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LiFi-based D2D Communication in Industrial IoT
Ahmet Burak Ozyurt, Graduate Student Member, IEEE and Wasiu O. Popoola, Senior Member, IEEE

Abstract—This paper analyses the performance of LiFi-based
device-to-device (D2D) communication in industrial internet-
of-things (IIoT). We present a comprehensive analysis of
mobility management of D2D communication in industrial
LiFi networks. Using the semiangle at half illuminance of
the AP and D2D transmitting IIoT, a coverage model for the
D2D communication range is derived. By adopting stochastic
geometry, closed-form expressions for mode selection rate and
residence time are derived as functions of the AP density,
IIoT density, and velocity. The results have shown that high
velocity and denser deployment cause a decrease in the average
D2D residence time and an increase in the average D2D
transition rate or vice versa. The proposed analytical models
are then verified with Monte Carlo simulation results. The
results provide system-level design insights.

Index Terms—Device-to-device communication, industrial
internet-of-things, LiFi, optical wireless communication, visible
light communication.

I. INTRODUCTION
At the end of 2025, it is estimated that short-range

internet-of-things (IoT) connections could reach close to 21
million connections by increasing 13 percent annually [1]. In
recent years, new use cases for conventional IoT networks
have been introduced such as sensing and recording data,
smart metering, logistic management, and monitoring for
industrial applications, which are known as the industrial
IoT (IIoT) networks [2].

IIoT networks are expected to cope with the continuous
increase in the amount of transmitted data and a suitable
solution can be device-to-device (D2D) communication. In
D2D communications, IoT devices transmit and receive data
directly among themselves without the need for relaying
through a base station (BS) or an access point (AP). Thus,
D2D offers improvements in resource usage, energy ef-
ficiency and latency [3]. However, the problem in D2D
communication is that the majority of the licensed spectrum
is occupied and crowded. Also, the interference among D2D
pairs creates a huge problem. In order to deal with the RF-
based D2D communication challenges and meet the data
transmission demands, LiFi networks (a light-based wireless
networks) have been proposed as a promising solution. Due
to the accurate indoor positioning, high throughput, high
reliability, and low latency requirements of the IIoT, LiFi
is a potential D2D communication technology for enabling
IIoT networks [4]. Mobility management in such as a light-
based IIoT network is investigated in this paper.
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Previous D2D studies in VLC/LiFi can be categorized into
two approaches:

• The first approach combines radio frequency (RF)
and visible light bands to maximize efficiency of the
system. The existing D2D studies mostly focus on
the hybrid RF-VLC networks. In this type of studies,
authors propose to use VLC for D2D communication
and RF for cellular communication, namely connec-
tion between IoTs and BSs. Hybrid networks usually
need a much longer processing time than conventional
networks due to the change of air interfaces [5]. In
addition, it is clear that the RF system provides lower
system capacity than the VLC network, and a very
large number of RF users will significantly reduce
efficiency. Due to these reasons, previous studies have
investigated mode selection, resource allocation, and
some optimizations in hybrid D2D schemes have
been investigated previously [6]–[13]. Zhang et al.
propose a hierarchical game framework for resource
allocation in heterogeneous network with VLC and
D2D individual [6], [7]. In the game, the data packet
size, the price of licensed spectrum and data rates
are determined with equilibrium solutions, and each
VLC transmitter (VLCT) determines the optimal data
transmission route. Najla et al. focus on a multi-
objective optimization problem which is the selection
between RF and VLC bands for D2D [8], [9]. In
these studies, they propose low-complexity heuristic
algorithm and deep neural network for solving the
problem. The studies reported in [10]–[12] suggest
dynamic dynamic dwell timer and graph theory-based
algorithms, tailored for D2D communication, in decid-
ing whether or not it is beneficial for a user equipment
to switch from VLC to RF or vice versa. Finally,
[13] proposes a reinforcement learning (RL)-based
approach to determine data transmission routes in an
indoor VLC-D2D heterogeneous network.

