack sequence under each OC. It is unacceptable for the

resilience assessment relatively larger scale power system with

a high collapse threshold. As for the DDQN based agents,

the smallest numbers of attacks required by both agents are

around 40. The average number of the PER-DDQN agent is

about 2 less than that of the DDQN agent at the end of the

training process. In addition, the purple dashed line in Fig. 8

represents the smallest number obtained by the DDQN agent,

which is obtained by the PER-DDQN agent early at about

12000 training episodes. That means the training of PER-

DDQN agent converges faster than DDQN agent. Besides, the

performance of the PER-DDQN agent is more stable than that

of the DDQN agent at the end of the training process.

Fig. 9 provides the resilience assessment performance com-

parison of different methods under Ce. As is shown, the
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Fig. 6. The collapse process of OC.10 under sequential attacks simulated by CFS1

Fig. 7. Performance of DDQN agent compared to Q-table method with
different collapse threshold (The numbers of attacks are smoothed by sliding
window, which takes the minimum of the three numbers around.)

traversal method can make the power system collapse after

twice attacks under one of Ce. It can make the power system

collapse under all Ce after three times attacks. Among the

rest reinforcement learning agents, the resilience assessment

performances of DDQN and PER-DDQN are pretty close.

PER-DDQN can result in the collapse after 5 times attack

under ten OCs, which is two OCs more than that of DDQN.

It means that the PER-DDQN agent is slightly better than the

Fig. 8. Performance comparison of different resilience assessment methods
with the collapse threshold Nc = 23 in 39-bus system

DDQN agent. As for the table-based Q-learning agent, there

is still only one OC under which the power system would

collapse after 6 times attacks.

E. Stochastic Prioritization Replay and the Priority Update

Fig. 10 shows the priority distribution of one batch of

transitions replayed by URR and PER. The priorities of the

transitions replayed by URR are obviously lower than that of

the transitions replayed by PER. In this way, the transitions

replayed by PER are relatively more valuable than those

replayed by URR for the update of the Q evaluation network.
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Fig. 9. Evaluation results with different power system resilience assessment
methods

The stochastic prioritization replay makes the training process

more aggressive, thus making the PER-DDQN converge faster.

Also, it can be seen that the priorities of the replayed memories

get lower overall after the update of the Q evaluation network.

The decline is not too much owing to the average episode

reward. In this way, the valuable transitions that come from the

episode with a short attacking sequence can keep competitive

during the stochastic prioritization replay.

Fig. 10. The priority distribution of the memories sampled by different
strategies

F. Importance-Sampling (IS) Weight Correction

Fig. 11 shows the losses calculated from the transitions with

and without IS weight correction during the training process.

The difference between the two kinds of losses gets larger and

larger. There are two main reasons: one is that the principle

of transition replacement makes the overall priorities of the

transitions in replay buffer higher and higher. It leads to the

increase of loss without IS weight correction and is beneficial

to the fast convergence. The other goes to that the IS weight

correction coefficient β becomes closer to 1 at the last part of

the training process, which means that the loss will be fully

compensated by IS weight. It shrinks the gradient and makes

the learning step smaller. As a result, the resilience assessment

performance of PER-DDQN is more stable than that of the

DDQN agent at the last part of the training process.

Fig. 11. The loss for the prioritized replayed batch of transitions

G. Transition Replacement in the Improved PER

Fig. 12 shows the priority distribution of the whole transi-

tions in replay buffer during the training process. The priority

distribution analyzed at the first time is overall lower than

that analyzed at the final time. Specifically, the number of

transitions with high priority (p ≥ 3.5) at the final time is

about twice that at the first time. It implies that the proposed

transition replacement principle tends to keep the transitions

with higher priority in the replay buffer with limited capacity.

Together with the prioritization replay, it makes the training

process of the PER-DDQN agent more efficient than that of

the DDQN agent with URR.

