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Abstract—Utilities in California conduct Public Safety Power
Shut-offs (PSPSs) to eliminate the elevated chances of wildfire
ignitions caused by power lines during extreme weather
conditions. We propose Wildfire Risk Aware operation planning
Problem (WRAP), which enables system operators to pinpoint the
segments of the network that should be de-energized. Sustained
wind and wind gust can lead to conductor clashing, which
could ignite surrounding vegetation. The 3D non-linear vibration
equations of power lines are employed to generate a dataset that
considers physical, structural, and meteorological parameters.
With the help of machine learning techniques, a surrogate
model is obtained which quantifies the risk of wildfire ignition
by individual power lines under extreme weather conditions.
The cases illustrate the superior performance of WRAP under
extreme weather conditions in mitigating wildfire risk and serving
customers compared to the naive PSPS approach and another
method in the literature. Cases are also designated to sensitivity
analysis of WRAP to critical load-serving control parameters in
different weather conditions. Finally, a discussion is provided
to explore our wildfire risk monetization approach and its
implications for WRAP decisions.

Index Terms—wildfire, power system resilience, risk
quantification, surrogate models, weather conditions.

I. INTRODUCTION
A. Motivation

W ILDFIRES are among the threats that could potentially
lead to disastrous events worldwide. Arguably, fire

seasons are getting longer and more frequent, primarily due
to climate change and global warming [1]. The wildfire
frequency and the burned area in the western U.S. have grown
exponentially since 1950 [2]. The causes of wildfire ignition
include natural sources (lightning), human activities (arson,
campfire, etc.), equipment faults, and power lines, among
other things [3]. Pacific Gas & Electric Company (PG&E)
declared 414 fire ignition events during 2015-2017 caused by
electric power lines [4]. According to the historical data during
the period 1960-2009 in Southern California, fires ignited by
power lines burn on average ten times the area burnt as a
result of fires initiated by other sources [5]. Extreme winds,
such as the ones occurring during the fall season in Southern
California, not only increase the risk of power line-related
ignitions but also facilitate the propagation of fire. Reportedly,
wildfires caused by power lines account for almost half of

Reza Bayani is with University of California San Diego, La Jolla, CA,
92093, USA, and San Diego State University (email:rbayani@ucsd.edu).
M. Waseem and S. D. Manshadi are with Department of Electrical and
Computer Engineering, San Diego State University, San Diego, CA, 92182,
USA (email:{mwaseem2282;smanshadi}@sdsu.edu). Hassan Davani is with
Department of Civil, Construction, and Environmental Engineering, San Diego
State University, San Diego, CA, 92182, USA (email:hdavani@sdsu.edu).

the most destructive fires in California history [6]. Conductor
clashing (phase to phase faults), fall of the line on the ground
(phase to ground faults), arcs, and contact with the surrounding
vegetation are among the incidents related to power lines that
could cause ignitions [7].

In addition to the wind, temperature, humidity, and
vegetation are among the meteorological and geographical
factors correlated with the chances of fire ignitions by power
lines [8], with the wind as the leading factor. Although low
wind speeds will cool off conductors and can benefit dynamic
line rating [9], high wind speeds can lead to faults within
power lines. According to the analysis of the 11-year outage
record data provided by San Diego Gas & Electric (SDG&E),
for every 25 km/h increase in the wind gust speed, the outage
probability is increased ten times [5]. That is one reason why
higher wind speeds are associated with higher chances of
wildfire ignition.

High sustained wind speeds (average wind speed lasting
over 10 minutes) typically occur during California’s late
summer and fall seasons. Wind gusts could significantly affect
the swing angle of the conductors [10]. The combination of
high sustained wind speeds and wind gusts could lead to
conductor clashing, which, together with hot and dry weather
conditions, dramatically increases the risk of wildfires taking
place. The clashing of the energized power line conductors
may cause vaporization and melting of the conductor materials
and ejection of the molten metal as small particles [11].
Drop of hot particles due to conductor clashing on dried
vegetation or direct contact between conductors and vegetation
can potentially ignite wildfires [12]. That is why utilities across
California adopted Public Safety Power Shut-offs (PSPS) to
avoid such ignitions under extreme conditions with wind gusts
exceeding 22.8 m/s.

