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Wi-Fi Networks Aided by Deep Reinforcement
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Abstract—Wi-Fi in the enterprise - characterized by over-
lapping Wi-Fi cells - constitutes the design challenge for next-
generation networks. Standardization for recently started IEEE
802.11be (Wi-Fi 7) Working Groups has focused on significant
medium access control layer changes that emphasize the role of
the access point (AP) in radio resource management (RRM) for
coordinating channel access due to the high collision probability
with the distributed coordination function (DCF), especially in
dense overlapping Wi-Fi networks. This paper proposes a novel
multi-AP coordination system architecture aided by a centralized
AP controller (APC). Meanwhile, a deep reinforcement learning
channel access (DLCA) protocol is developed to replace the
binary exponential backoff mechanism in DCF to enhance
the network throughput by enabling the coordination of APs.
First-Order Model-Agnostic Meta-Learning further enhances the
network throughput. Subsequently, we also put forward a new
greedy algorithm to maintain proportional fairness (PF) among
multiple APs. Via the simulation, the performance of DLCA
protocol in dense overlapping Wi-Fi networks is verified to have
strong stability and outperform baselines such as Shared Trans-
mission Opportunity (SH-TXOP) and Request-to-Send/Clear-to-
Send (RTS/CTS) in terms of the network throughput by 10%
and 3% as well as the network utility considering proportional
fairness by 28.3% and 13.8%, respectively.

Index Terms—Wi-Fi 7, IEEE 802.11be, multi-AP coordination,
channel access, proportional fairness, deep Q-learning

I. INTRODUCTION

The rapid adoption of smartphones, tablets, and high-
end mobile client devices has translated into the rapid
growth of network traffic flux (measured in bits/s/Hz per unit
area/volume). As tracked by Cisco Annual Internet Report [2],
the number of Wi-Fi hotspots will grow four-fold, and the
average mobile network connection speeds will triple from
2018 to 2023.

Multi-media streaming demands, e.g., 4K and 8K video [3],
will stretch network capacity even beyond current generation
(Wi-Fi 6) limits of 10 Gbps peak capacity. To address such
technology bottlenecks, the IEEE 802.11 Working Group
(WG) is standardizing the next generation of Wi-Fi—referred
to as IEEE 802.11be (Wi-Fi 7) or Extremely High Throughput
(EHT) networks.

Orthogonal frequency-division multiple access (OFDMA)
adopted in 802.11ax has significantly enhanced the medium
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Fig. 1: Multi-AP Coordination with SH-TXOP: 4 APs share
a 80 MHz universal channel. Each AP has its own coverage
of stations (STAs) and operates on its own primary channel.

Each resource unit (RU) represents a 20 MHz channel.

access control (MAC). OFDMA works on top of the
legacy carrier-sense multiple access with collision avoidance
(CSMA/CA) to provide extra features when access point (AP)
contends for channel access, e.g., the use of trigger frame
helps control the uplink transmission of stations [4] for greater
efficiency in a single basic service set identifier (BSS-ID). The
overlap of APs is defined as the intersection of their cells and
operating frequency bands. In such a cluster of overlapping AP,
channel access collision happens more frequently as the num-
ber of APs increases, especially when each AP has no prior
knowledge of other APs’ channel accessing policies. Thus,
enabling some degree of collaboration among neighboring APs
will permit more efficient utilization of the limited time and
frequency resources, i.e., lower collision probability, higher
network throughput. To this end, the next-generation standard
802.11be (Wi-Fi 7) introduces some additional features such as
multi-AP coordination to further improve aggregate through-
put in dense overlapping layout scenarios [5].

The emphasis of EHT WG is on aggregate throughput
in dense networking scenarios and hence - building on the
numerous physical layer (PHY) advances made in 802.11ac/ax
- notably new control frames for coordination among APs that
requires information exchange among the APs belonging to the
coordinated AP set. Besides, the new 6 GHz bands opened
up in the US and Europe are new green fields for the future
Wi-Fi 7 standard, which gives more freedom in architecture
and protocol design. In Fig.1, an example of the current 11be
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Fig. 2: Proposed Architecture for Multi-AP Coordination.

structure with Shared Transmission Opportunity (SH-TXOP)
operation is introduced [6]. Four APs simultaneously operate
on the shared 80-MHz bandwidth. Distributed coordination
function (DCF) applied in SH-TXOP allows all APs to contend
for channel access. In this example, AP 2 successfully gains
the TXOP and becomes a sharing AP. AP 2 then collects
information about the channel status and the traffic backlog
from shared APs in the candidate shared AP set. Afterwards,
the sharing AP will share the wide-band TXOP with the shared
APs. Each AP must have a primary channel to operate in the
dense overlapping network so that it can contend for TXOPs
for the communication within its own coverage. Note that
primary channels allocated to different APs are not necessarily
the same. In such a scheme considering collaboration, there
is no frequency overlap among four channels because each
AP operates within its own allocated channel independently.
The bandwidth of each channel occupied by a shared AP or
sharing AP is 20 MHz.

A. Multi-AP Coordination Architecture and Related Work

DCF with CSMA/CA is a traditional MAC protocol for
channel access in Wi-Fi networks. It has a long history of
analysis using Markov models [7], [8] developed originally
for a single (isolated) cell (e.g., single home networks) with
saturated nodes.

In [9], a novel multi-AP coordination transmission scheme
is proposed for 802.11be. TXOP in the proposed scheme is
acquired after the AP completes its backoff procedure. Then, it
performs a wide-band transmission if the secondary channel is
idle during the point coordination function (PCF) inter-frame
spacing (PIFS). This contention-based method for TXOP is
similar to DCF Request-to-Send/Clear-to-Send (RTS/CTS) [8].
Then, the sharing AP sends an Announcement Trigger Frame
(ATF) to the shared APs to allocate all 20 MHz channels,
including the duration of TXOP and the scheduled channel in-
formation. This proposed scheme also aligns with Coordinated
OFDMA (C-OFDMA). That is, each shared AP utilizes partial
TXOP assigned by the sharing AP for its uplink/downlink
(UL/DL) OFDMA transmission with its associated STAs.

As the backoff procedure for granting the wide-band TXOP
is performed solely by the initiating AP, all responding APs

should terminate the entire transmission sequence before the
TXOP duration, indicated by the received ATF. However, this
leads to profound performance loss as the number of APs
grows larger. In [9], only 2 APs operate on a 40 MHz channel.
The backoff procedure not followed by ACK can lead to the
following situation: more than one AP may think it has won
the TXOP and start sending ATF, which will lead to a collision.
Since there is no feedback such as ACK, in the end, the whole
TXOP is wasted because more than one AP send different RU
assignment in ATF and any AP will obtain confusing alloca-
tion scheme. As a result, the collision probability increases
significantly with the increasing number of APs. Moreover,
it is challenging to design a feedback mechanism such as
ACK for the TXOP contention method. Responding to the
sharing AP by all shared APs is a huge burden to the system
performance because any failure reception of the ATF to any
AP will lead to re-transmission.

