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Data-driven Detection of Stealth Cyber-attacks in
DC Microgrids

Abdulrahman Takiddin, Graduate Student Member, IEEE, Suman Rath, Muhammad Ismail, Senior Member, IEEE
and Subham Sahoo, Member, IEEE

Abstract—Cyber-physical systems like microgrids contain nu-
merous attack surfaces in communication links, sensors, and
actuators forms. Manipulating the communication links and
sensors is done to inject anomalous data that can be trans-
mitted through the cyber-layer along with the original data
stream. The presence of malicious, anomalous data packets in
the cyber-layer of a DC microgrid can create hindrances in
fulfilling the control objectives, leading to voltage instability and
affecting load dispatch patterns. Hence, detecting anomalous
data is essential for the restoration of system stability. This
paper answers two important research questions: Which data-
driven detection scheme offers the best detection performance
against stealth cyber-attacks in DC microgrids? What is the
detection performance improvement when fusing two features
(i.e., current and voltage data) for training compared with using
a single feature (i.e., current)? Our investigations revealed that (i)
adopting an unsupervised deep recurrent autoencoder anomaly
detection scheme in DC microgrids offers superior detection
performance compared with other benchmarks. The autoencoder
is trained on benign data generated from a multi-source DC
microgrid model. (ii) Fusing current and voltage data for training
offers a 14.7% improvement. The efficacy of the results is verified
using experimental data collected from a DC microgrid testbed
when subjected to stealth cyber-attacks.

Index Terms—DC microgrids, anomaly detection, LSTM-
autoencoder, cybersecurity.

NOMENCLATURE

V̄ Vector notation of average voltage estimate
Ipu Vector notation of per-unit output current of all

the agents
L Laplacian matrix
W Row-stochastic matrix representing the distri-

bution of attack elements in the microgrid
c Steady-state reference value
H1(s), H2(s) Secondary layer PI controllers
I(.) Current readings
IV(.) Current and voltage readings
K Number of agents
Mk Set of neighbours of the kth agent
Vref , Iref Global reference voltage and current quantities

for each agent
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H Encoder
R Decoder
x Training row
XTR Training Set

I. INTRODUCTION

DC microgrids facilitate hassle-free integration of renewable
energy sources [1], helping to achieve lower levels of Carbon-
emission through decreased dependence on fossil fuels (e.g.,
coal) for power generation [2], [3]. The ability to function
autonomously provides immunity to such systems against
potential impacts of external faults [4]. The main control
challenges faced by DC microgrids during autonomous op-
eration are regulation of voltage and load current sharing
among the distributed generators (DGs). These objectives are
achieved through the use of secondary controllers coupled
with communication networks to aid real-time data exchange.
Such networks may have a centralized or distributed topology.
However, distributed secondary control is more reliable as it
is not affected due to single-point-failures [5].

The use of information and communication technology
(ICT) to achieve control objectives exposes the microgrid
to manipulative cyber-attacks [6]. These attacks can target
the communication infrastructure [7], sensor measurements
[8], and/or controllers [9]. Malicious manipulation of any
of these attack surfaces may generate anomalous data. In
this context, the term anomalous data refers to the abnormal
elements present in a stream of data that do not exhibit the
expected behavioral patterns. Though faults can also be the
source of such anomalies [10], [11], fault-based anomalies are
less sophisticated, unlike attack-based anomalies that can be
specially modeled and injected through stealth attacks to inflict
the desired level of damage. Such abnormal elements may
propagate through the network to achieve specific objectives
like voltage instability or disruptions in optimal load sharing
arrangements among DGs. The following paragraphs depict
some of the detection techniques proposed recently.

A. Related Works

[10] used parametric time-frequency logic to detect cyber-
attack and fault-based anomalies in DC microgrids. The
proposed detector extracts time-frequency information from
training datasets (consisting of anomalous data) and uses the
same to identify abnormal elements (present along with the
normal inputs) during the testing phase. In [12], an attack
detector was presented that can compare groups of elements on
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the basis of whether they satisfy certain invariants. Detection
of discrepancies implies the presence of false data. A signal
temporal logic-based anomaly detection strategy has been
presented in [13]. State estimation-based anomaly detection
techniques have been proposed in [14]–[16]. However, well-
crafted stealthy cyber-attacks can easily fool state observers
[17]–[19]. Also, state estimation methods also require prior
knowledge about the physical structure of the system. Physics-
informed anomaly detection techniques have been proposed
in [20], [21], which are particularly focused on distinguishing
between large signal disturbances, such as grid/sensor faults
and cyber-attacks.

Detection strategies that employ data-driven machine
learning-based tools generally do not require information
about the physical architecture of the system. Machine
learning-based techniques perform anomaly detection by com-
paring live/captured data from the cyber-physical system with
predicted values generated on the basis of reference datasets
available for their training. Such techniques can be broadly
categorized into four types: supervised learning, unsupervised
learning, reinforcement learning [22], and semi-supervised
learning-based approaches [23]. The main difference between
the four categories lies in the type of reference datasets used
during their training phase. Unlike the other three, supervised
learning models can only be trained using labeled datasets that
may or may not be accessible to researchers. [24] suggested
the use of multi-class support vector machines (SVMs) for
anomaly detection in microgrids. SVMs are examples of
supervised learning models. In [25], a deep learning-based
anomaly detection technique has been proposed to identify
sensor-level cyber-attacks in DC microgrids. The authors in
[26] have used an improved feedforward neural network-based
approach to detect anomalies (generated as a consequence of
sensor-level data integrity attacks) in microgrids. However,
the authors have only considered anomaly detection in the
advanced metering infrastructure and ignored other potential
vulnerabilities (e.g., DG-level sensors).