The California Public Utilities Commission allows utilities
to deliberately cut off power to electrical lines as
a preventive measure in high-risk situations with a
looming threat of wildfire ignition [6]. From 2013 to
2020, PG&E, SDG&E, Southern California Edison, and
PacifiCorp collectively performed 51 PSPS events in multiple
locations within California, which impacted 3.2 million
customers [13]. However, a PSPS event has its own risks
and unfavorable consequences, particularly for medically
vulnerable populations and low-income communities [8]. In
October 2019, power shut-offs by PG&E affected 1.8 million
customers, with outages lasting more than five days in some
cases. PSPS events cost the California economy in the order of
billion dollars [14], while a lack of power supply could lead
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to casualties [15]. It can be concluded that although PSPS
schedules are a practical approach to proactively mitigating
wildfire risk, they could impose unnecessary difficulties if
blanket outages are conducted throughout a power grid within
a region. In this work, we propose a method that can pinpoint
the network segments with a higher fire ignition risk, which
could help PSPS events be targeted towards those lines of the
grid instead of an entire section of the grid.

Although several meteorological phenomena could
influence wildfire ignition risk, this study focuses on
high wind speed and gust conditions. This choice is
mainly because the impact of wind speed on power lines’
displacement can be modeled and explained by power line
motion equations, allowing for a scientific analysis of windy
conditions. Additionally, from the practical point of view,
PSPS events are scheduled based on extreme wind speed
conditions/predictions rather than other factors. Throughout
this paper, extreme weather situations denote conditions with
high wind speeds. We also limit this study to modeling
conductor clashing rather than other sources of wildfire
ignition inside a power system, such as phase to ground faults
and contact with the surrounding vegetation, given conductor
clashing is the only cause modeled in a generalized approach.
Currently, no models account for other ignition causes inside
a power system.

With the increase in the availability of meteorological
sensing data and estimation techniques with high granularity,
this paper presents a scientific setup for reflecting the impact
of wildfire ignition risk induced by strong winds on the
power system operation. To this end, we introduce a machine
learning-based surrogate model that can instantly quantify
the risk of wildfire ignition for each line of the grid. The
surrogate model predicts and assigns scores that represent
the conductor-clashing probability of a power line based on
real-time wind speed data. The procured quantified measure
will pave the way to incorporate wildfire risk assessment into
operational planning models within grids at the risk of wildfire.
We introduce the Wildfire Risk Aware operation planning
Problem (WRAP), which integrates the generated wildfire risk
scores into the power system operation. The resulting model
can be used to determine precisely which sections and lines
of the grid should be subject to PSPS, thereby minimizing the
area and population impacted by unnecessary outages while
taking the potentially disastrous impacts of extreme winds into
consideration.

B. Literature Review

Extensive research has been dedicated to the assessment and
mapping of wildfire ignition risk within different regions of the
world. A fire occurrence prediction model is presented in [16]
for the northeast regions of China, where wildfire probabilities
are obtained from ten variables such as altitude, slope, and
distance to structures. In [17], eight factors are integrated into
a regression model to model wildfire ignition risk in Portugal.
These studies tend to predict the wildfire risk regardless of
the ignition cause and focus on historical data. As a result,
various overlays have been developed through the Geographic
Information System (GIS). Several researchers in the field of

power systems have proposed wildfire risk assessment models
with the help of these tools. Authors in [18] propose a method
for the selection of power lines that should be modified to
mitigate wildfire ignition risk, but no model is considered for
the operation of the electricity network. A similar approach
based on the spatio-temporal probability of wildfire ignition
within a power system is utilized in [19]. Other methods
for wildfire risk assessment within power lines according to
historical and geographical data are proposed in [20], where
estimation functions such as logistic regressions [21], and
Bayes network [22] are utilized. However, wildfire risk values
used in these works are obtained through GIS overlays based
on historical data and location, rather than ignitions induced
by power lines.