• The second approach relates to the use visible light
band for both direct and D2D communication. In
this approach, the direct communication is defined as
the link between IoTs and APs, not IoTs to IoTs.
Little has been reported on this model, which is
more beneficial than hybrid networks because of the
aforementioned reasons. Proposed and analyzed in
[14] are ways to understand how increasing distance
between IoT devices affects efficient D2D commu-
nication. In the same model, optical repeaters are
also suggested for enhancing the performance of D2D
communications. In [15], the paper proposes a game
theory–based solution for the mode selection mech-
anism between direct and D2D communication. This
work uses system capacity as the utility function to
optimize system performance and selects the optimal
communication mode. Chaleshtori et al. investigate
D2D communications using smart phones’ display
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Figure 1: Industrial LiFi network with the access point and IIoT devices.

pixels and their built-in cameras [16], [17]. The impact
of the receiver orientation on the channel characteris-
tics is also investigated, where two static users face
each other and the receiver is intentionally oriented
towards the transmitter. Finally, in [18], the challenges
and applications of LiFi in D2D communication are
given briefly and LiFi is compared with other D2D
communication options such as WiFi and Zigbee.

All the previous studies as detailed above focus on al-
gorithms for mode selection, resource allocation, and some
optimizations in hybrid networks. None of them consider the
crucial impact of device mobility properly. In [6]–[9], [13],
there is no explanation about user movements and assume
that device positions are fixed. At least, in [10], [11], it is
said that this is initial work in this field, they do not consider
the mobility of the users and they leave these aspects for
further research. On the other hand, in [12], it is assigned a
constant speed as v = 1 m/s. As a similar concept to the
previous one, in [16], [17], the fixed distance between D2D
devices is defined. However, it should be highlighted that,
especially for [12], [16], [17], current studies are simulation-
based results that cannot provide an analytical framework for
backing up the simulations.

To the authors’ best knowledge, the D2D communication
with mobile IIoT devices in LiFi networks has not been
studied in any previous work. This paper investigates the
role of mobile IIoT devices for D2D communication in ultra-
dense industrial LiFi networks using stochastic geometry.
This work is based on a realistic scenario as contained
in ‘Scenario 4: Manufacturing Cell’ in LiFi standards,
produced by the IEEE 802.11bb Task Group on Light
Communication [19]. The major contributions of this paper
are summarized as follows:

• We present an analytical modelling of LiFi-based D2D

communication range for IIoT devices based on the
half-angle of the AP and D2D transmitting IIoT.

• Closed-form expression are derived for the D2D mode
transition rate and D2D mode residence time in terms
of AP density, IIoT density, semi-angle at half illumi-
nance of the transmitters and device velocity.

• Extensive Monte-Carlo based simulations presented to
validate the analytical model.

• The impact of system parameters, such as user veloci-
ties on the communication performance is investigated
and inferences drawn. This is vital towards the design
of a practical industrial LiFi network.

The remainder of the work is organized as follows. The
next section introduces the network model, LiFi channel
model, and mobility model as parts of the system model.
In Section III and IV, the D2D communication range, D2D
mode transition rate and D2D mode residence time with
closed-form expressions are proposed. Simulation assess-
ment to verify of the analytical results are shared in Section
V. Section VI, finally, presents the concluding remarks and
future research directions.

II. SYSTEM MODEL
This section provides the D2D network model for mobile

IIoT devices which is used in the study. First, Poisson Point
Process (PPP) model with the Poisson-Voronoi tessellation
(PVT) is used to distribute the IIoT devices and APs. Then,
the details of the LiFi channel model used in the study are
given. Mobility model of the IIoT devices is also presented.