A novel system architecture is thereby proposed for multi-
AP coordination in 802.11be to decrease the collision proba-
bility of channel access, as is shown in Fig.2. The centralized
AP controller (APC) implements channel configuration, i.e.,
assigning primary channels to all APs with consideration of
proportional fairness (PF). Under this system architecture, APs
do not need to contend for the wide-band TXOP, and ACK is
much easier to design. The core function provided by APC is
called radio resource management (RRM) [10], which auto-
matically monitors traffic, capacity, and reliability of operating
APs. RRM can periodically reconfigure the 802.11 networks
for best efficiency by performing functions such as radio
resource monitoring and dynamic channel assignment. Each
AP contends for TXOP on the assigned primary channel which
is further utilized for the communications with its associated
STAs by UL/DL OFDMA.

The suffering from the traditional DCF characterized by col-
lision probability in dense overlapping networks also prompts
the applications of state-of-the-art machine learning tech-
niques. Deep reinforcement learning (DRL) is a machine
learning technique that enables an agent to take actions in
an environment aiming to maximize the cumulative rewards.
Reinforcement learning (RL) principles have shown potential
on optimizing resource allocation in various aspects in wireless
communication, see [11]–[14]. Nonetheless, the application of
DRL in wireless networks must be made wisely, as the network
utility unavoidably oscillates due to the unstable nature of
RL [15]. Moreover, in the overlapping multi-AP network,
the network throughput is affected by the different channel
qualities, the number of users, etc. Therefore, the designed
AP coordination algorithm should also account for those
factors. Adversarial RL-based method [16] is proposed as the
solution to single-band multi-AP coordination in 11be. Deep
Q-network (DQN) is investigated as an enhancement (higher
utility) for CSMA in heterogeneous networks in which more
than one multiple access protocol coexist [17], [18]. However,
this work assumes that all stations run on the same frequency
band. As a more ambitious study, multiple-agent deep learning
multiple access with imperfect transmission feedback [19] is
studied. The main objective in [19] is to recover the lost
transmission feedback between AP and STA due to imperfect
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channel condition. In [20], multi-channel access for multiple
STAs and one AP based on deep reinforcement learning is
investigated. This paper concentrates on that all mobile users
utilize improved channel access approaches to communicate
with one AP. Our work differs from [19], [20] by considering
the throughput maximization problem for multiple overlapping
and collaborating APs following 11be standards in which AP
is in charge of channel access for TXOP. In [1], we consider a
single channel access problem for the communication between
only one AP and multiple STAs. As an extended version to
[1], we propose in this paper a novel system architecture that
consists a centralized APC with a PF solution to multi-channel
allocation problem.

By contrast, our work also differs from the above research
work by investigating a new multi-band multi-AP coordination
network with APC based on IEEE 802.11be, and our proposed
protocol simultaneously enables TXOP contentions at different
frequency bands.

B. Contribution

This paper proposes a novel coordinated multi-AP architec-
ture and a corresponding channel access mechanism aligning
with IEEE 802.11be to maximize the aggregate network
throughput while preserving fairness among APs. The major
contributions of this paper are listed as below:

• We propose a multi-AP system with APC as well as
formulate a dynamic resource allocation and channel
access optimization problem. The resource allocation
process is considered as a Markov decision process
(MDP). We choose the previous observation of channels
and actions as the state, transmission at a channel as
the action, and successful/unsuccessful transmissions at
multiple channels as positive/negative rewards.

• Deep reinforcement learning channel access (DLCA) pro-
tocol is proposed. For each AP in the coordinated multi-
AP set, DLCA is deployed to contend for channel access.
The first AP winning the contention gains the TXOP
on its primary channel. The First-Order Model-Agnostic
Meta-Learning (FOMAML) is then applied to DLCA
to enhance the overall performance. We also develop a
greedy algorithm to maintain PF among APs.

• Simulation results show that the performance of DLCA
protocol is verified to have strong stability and outperform
baselines such as SH-TXOP and RTS/CTS in terms of the
network throughput as well as the network utility in dense
overlapping Wi-Fi networks.

The paper is organized as follows: Sec II introduces the
proposed system model aligning with IEEE 802.11be protocol.
Next, in Sec III, DLCA plus greedy algorithm with FOMAML
are combined and developed as the DLCA protocol for this
system. Sec. IV contains a suite of performance evaluations
for the proposed DLCA protocol. The comparison between
DLCA protocol and baselines is implemented to demonstrate
the robustness and efficiency of our proposed DLCA protocol.

TABLE I: Main Acronyms

TXOP Transmission Opportunity
SH-TXOP Shared Transmission Opportunity
STA Station
RU Resource Unit
DIFS Distributed Inter-Frame Space
SIFS Short Inter-Frame Space
RTS/CTS Request-to-Send/Clear-to-Send

II. SYSTEM MODEL AND PROBLEM FORMULATION OF
DLCA

In this section, we firstly introduce the multi-AP network
with APC. Then the DCF RTS/CTS is introduced and the novel
DLCA is proposed. We formulate each AP’s dynamic resource
allocation and channel access optimization problem as MDP.

A. Proposed Multi-AP network

In 802.11be system, the aggregation of 5 and 6 GHz
spectrum allows simultaneous operation on different bands
or channels (orthogonal frequency resource allocation). Our
proposed network model aligning with 11be protocol is shown
in Fig.2. The coordinated multi-AP set is defined as N =
{1, . . . , n, . . . , N}, and F = {1, . . . , f, . . . , F} denotes the
available orthogonal channel set. Each AP can be allocated
with a different channel from the available channel sets. Sup-
pose, at the tth contention for TXOP, AP n observes the chan-
nel states of its allocated primary channel (the f th channel of
20 MHz), which yields the observation vector ont (f) ∈ {0, 1}
where 0 and 1 denote the IDLE and BUSY channel state,
respectively. Action vector is denoted as ant (f) ∈ A , {0, 1}
where ant (f) = 1 represents AP n contends for the f th channel
at tth contention for TXOP and ant (f) = 0 represents AP n
does not contend for the f th channel at tth contention for
TXOP. A successful transmission occurs if a sole AP occupies
a TXOP. In the following section, the action and observation
vector are simplified as ant and ont , respectively, because the
f th channel is implicitly linked to AP n after APC has made
the channel allocation decision.

B. Channel Access Mechanism

This section briefly introduces three packet mode channel
access protocols that can be potentially utilized in our pro-
posed multi-AP network with APC, including our proposed
DLCA protocol. They are described as follows:
• Distributed coordination function (DCF) basic [8]: Sup-

pose an AP wants to occupy the TXOP on its primary
channel. It waits until the channel is sensed idle for a
distributed inter-frame space (DIFS). Then, a backoff
process is initiated. Backoff intervals are slotted, and
the discrete backoff time is uniformly distributed in the
range [0,W − 1], where W is defined as the contention
window size, and CWmin represents the minimum con-
tention window. The backoff counter is utilized for AP
to decide whether to access channel at the current time
slot. The backoff counter value is initialized by uniformly
choosing an integer from the range [0,W − 1]. Then,
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it is decremented by one at the end of each idle slot.
Note that the backoff counter will be frozen when a
packet transmission is detected on the channel and will
be reactivated until the channel is sensed idle again for
a DIFS period. The AP contends for TXOP when its
backoff counter reaches zero. The ACK follows after
the completion of the TXOP unless collision happens.
If unsuccessful TXOP happens, contention window size
W is doubled after each unsuccessful transmission, up
to a maximum value CWmax = 2mCWmin, where m
represents the largest times the contention window size
can be doubled.