A review of electricity grid vulnerabilities amid natural
disasters, including wildfires, is presented in [23]. A resilient
mitigation strategy for the short-term operational planning of a
power system during wildfires considering the thermal effects
of wildfires on the dynamic line rating is given in [24]. The
authors in [7] have proposed a learning-based algorithm for
early detection of wildfire ignitions due to high impedance
faults. An overview of wildfire risk mitigation plans such
as PSPS schedules is presented in [25], and several risk
management strategies, which are carried out by utilities, are
explored. An optimization framework to balance the wildfire
risk and power shut-offs is presented in [26]. Wildfire risk
in this work is solely based on the energization status of
components in the electricity grid; the impact of other factors,
such as weather conditions, is not incorporated. The authors
in [27] developed a fire hazard prevention system based
on meteorological factors, including extreme wind speed.
However, it is not clear how the data is modeled to forecast
hazards, and no model is proposed to reflect wildfire risk in
the scope of preventive measures. The probability of wildfire
ignition due to line fault and arc ignition is computed in [28],
and the effect of wind is also explained. However, no model
is proposed to incorporate the resulting risk values into power
system operation. An overview of the recent trends in the
relevant literature is displayed in Table I.

TABLE I
COMPARISON OF THE STATE OF THE ART LITERATURE

Reference
Power
system
model

Model
ignition
by lines

Model
weather

conditions

Integrated
risk

optimization
[7] - X - -

[18], [20], [22], [21] - - X -
[19], [27] X - X -

[24] X X - -
[28] X X X -
[26] X X - X

This work X X X X

It is noticed in Table I that no work in the literature
has proposed a model that incorporates the wildfire ignition
risk of power lines into the system’s operation planning.
The only exception is reference [26] where a risk model is
integrated into the operation problem. However, the authors
obtain relative risk scores rather than using a physical model,
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and the impacts of weather conditions are neglected. As
suggested in a review article on wildfire risk management
in power grids [29], there is a lack of research on wildfire
prediction when power grid infrastructures could potentially
cause the fire. A gap in assessing the impact of meteorological
conditions on power lines using a physical model and building
a scoring mechanism to quantify the probability of conductors
clashing exists in the literature. This paper aims to fill this gap
by presenting a surrogate model that can efficiently quantify
the risk of wildfire ignition under extreme weather conditions
considering the wind speed, wind gust, wind direction, and
the structure of the power lines, including span, conductor
diameter, and phase clearance.

C. Summary of the Contributions

The contributions of this paper are outlined as follows:
1) A method for quantifying the risk of power line

conductor clashing under extreme wind conditions is presented
based on a physical model. We introduce a scoring method to
determine the extent to which each conductor is clashing with
nearby conductors. The predicted score ranges between 0 and
1, where 0 means no clashing is happening, while 1 means
the whole conductor is under clashing. This high-granularity
scoring system provides a well-quantified risk of wildfire for
each individual power line. The resulting wildfire risk creates
a scientific foundation to quantify the risk of the operation
of each specific power line during specific extreme weather
conditions.

2) A comparison of different learning algorithms for
predicting the risk of wildfire is performed, and the most
accurate model is proposed to predict the conductor-clashing
score. The final choice is compared and verified against the
nonlinear motion model, and presents a desirable performance
which allows it to be confidently utilized as a surrogate model
for the original nonlinear equations.

3) We present WRAP to incorporate the quantified wildfire
hazard risk into power system operation. No study has
proposed a planning model which is able to integrate
the wildfire ignition risk with power system operation.
With the availability of the required meteorological data
predictions, WRAP supports decision-makers in deciding on
the de-energizing of power lines for PSPS events and provides
them with a mathematical foundation to study and analyze the
impact of extreme weather conditions on wildfire risk.