Unfortunately, the aforementioned works require the avail-
ability of labeled data to train the detector. The availability
of such data is not always true, especially for the zero-day
cyber-attack data (attacks that have not been detected before).
Also, capturing important features from the data is necessary
to achieve high detection performance.

B. Contributions

In order to fill the gap in the literature, this paper answers
two important research questions:

• Which data-driven detection scheme offers the best per-
formance against stealth cyber-attacks in DC microgrids?

• Is adopting a single feature (i.e., current) sufficient for
training the detector, or will fusing two features (i.e.,
current and voltage data) improve the results, and what
would the detection improvement level be?

It turns out that the characteristics of an ideal detector for
this application is to present (i) an unsupervised anomaly
detection that needs to be trained using only benign data while
being able to detect malicious data during the testing phase.

Such an ability is possible via learning high quality features
from the input (normal) data during the training phase. This
enables the detector to effectively find and mark malicious
data elements that do not exhibit the identified features. The
detector should have (ii) a deep structure to perceive the
complex patterns within the data. (iii) a recurrent mechanism
to capture the time-series temporal correlations. (iii) feature
fusion that incorporates current and voltage data to further
improve the detection, as this enables the detector to capture
distinct representations from both features. To achieve this, we
carry out the following contributions.

• We utilize a long short-term memory stacked autoen-
coder (LSTM-SAE) as a deep recurrent unsupervised
anomaly detector to identify abnormal data elements in
autonomous DC microgrids. This detector is trained using
datasets obtained during normal operation of a K-DG DC
microgrid model with distributed network topology.

• We compare the performance of the proposed LSTM-
SAE to benchmark detectors including unsupervised
auto-regressive integrated moving average (ARIMA)
model, one-class support vector machine (SVM), and
feedforward stacked autoencoder (F-SAE) that are trained
on the benign behavior. We also examine the use of super-
vised two-class SVM, feedforward, convolutional neural
network (CNN), and LSTM classifiers trained and tested
on both classes. Sequential gird-search hyperparameter
optimization is carried out to enhance the results.

• We conduct multiple experiments. In the first one, using
current datasets, the stacked and recurrent structure of
the LSTM-SAE model provides an improvement of up to
18.3% in detection rate (DR), 12.7% in false alarm (FA),
and 31% in highest difference (HD) compared to the
benchmark detectors. The second experiment fuses cur-
rent and voltage datasets such that the decision whether
the sample is benign or malicious is based on two data
sources. Doing so provided a further improvement of up
to 4.7% in DR, 11.5% in FA, and 14.7% in HD. The
accuracy of the results is verified further using a dataset
obtained from an experimental DC microgrid testbed.
The results are consistent when validated, the detection
performance varies by around ±0.4% in most cases.

The rest of the paper is structured as follows. Section II
describes cyber-physical preliminaries of microgrids. Section
III discusses the used datasets. Section IV presents the details
about the cyber-attacks detectors. Section V discusses the
experimental results. Section VI concludes the paper.

II. CYBER-PHYSICAL PRELIMINARIES OF MICROGRIDS

This paper considers an autonomously operating DC micro-
grid system with K sources. The architecture of the microgrid
is shown in Fig. 1. Each of the sources (interfaced using
DC/DC buck converters for regulated power conversion) are
connected to one another via tie-lines. These elements collec-
tively represent the microgrid physical layer. Operation of the
power electronic converters occurs in voltage controlled mode.
Proper voltage regulation and current sharing are achieved
using a cooperative secondary control framework where a local
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Fig. 1. Control structure of a networked DC microgrid with many agents
operating with a distributed cyber graph under the presence of cyber-attacks.

controller is associated with each of the DGs [27]. All the local
controllers are connected through a distributed communication
network, which requires each controller to share information
only with its neighboring controller(s).

The cyber layer can be considered as a graph (consisting
of multiple nodes and edges), where each node represents an
agent and each edge represents a communication link that
connects two agents. Elements of the network compose an
adjacency matrix, A = [akj ] ∈ RN×N , where the communi-
cation weights may be expressed as akj > 0, if (ψk, ψj) ∈ E
(E denotes an edge which connects ψk i.e., the local node
and ψj i.e., the neighboring node). Else, akj = 0. The
matrix for inbound cyber information can be represented as
Zin = diag{

∑
k∈K akj}. The Laplacian matrix L is said to

be balanced, if A and Zin are equal (since, L = Zin − A).
Each of the controller units can be represented as an

agent in the cyber layer, sending and receiving a group of
measurements:

x = {V̄, Ipu} (1)

with their respective neighboring agents to attain average volt-
age regulation and proportionate current sharing. Considering
preliminaries of the communication graph, control input of the
local secondary controller (associated with each DG) can be
stated as:

uk(t) =
∑
j∈Mk

akj(xj(t)− xk(t))︸ ︷︷ ︸
ek(t)

(2)

where, uk = {uVk , uIk}, ek = {eVk , eIk} (according to the
elements present in x). Additionally, Mk is the set of neighbors
of agent k. To clarify the error formulation in (11), we can
simplify it using:

eVk (t) = akj(V̄j(t)− V̄k(t)) (3)
eIk(t) = akj(I

pu
j (t)− Ipuk (t)) (4)

A similar extrapolation can be done to represent uk.