A. Network Model
In most previous studies about LiFi networks, cell shapes

are modeled as either hexagonal or square. However, a huge
number of ‘statistically random’ APs and IIoT devices, such



as sensors, robotic arms, drones, surveying and inspection
machines, and even automatic guided vehicles (AGV) are
parts of the ultra-dense industrial LiFi networks [20], [21].
Thus, using a perfectly defined deterministic/regular model
for the positioning of these IIoT devices and APs is imprac-
tical. Stochastic geometry is therefore considered to provide
a more accurate and tractable model for the distribution
of nodes in an industrial LiFi network. The principal idea
underlying the research on the stochastic geometry models,
also known as random spatial models, is that it is best to
assume that the locations of nodes and the other quantities
are random in nature due to the size and unpredictability
of users in wireless networks. Therefore, in most practical
scenarios, a thinning process needs to be applied to the
locations of of modeling LiFi APs. Such a thinning process
is stochastic because it depends on the user locations as
well as their mobility profile, both of which are random in
nature [22]. Most of the existing literature has used computer
simulations due to the analytical intractability of the non-
stochastic models. However, the analytical framework is
necessary as it helps understand the impact of different
network parameters on the network performance, which
is cumbersome otherwise. Thus, this work is based on
stochastic geometry due to mathematical tractability and
its predictive power for the performance of actual LiFi
networks [23]. A PPP consists of randomly located points
on a mathematical space with parameter λ (means intensity)
[24]. The number of points in any compact cluster B ⊂ Rd
is a Poisson random variable if and only if a point process
Φ = {x(i) : i = 1, 2, . . .} ⊂ Rd is a PPP . In the real
plane, the Rd is called d dimensional space. The number of
points in discrete sets are independent and have a Poisson
distribution:

P{t points in set B} = P{Φ(B) = t} =
Λt

t!
exp (−Λ),

(1)
where the Poisson random variable of density λ(x) is the
intensity measure of Λ =

∫
B
λ(x)dx. It can be said that

the PPP is uniform or homogeneous PPP (HPPP), if λ(x) is
constant (λ(x) = λ) [25]. Especially, the expected number of
points in a set B is an intensity measure which as described
below [26]:

Λ(B) , E[N(B)],∀B ∈ Rd. (2)

If |.| is the Lebesgue measure of set B, N(B) has a
Poisson distribution with mean λ|B| for every compact
cluster B. Then, the equation (1) turns into:

P{Φ(B) = t} =
(λ(B))t

t!
exp (−λ(B)). (3)

The IIoT devices and APs are deployed on the Voronoi
tessellation according to the PPP indicated with Φ and
density λ and the cluster B is regarded as a two-dimensional
Euclidean space [27]. The partition of the plane into n
convex polytopes is named as the Voronoi tessellation. The
APs in the system are deployed following an independent
PPP with density λp. In addition, the IIoT devices are
modeled into two categories: D2D transmitting IIoT and
D2D receiving IIoT. Also, they are deployed following and
independent PPP with densities λt and λr, respectively.
Through this approach, the industrial LiFi network model

is more convenient for the optimization processes includ-
ing studying mobility management. Also, it contributes to
designing more realistic scenarios. Figure 1 presents an
exemplar ultra-dense industrial LiFi network deployment
which includes various IIoT devices.

B. LiFi Channel Model
Industrial LiFi deployments constitute challenging envi-

ronments where moving IoT machines may produce high-
definition video and other heavy sensor data during survey-
ing and inspection operations. Mobility management pro-
cess for D2D communication in ultra-dense industrial LiFi
networks is connected with the Received Optical Intensity
(ROI). In other words, the initiation of the connection
process from an IIoT device to another IIoT device is based
on measured ROIs. The effect of multiple reflections from
the objects and human shadowing are neglected. This means
that only line-of-sight (LOS) is taken into account for the
LiFi channel model in this study. The insignificance effect
of the reflection paths on the ROIs is presented in [28].
According to this assumption, the ROI of the D2D receiving
IIoTs from the APs and the D2D transmitting IIoTs can be
expressed as [29]:

ROIi(di,u) = Pi
(mi + 1)Ar

2πd2
i,u

cosmi(ϕi)Tsg(ψi) cos(ψi),

(4)
where represent the direct link (i = k) and D2D link (i =
n), respectively. In addition, di,u shows the distance from
the D2D receiving IIoT to an transmitter point i, Ar is the
receiver effective area, Pi is the transmitted power, ψi is the
angle of incidence with respect to the axis normal to the
receiver surface, ϕi is the angle of irradiance with respect
to the axis normal to the transmitter surface, ψcon and g(ψi)
and are the field-of-view (FOV) and concentrator gain, Ts is
the filter transmission, respectively, and mi is the Lambertian
index described as [29]:

mi = − ln(2)

ln[cos(ϕ1/2)]
, (5)

where ϕ1/2 is the semi-angle at half illuminance of the
transmitter. Further, the gain of the optical concentrator at
the receiver is expressed by [29]:

g(ψ) =

{
η2/ sin2(ψcon), if 0 < ψ ≤ ψcon
0, if ψcon ≤ 0,

(6)

where η is the refractive index.

C. Mobility Model
The Random Way Point (RWP) mobility model is pre-

ferred in this work due to its practicality for modeling
movement patterns of the D2D communication in ultra-
dense industrial LiFi networks [30].

The mobile IIoT devices act in a limited area such as
A in the RWP mobility model. The next steps (referred to
as waypoint) are determined as uniformly distributed in A.
After that, the IIoT devices follow a straightway between
the initial point to the newly determined waypoint at the
chosen constant speed. It is possible that the IIoT can prefer
an optional random pause duration. Following all of this, the
mechanism repeats at each destination point. In this mobility



model, at each waypoint the mobile IIoT device chooses
three different parameters. First, a random direction which is
uniformly distributed on [0, 2π]. Then, a transition longness
that follows uniform distribution. Finally, a mobile IIoT de-
vice with a speed that is based on uniform distribution. After
selecting these three different parameters, the mobile IIoT
device moves to the next waypoint (determined by choice 1
and 2) at the determined speed. The mobile machines and
people together have very complex movement patterns in
terms of time and space; thus, they cannot be perfectly
modeled [31], [32]. The existence of physical objects in
the area impacts humans and mobile intelligent machines.
Modeling their movement is extremely complicated and
will depend on the given scenario and environment. This
work will not focus on improving such a movement model.
Instead, it is assumed that the movement of the IIoT devices
is random and pursues the RWP mobility model. The D2D
communication with mobile IIoT devices in ultra-dense LiFi
networks can be modeled in a tractable way and provides
a basis to evaluate mobility management with the RWP
mobility model. By preferring this model, analyzing the
impact of IIoT devices on LiFi networks and providing
deeper insight for designing reliable industrial networks is
possible. The framework presented in our work can however
be extended to other mobility models..

Infinite sequence of quadruples
{(Xk−1,Xk, Vk, Sk)}k∈K , where k denotes the k-th
movement period is used to explain the RWP mobility
model. Along the k-th movement, Xk−1 shows the
beginning waypoint, Xk shows the target waypoint, Vk
shows the velocity, and Sk shows the pause time at the
waypoint Xk. Given the beginning waypoint Xk−1, a
homogeneous PPP Φu(k) with density λu is independently
generated and then the nearest point in Φu(k) is selected
as the target waypoint. That is:

Xk = arg minx∈Φu(k)|x−Xk−1|. (7)

Thus, Lk = |Xk−1 − Xk| shows the transition length
of the kth movement. The cumulative distribution function
(CDF) of Lk can be expressed as [33]:

PLk
(Lk ≤ l) = 1− exp(−λuπl2), l > 0 (8)

Velocity Vk and pause time Sk are independent, identically
distributed (i.i.d.) with distributions PV (.) and PS(.), re-
spectively. In addition, the transition lengths are Rayleigh
distributed [34].