• DCF Request-to-Send/Clear-to-Send (RTS/CTS): AP
transmits a short frame of RTS to APC after the backoff
counter is decremented to zero. When APC detects an
RTS frame, it responds, after a short inter-frame space
(SIFS), with a CTS frame. The AP can only occupy
the TXOP of its primary channel if the CTS frame is
correctly received. The RTS and CTS frames also carry
the information of the TXOP duration to be transmitted.
This information can be heard by any listening AP, which
can then update a network allocation vector (NAV) con-
taining the information that the duration of the channel
being busy. Therefore, an AP can suitably delay further
transmission by detecting just one frame among the RTS
and CTS frames and thus avoid collision. The major
difference between basic and RTS/CTS is that RTS/CTS
will send a RTS and decide to contend for the TXOP
only after a CTS is received from the APC. DCF basic,
on the other hand, contends for TXOP without sending a
RTS. Hence, when collision happens, DCF basic wastes a
whole TXOP duration while DCF RTS/CTS only wastes
a RTS/CTS duration. It is noteworthy that TXOP can
take up to 8.16 ms and RTS/CTS only take up to 0.4
ms. Hence, DCF RTS/CTS mechanism is very effective
in terms of network throughput, especially for large data
load in TXOP, as it reduces the average number of wasted
time slots involved in the contention process [8].

• Deep reinforcement learning channel access (DLCA): In
the DLCA protocol, APC periodically assigns the primary
channel to each AP considering PF (as formulated in sec-
tion III-C). Then, each AP senses the channel and obtains
an observation from its primary channel environment,
indicating the channel is BUSY or IDLE. Based on the
observed results, each AP implements inference regarding
the next action utilizing its trained deep Q learning model
to maximize the network throughput in its coverage (as
formulated in section III-A). It is noteworthy that once the
AP employing DLCA decides to contend for TXOP, the
similar protocol to DCF RTS/CTS in Fig.3 is followed.
The only difference is that DLCA has no backoff time,
and it transmits RTS as long as it determines to contend
for TXOP, which makes the Coordinated-OFDMA [3]
possible because each contention process has a constant
duration and can be visualized as a time slot (summation
of RTS/CTS, TXOP length, and ACK). For each time
slot, either one of APs wins the TXOP, or all APs that
send the RTS do not receive CTS from APC, leading to

Time Out which indicates that RTS was not approved by
APC.

In Fig.3, we can have either DCF RTS/CTS or DLCA as
the packet mode channel access method. If the DCF basic
method is utilized, the transmission result will only be known
to the AP until the TXOP duration is finished. The data load
within the TXOP is much larger than the traditional scenario in
which the DCF basic method is applied, leading to intolerable
performance loss [8].

C. Maximum Achievable Data Rate
Each AP’s action ant is directly related to the throughput

of its coverage. The more TXOPs each AP gains, the higher
throughput is reached. However, the number of successful
TXOP contention is not the only factor to the throughput.
The channel conditions between each AP and its associated
STAs on different frequency bands are different, and they
also vary over time. In this paper, we consider that the
overall spectral efficiency of AP on its primary channel can
be obtained by taking the average of the individual spectral
efficiencies between AP n and all the associated STAs. The
channel spectral efficiency is assumed to be known by APC
and denoted as Cn

t ∈ RF (bit/s/Hz). The spectral efficiency
Cn
t (f) represents the maximum data that AP n can achieve

at time slot t on channel f .

D. Access Point Model
Define a Markov decision process (MDP) for an AP over

a finite state space S ∈ {0, 1}2L × Z , where L denotes
the state size. The finite state space S is a set that contains
concatenations of observation vectors, action vectors, and
cnt ∈ Z that represents the total number of APs contending for
TXOPs in the AP n’s operating frequency channel (including
AP n itself), i.e., snt+1 = [ant−L+1, o

n
t−L+2, . . . , a

n
t , o

n
t+1, c

n
t ].

The transition function δ(snt , s
n
t+1; ant ) denotes the probability

that the state snt transfers to the state snt+1 after taking action
ant . r(snt , a

n
t , s

n
t+1) ∈ R denotes the reward of AP n at

tth TXOP contention results from its state-action-state pair(
snt , a

n
t , s

n
t+1

)
. The accumulated discounted reward Rnt ∈ R

for AP n can be expressed as

Rnt =

∞∑
k=0

γkr(snt+k, a
n
t+k, s

n
t+k+1), (1)

where γ ∈ (0, 1] is a discounting factor. The policy of AP n
π(n) : S −→ A is assumed to be stationary, and the decision
of the policy only depends on the current state. Hence, each
AP aims to solve the following problem:

argmax
π(n)

Eδ[Rt|snt = s, ant = a, π(n)], (2)

which is the objective of each AP and the expectation with
respect to the transition probability function δ is denoted
as Eδ[•]. Since each AP simultaneously takes actions on
its primary channel where each action is associated with an
objective (maximization of the accumulated reward), this is
overall a multi-agent problem. The calculation of the reward
corresponding to various state-action pairs is detailed in the
next section.
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Fig. 3: The primary channels of APs are assigned by the APC. F channels from 5 and 6 GHz bands are available for IEEE
802.11be. Then APs in each 20 MHz band contends for TXOP.

E. System Reward

Every action made by an AP has corresponding feedback
(CTS/Time Out). The system reward is calculated as follows:

r(snt , a
n
t , s

n
t+1) =

L−1∑
l=0

ηlynt−l, (3)

where ynt−l = 1 denotes the successful feedback for the action
ant−l and ynt−l = −1 for an unsuccessful contention, and η ∈
[0, 1] is a factor such that the more recent action is, the more
weight it will have in the system reward. The overall reward
estimation algorithm is shown in Appendix A.

III. DLCA PROTOCOL

In this section, we develop the following steps: a) Q-learning
satisfying the Bellman optimality condition is introduced; b)
we introduce deep reinforcement learning in which a deep Q
network is utilized as a model for the action-value function;
c) First-Order Model-Agnostic Meta-Learning (FOMAML) is
applied to enhance the convergence rate and the stability of
the deep Q network; d) The greedy algorithm considering PF
is proposed for multi-AP coordination.