TABLE I
STEALTH ATTACKS IN DC MICROGRIDS IN [29] AND [31]

Affected Counterparts Modeling

Voltage [29] WxV
attack = 0

Current [31] WxI
attack = 0

Remark I: According to the cooperative synchronization
law [28], consensus will be achieved by all agents (who
participate in distributed control) using ẋ(t) = −Lx(t) to
finally converge to lim

t→∞
xk(t) = c, ∀ k ∈ K.

Using (2), the local control inputs necessary to achieve the
control targets (average voltage regulation and proportionate
sharing of load current) can be acquired from the secondary
controller by using the voltage correction terms as mentioned
below (for kth agent) [29]:

Average Voltage Regulation:
∆V1k = H1(s)(Vref − V̄k) (5)

Proportionate Current Sharing:
∆V2k = H2(s)(Iref − uIk) (6)

where, V̄k = Vk +
∫ τ

0

∑
j∈Mk

uVk dτ . For proportionate current
sharing, Iref = 0. Correction terms acquired in (5) and (6) can
be added to the global reference voltage for achievement of
local voltage references (for the kth agent) using:

V k
ref = Vref +∆V1k +∆V2k . (7)

The target objectives mentioned in (3) and (4) are achieved by
using (7) as the local reference voltage (for the kth agent).

As per the distributed consensus algorithm for a heavily
connected digraph (in the DC microgrid) [30], the system
objectives [using (1)-(7)] shall converge to:

lim
t→∞

V̄k(t) = Vref , lim
t→∞

uIk(t) = 0 ∀ k ∈ K. (8)

As shown by the red symbols in Fig. 1, malicious attackers
may try to corrupt the cyber-layer in several ways (e.g.,
false data injection, denial-of-service, etc.) to disturb the
achievement of the objectives mentioned in (8). In case of a
stealth attack, the attack vector penetrates deep in the control
layer by deceitfully hiding from the system operator. The
ability to access multiple nodes allows such vectors to create
disturbances that can be continued over an elongated stretch of
time and enables them to forcefully cause generation outages.
This may ultimately result in system shutdown. Hence, identi-
fying the compromised node(s) is essential to prevent malware
propagation (reducing chances of further destabilization).

Such attacks can perform coordinated manipulation to fool
the system observer via the following additions in (1):

ua(t) = Lx(t) + Wxattack (9)

where ua, x, and xattack denote the vector representa-
tion of the attacked control input uak = {uV a

k , uIak }, the
states xk = {V̄k, Ipuk }, and the attack elements xattackk

=
[xVattackk

, xIattackk
]T , respectively. It should be noted that

xattack could be a step, sawtooth, sinusoidal, or an unbounded
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Fig. 2. Local voltage and current for each DG. Attack is initiated at t=2s.

signal. Further, W = [wkj] depicts a row-stochastic matrix with
its elements expressed by:

wkj =


− 1

Mk+1 , j ∈Mk

1 +
∑

jϵMk
wkj , j = k

0, j ̸∈Mk, j ̸= k

(10)

The diagonal entries denote the placement of attack elements
in locally measured x. Moreover, the non-zero entries in off-
diagonal elements in W represent the communicated measure-
ments. Using (9), we formalize that an undetectable attack can
be maintained if and only if the sum of the change in state
produced by the attack and the zero input evolution of the
state induced by the attack belong to the system’s weakly
unobservable subspace. Although Wxattack will always be
equal to zero from a system level perspective, the change
identified across an agent is suppressed by the opposite shift
in the remaining agents, without contributing any significant
dynamics into the system.

III. DATA PREPARATION

An autonomous DC microgrid model (as shown in Fig.
1) with distributed secondary control architecture is designed
in the MATLAB/Simulink environment. The system consists
of K = 4 DGs connected to each other via tie lines. The
simulated parameters are found in the Appendix. The datasets
are generated using this virtual test system. DG-level current
and voltage measurements are observed and recorded. Benign
values represent system parameters during normal operation.
Malicious values are obtained by modifying certain mea-
surements to model a cyber-attack (as per the stealth attack
modeling strategy mentioned in [32]). The current and voltage
measurement blocks are used to sense the local current and
voltage for each DG. This data is then saved for each DG,

where they are cooperating to achieve a common objective in
(8). The experiments are verified further using experimental
data from a DC microgrid testbed described in Section V.D.2.

A. Benign Data
To obtain the benign dataset, the simulation model is run

without injecting any bias in voltage and current measure-
ments. Thus, the system is allowed to operate normally without
any manipulations. As shown in Fig. 2, the current and voltage
data plotted before t = 2 sec are benign as it does not contain
any bias/attack elements.

B. Malicious Data
To obtain the malicious data, the attack vector (shown in

Table I) is injected into current and voltage measurements
using (6). Fig. 2 shows local voltage and current for each DG
when subjected to voltage and current attacks after t = 2 sec.
Despite the presence of these attacks, the objectives mentioned
in (5) are achieved, which makes them stealthy in nature. As
a result, it is difficult to identify the compromised elements
accurately in microgrids, which mandates automated efforts.

For each class, there is an equal number of current and
voltage samples of 5.6 million readings each. For the anomaly
detectors, we split the benign readings into a disjoint train XTR

and test sets using a 2 : 1 ratio, whereas we concatenate the
malicious readings with the benign test set to build the final
test set XTST. For the supervised detectors, we concatenate
both readings from both classes and split them into disjoint
train XTR and test XTST sets using the ratio of 2 : 1.

IV. ANOMALY DETECTION

This section first discusses common machine learning-based
solutions adopted to detect anomalies along with their limita-
tions. Then, it investigates the adoption of an autoencoder-
based detection and how it can overcome the limitations.