III. ANALYTICAL MODEL IN MOVING IIOT
DEVICES SCENARIO

Generally, an industrial network consists of multiple cells
that are neighbor to each other. The cell coverage area is
delimited by the neighbor cells. That is, ROI in LiFi is
the principal criteria for shaping the cell borders [30]. In
this work, the transmitters and receivers positions are based
on the ‘Scenario 4: Manufacturing Cell’ in LiFi standards,
produced by the IEEE 802.11bb Task Group on Light com-
munications [19]. This standard considers multiple robots as
IIoT devices in a factory environment. Faces of IIoT devices
look upward. Besides, it is assumed that IIoT devices in
industrial LiFi networks move in a two-dimensional space.

When the D2D communication mobility pattern is consid-
ered, IIoT devices are initially distributed under the coverage

AP (0,0,0)

D2D transmitting IIoT    
(d1 ,d2 ,d3 )           

C (x,y)

ψk 

φp

φk

ψn 

φn

D2D receiving IIoT

Figure 2: The LiFi network with the access point , the D2D
transmitting IIoT and the D2D receiving IIoT.

of APs such as in Figure 2. It is assumed that the APs
serve as an umbrella tier and IIoT devices are deployed
under this umbrella. That is, each IIoT devices are under the
coverage of an AP. In this work, IIoT devices initiate the
mode selection process when they move inside or outside
of the coverage of the D2D communication. Without loss
of generality, the position xt(d1, d2, d3) is the location of
an IIoT device and a typical AP is located at the origin.
Using the ROI metric, the coverage boundary of the D2D
transmitting IIoT can be determined as,

C = {(x, y) ∈ R2 | ROIk(dk,u) = ROIn(dn,u)}. (9)

Thus, the coverage boundary of the D2D communication
range forms a cluster of equal ROI points in (9). Using these
points, the mobility management parameters can be derived
for an industrial LiFi network. For a D2D receiving IIoT
located at (x, y) ∈ R2 and the height from the ground is h,
the distance from the D2D receiving IIoT to the AP, and the
D2D transmitting IIoT are given, respectively, by [35],

dk,u =
√
x2 + y2 + h2, (10)

dn,u =
√

(x− d1)2 + (y − d2)2 + (h− d3)2. (11)

In addition, cos(ϕk) = cos(ψk) = h√
x2+y2+h2

and

cos(ϕn) = cos(ψn) = h−d3√
(x−d1)2+(y−d2)2+(h−d3)2

because

IIoT device faces are directed upward. By substituting (10)
and (11) into (9), we obtain,

W.(x2 +y2 +h2)m̂− [(x−d1)2 +(y−d2)2 +(h−d3)2] = 0
(12)

where, W =

(
Pn(mn+1)(h−d3)mn+1

Pk(mk+1)hmk+1

) 2
mn+3

, m̂ = mk+3
mn+3 . At

this point, it is assumed that the Lambertian indices of the
transmitters in the system are identical. Thus, both the AP
and the D2D transmitting IIoT share an equal Lambertian
index (mk = mn), m̂ equals 1. Thus, expression (12) defines
the geometry of a circle. The corresponding center, xc =
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Figure 3: (a) Changing of D2D communication range; (b) Relative movement analytical framework.

(xc, yc) as well as the radius, Rc is calculated as:

xc =

(
d1

1−W
,

d2

1−W

)
(13)

Rc =

√
W (d1

2 + d2
2)

(1−W )2
+
Wh2 − (h− d3)2

(1−W )
. (14)

Based on stochastic geometry and the proposed coverage
boundary of the D2D communication, it is possible to
propose an analytical model for mode selection in moving
D2D scenarios. Thus, the scenario can be simplified to only
one D2D receiving IIoT device together with distributed
multiple D2D transmitting IIoT devices using the character
of PPP. From equation (14), it is understood that the position
of the D2D transmitting IIoT device is relevant to the
D2D communication range. On the other side, the relative
distance of the IIoTs to one another determines the mode
of the D2D receiving IIoT. For clear presentation, subscript
‘c’ is used to indicate the transition length of the D2D
communication range center and superscript ‘′’ to denote
the relative movement transition length.