A. Q-learning

In this section, we introduce standard Q-learning and ε-
greedy policy as the foundation for the following deep Q-
learning. As defined in the above section, each action ant
transfers the current state snt of AP n to snt+1 with reward
rnt+1. The action-value function of AP n is denoted as follows:

J(snt , {Ant }) , Eδ[

∞∑
k=0

γkr(snt+k, A
n
t+k, s

n
t+k+1)|snt ], (4)

where the action-value function J(snt , a
n
t ) : S × A → R

outputs the accumulated reward with respect to the state snt
and the corresponding action ant . The optimal value function
is defined as:

V ∗(snt ) = max
An

t

J(snt ,Ant ), (5)

where V ∗(snt ) can be further written as the Bellman optimality
equation:

V ∗(snt ) =

max
ant ∈A

∑
snt+1∈S

δ(snt , s
n
t+1; ant )[r(snt , a

n
t , s

n
t+1) + γV ∗(snt+1)],

(6)
where δ(snt , s

n
t+1; ant ) represents the transition probability

from state snt to snt+1 after taking action ant . The optimal Q-
function can then be expressed as the follows:

Q∗(snt , a
n
t ) =∑

snt+1∈S
δ(snt , s

n
t+1; ant ){r(snt , ant , snt+1) + γV ∗(snt+1)}, (7)

in which the Q-function is a fixed point of a contraction op-
erator H [21], defined for a generic function Q : X ×A → R
as the follows:

(HQ)(snt , a
n
t ) =

∑
snt+1∈S

δ(snt , s
n
t+1; ant ){r(snt , ant , snt+1)

+ γ max
ant+1∈A

Q(snt+1, a
n
t+1)}.

(8)

In the case of model-free reinforcement learning, the above Q-
function is impossible to obtain since the transition probability
is unknown. Hence, the Q-learning algorithm searches the
optimal Q-function with samplings from the episodes of the
MDP. Then, the Q-learning algorithm utilizes the following
updating rule:

Q(snt , a
n
t )←Q(snt , a

n
t ) + β{r(snt , ant , snt+1)

+ γ max
ant+1∈A

Q(snt+1, a
n
t+1)−Q(snt , a

n
t )}, (9)

where the learning rate is denoted by β. While each AP up-
dates Q(snt , a

n
t ), it also makes decisions based on Q(snt , a

n
t ),

i.e., choosing the action corresponding to the largest Q-value.
For the ε-greedy policy, the optimal action is given by

ant =

{
argmaxant Q(snt , a

n
t ), P = 1− ε.

random action, P = ε,
(10)

where ε denotes the probability of choosing random action.
The greedy policy helps the Q-learning policy to search for
more possibilities of actions randomly. It can help the policy
converge faster and prevent the policy from being stuck at a
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sub-optimum. Q-learning is proven to converge to the optimum
action-values with probability 1 so long as all actions are
repeatedly sampled in all states, and the action-values are
represented discretely [22].

B. Gradient descent in Deep Q-Learning
The traditional Q-learning algorithm can be applied to solve

for the optimal policy. However, traditional Q-learning is
impractical if the dimension of action-state space is large,
i.e., the curse of dimensionality [23]; thus, the well-known
DQN is proposed in [15] to approximate the action-state Q-
value function and the neural network used to achieve the
approximation is called Q neural network (QNN).

Each AP is equipped with a QNN which outputs the
approximated Q-value {Q(snt , a

n
t ;θn)|ant ∈ A} given the

input state snt and action ant . The optimal policy is to choose
the action with the largest Q-value. Unlike the tabular update
for Q-learning in Eq (9), the QNN in deep Q-learning can
be trained by minimizing prediction errors of Q(snt , a

n
t ;θn)

at each AP and time slot, where θn denotes the trainable
QNN weights on AP n. After the reward is obtained, the
state transfers to snt+1. The pair (snt , a

n
t , r(s

n
t , a

n
t , s

n
t+1), snt+1)

then forms a single training sample for QNN and is stored in
training set Dn. Please note that we will sample training data
dns from the training set Dn for each update in the training
process. Next, we define the prediction loss function of QNN
as

L(θn) = (v −Q(snt , a
n
t ;θn))2, (11)

where Q(snt , a
n
t ;θn) is the output of QNN at time slot t and

the approximate value function is defined as

v = r(snt , a
n
t , s

n
t+1) + γmax

ant+1

Q(snt+1, a
n
t+1;θn), (12)

in which the second term γmaxant+1∈AQ(snt+1, a
n
t+1;θ) is

obtained by searching the maximum output of QNN with
respect to the selection of action ant+1 given snt+1. Then, we
can update the trainable QNN weights using the semi-gradient
algorithm [24] as below:

θn ← θn + ρ [v −Q(snt , a
n
t ;θn)]∇Q(snt , a

n
t ;θn), (13)

where ∇ is the gradient with respect to θn. Moreover, each
AP is employed with deep Q-learning to search for the optimal
QNN. However, this inevitably results in a performance loss,
for some APs cannot avoid learning aggressive policies to
maximize the contention benefits for themselves, and some
APs learn conservative policies to avoid collision, especially
when AP networks are densely overlapping. Hence, in our
proposed protocol, each APs sends its QNN weights to APC
that takes the average of the weights of all QNNs as follows:

θg =
1

N

N∑
n=1

θn, (14)

where θg is denoted as global weight. Minimizing the above
equation is equivalent to minimize the summation of all loss
functions of QNNs from all APs, i.e.,

N∑
n=1

L(θn) =

N∑
n=1

(v −Q(snt , a
n
t ;θn))2. (15)

Algorithm 1: DLCA Algorithm.
Data: θn, sn0 , and t = 0.
while t ≥ 0 do

if mod(t, T ) is not T − 1 then

ant =

{
argmaxant Q(snt , a

n
t ), P = 1− ε.

random action, P = ε

Obtain r(snt , a
n
t , s

n
t+1) according to Algorithm

3 and store the tuple (snt , a
n
t , r

n
t , s

n
t+1) to the

training batch D;
if Update then

1. Sample dns transitions from Dn.

2. Calculate the target value as follows:
v = rnt + γ

(
maxant+1

Q(snt+1, a
n
t+1;θn)

)
Q

.

3. For each randomly sample tuple in the
training batch with ds samples, update θn

with the following gradient descent
method:

θn ←− θn − ρ∇θnL(θn).

else
4. Each AP send its QNN weights to APC that
obtains the global QNN θg = 1

N

∑N
n=1 θn.

5. Sample dgs from {D1, . . . ,DN} and update
θg with the following gradient descent
method:

θg ←− θg+

ρ

N

N∑
n=1

[v −Q(snt , a
n
t ;θn)]∇Q(snt , a

n
t ;θn).

6. Send θg back to each AP: θn ← θg .

t = t+ 1;

In the meantime, minimizing the above equation implicates
the following gradient descent for the summed loss function:

θg ←− θg +
ρ

N

N∑
n=1

[v −Q(snt , a
n
t ;θn)]∇Q(snt , a

n
t ;θn).

(16)
Hence, the global QNN weight θg is equivalently obtained by
iterations over the sampled data batch dgs collected from all
APs’ local data set {D1, . . . ,DN}, which enables a faster con-
vergence rate and lower loss function value. It is noteworthy
that θg is sent back to all APs from APC after global gradient
descent completes according to Eq (16). Then, θg replaces the
previous QNN weights for future training and inference. This
method is called First-Order Model-Agnostic Meta-Learning
(FOMAML), which can further enhance all APs’ models with
non-IID local data [25].
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Remark 1. In Algorithm 1, samples are collected from the
local data set in step 1. Then, in step 2, target value is
calculated. Gradient descent method is implemented in step
3 based on the collected samples and the calculated target
value. Step 4, 5, and 6 represent the FOMAML method
and is triggered once every T local training loops. It is
noteworthy that the Q-value in step 2 can be obtained by
looping the action corresponding to the largest Q-value with
time complexity of O(F ). The gradient in machine learning is
normally computed using the back-propagation method [26]
as a numerical solution with time complexity of O(FM).
Algorithm 1 is typically executed in batch mode - such that
QNN update occurs once per batch to reduce computation
load. FOMAML is only triggered every period of T to reduce
the communication overhead between the APC and AP. The
global QNN θg is trained on APC using global information
gathered by APC, i.e., {d1s, . . . , dNs }.