A. Benchmark Detectors
This subsection discusses several machine learning-based

cyber-attacks detectors. For a comprehensive comparative
analysis, we examined detectors with various characteristics
including shallow/deep structure, static/recurrent mechanism,
and supervised/unsupervised detection mechanism to deter-
mine which sets of characteristics lead to the best detection
performance. Specifically, we investigated the use of ARIMA,
one-class SVM, and F-SAE as anomaly detectors. Then, we
examine the use of a two-class SVM, feedforward neural
network, CNN, and LSTM classifiers as supervised detectors.

1) Anomaly Detectors: ARIMA is considered as a shallow
dynamic anomaly detector trained in order to predict future
patterns using minimum prediction mean square error (MSE).
Then, during testing, it detects abnormal patterns whenever
the MSE exceeds a certain threshold [33]. The one-class SVM
is also a shallow static anomaly detector that is trained only
on benign data, which is then tested on both benign and
malicious samples. The F-SAE is a static deep detector that
learns the behavioral patterns of benign samples throughout
the reconstruction process and detects malicious samples based
on their deviation from the benign ones [34].
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2) Supervised Detectors: The two-class SVM is a classifier
that is trained on both, benign and malicious samples, which
is then tested on both types of samples [35] to make a decision
using a decision boundary. The feedforward [36] model is a
static deep detector that learns the behavior of samples in a sin-
gular direction using stacked hidden layers. The CNN model is
a deep detector that performs convolutions on the time-series
data to extract relevant features. The LSTM model is a deep
recurrent neural network (RNN) type where information flows
in recurrent cycles to hold previous knowledge.

There are three main limitations with such models. First,
shallow architectures are not capable of capturing the complex
patterns and temporal correlations present in the time-series
datasets. Second, static detectors do not capture well the time-
series nature of the data. Third, the detection of the supervised
detectors is limited to seen attacks that are part of the training
set, and hence, they are vulnerable to unseen (zero-day) attacks
that are not part of the training set. Such factors negatively
affect the performance of these detectors. Next, we present
a deep dynamic anomaly detector that detects unseen attacks
due to its unsupervised learning nature.

B. Autoencoder-based Anomaly Detection

This subsection investigates the use of autoencoders for
anomaly detection due to two key features. Firstly, autoen-
coders may be stacked into several hidden layers, and hence,
we can develop a deep structure that is capable of extracting
more representative and relevant features from our datasets.
Secondly, autoencoders can be equipped with a sequence-to-
sequence (seq2seq) structure, and hence, they have the ability
to better capture the time-series nature of our datasets. Both of
these features help improve the overall detection performance,
and to improve it further, a sequential grid hyperparameter
optimization is carried out.

Autoencoders are types of anomaly detectors [34] that
operate by learning the behavioral patterns of a (normal) class.
The learned behavioral patterns of that class are then used
to identify abnormal deviations from those learned patterns.
Herein, we use this deviation for anomaly detection. Using
anomaly detectors, specifically autoencoders, is an effective
approach that aids in detecting anomalies using the recon-
struction error during the reconstruction process of the data.
Using SAEs, the dimensionality of the data is reduced during
the encoding step and the data is reconstructed during the
decoding step, where the reconstruction error represents the
differences among the initial and reconstructed data. SAEs are
trained on benign samples where the parameters of the encoder
and decoder are optimized to have minimized reconstruction
errors. Let x denote the rows of the training dataset XTR,
H = fΘ(x) for the encoder, and R = gΘ(x) for the decoder,
and Θ denote the SAE parameters where

min
Θ

C(x, gΘ(fΘ(x))), x ∈ XTR. (11)

C(x, gΘ(fΘ(x))) represents the cost function (i.e. the
MSE), which is responsible for penalizing gΘ(fΘ(x)) due to
its deviation from x. Using the cost function (11), benign data

(a) Fully connected SAE architecture.

(b) Sequence-to-sequence SAE architecture.
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will have a smaller reconstruction error compared to malicious
data (anomalies). To detect an anomaly, the reconstruction
error has to exceed a specific threshold value.

Herein, we adopt an RNN-based autoencoder, namely,
LSTM for two reasons. First, it can enhance the detection
performance due to its capability of capturing complex pat-
terns and the temporal correlation in the time-series data.
Second, it can overcome the vanishing gradient problem
while learning temporal correlation over long intervals. Fig.
3 presents the structure of the deep LSTM-based stacked
autoencoder (LSTM-SAE). The LSTM-SAE model comprises
two LSTM-based RNNs; deep LSTM encoder and decoder
[37], [38] where (x ∈ XTR) denotes the LSTM encoder’s
input, where it encodes the time-series vector in a hidden
state. This represents identifying an alternative representation
of the time-series data that is more compact into the latent
layer [39]. Within the encoder, after the input layer, there
are L and Nl hidden LSTM layers and cells, respectively, in
each LSTM layer. Within the decoder, the LSTM encoder’s
output is carried out as the LSTM decoder’s input, which
is responsible for reconstructing the initial time-series data.
During training, the LSTM-SAE aims to minimize the MSE
of the input-output reconstruction.