II. QUANTIFICATION OF WILDFIRE RISK SCORE

In this section, the non-linear motion of power lines
due to in-plane and out-of-plane vibrations is determined to
evaluate the impact of wind on the motion of power lines,
which is quantified as the conductor-clashing score. A dataset
is generated that considers six physical and meteorological
features to find the clashing score of each line. An advantage
of the power line motion equations is their generality. This
model is able to accurately predict power line position under
any wind condition based on physics laws, as long as all the
input data are provided. Consequently, the learning task does
not need to be limited to real-world data. We can learn a
general surrogate model by generating enough training and
test datasets for the learning task.

A. Non-linear Equations for Motion of Power Lines

Here, the vibrational model that explains the movement
of a power line under wind force is illustrated. Based on
this model, we generated a training dataset that estimates
the clashing score of a span within a power line. In-plane
vibrations occur when a power line is in the plane and placed
under gravity. Out-of-plane vibrations are perpendicular to the
plane above. The spatial configuration of a power line is shown
in Fig. 1, where P (x, t), P (y, t), and P (z, t) correspond to the
components of external excitation along the x, y, and z-axes,
respectively.

Linear load 

y-axis

x-axis

𝑂

z-axis

𝑃(𝑧, 𝑡)
𝑃(𝑥, 𝑡)

𝑃(𝑦, 𝑡)

Initial state

Dynamic state

Sag

Span

Fig. 1. Spatial configuration of the power line

The 3D geometric non-linear vibration equations of a
power line are established using Hamilton’s principle [30].
Based on the boundary conditions and modeling assumptions,
the 3D equations are simplified to 2D equations. Galerkin’s
modal truncation method converts 2D continuous Partial
Differential Equations (PDEs) to discrete PDEs [30]. The
discrete equations displayed in (1) represent the coupled
in-plane and out-of-plane non-linear motion of the power line.

a1q̈ν(t) + a2qν(t) + a3q
2
ν(t) + a4q

2
ω(t) + a5q

3
ν(t)

+ a6q
2
ω(t)qν(t) + a7q̇ν(t) = Pν (1a)

b1q̈ω(t) + b2qω(t) + b3qν(t)qω(t) + b4q
2
ν(t)qω(t)

+ b5q
3
ω(t) + b6q̇ω(t) = Pω (1b)

Here, qν and qω respectively denote the generalized
coordinates in x- and z-axes of a power line. The equations
for acquiring the parameters a1 − a7, b1 − b6, and the initial
conditions are given in [30].

B. Wind Effect on the Motion of Power Lines

A wind gust is a transient increase in the wind speed. It
occurs when there is an abrupt change from high pressure
to low pressure. It is ephemeral in nature and usually lasts
for 20 seconds. The discrete wind gust is used to assess
the conductors response to significant wind disturbances. The
mathematical representation of a discrete wind gust is given
in (2).

Vwind =


0 x < 0

Vm

2

(
1− cos( πxdm )

)
0 ≤ x ≤ dm

Vm x > dm

(2)
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Here, Vwind is the resultant wind velocity in the power
line body axis frame, Vm is the wind gust amplitude, dm is
the length of gust, and x is the traveled distance. The gust
length is the range over which the gust builds up, and the gust
amplitude represents the increase in wind speed developed by
the gust. The following assumptions are considered for the
wind-induced vibrations of a power line.

1) The wind load acts in the out-of-plane direction of the
power line. This is because the effect of wind load on
power line weight is negligible.

2) The wind speed loading effect on the vibrations of power
line is considered, but the aerodynamic effects are not
considered. It is assumed that the wind load is considered
constant and forces such as drag and lift are not modeled.

The external excitation due to wind in x-axis direction
P (x, t) and z-axis direction P (z, t) are expressed in (3).