C. AP Coordination: Greedy Algorithm

In the above section, each AP runs with a deep Q-learning
algorithm independently. However, the channel on which each
AP should run is not described. In this section, the APC policy
that allocates channels to all APs considering PF is proposed.

Denote φnt (f) as the instantaneous proportional achievable
data rate for AP n at time slot t at channel f . We assume
the block fading channel condition to explore the convergence
property of our proposed algorithm, i.e., Cn

t (f) = Cn(f) is
assumed to be constant over multiple TXOP slots. Then we
have φn(f) = Cn(f)

n(f) . Denote xnt (f) as the actual data rate of
AP n at time slot t at channel f , the allocation scheme for
AP n can then be expressed as follows:

f∗ = argmax
f

Pnt (f), (17)

where

Pnt (f) =
φn(f)

D̃n
t

(18)

in which

D̃n
t =

(
1− 1

t

)
D̃n
t−1 +

1Txnt
t

, (19)

and D̃n
t represents the average throughput of AP n up to time

slot t. Note that only one element in xnt ∈ RF is non-zero.
After allocating one channel to an AP, the scheduler updates
the ratio Pnt (f) for the next AP’s allocation. The proposed
greedy algorithm considering PF [27] on APC is specified in
Algorithm 2. In Algorithm 2, each AP is allocated with a
channel in the while-loop. The average throughput of AP n
up to time slot t is calculated. Then, the channel is chosen to
maintain the current PF. The greedy algorithm can guarantee
the asymptotic PF, and the corresponding proof is shown in
Appendix B.

Round Robin (RR) and PF have been developed as two
common scheduling strategies. Among those, PF is widely
considered in wireless networks. Different AP has different
average throughput due to the number of previously gained
TXOPs and various channel spectral efficiency. The greedy

Algorithm 2: Greedy Algorithm Considering PF on
APC.
Data: xn0 , D̃n

0 , Cn(f), and n = 0.
n(f) = 0 for all f ;
while n ≤ N do

D̃n
t ←−

(
1− 1

t

)
D̃n
t−1 +

1Txnt
t

.

f∗ ←− arg max

{
φn(f)

D̃n
t

}
where

φn(f) =
Cn(f)

n(f)
.

n←− n+ 1;
n(f)←− n(f) + 1;
Allocate AP n to f th channel;

3. Each AP uploads 
local QNN to APC 

according to step 4 in 
Algorithm 1

2. Each AP contends for 
TXOP using 

personalized QNN that 
is trained according to 

Step 1, 2, and 3 in 
Algorithm 1.

1. APC assigns primary 
channels to APs 

according to 
Algorithm 2

4. APC utilizes 
FOMAML for the global 
QNN according to step 

5 in Algorithm 1

5. APC sends the 
global QNN back to 
all APs according to 
step 6 in Algorithm 1

Fig. 4: Flow Chart of DLCA Protocol: DLCA + Greedy
Algorithm + FOMAML.

algorithm considering PF exploits these variations by allocat-
ing the primary channel to the AP with the best conditions for
the upcoming TXOP slot. As a design approach, this approach
is superior to RR. In the end, the proposed DLCA protocol is
shown in Fig.4.

Remark 2. In Algorithm 2, the computation complexity of the
PF scheduling method is O(NF ). Similar to FOMAML, The
greedy algorithm is only triggered every period of T on APC
to reduce the communication burden between the APC and
AP. The information of instantaneous data rate xnt , average
data rate D̃n

t , and spectral efficiency Cn(f) can be exchanged
between APs and APC through the wired connection such
as Light Weight Access Point Protocol (LWAPP), wireless
connection such as DCF. FOMAML and the greedy algorithm
triggered with a suitable period has negligible impact on the
network throughput as long as the QNN is of lightweight.

IV. PERFORMANCE EVALUATION

In this section, we present simulation results for a dense
overlapping network that implements our DLCA protocol.
The performance comparison between the DLCA protocol,
SH-TXOP, and DCF RTS/CTS for the overlapping network
characterizes the superiority of our DLCA protocol. In the
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end, we evaluate proportional fairness and stability achieved
by the greedy algorithm in the DLCA protocol.

A. Throughput in Multi-AP and Multi-band Networks

With the FCC opening up the 6 GHz [28] band for un-
licensed use for 5G wireless networks, joint operation in 5
and 6 GHz is feasible with orthogonal sub-channels with a
bandwidth of 20 MHz. Our simulations consist of a fully
overlapping multi-AP network using 5 GHz and 6 GHz bands-
for a total of F sub-channels of 20 MHz. The TXOP slot is
granted to the shared APs as a multiple of 32 µs, and the
maximum amount of time granted is 8.16 ms. The TXOP is
thus set as 8.16 ms. In the simulation, AP is assumed to be
operating in the saturation mode, i.e., it is always necessary
for AP to gain TXOPs because AP needs to communicate with
its associated STAs in common Wi-Fi networks continuously.
The average value of the spectral efficiency on each channel
is 40 Mbps [3], and the spectral efficiency is assumed to
be an uniform distribution, i.e., Cn

t (f) ∼ U[1, 3] bit/s/Hz.
FOMAML mechanism and the greedy algorithm are triggered
with the period of T = 100 ms. We conduct Monte-Carlo
simulations with 100 independent trials and then take the
average of the results.

We firstly consider SH-TXOP without APC [9] as the base-
line. In the SH-TXOP protocol, APs share the universal fre-
quency band rather than operating on different sub-channels.
After a certain AP wins the wide-band TXOP, it starts to share
the TXOP on each 20 MHz sub-channel to other APs based on
round robin (RR) method, indicated by Announcement Trigger
frame (ATF) that contains the information such as the channel
allocation scheme for shared APs. For example, if there are
16 APs and 4 channels and AP 1 wins the TXOP, then AP
1 allocates the first sub-channel as the primary channel for
itself. Next, it allocates the second sub-channel to AP 2, and
etc. Each AP contends for the wide-band TXOP using IEEE
802.11 DCF basic [8]. The Backoff Window size of DCF basic
is CWmin = 32 and m = 6. Note that DCF basic method can
be utilized in this scenario. Since the packet size in the process
of gaining the sharing opportunity of TXOP is negligible, DCF
basic is applicable in such a scenario. However, DCF basic
is well known to perform worse than DCF RTS/CTS [8]. To
futher enhance the DCF RTS/CTS, a model is proposed in [29]
that increases the network throughput by optimizing the initial
backoff window size for DCF RTS/CTS. For this simulation,
all APs are equally allocated to a fixed primary channel at the
beginning. For example, if there are 16 APs and 4 channels,
then AP 1−4 are allocated to the first channel as their primary
channel, and AP 5 − 8 are allocated to the second channel
as their primary channel and so on. Next, each AP contends
for TXOP in its primary channel using DCF RTS/CTS with
the optimized initial backoff window size [29]. This method
in the simulation is called RTS/CTS. The aggregate network
throughput x of the entire network with N APs for this method
is expressed as follows:

x =

N∑
n=1

xn =

N∑
n=1

znLU

L+ δ
, (20)