An LSTM cell presents a state ct at a time instant t and
produces a hidden state ht as an output. The access to such a
cell is controlled by input iE,t, forget fE,t, and oE,t output gates
in the encoder and additional input iD,t, forget fD,t, and output
oD,t gates. A data sample xt at time t as well as the previous
hidden states of the LSTM cells within the same layer (hE,t−1

in the encoder and hD,t−1 in the decoder) are the LSTM cell’s
external inputs. The cell state (cE,t−1 in the encoder and cD,t−1

in the decoder) is the LSTM cell’s internal inputs. To activate
the gates, the aforementioned external and internal inputs as
well as the activation functions and bias are initiated. The
encoder’s last timestep presents the h′ and c′ states that are fed
as the starting hidden and cell states in the decoder. Algorithm
1 shows the overall operation mechanism of the LSTM-SAE.
Specifically, lines 9 - 13 and 18 - 22 present the calculation
of iE/D,t, fE/D,t, and oE/D,t. The learnable weight matrices and
bias vectors are denoted by W l

(·), U
l
(·), V

l
(·), and bl(·). Solving

(11) results in obtaining the optimal learnable parameters.
After training on XTR, the testing is applied on XTST. The

cost function measures the MSE among the initial and recon-
structed data, whenever it is smaller than a specific threshold,
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Algorithm 1: Training of LSTM-SAE
1 Input Data: XTR

2 Initialization: U l
(·), W

l
(·), V

l
(·), and bl(·) ∀l

3 while not converged do
4 for each x do
5 Feed Forward
6 Encoder:
7 for each (l = 1, . . . , L/2) do
8 for each timestep t do
9 ilE,t = φ(W l

ix
l
t+U l

ih
l
E,t−1+V l

ic
l
E,t−1+bli),

10 f l
E,t =

φ(W l
fx

l
t +U l

fh
l
E,t−1 + V l

fc
l
E,t−1 + blf ),

11 clE,t = f l
E,tc

l
E,t−1 + ilE,t tanh(W

l
cx

l
t +

U l
ch

l
E,t−1 + blc),

12 ol
E,t = φ(W l

ox
l
t+U l

oh
l
E,t−1+V l

oc
l
E,t+blo),

13 hl
E,t = ol

E,t tanh(c
l
E,t),

14 end
15 h′l = hl

E,t,
16 c′l = clE,t.
17 end
18 Decoder:
19 At initial timestep, the decoder hidden and cell

states = h′l and c′l.
20 Encoder output is passed as decoder input x̆
21 for each hidden layer l = L/2 + 1, . . . , L do
22 for each timestep t do
23 ilD,t =

φ(W l
ix̆

l
t +U l

ih
l
D,t−1 + V l

ic
l
D,t−1 + bli),

24 f l
D,t =

φ(W l
f x̆

l
t +U l

fh
l
D,t−1 + V l

fc
l
D,t−1 + blf ),

25 clD,t = f l
D,tc

l
D,t−1 + ilD,t tanh(W

l
cx

l
t +

U l
ch

l
D,t−1 + blc),

26 ol
D,t = φ(W l

ox̆
l
t+U l

oh
l
D,t−1+V l

oc
l
D,t+blo),

27 hl
D,t = ol

D,t tanh(c
l
D,t),

28 end
29 end
30 Back propagation: Compute:
31 ∇W l

(.)
C, ∇Ul

(.)
C, ∇V l

(.)
C, and ∇bl

(.)
C

32 end
33 update of bias and weight:

W l
(.) = W l

(.) −
η
K

∑
x ∇W l

(.)
C

U l
(.) = U l

(.) −
η
K

∑
x ∇Ul

(.)
C

V l
(.) = V l

(.) −
η
K

∑
x ∇V l

(.)
C

bl(.) = bl(.) −
η
K

∑
x ∇bl

(.)
C

34 end
35 Output: Optimal U l

(·), W
l
(·), V

l
(·), and bl(·) ∀l.

the sample is given the label y = 0 (benign), otherwise, the
sample is assigned the label y = 1 (malicious). The same
model is utilized throughout the different experiments. We
generate current and voltage readings throughout four equal
subsets {I1, I2, I3, I4} and {V1, V2, V3, V4}, respectively.
The first experiment employs current data as an input (single
feature) with binary labels; benign and malicious. The second
experiment employs two features; current and voltage read-
ings. Fusing the current and voltage datasets results in {IV1,
IV2, IV3, IV4} with binary labels; benign and malicious.
Such a fusion method is applied where the model considers
both the current and voltage readings during each timestep
in an iterative process. This way, the reconstruction error

comes from both readings in order to determine whether the
sample is benign or malicious, which enhances the detection
performance. For all experiments, we run the detectors on each
subset and report the performance separately.

C. Performance Evaluation of the Detectors

We report three performance metrics to assess the detection
performance. A true positive (TP) sample is a malicious one
and detected as malicious. Similarly, a true negative (TN)
sample is a benign one and detected as benign. In contrast,
a false positive (FP) sample is a benign one, but detected as
malicious and a false negative (FN) sample is a malicious one,
but identified as benign. The reported performance metrics
include detection rate (DR = TP/(TP+FN)), which specifies the
amount of malicious samples that are detected as malicious,
false alarm (FA = FP/(TN+FP)) that gives the amount of
benign samples detected as malicious, and highest difference
(HD = DR - FA) that subtracts FA from DR.

D. Threshold Values

To get the performance metrics’ scores, we generate a
confusion matrix by comparing Y CAL to Y TST. Determining
Y CAL is done using a threshold that is compared to the
reconstruction error. We determine this threshold according
to the median of the interquartile range (IQR) of the receiver
operating characteristic (ROC) curve. Scores that are smaller
than that threshold value denote benign samples, whereas
scores that are larger than that value represent malicious
samples.

E. Hyperparameter Optimization

The selection of the ideal hyperparameter values for the
detectors helps enhance detection performance. L denotes the
ideal number of LSTM layers, which is the same in both, the
encoder and decoder. Nl denotes the ideal number of neurons
within the LSTM layers. O, D, AH, and AO denote the optimal
optimizer, dropout rate, hidden activation function, and output
activation function, respectively.