Fig. 12. The priority distribution of the transitions in replay buffer during the
training process (NHP represents the number of the transitions with priority
higher than 3.5)

H. Effectiveness verification in 118-bus system

The diagram of IEEE 118-bus system is available in [6],

which consists of 54 generators, 99 loads, and 186 branches

with 11 transformers. Among them, 85 non-transformer

branches at voltage level of 138 kV are selected as the critical
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lines which are available for the sequential attacks. In order

to generate different OCs, the 118-bus systems is divided into

three parts. Based on the typical OC, the load and generation

level is set from 0.7 to 1.05 with an interval of 0.05, which

are 8 choices in total for each part. Among the 512 generated

OCs, only 101 OCs meet the (N−1) security constraints for

the 85 critical lines. Then, 20 OCs are selected randomly as

Ce and the rest OCs are taken as Ct.

Fig. 13. Performance comparison of different resilience assessment methods
with the collapse threshold Nc = 19 in 118-bus system (The numbers of attacks
required by PER-DDQN and DDQN are smoothed by sliding window, which
takes the minimum of the five numbers around.)

The number of neurons in each layer of agent is set as

203-256-256-256-85. The total training step is NT = 10000,

and the model evaluation frequency is fe = 200. The rest

parameters design of the DDQN based agent in 118-bus

system is the same as that in 39-bus system. The threshold

of system collapse is Nc = 19. Simulations are repeated five

times for both PER-DDQN agent and DDQN agent. Fig. 13

shows the comparison results of the performance on Ce. The

well-trained PER-DDQN agent needs average 2.65 sequential

attacks to make the collapse occur among the 20 evaluation

OCs. The results indicate that the training of PER-DDQN

agent converges faster than DDQN agent.

I. Effectiveness verification in 300-bus system

The IEEE 300-bus system consists of 69 generators, 199

loads, and 411 branches with 107 transformers. Among them,

60 non-transformer branches at relatively lower voltage levels

of 115 kV and 230 kV are selected as the critical lines.

Similarly, the 300-bus systems is divided into three parts.

The load and generation level is set from 0.75 to 1.1 with

an interval of 0.05, which are 8 choices in total for each part.

Among the 512 generated OCs, only 309 OCs meet the (N−1)
security constraints for the 60 critical lines. Then, 80 OCs are

selected randomly as Ce and the rest OCs are taken as Ct.

The number of neurons in each layer of agent is set as

258-256-256-256-60. The parameters design of the DDQN

based agent in 300-bus system is the same as that in 118-

bus system. The threshold of system collapse is Nc = 21.

Simulations are repeated five times for both PER-DDQN agent

and DDQN agent. Fig. 14 shows the comparison results of the

performance on Ce. The well-trained PER-DDQN agent needs

average 3.32 sequential attacks to make the collapse occur

among the 80 evaluation OCs. The results also indicate that

the faster convergence process of the training for PER-DDQN

agent. Besides, it reflects that the performance of PER-DDQN

agent is more stable than that of the DDQN agent.

Fig. 14. Performance comparison of different resilience assessment methods
with the collapse threshold Nc = 21 in 300-bus system (The numbers of attacks
required by PER-DDQN and DDQN are smoothed by sliding window, which
takes the minimum of the five numbers around.)

V. CONCLUSION

This paper proposes a DDQN based resilience assessment

method for power systems under sequential attacks. A DC

power flow based cascading failure simulator is proposed to

simulate the topology and power flow changes, which can take

the governor droop coefficient and lower bound generation of

generators into consideration. Besides, an index based on the

number of attacks is proposed for the resilience assessment,

which reflects the capability of the power system to tolerate

attacks. Then a DDQN based agent is proposed to conduct

the resilience assessment under different operating conditions.

In addition, the improved PER technique is developed for the

training of the DDQN based agent, which scores the priority of

transition by the combination of TD-error and average episode

reward.

Simulation results in the 39-bus, 118-bus and 300-bus

power systems verify the superiority of the proposed resilience

assessment method. The resilience assessed with the proposed

CFS is more prudential than that without the sufficient con-

sideration of generator characteristics. The proposed DDQN

based agent can assess the resilience of power systems under

different operating conditions. Compared to uniform random

replay technique, the improved PER technique brings faster

convergence and more stable resilience assessment perfor-

mance in the last part of the training process.

Future work will focus on the development of the deep

reinforcement learning based defender to protect the power

network from collapse under malicious attacks.
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