TABLE II: System Parameters for Multi-AP Networks

Parameters Value
slot time (µs) 50

SIFS (µs) 28
DIFS (µs) 128

PHY Header (µs) 20
TXOP (µs) 640

CTS Timeout (µs) 300
ACK Timeout (µs) 300

Headers (Bytes) 36
ACK (Bytes) 14 + PHY Header
RTS (Bytes) 20 + PHY Header
CTS (Bytes) 14 + PHY Header
ATF (Bytes) 16 + PHY Header

where L is the information bits in one packet, δ = δ0U stands
for the protocol overhead in the unit of bits. The channel bit
rate U can be further written as the product of the sub-channel
bandwidth and the link spectral efficiency. The above equation
is further explained in Appendix C. The system parameters are
summarized in Table II.

We utilize PyTorch [30] to train QNN for DLCA. The
simulations are conducted on a server with a CPU (Intel
Core i7-9700k) and a GPU (NVIDIA GeForce GTX 2080Ti)
in Python language. QNN is constructed by h = 5 fully
connected layers with 64 neurons in each layer, which is
illustrated in Fig.5. The operation of the QNN starts by
taking the state vector as the input. Then, it outputs two Q
values corresponding to action - transmission and action - wait
respectively. AP decides to transmit if the corresponding Q
value is larger and wait otherwise. Table III lists the hyper-
parameter of the deep Q-learning. ReLU (Rectified Linear
Unit) defined as

f(x) = x+ = max(0, x) (21)

is utilized as the activation function to the input of each neuron
in the QNN. Unlike other activation functions such as the
sigmoid function, ReLu can help the QNN avoid the vanishing
gradient issue because the gradient of f(x) when x > 0 is
always a constant. Therefore, choosing ReLu can prompt faster
learning process and better performance.

TABLE III: Hyper-Parameters of QNN

Parameters Value
State size 40
Batch size 32

Learning rate ρ 0.001
γ in Eq (12) 0.9
ε in Eq (10) 0.05
η in Eq (3) 0.5

Step size of λ 0.1
Gradient descent step size u 0.25

The simulation result of the network throughput is shown
in Fig.6. We validate the precision of the RTS/CTS model
by showing that the simulation results are close to their
corresponding theoretical results. Three curves related to the
DLCA protocol are plotted respectively. The curve labeled
with DLCA reflects the simulation of running distributed deep
reinforcement learning on each AP without primary channel
allocation from the APC. In this case, each AP only has a fixed
primary channel allocation similar to the RTS/CTS simulation.
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Fig. 5: QNN: Fully-connected Neural Network.

On the other hand, DLCA + greedy method represents the
simulation of running distributed deep reinforcement learning
on each AP with primary channel allocation decision from
APC. Note that APC does not update QNN globally in DLCA
+ greedy method. In Fig.6(b), when the number of APs is
small, the performance of DLCA and DLCA + greedy method
is better than SH-TXOP. The reason is that when the number
of APs is N = 8 for both DLCA methods, each AP has its
own exclusive primary channel and no collision happens at all,
which can be observed from Fig.7. However, 8 APs have to
contend for the wide-band TXOP for SH-TXOP. The average
slots wasted in the collision for DLCA and DLCA + greedy
method are zero, not to mention that SH-TXOP has more
average IDLE slots per TXOP than DLCA + greedy. As the
number of APs increases, SH-TXOP outperforms DLCA and
DLCA + greedy. This is because some APs can develop very
aggressive TXOP contention policy without the supervision
from FOMAML. Note that each AP only wants to maximize
its own total reward. Hence, it is possible that APs assigned to
one channel are all aggressive and we can view this training
process as Prisoner’s Dilemma; that is, if one AP does not
develop aggressive TXOP contention policy, then it has no
chance to get any TXOP forever. Therefore, it is likely that
DLCA will lead to high collision probability. However, SH-
TXOP and DCF RTS/CTS have backoff counter to avoid colli-
sion probability if collision happens. Hence, as the number of
APs increases, average slots wasted in collisions and average
IDLE slots per TXOP all increases for DLCA and DLCA
+ greedy in Fig.7 and 8, which leads to severe performance
loss. Although both RTS/CTS method and DLCA + greedy
+ FOMAML perform well, DLCA + greedy + FOMAML
provides higher network throughput than RTS/CTS method
by 3% for the total number of AP ranging from 8 to 56. This
is because the overhead remains in RTS/CTS and the backoff
window takes up time slots without sending any data packet.
One can observe the RTS/CTS method has more average
collision slots and IDLE slots from Fig.7 and 8. In Fig.6(c), for
the case of 16 channels with 8 APs, only half of the channel
resources are utilized. Hence, the network throughput grows

linear with increasing number of APs at the beginning. In
Fig.6, DLCA + Greedy + FOMAML outperforms SH-TXOP
by 10% when the number of APs is N = 56 in average of three
cases. The advantage of FOMAML can also be demonstrated
in Fig.9, during the training process, the network throughput
in both methods have large variance in the initial learning
phase. However, DLCA + greedy + FOMAML has faster
convergence rate and smaller variance. This can be attributed
to the fact that each AP’s self-training only reaches local
optimality, emphasizing the important role of FOMAML as the
global optimizer that achieves the necessary AP coordination
for throughput maximization.

B. PF in Multi-AP and Multi-band Networks

In the above section, aggregate network throughput is simu-
lated. However, aggregate network throughput does not reflect
the throughput of each AP, leading to a potential issue that
the maximum throughput can always be achieved by having
the same AP holding the channel, and no fairness exists at
all. Hence, fairness must be guaranteed so that each AP in the
network can utilize the TXOP for UL/DL communication with
associated STAs. The greedy algorithm has been proven to
enable PF among APs asymptotically previously. This section
implements simulations to study a network utility metric that
describes PF and network throughput. Meanwhile, the stability
of our proposed algorithm is also investigated.

To be consistent with the notations in Appendix.B, the
network utility is defined as

∑N
n=1 log(D̄n), where D̄n is the

average data rate of AP n. We simulate the network utility
of DLCA + greedy + FOMAML, SH-TXOP. and RTS/CTS
for comparison. In Fig.10, DLCA protocol performs better
than RTS/CTS by 13.8% and SH-TXOP by 28.3% when the
number of APs equals N = 56. In

∑N
n=1 log(D̄n), the log

term punishes the AP that has low throughput. Therefore, the
network utility demonstrates joint network throughput and PF.
We next show the stability of DLCA + greedy + FOMAML
in terms of AP’s PF ratio, which is expressed as

bn =
D̄n

φn
. (22)

According to Eq (28), the closer bn of each AP is to each other,
the better PF is achieved. In Fig.11, the PF ratios of 3 APs
converge to 0.87, 0.84, and 0.81 respectively after 30000 steps.
Then, we exchange the value of spectral efficiency Cn

t (f)
between AP 1 and AP 3 at step 30000 to demonstrate the
stability. After a sudden change at step 30000, three curves
experience drastic oscillation. Then, we can observe that the
curves of AP 1 and AP 3 converge again eventually. This result
indicates that the fairness broken by a sudden network change
can be restored very quickly. Hence, our greedy algorithm is
shown to be robust and efficient.