Algorithm 2 shows that the conducted hyperparameter
optimization is done using four sequential steps. Since the
amount of hyperparameters that we are optimizing is large,
an exhaustive grid search might be associated with higher
computational complexity. Therefore, we implement a grid
search that is sequential instead. To select the hyperparameters,
cross-validation is conducted over XTR. P ∗ denotes the hyper-
parameter ultimate settings that lead to improving DR against
our validation set, where the given setting of hyperparameters
results in a specific model (MD).

V. SIMULATION RESULTS

Herein, we discuss the performance of the benchmark as
well as the LSTM-SAE models when detecting anomalies. The
results are reported for both of the conducted experiments as
mentioned in Section IV.B.
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Algorithm 2: Hyperparameter Optimization
1 Initialization: Optimizer = SGD, dropout rate = 0, hidden

activation = Relu, output activation = Softmax
2 Output: The optimized hyperparameters
3 Input: XTR

4 for L ∈ L do
5 for Nl ∈ N do
6 Algorithms 1 is applied with L, Nl, and the

remaining initial hyperparameters;
7 DR is recorded;
8 end
9 end

10 The optimal L∗ and N∗
l and the remaining initial

hyperparameters present MD1
11 for O ∈ O do
12 Algorithm 1 is applied with MD1’s hyperparameters and

o;
13 DR is recorded;
14 end
15 L∗, N∗

l and O∗ and the remaining initial hyperparameters
present MD2

16 for D ∈ D do
17 Algorithms 1 is applied with MD2’s hyperparameters

and D;
18 DR and FA;
19 end
20 L∗, N∗

l , O∗, and D∗ and the remaining initial
hyperparameters present MD3

21 for AH∈AH do
22 for AO∈AO do
23 Algorithms 1 is applied with MD3’s

hyperparameters and AH and AO ;
24 DR and FA;
25 end
26 end
27 L∗, N∗

l , O∗, D∗, A∗
H , and A∗

O define the optimal parameters.

(a) Using current datasets (b) Using current and voltage datasets
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Fig. 4. ROC curves of the investigated detectors.

A. Computational Complexity

Training the examined detectors is conducted offline on
an NVIDIA GeForce RTX 2070 hardware accelerator using
Keras API. The offline training of benchmark detectors takes
1 hour and the LSTM-SAE takes 1.5 hours. The online testing
requires 1.6 seconds to report a decision on a single reading.

B. Threshold Values

For the investigated anomaly detectors, the ROC curves
illustrated in Fig. 4 are utilized to specify the detectors’

threshold values to separate benign from malicious samples.
Dividing the curve into three quartiles and obtaining the IQR’s
median lead to the subsequent threshold values: 0.54, 0.45, and
0.59 for the ARIMA-based, one-class SVM, and LSTM-SAE-
based detectors, respectively in the first experiment (using
current data). In the second experiment (using current and
voltage data), the threshold values are: 0.51, 0.43, 0.52, and
0.55 for the ARIMA-based, one-class SVM, F-SAE, and
LSTM-SAE detectors, respectively. The ROC curve for the
two-class SVM is also plotted in Fig 4 for comparisons.

C. Hyperparameter Optimization

The selection of the ultimate hyperparameter values of
the LSTM-SAE model is from: L = {2, 3, 4, 5, 6} for the
number of layers, N = {200, 300, 400, 500} for the number
of neurons, O = {SGD, Adam, Adamax} for the optimizer,
D = {0, 0.2, 0.4} for the dropout rate, AH = {Relu, Sigmoid,
Tanh} for the hidden activation function, AO = {Softmax,
Sigmoid} for the output activation function.

For both of the experiments, the ideal hyperparameter
combination of the LSTM-SAE detector turns out to be as
follows. The optimal number of LSTM layers is four, where
the optimal number of neurons in the two encoder layers is
(500, 300) with the inverse order (300, 500) in the decoder’s
side. The optimal optimizer and dropout rate are Adam and
0.2, respectively. Sigmoid is the optimal choice for both,
the hidden and output activation functions. In the ARIMA-
based detector, the differencing and moving average values
are 1 and 0, respectively. For the SVM detectors, scale and
sigmoid are the ideal kernel and gamma, respectively. The
optimal feedforward parameters are 6 layers with 300 neurons,
Adamax optimizer, 0.2 dropout rate, and Sigmoid hidden and
output activation function. The F-SAE model has the same
amount of layers and neurons as the LSTM-SAE with an
SGD optimizer, 0.4 dropout rate, and Sigmoid and Softmax for
the hidden and output activation functions, respectively. The
LSTM-model has 6 layers with 500 cells, Adam optimizer,
no dropout rate, weight constraint of 5, ReLU and Softmax
hidden and output activation function, respectively, as the ideal
parameters.

D. Performance Evaluation

This subsection discusses the detection performance of the
examined detectors using the simulated data discussed in
Section III. We also use experimental data to validate the
performance results.