As shown in Figure 3a, the D2D transmitting IIoT is
located at the waypoint Xn−1 and moves to waypoint Xn

at the next step when the AP is located at the origin.
Based on the parallel relationship between line Xn−1Xn

and line Cn−1Cn, the transition length of the center of
the coverage boundary can be obtained as Lc = L ×√(

d1
1−W

)2
+
(

d2
1−W

)2
+h2

d12+d22+d32 .
If the D2D receiving IIoT is taken as a reference point,

then the D2D transmitting IIoT could be treated as moving
towards the reference point, i.e, the receiving IIoT. Thus, the
relative movement scenario could simplify the complex mul-
tiple object movements scenario to single object movement,
which simplifies the analysis while still keeping the realistic
features. As shown in Figure 3b, the coverage boundary of
the D2D transmitter IIoT can be represented before and
after the relative movement. If we assume that the D2D
receiving IIoT has a fixed location, three different scenarios
are possible according to the relative movement of the D2D
transmitter IIoT:

1) When the D2D receiving IIoT is located in area1 (the
blue area), the D2D receiving IIoT will perform mode
transition from D2D mode to direct mode because the
D2D transmitting IIoT moves from area1 to area2 (the
red area).

2) When the D2D receiving IIoT is located in area2, the
D2D receiving IIoT will change its communication
mode from direct mode to D2D mode because the
D2D transmitting IIoT moves from area1 to area2.

3) When the D2D receiving IIoT is located in area3 (the
green area), the D2D receiving IIoT will maintain its
communication mode.

IV. D2D MOBILITY ANALYSES FOR RESILIENT
INDUSTRIAL LIFI NETWORK

A. Mode Transition Rate
With the next-generation industrial LiFi systems being

a part of wireless communication, network densification
through D2D communication will be an inescapable phe-
nomenon. This densification brings with it smaller and
denser cell deployment which causes higher transition rate.
The network signaling overhead is directly related to mode
transition rate. The movement trace of the IIoT devices can
be divided into infinite parts according to the RWP mobility
model. Thus, the D2D mode transition rate, H , is expressed
as the expected number of D2D mode transition, E[N ],
along one movement period divided by the expected period
of time, E[T ]. That is [36], [37]:

H =
E[N ]

E[T ]
. (15)

Considering n-th movement, the expected number of D2D
mode transition is given by:

E[N ] = λt|A|Et[N ] (16)

where λt, |A| and Et[N ] are the D2D transmitter IIoT
density, entire probability space and the expected D2D mode
transition number for the typical transmitting IIoT, respec-
tively. Based on the proposed model in the Figure 3b, the
probability of performing D2D mode transition during the



k-th movement period is denoted as the probability of the re-
ceiving IIoT located at area1 and area2, that is Sarea1

+Sarea2

|A|
for a typical D2D transmitting IIoT. The expected D2D mode
transition number for the D2D transmitting IIoT is derived:

Et[N ] =

∫ ∫
Sarea1 + Sarea2

|A|
fL′c(l)fRc(r)dldr (17)

where fL′c(l) is the probability density function (PDF) of
the circle center relative movement transition length L′c and
fRc

(r) is the PDF of the D2D coverage radius.
According to Figure 3, S = Sarea1 + Sarea2 can be

obtained. Note that the D2D communication range before
and after the movement is almost unchanged because the
value of W and the expression in (14) are much smaller
than 1. It means that the circle radius is almost unchanged.
Therefore, two circles with the same radius (Rc = R′c) fit
quite well for the analytical framework. The expression of
S is given by:

S =

{
2πR2

c − 4R2
carccos L′c

2Rc
+ 2L′c

√
R2
c −

L′2c
4 , L′c < 2Rc

2πR2
c , L′c ≥ 2Rc

(18)