In the end, we conclude that the design of multi-AP network
with APC has a higher upper limit than the multi-AP network
without APC in terms of the network throughput. The choice
of RTS/CTS or DLCA + greedy + FOMAML is constrained
by the hardware and energy cost. For the AP with limited
power constraint, one can choose RTS/CTS with lower power
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Fig. 6: Network Throughput vs Number of APs.
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Fig. 7: Average Collision vs Number of APs. The Number
of Channel is F = 8.
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Fig. 8: Average IDLE vs Number of APs. The Number of
Channel is F = 8.

consumption but the performance loss, especially the lack of
PF, might lead to an unsatisfied user experience. On the other
hand, if the power budget is high enough and each AP is
able to run light-weight QNN with suitable CPU or GPU, AP
can reach higher network throughput, and proportional fairness
among APs can be also guaranteed.

V. CONCLUSION

In this paper, we propose enhancements to the RRM archi-
tecture for dense overlapping Wi-Fi networks that align with
the proposed coordinated AP operation in Wi-Fi 7 (802.11be).
Specifically, we develop a novel multi-AP coordination sys-
tem architecture with DLCA protocol. The proposed protocol
considers not only the network throughput maximization but
also the proportional fairness among APs. The performance of
DLCA related algorithms is then evaluated via simulations and
compared with SH-TXOP protocol and RTS/CTS as bench-
marks. The numerical results show that DLCA outperforms
SH-TXOP and state-of-the-art RTS/CTS with an optimized
initial back-off window in terms of network throughput and
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Fig. 9: Convergence: Throughput vs Training Steps. The
Number of Channel F = 8, The Number of APs N = 16.

Each time step is one round of gradient descent in Eq. (13).
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Fig. 10: Network Utility (
∑N
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APs. The number of channel is F = 8.

network utility. Moreover, convergence rate and stability are
also demonstrated in the simulation.

This paper studies the fully overlapping dense Wi-Fi net-
works. In our future work, we will investigate partially over-
lapping dense Wi-Fi networks. In such a case, optimization
for dynamic AP coordination set, frequency reuse in different
coordination set for 802.11be, and coexistence with other
protocols will be considered.

APPENDIX

A. Reward Estimation Method

Algorithm 3 is a modified version of Monte Carlo method
in [24] that aims to estimate reward and help Q-learning
converges faster. For AP n operating in f th frequency channel,
we initialize the total reward to be zero in step 1. Then, if
the current action ant (f) = 1, we use while loop to find all
feedback of the transmission action (action value is equal to
1) in the state vector. Suppose one of the feedback is ACK,
we add one to the weighted total reward value in step 2 since
it is a successful transmission. Otherwise, we minus one to
punish the weighted total reward value in step 3. Suppose the
current action ant (f) = 0, then the total reward value is 1 if
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Fig. 11: PF ratio bn vs Time Step with Greedy Algorithm.
PF ratios of 3 APs out of N = 18 APs on F = 8 channels

are depicted. Each time step is one slot time in Tab. II.

busy channel is sensed in step 4 since the AP successfully
avoids a potential collision. The total reward value is set to
−1 as a punishment if idle channel is sensed in step 5.

Algorithm 3: Reward estimation method.
Data: f , snt , feedback for all actions in snt .
Result: r(snt , ant , snt+1)
1. r(snt , a

n
t , s

n
t+1)← 0;

if ant (f) == {1} then
l← L;
while l ≥ 0 do

if the feedback of ant−l(f) = 1 is ACK then

2. r(snt , a
n
t , s

n
t+1)← η×r(snt , ant , snt+1)+1

else

3. r(snt , a
n
t , s

n
t+1)← η×r(snt , ant , snt+1)−1

l← l − 1;

else
if ont+1(f) == {1} then

4. r(snt , a
n
t , s

n
t+1)← 1

else
5. r(snt , a

n
t , s

n
t+1)← − 1

B. Proof of Asymptotic Proportional Fairness

We show that the greedy algorithm considering PF maxi-
mizes the aggregate throughput while guaranteeing the asymp-
totic PF on one channel. Denote pnt (f) as the probability of
the AP n at time slot t being assigned with channel f . Assume
the spectral efficiency does not change within t slots, then we
have

D̄n
t =

∑
f

∑
t

pnt (f)φn(f). (23)

Therefore, the network utility maximization problem [27] is

max
∑
n

log(
∑
f

∑
t

pnt (f)φn(f)) (24)

s.t.
∑
n

∑
f

pnt (f) ≤ 1, pnt (f) ≥ 0, ∀n, f, t. (25)

Note that the above problem is a convex problem since log
function with composition of an affine function still preserves
concavity. Applying Lagrange multipliers, we obtain the fol-
lowing:∑

n

log(
∑
t

∑
f

pnt (f)φn(f))−
∑
t

λt(
∑
n

∑
f

pnt (f)− 1)

(26)
Taking the derivative w.r.t. pnt (f), we obtain the optimal

solution as

φn

D̄n
t

− λ∗ = 0 if pnt (f) > 0, (27)

Asymptotically, the PF algorithm helps the AP network to
reach the PF, i.e.,

lim
t−→∞

D̄1
t

φ1
= · · · = lim

t−→∞
D̄n
t

φn
. (28)

Hence, allocation method shown in Eq. (17) follows the
optimal condition of the 11be network utility maximization
problem with PF.

C. Performance of Multi-AP IEEE 802.11 RTS/CTS Networks

Fig. 12: Graphic illustration of successful transmission and
collision in DCF networks with the RTS/CTS access

mechanism.

Fig. 13: Graphic illustration of successful transmission and
collision with DCF basic mechanism.

The aggregate network data rate x is the average number of
information bits successfully transmitted per second, which is
the sum of the average number of information bits that AP n
successfully transmits per second xn

x =

N∑
n=1

xn, (29)

The duration to transmit a packet consisting of L information
bits is given by L

U + δ0, where U is the channel bit rate, and
δ0 is the protocol overhead in seconds. With the RTS/CTS
mechanism and DCF basic illustrated in Fig. 12 and 13
respectively, δ0 is given by

δRTS0 =
RTS + CTS + ACK

Ub
+ Header + DIFS + 3× SIFS

δbasic0 =
ACK
Ub

+ Header + DIFS + SIFS,

(30)
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where Ub denotes the basic rate. In the end, the data rate xn

of each BSS i can be expressed as follows:

xn =
Lzn

L
U + δ0

=
znLU

L+ δ
,

where δ = δ0U stands for the protocol overhead in the unit
of bits. The channel bit rate U can be further written as the
product of the channel bandwidth of each AP and the link
spectral efficiency. The details of derivation of zn is related to
parameters of τT and τF [29]. As for the throughput of Multi-
AP IEEE 802.11 DCF basic network without APC, τDCFT =
τT − (RTS+CTS+ 2×SIFS). τDCFF is equal to τDCFT in
basic DCF since there is no RTS/CTS and the collision leads
to a waste of whole packet time instead of RTS/CTS with short
duration, which is the reason why RTS/CTS can enhance the
system throughput.