P (x, t) = 0.5ρaDcCD(va−x − ν̇c)2 (3a)

P (z, t) = 0.5ρaDcCD(va−z − ω̇c)2 (3b)

Here, ρa is the density of air, Dc represents power line
width facing the wind, CD represents power line shape factor,
and va−x and va−z represent wind speed along the x and
z-axes, respectively. The in-plane and out-of-plane power
line vibrational velocities are represented by ν̇c and ω̇c,
respectively. Based on the above assumptions, the expressions
for a7, b6, Pv , and Pw are updated considering the initial
values of the state variables and the design hyper-parameters
of the power line. The in-plane and out-of-plane responses of
the power line using the Galerkin method [31] are represented
by νc(y, t) and ωc(y, t) respectively and are given in (4), where
Lc denotes the span of the power line.

νc(y, t) = sin
(πy
Lc

)
× qν(t) (4a)

ωc(y, t) = sin
(πy
Lc

)
× qω(t) (4b)

Consequently, a new solution is obtained for (1), which
incorporates the impact of wind speed on power line motion.

C. Wildfire Risk Score Quantification

The first step in solving (1) is transforming it into a
first-order differential equation through (5):

Y1 = qν , Y2 = q̇ν , Y3 = qω, Y4 = q̇ω (5)

Applying this transformation step turns (1) into a system
of four first-order differential equations, which are solved by
the Runge-Kutta method [32]. These methods are a group of
numerical iterative techniques used to obtain the approximate
solutions of ordinary differential equations. For example,
consider the differential equation ẏ = f(x, y) with the initial
condition y(x0) = z0. If this function is discretized with a
granularity of h, then applying the fourth-order Runge-Kutta
method will result in an accumulative error in the order of
O(h4).

To obtain the wildfire ignition risk of power lines, we
first segregate each line into several segments. Solving (1)

in the presence of the wind-induced forces presented in (3)
determines the spatial position of each segment of a line
at any given time. We suppose two horizontally (vertically)
adjacent lines will clash with each other if the value of qω
(qν) becomes greater than a certain threshold, which is set
based on the distance between two neighboring conductors.
Solving the motion equations for all segments of a line will
determine the ratio of the line segments that are clashing. As
a result, a score ranging between 0 and 1 is obtained, which
determines the extent to which a power line is in contact with
the neighboring conductors.

D. Data Processing and Feature Importance Analysis

Different features and meteorological conditions such as the
span of the power line, conductor diameter, phase clearance,
wind speed, wind gust, and wind direction angle affect the
wildfire risk score. We present a surrogate machine learning
model that instantly returns a high-accuracy approximation
of the risk value without solving the power line motion
equations for several segments of a line. In order to find
the surrogate model, first a training dataset is generated
according to different ranges of features based on the practical
characteristics of a power system. The total number of
observations in the dataset is 435, 600. Table II provides
a sample of the generated dataset with scores calculated
using the Runge-Kutta method. Data preprocessing comprises
feature selection (dimensions of input data) and feature
normalization (normalization of input data). Feature selection
ensures that the power line features and meteorological
conditions are contributing to predicting the score.

TABLE II
DATASET SAMPLE GENERATED USING RUNGE-KUTTA METHOD

Span
(ft)

Conductor
diameter

(mm)

Wind
speed
(m/s)

Wind
gust
(m/s)

Phase
clearance

(ft)

Wind
direction

(°)

Score
[0,1)

600 33.03 10 12 0.5 45 0
800 34.02 18 16 0.5 180 0.01
1000 31.05 28 30 0.5 90 0.12

It is necessary to quantify the importance of input features to
explore the potential improvement in the input data. The input
feature importance of the random forest algorithm is given in
Table III. For this analysis, Gini importance or Mean Decrease
in Impurity (MDI) is used, which calculates the importance
based on the number of times a feature is used to split a
node. It is clear that wind speed and wind gust are among the
important leading features, but it is also interesting to observe
the impact of span on the clashing score. Although a single
important feature cannot capture the thorough relationship
between the input and output, it is rational to choose the
significant features to predict the conductor-clashing score.
Feature normalization is helpful when features of different
ranges or scales exist.