If we regard S as a function of L′c
2Rc

, we can approximate it
by using the Taylor series expansion and get the expected
D2D mode transition number for a typical transmitting IIoT
as:

Et[N ] =

∫ ∫
4lr

|A|
fL′c(l)fRc(r)dldr

=
4

|A|
E[L′c]E[Rc] (19)

As a result, the D2D mode transition rate can be expressed
as closed-form as:

H = 4λtvE[Rc]

√(
d1

1−W
)2

+
(

d2
1−W

)2
+ h2

d1
2 + d2

2 + d3
2

= 4λtv

√
WE[Xp2t]2

(1−W )2
+
Wh2 − (h− d3)2

(1−W )

×

√(
d1

1−W
)2

+
(

d2
1−W

)2
+ h2

d1
2 + d2

2 + d3
2

= 4λtv

√
W

4λp(1−W )2
+
Wh2 − (h− d3)2

(1−W )

×

√(
d1

1−W
)2

+
(

d2
1−W

)2
+ h2

d1
2 + d2

2 + d3
2 (20)

where the expected value of distance between the AP and the
D2D transmitting IIoT is given as E[Xp2t] = 1

2
√
λp

based

on stochastic geometry [38], [39].

B. D2D Residence Time
The expected IIoT dwell time interval in a D2D com-

munication range can be described as residence time [40].
With determined mode changes areas, it is easy to obtain
the expected D2D mode residence time. The probability
of receiving IIoT which operates in D2D communication
mode is relevant with the proportion of the coverage areas,

πR2
c

|A| . Also, the probability that the receiving IIoT changes
its communication mode from D2D mode to direct mode
after the relative movement is Sarea1

|A| . Thus, the probability
of Lt < l can be obtained as:

P (Lt ≤ l) =
Sarea1

πR2
c

= 1− 2

π
arccos

l

2Rc
+

l

πR2
c

√
R2
c −

l2

4
(21)

In addition, the PDF of the trajectory length Lt is derived
as:

fLt
=

1

πRc

(
4πR3

c − l2

4πR3
c

√
1− (l/2Rc)2

+
√

1− (l/2Rc)2

)
.

(22)
As a last step, the expected trajectory length inside a D2D

communication range and D2D mode residence time is given
respectively by:

E[L] =

∫ ∫ 2r

0

lfLt(l)fRc(r)dldr

=
π

2

√
W

4λp(1−W )2
+
Wh2 − (h− d3)2

(1−W )
(23)

T =
E[L]

E[V ]
=

π

2v

√
W

4λp(1−W )2
+
Wh2 − (h− d3)2

(1−W )
.

(24)

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we discuss the performance metrics of
the D2D communication for industrial LiFi networks with
mobile IIoT devices. The closed-form analytical expressions
are compared with the Monte Carlo simulation results in
MATLAB. Monte Carlo simulation is a technique used
to study how a model responds to randomly generated
inputs. Unless otherwise stated, the simulation environment
considered has dimensions: 30× 30× 5 m3, the semiangle
at half illuminance of the transmitters are selected as equal
to 60◦, and λt / λp = 3. Moreover, the relationship among
transmit powers are set as Pk = 25Pn for this illustration
environment. The height of the D2D receiving IIoTs and the
D2D transmitting IIoTs from the ground is taken as 2 m and
3 m, respectively.

In Figs 4 and 5, the analytical results of the D2D
communication performance metrics are shown to fit well
with the simulation results. The movement of IIoT devices is
also modelled according to the RWP mobility model whose
details are given in Section II. The D2D receiving IIoTs
and the D2D transmitting IIoTs are deployed using two
independent homogenous PPPs, Φr, Φt, with densities λr
and λt, respectively. Additionally, three different velocity
values, v = {0.2, 0.5, 1.4} m/s, are assigned to the IIoT
devices to account for different devices such as robotic arms,
drones, automated guided vehicles among others. In line
with related work in literature [38], [41], the default velocity
is assumed to be v = 1.4 m/s. This represents the velocity
of a human.