REFERENCES

[1] L. Zhang, H. Yin, Z. Zhou, S. Roy, and Y. Sun, “Enhancing WiFi mul-
tiple access performance with federated deep reinforcement learning,”
in IEEE 92nd Vehicular Technology Conference (VTC2020-Fall).

[2] Cisco, “Cisco Annual Internet Report (2018–2023),” White Paper, Cisco
System Inc., Mar. 2020.

[3] D. Lopez-Perez, A. Garcia-Rodriguez, L. Galati-Giordano, M. Kasslin,
and K. Doppler, “IEEE 802.11be Extremely High Throughput: The Next
Generation of Wi-Fi Technology Beyond 802.11ax,” IEEE Communica-
tions Magazine, vol. 57, no. 9, pp. 113–119, Sept. 2019.

[4] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A Tutorial
on IEEE 802.11ax High Efficiency WLANs,” IEEE Communications
Surveys Tutorials, vol. 21, no. 1, pp. 197–216, Sep. 2019.

[5] J. Liu, T. Pare, Y. Seok, J. Wang, F. Hsu, and J. Yee, “Multi-AP
Enhancement and Multi-Band Operations,” Mediatek Inc., Tech. Rep.
IEEE 802.11-18/1155r1, Jun. 2018.

[6] S. Naribole, W. B. Lee, K. Srinivas, R. Duan, and A. Ranganath, “Shared
TXOP Protocol,” Samsung Inc., Tech. Rep. IEEE 802.11-20/0277r1,
Mar. 2020.

[7] B. Kwak, N. Song, and L. Miller, “Performance Analysis of Exponential
Backoff,” IEEE/ACM Transactions on Networking, vol. 13, no. 2, pp.
343–355, Apr. 2005.

[8] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE Journal on Selected Areas in Commu-
nications, vol. 18, no. 3, pp. 535–547, Mar. 2000.

[9] W. Ahn, “Novel Multi-AP Coordinated Transmission Scheme for 7th
Generation WLAN 802.11 be,” Entropy, vol. 22, no. 12, p. 1426, 2020.

[10] L. Sequeira, J. L. de la Cruz, J. Ruiz-Mas, J. Saldana, J. Fernandez-
Navajas, and J. Almodovar, “Building an SDN Enterprise WLAN Based
on Virtual APs,” IEEE Communications Letters, vol. 21, no. 2, pp. 374–
377, 2017.

[11] Y. Wang, X. Li, P. Wan, and R. Shao, “Intelligent Dynamic Spectrum
Access Using Deep Reinforcement Learning for VANETs,” IEEE Sen-
sors Journal, vol. 21, no. 14, pp. 15 554–15 563, Feb. 2021.

[12] H. Song, L. Liu, J. Ashdown, and Y. Yi, “A Deep Reinforcement
Learning Framework for Spectrum Management in Dynamic Spectrum
Access,” IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11 208–
11 218, Jan. 2021.

[13] W. Ahsan, W. Yi, Z. Qin, Y. Liu, and A. Nallanathan, “Resource
Allocation in Uplink NOMA-IoT Networks: A Reinforcement-Learning
Approach,” IEEE Transactions on Wireless Communications, vol. 20,
no. 8, pp. 5083–5098, Mar. 2021.

[14] H. Ding, F. Zhao, J. Tian, D. Li, and H. Zhang, “A Deep Reinforcement
Learning for User Association and Power Control in Heterogeneous
Networks,” Ad Hoc Networks, vol. 102, p. 102069, May 2020.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level Control through Deep Reinforcement Learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[16] Y. Kihira, Y. Koda, K. Yamamoto, T. Nishio, and M. Morikura, “Adver-
sarial Reinforcement Learning-based Robust Access Point Coordination
against Uncoordinated Interference,” arXiv preprint arXiv:2004.00835,
2020.

[17] Y. Yu, T. Wang, and S. Liew, “Deep-reinforcement Learning Multiple
Access for Heterogeneous Wireless Networks,” IEEE Journal on Se-
lected Areas in Communications, vol. 37, no. 6, pp. 1277–1290, Mar.
2019.

[18] Y. Yu, S. C. Liew, and T. Wang, “Non-uniform Time-step Deep Q-
network for Carrier-sense Multiple Access in Heterogeneous Wireless
Networks,” IEEE Transactions on Mobile Computing, Apr. 2020.

[19] ——, “Multi-Agent Deep Reinforcement Learning Multiple Access
for Heterogeneous Wireless Networks with Imperfect Channels,” IEEE
Transactions on Mobile Computing, pp. 1–1, Feb. 2021.

[20] X. Ye, Y. Yu, and L. Fu, “Multi-channel Opportunistic Access for
Heterogeneous Networks Based on Deep Reinforcement Learning,”
IEEE Transactions on Wireless Communications, pp. 1–1, July 2021.

[21] M. G. Bellemare, G. Ostrovski, A. Guez, P. Thomas, and R. Munos,
“Increasing the action gap: New operators for reinforcement learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30,
no. 1, 2016.

[22] C. Watkins and P. Dayan, “Technical Note: Q-Learning,” Machine
learning, vol. 8, no. 3-4, pp. 279–292, May 1992.

[23] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, Nov. 2017.

[24] R. Sutton and A. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[25] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory
of gradient-based model-agnostic meta-learning algorithms,” in Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, 2020,
pp. 1082–1092.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT press,
2016.

[27] S. Rayadurgam and Y. Lei, Communication Networks: An Optimization,
Control, and Stochastic Networks Perspective, Cambridge University
Press, 2013.

[28] Federal Communications Commission (FCC), “Unlicensed Use of the 6
GHz Band,” Docket No. 17-183, Apr. 2020.

[29] Y. Gao, L. Dai, and X. Hei, “Throughput Optimization of Multi-
BSS IEEE 802.11 Networks With Universal Frequency Reuse,” IEEE
Transactions on Communications, vol. 65, no. 8, pp. 3399–3414, May
2017.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An Im-
perative Style, High-performance Deep Learning Library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8026–8037.


	I Introduction
	I-A Multi-AP Coordination Architecture and Related Work
	I-B Contribution

	II System Model and Problem Formulation of DLCA
	II-A Proposed Multi-AP network
	II-B Channel Access Mechanism
	II-C Maximum Achievable Data Rate
	II-D Access Point Model
	II-E System Reward

	III DLCA Protocol
	III-A Q-learning
	III-B Gradient descent in Deep Q-Learning
	III-C AP Coordination: Greedy Algorithm

	IV Performance Evaluation
	IV-A Throughput in Multi-AP and Multi-band Networks
	IV-B PF in Multi-AP and Multi-band Networks

	V Conclusion
	Appendix
	A Reward Estimation Method
	B Proof of Asymptotic Proportional Fairness
	C Performance of Multi-AP IEEE 802.11 RTS/CTS Networks

	References