It should be noted that the probability of power line
conductors’ clashing could be also affected by the flow of the
line. This is because the heating loss of electricity increases
conductor temperature, which expands line sag and escalates



5

TABLE III
IMPORTANCE OF INPUT FEATURES

Features Importance (%)
Wind speed 27.3
Span of line 20.9
Wind gust 13.8

Wind direction 13.5
Conductor diameter 13.0

Phase clearance 11.3

clashing probability. However, the results provided by [33]
suggest that in extreme weather conditions, which are the focus
of this work, heating loss is considerably mitigated by the
cooling effect of wind. Hence, the impact of line current on
clashing probability is neglected.

III. WILDFIRE RISK AWARE PROBLEM

This section presents WRAP, an operation planning problem
that integrates the quantified risk scores into power system
constraints. Applying WRAP to the operation planning of
a power system subject to wildfire hazard ensures that the
operational constraints of the power system are satisfied.
WRAP enables the power system operator to avoid energizing
high-risk lines under hazardous conditions. The proposed
WRAP formulation is presented in (6), which illustrates how
the procured wildfire risk quantification can be utilized in the
operational planning problem of power systems.

min
I,Pd,Pg

∑
t∈T


∑
l∈L

Kl · ψtl · Itl +
∑
i∈I

Kd(P
t
i,D − P ti,d)

+
∑
s∈S

∑
g∈G

csgP
t
g,s

 (6a)

subject to:∑
s∈S

P tg,s = P tg , ∀g ∈ G, t ∈ T (6b)

0 ≤ P tg,s ≤ P g,s, ∀g ∈ G, s ∈ S, t ∈ T (6c)∑
g∈Gi

P tg +
∑
l∈LTi

P tl =
∑
l∈LFi

P tl + P ti,d, ∀i ∈ I, t ∈ T (6d)

P g ≤ P tg ≤ P g, ∀g ∈ G, t ∈ T (6e)

αP ti,D ≤ P ti,d ≤ P ti,D, ∀i ∈ I, t ∈ T (6f)

−M(1− Itl ) + P tl ≤
θti − θtj
xl

≤ P tl +M(1− Itl ),

∀l ∈ L, t ∈ T (6g)

− P l × Itl ≤ P tl ≤ P l × Itl , ∀l ∈ L, t ∈ T (6h)

The objective function is presented in (6a), where the
summation of the conductor clashing scores, the value of load
shedding, and the generation cost of units is minimized. The
first term in the objective penalizes the wildfire risk associated
with the energized lines by the monetization factor, Kl. The
choice of this parameter and its implications are discussed in
the case studies. Here, the quantified risk value of each line at
each time is represented by ψtl , where Itl is a binary decision
variable denoting the energization (if 1) or the de-energization
(if 0) status of each line at each time, l is the index of lines
in the set of power lines L, and t is the index of time in the
set of time steps T . In the second term of the objective, the

operator is penalized by the penalty factor Kd if load shedding
takes place. Here, P ti,D is the scheduled consumer demand,
and P ti,d is the amount of demand served at each bus at a
given time, where i is the index of buses in set I. The last
term in the objective function calculates the generation cost
of units based on a piecewise linear function approximation.
The output power of each generation unit at each time is
divided into different segments denoted by P tg,s, where csg
is the generation cost, s is the index of segments in set S,
and g is the index of generation units in set G. The sum
of power generation of each segment is equal to the total
power generation of a unit, P tg , as shown in (6b). The power
generation of each segment is constrained to its upper and
lower bounds as presented in (6c).

The power flow balance at each node is given in (6d), where
P tl is the power flow of line l at time t. The upper and lower
limits of the power generation of each unit at each hour are
constrained by (6e). The served demand at each bus is modeled
in (6f), where α is a parameter ranging from 0 to 1 and assigns
the ratio of the critical demand which must be served. The
relationship between the power flow of each power line with
the voltage angles of its connecting buses (θti , θ

t
j) and line

reactance (xl) is presented with two inequalities in (6g), where
M is an arbitrarily large number and Blt, B

l
f are the sets of

buses line l is leading to and leaving from, respectively. The
power line power flow capacity constraint is enforced in (6h),
where the thermal capacity is presented by P̄l. If a line is
energized, i.e. Itl = 1, the inequalities in (6g) become an
equality constraint and the thermal limits in (6h) are applied.
Conversely, if a line is de-energized (i.e., Itl = 0), the power
flow in the line will be zero.