1) Simulated Data: Table II presents the results of the first
experiment, which reports the performance of the developed
detectors using only the four current datasets as well as their
average performance. The average performance of the LSTM-
SAE-based detector shows that it significantly outperforms
the rest of the detectors. Specifically, the LSTM-SAE-based
detector outperforms the benchmark detectors by 3.5−18.3%,
2.6−12.7%, and 6.1−31% in DR, FA, and HD, respectively.
Table III summarizes the results of the second experiment,
which reports the performance of the examined detectors
using the four current and voltage datasets. According to the
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TABLE II
PERFORMANCE USING SIMULATED CURRENT DATASETS

Simulated dataset
Model Metric

I1 I2 I3 I4
Avg

DR 74.2 73.4 72.2 72.3 73.0

FA 30.4 30.2 31.4 32.1 31.0ARIMA

HD 43.8 43.2 40.8 40.2 42.0

DR 79.7 78.5 77.7 77.3 78.3

FA 27.9 28.4 28.9 28.9 28.5One-class SVM

HD 51.8 50.1 48.8 48.4 49.8

DR 84.2 83.7 81.9 82.3 83.0

FA 22.9 22.4 24.2 23.5 23.3Two-class SVM

HD 61.3 61.3 57.7 58.8 59.8

DR 85.5 85.3 85.2 85.4 85.4

FA 22.4 22.7 21.7 22.9 22.4Feedforward

HD 63.1 62.6 63.5 62.5 62.9

DR 86.5 87.2 87.2 87.5 87.1

FA 22.1 22.2 21.4 21.3 21.8F-SAE

HD 64.4 65.0 65.8 66.2 65.4

DR 87.3 87.7 87.1 87.5 87.4

FA 20.9 21.5 20.5 22.1 21.3CNN

HD 66.4 66.2 66.6 65.4 66.2

DR 87.4 88.6 88.1 87.0 87.8

FA 20.7 21.1 21.1 20.8 20.9LSTM

HD 66.7 67.5 67.0 66.2 66.9

DR 90.1 91.4 91.5 92.1 91.3

FA 18.5 17.1 19.5 18.2 18.3LSTM-SAE

HD 71.6 74.3 72.0 73.9 73.0

DC Programmable 
Load

Level 
Shifter

Buck 
Converters LEM 

Sensor 
Box

MicroLabBox 
DS1202

PC

DC 
Power 
Supply

Oscilloscope
Tie-line 

Resistances

Fig. 5. Experimental setup of a cooperative DC microgrid comprising of N
= 2 agents controlled by dSPACE MicroLabBox DS1202 supplying power to
the programmable constant power load.

simulation results, the LSTM-SAE-based detector also out-
performs the rest of the benchmark detectors by 3.1− 16.4%,
3.1−14.1%, and 6.3−30.6% in DR, FA, and HD, respectively.
The superior performance of the LSTM-SAE-based detector
is due to its deep structure, which gives it the ability to better
capture the complex patterns of the data. Also, its recurrent
architecture allows it to apprehend the temporal correlations
within the time-series data. Moreover, given its unsupervised
anomaly training nature, the detection is done on totally
unseen data, which means that it can detect zero-day attacks.

Fusing the voltage and current data helps in improving
the detection performance of the detectors. Specifically, the
average HD of the detectors has improved by 9.7−14.8%. This

TABLE III
PERFORMANCE USING SIMULATED CURRENT AND VOLTAGE DATASETS

Simulated dataset
Model Metric

IV1 IV2 IV3 IV4

Avg

DR 78.2 77.1 76.8 78.4 77.6

FA 20.5 22.1 20.9 20.2 20.9ARIMA

HD 57.7 55.0 55.9 58.2 56.7

DR 83.1 83.4 82.2 83.4 83.0

FA 18.3 18.0 19.2 19.5 18.8One-class SVM

HD 64.8 65.4 63.0 63.9 64.3

DR 84.2 88.4 82.1 88.4 85.8

FA 16.1 16.7 16.2 16.3 16.3Two-class SVM

HD 68.1 71.7 65.9 72.1 69.5

DR 89.2 90.6 89.3 90.1 89.8

FA 13.1 12.9 13.5 12.6 13.0Feedforward

HD 76.1 77.7 75.8 77.5 76.8

DR 89.7 90.4 90.5 90.6 90.3

FA 11.1 11.4 11.3 12.0 11.5F-SAE

HD 78.6 79.0 79.2 78.6 78.9

DR 90.4 90.6 89.9 90.9 90.5

FA 9.5 10.1 11.2 11.0 10.5CNN

HD 80.9 80.5 78.7 79.9 80.0

DR 90.4 90.9 91.7 90.6 90.9

FA 9.4 10.1 10.5 9.5 9.9LSTM

HD 81.0 80.8 81.2 81.1 81.0

DR 94.1 93.6 94.4 94.0 94.0

FA 6.6 7.8 5.4 7.2 6.8LSTM-SAE

HD 87.5 85.8 89.0 86.8 87.3
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Fig. 6. Single line diagram of the experimental setup shown in Fig. 5.

is due to the fact that utilizing the obtained reconstruction error
from both the current and voltage data helps in increasing the
models’ certainty regarding the decision on whether a sample
is benign or malicious. Conducting such a data fusion method
provided an improvement of up to 4.6% in DR, 11.5% in FA,
and 14.7% in HD.

2) Validation on Experimental Data: As illustrated in Fig.
5, the multi-labeled dataset is obtained from a DC microgrid
experimental testbed that is operating at a voltage reference
Vdcref of 48 V with N = 2 DC/DC buck converters that are tied
radially to a programmable load (voltage-dependent mode).
Each converter is controlled using the control structure in Fig.
1 by dSPACE MicroLabBox DS1202 (target), with control
commands from the ControlDesk in the PC (host). A single
line diagram of the experimental setup is shown in Fig. 6. The
control strategy is operated under the presence and absence
of stealth cyber-attacks throughout the local and neighboring
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TABLE IV
PERFORMANCE USING EXPERIMENTAL CURRENT DATA

Model Metric
Exp dataset

Avg (difference)
I1 I2

ARIMA
DR 73.1 72.3 72.7 (-0.3)

FA 32.1 31.6 31.9 (+0.9)