Figure 4 shows the relationship between D2D mode
transition rate and different access point density λp. The
figure shows that as the AP density increases so does the
D2D transition rate. This is because the AP deployment gets
denser as λp increases, which means that transition between
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Figure 4: Average D2D mode transition rate by analyses and
simulation.
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simulation.

the AP and the D2D transmitting IIoT is initiated more.
On the other hand, the decreasing density of transmitting
IIoT is a reason for the decrease in D2D transition rate.
Additionally, high velocity and denser deployment cause a
decrease in the average D2D residence time in Figure 5. As
expected, shorter residence time in a D2D communication
range is directly related to higher IIoT velocity. The coverage
area of the D2D transmitting IIoT communication also
declines with high AP density.

Next, we studied the effect of different room sizes on
communication performance. As can see from (20) and (24),
the height from the ground of APs, h, and D2D transmitting
IIoT devices, d3, impacts the system performance. In Figure
6, three scenarios of different AP and D2D transmitting IIoT
device heights are compared in terms of the average D2D
mode transition rate. As the height of transmitters from the
ground increases, it is expected that the coverage area on the
ground of the transmitters also increases. Thus, an increase
in height is a reason for less D2D transition rate. In this
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Figure 6: Average D2D mode transition rate for different
heights from the ground.

case, D2D receiving IIoTs spend more time connected to the
transmitter rather than transitioning or vice versa. Because of
this reason, scenario (h=3 m; d3=2 m) which are the lowest
values of the heights has the highest average D2D mode
transition rate. Besides, thanks to extensive Monte Carlo
simulations, it is generated a massive number of random
user x-y trajectories in which the total distance of users is far
beyond any network size. At this point, different lengths and
widths of the room have an insignificant effect on system
performance due to the total user trajectories exceedingly
huge than room size.

In regard to competitiveness with other research results,
a few studies give the opportunity to evaluate the results.
In [35] and [41], the multi-tier LiFi concept is introduced
and their key findings which is an increase in density of
the access point is a reason for the high handover/transition
rate is coherent with our result. Also, another key result of
this paper, which is the D2D residence time is inversely
proportional to the device velocity, shows a similar relation
to the result of [37].

The Monte Carlo simulation results match quite well with
the analytical expression results. The simulation results not
only verify the analytical results in Section IV, but also
provide better system level design insight for the D2D
communication in ultra-dense industrial LiFi networks. For
example, the velocity of the IIoT can be estimated by using
the analytical expression of the D2D transition rate when the
value of the D2D transmitting IIoT density in a designed
space is known. In addition, these analytical expressions
are beneficial for increasing the positioning accuracy such
as using the residence time when the results are not suf-
ficient or the position error is very huge. In the event of
a fixed deployment with known AP density, different types
of strategies can be applied to indoor IIoT depending on
the device velocities. For instance, the results have shown
that increasing device velocity results in decreasing D2D
residence time. Thus, highly mobile IIoT devices can be
assigned to the APs rather that D2D transmitting IIoTs. This
say, the high transition rate is reduced by avoiding D2D
communication. Furthermore, it should be emphasized that



this strategy envisages an in indoor industrial applications
where the environment is controlled and carefully designed.

VI. CONCLUSION
In this work, the key performance metrics for the D2D

communication in ultra-dense industrial LiFi networks are
analyzed for mode transition from the AP to the D2D
transmitting IIoT. Based on semiangle at half illuminance,
the analytical model for the coverage areas of the D2D
communication is presented. In addition, the D2D mode
transition rate and the D2D residence time are obtained as
closed-form expressions which are functions of the system
parameters. From the closed-form expressions, it is clear that
AP density, IIoT density, and velocity are crucial parameters
of the D2D mobility management in ultra-dense industrial
LiFi networks. In addition, simulation results that validate
the analytical expressions are presented. The results are
valuable in practical industrial LiFi design, deployment and
mode selection.
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