The resulting WRAP formulation in (6) is a mixed-integer
linear program, which can be solved via off-the-shelf solvers.
The solution to WRAP will help system operators balance the
risk of wildfire in the operation of the electricity grid under the
risk of wildfire. By implementing the quantified risk values of
each line at each time in the WRAP, the obtained scheduling
of each line’s status and the output of generation units guides
the system operator in decision-making under extreme weather
conditions. Figure 2 illustrates the diagram of the proposed
method, where the surrogate model feeds the underlying power
line motion into the WRAP scheme to obtain the optimal PSPS
schedule.

Fig. 2. Flowchart of the proposed wildfire risk mitigation method

IV. SIMULATION RESULTS

In this section, the performances of different learning
models are compared, and the results of the surrogate
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model are verified through comparison with the original
motion equation model. Next, the merits of WRAP are
illustrated through comparison with two other approaches,
namely naive PSPS and the method utilized by Rhodes [26].
The implications of the choice of α for WRAP are also
investigated. Finally, a discussion is presented on wildfire cost
monetization along with case studies.

A. Learning Performance

In this part, several aspects of the learning process for
obtaining the surrogate model are investigated.

1) Comparison of Various Learning Algorithms: In order
to learn a surrogate model, we performed a machine learning
task using several well-known approximator structures. Here,
the performance of each model is discussed and assessed
with standard evaluation metrics. To demonstrate the merit
of the proposed surrogate model, the best performing model
is selected, and it is compared with the Runge-Kutta
method. After careful hyper-parameter tuning, Random Forest
Regression (RFR) displayed better performance than Multiple
Linear Regression (MLR), Least Absolute Shrinkage and
Selection Operator (LASSO), Support Vector Regression
(SVR), and Deep Neural Network (DNN). The optimal
performance metrics for each model are shown in Table IV.

TABLE IV
COMPARISON OF DIFFERENT LEARNING ALGORITHMS

Measure MLR LASSO SVR RFR DNN
Mean Absolute
Error (MAE)

0.03 0.03 0.02 0.006×10−3 0.2×10−3

Relative MAE 0.96 1.04 0.64 0.16×10−3 6.2×10−3

Root Mean Square
Error (RMSE)

0.05 0.05 0.04 0.072×10−3 0.6×10−3

Relative RMSE
with mean

1.37 1.52 1.24 1.96×10−3 10×10−3

Relative RMSE
with maxmin

0.11 0.12 0.10 0.15×10−3 1.3×10−3

The LASSO regression model is not performing better
than MLR because all features are important for the learning
process, and discarding a feature leads to poor performance.
This is consistent with the feature importance analysis that
deemed no input feature negligible. The non-linear SVR model
based on the radial basis function kernel learns the model
well and performs better than MLR and LASSO. The error
evaluation metrics give the small error in the RFR, and this
model predicts with the highest accuracy. The performance of
DNN is acceptable, but it is not better than RFR. The major
features contributing to the efficient performance of RFR are
wind speed (27.3%), the span of power lines (20.9%), and
wind gust (13.8%), as shown in Table III. These features
efficiently and effectively represent the physical power line
movement. Therefore, RFR can be substituted as a surrogate
model to forecast the clashing score and can be incorporated
into practical applications.

2) Comparing the Surrogate Model with Nonlinear
Displacement Equations - Surrogate Model Validation: To
illustrate the validity of the proposed surrogate model, a

comparison between the scores predicted by the surrogate
model and the analytical ones obtained from the physical
model is presented in Table V, where different power line
spans at varying wind speeds, wind gusts, phase clearances,
and wind directions are considered. It is noticed that the
predicted score is almost equal to the values obtained by the
Runge-Kutta (RK) model in all instances. For example, in the
second row, the score obtained by the nonlinear displacement
model is 0.071429, and the surrogate model predicted score
is 0.071428.