HD 41.0 40.7 40.9 (-1.1)

One-class SVM
DR 79.2 77.5 78.4 (+0.1)

FA 28.1 29.4 28.8 (+0.3)

HD 51.1 48.1 49.6 (-0.2)

Two-class SVM
DR 83.1 81.8 82.5 (-0.5)

FA 22.4 24.6 23.5 (+0.2)

HD 60.7 57.2 59.0 (-0.8)

Feedforward
DR 85.3 86.2 85.8 (+0.4)

FA 23.1 22.5 22.8 (+0.4)

HD 62.2 63.7 63.0 (+0.1)

F-SAE
DR 86.4 87.5 87.0 (-0.1)

FA 22.0 21.2 21.6 (-0.2)

HD 64.4 66.3 65.4 (0.0)

CNN
DR 87.4 86.7 87.1 (-0.3)

FA 21.0 20.7 20.9 (-0.4)

HD 66.4 66.0 66.2 (0.0)

LSTM
DR 88.3 87.6 88.0 (+0.2)

FA 20.6 20.1 20.4 (-0.5)

HD 67.7 67.5 67.6 (+0.7)

LSTM-SAE
DR 91.1 91.8 91.5 (+0.2)

FA 18.9 18.2 18.6 (+0.3)

HD 72.2 73.6 72.9 (-0.1)

measurements. The parameters of the experimental testbed
are given in Appendix. The results shown in Tables IV and
V verify the correctness of our conducted simulations. {I1,
I2} and {IV1, IV2} denote the current and voltage readings
from the two converters, respectively. Running the investigated
detection schemes on the testbed offers consistent performance
that varies only by around ±0.4% compared to the detection
performance using the simulated data.

VI. CONCLUSION

This paper answered two important research questions re-
garding data-driven-based approaches for stealth cyber-attack
detection in DC microgrids. Our extensive experiments pro-
vide the following conclusions: (1) Adopting an LSTM-based
stacked autoencoder offers superior detection performance
compared to benchmark machine learning-based detectors due
to its deep recurrent structure. Such characteristics help in
discovering the complex patterns and temporal correlations
of the time-series dataset. Also, the LSTM-SAE model can
detect unseen attacks since it is an unsupervised anomaly
detector that is trained only on benign data. Utilizing only
current data for training, the LSTM-SAE model offered an
improvement of up to 18.3% in DR, 12.7% in FA, and 31% in
HD compared to benchmark detectors. (2) Performing feature
fusion that incorporates current and voltage data for training
improved the detection performance further by up to 4.7% in

TABLE V
PERFORMANCE USING EXPERIMENTAL CURRENT AND VOLTAGE DATA

Model Metric
Exp dataset

Avg (difference)
IV1 IV2

ARIMA
DR 78.8 77.6 78.2 (+0.6)

FA 21.1 20.5 20.8 (-0.1)

HD 57.7 57.1 57.4 (+0.6)

One-class SVM
DR 82.2 81.7 82 (-1.0)

FA 18.3 18.7 18.5 (-0.3)

HD 63.9 63.0 63.5 (-0.8)

Two-class SVM
DR 87.6 85.4 86.5 (+0.7)

FA 15.9 16.7 16.3 (0.0)

HD 71.7 68.7 70.2 (+0.7)

Feedforward
DR 88.9 89.7 89.3 (-0.3)

FA 13.1 12.5 12.8 (-0.2)

HD 75.8 77.2 76.5 (-0.1)

SAE
DR 89.0 90.7 89.9 (-0.4)

FA 12.4 11.0 11.7 (+0.2)

HD 76.6 79.7 78.2 (-0.6)

CNN
DR 90.4 91.1 90.8 (+0.3)

FA 10.5 10.7 10.6 (+0.2)

HD 79.9 80.4 80.2 (+0.1)

LSTM
DR 90.8 90.9 90.9 (0.0)

FA 9.7 9.4 9.6 (-0.3)

HD 81.1 81.5 81.3 (+0.3)

LSTM-SAE
DR 94.3 94.1 94.2 (+0.2)

FA 6.3 6.9 6.6 (-0.2)

HD 88.0 87.2 87.6 (+0.3)

DR, 11.5% in FA, and 14.7% in HD as it enables the detector
to capture distinct representations from both features. Running
the investigated detection schemes on a real testbed offered
consistent performance that varies only by ±0.4% compared
to the detection performance using the simulated data.

APPENDIX

Simulation Parameters
The test model is composed of four DGs (rated for 6 kW

each). The line parameter Rkl is attached from the kth agent to
the lth agent where each agent has identical controller gains.
Plant: R12 = 1.8 Ω, R14 = 1.3 Ω, R23 = 2.3 Ω, R43 = 2.1 Ω
Converter: Lk= 3 mH, Ck= 250 µF, Imin = 0 A, Imax = 18
A, Vmin = 270 V, Vmax = 360 V.
Controller: Vdcref = 315 V, Idcref = 0, KH1

P = 3, KH1

I = 0.01,
KH2

P = 4.5, KH2

I = 0.32, GV P = 2.8, GV I = 12.8, GCP =
0.56, GCI = 21.8, Vin = 270 V.

Experimental Testbed Parameters
The system is composed of two sources with 600 W equally

rated converters, and for each converter, the controller gains
are consistent.
Plant: R1 = 0.9 Ω, R2 = 1.2 Ω
Converter: Lsei= 3 mH, Cdci= 100 µF
Controller: Vdcref = 48 V, Idcref = 0, KH1

P = 1.92, KH1

I =
15, KH2

P = 4.5, KH2

I = 0.08.
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