The surrogate model predicts the score with 99.99%
test accuracy, where 20% of instances are designated to
the test dataset with 5-fold cross validation. Therefore, the
proposed surrogate model is an accurate representation of
the nonlinear conductor displacement method. Comparing the
scores obtained by the surrogate model and the mathematical
model validates its accuracy in several instances. By utilizing
the presented surrogate model based on machine learning, risk
scores are obtained instantly, and the high computation burden
is no longer an issue. System operators can make informed
decisions for PSPS schedule by de-energizing power lines that
have ignition scores above a specific threshold.

TABLE V
COMPARISON BETWEEN THE PREDICTIONS OF PHYSICAL AND

SURROGATE MODELS

Lc

(ft)
d

(mm)
Vω

(m/s)
Vg

(m/s)
Phase

clearance (ft)
Angle
(°) Score

RFR RK
800 33.03 26 26 1.5 45 0.0714 0.0714
500 33.03 18 20 0.7 45 0.0857 0.0857
1000 33.03 30 28 0.7 315 0.1285 0.1285
400 33.03 26 14 0.9 315 0.1714 0.1714
300 33.03 30 30 0.5 315 0.4571 0.4571

3) Impact of Various Meteorological and Structural
Features on the Conductor Clashing Score: In this part,
the surrogate model predicts the clashing score by varying
different input features. The conductor clashing scores for
different line spans and wind speeds are shown in Fig. 3, where
it is illustrated that the clashing scores will be different for
various line spans at the same wind speed. Here, the conductor
diameter, phase clearance, and angle are kept constant to
investigate the effect of power line span and wind speed on
the conductor clashing. The increase in wind speed and wind
gust leads to an increase in the conductor clashing score. The
conductors with a larger span have a lower conductor clashing
score for the same wind speed and wind gust because a larger
span means conductors are heavier and harder to move. It is
noticed that the conductor clashing scores of lines with shorter
spans drop with the increase in wind speed above a certain
threshold. This is because lighter conductors of various phases
will move together at higher wind speeds, reducing conductor
clashing. Thus, simultaneous consideration of meteorological
and structural features is necessary.

The conductor clashing scores for various phase clearances
(P.C) are shown in Fig. 4, where the span, diameter, and
angle are set to 1000 ft, 33.03 mm, and 45◦, respectively.
A smaller phase clearance results in a higher clashing score.
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Fig. 3. Conductor clashing score for different spans using the surrogate model
at d = 33.03 mm, phase clearance = 0.5 ft, and angle = 45°

Based on this observation, it is concluded that choosing a
one-size-fits-all threshold for wind speed (e.g., 50 mph) for
line de-energizing is not a reliable approach.

Fig. 4. Conductor clashing score for different phase clearances using the
surrogate model at span = 1000 ft, d = 33.03 mm, and angle = 45°

When wind speed is constant, the conductor clashing score
decreases with increasing phase clearances since. With a
large phase clearance, the conductors move further apart, and
smaller sections of the conductors will slap each other.

B. WRAP Performance and Comparison Metrics

In this part, the performance of the proposed
wildfire-resilient operation framework is investigated.
First, WRAP is applied to find the optimal operation schedule
of a test 6-bus network. The effectiveness of WRAP in
mitigating the wildfire risk of a network under extreme
weather conditions is illustrated. We then present two other
cases to compare the risk mitigation plans obtained by WRAP
with the naive PSPS scenario as well as the method proposed
by Rhodes et al. in [26]. The wildfire risk is reduced by
de-energizing more power lines, which increases the amount
of load shedding. All of the simulations are performed using
the Julia [34] programming language, where optimizations are
handled with the JuMP [35] module. The average simulation
run time for the 6-bus and 30-bus networks is 0.04 second
and 0.66 second, respectively.

Implementing WRAP allows system operators to find the
optimal schedule for the de-energizing of lines, given the

wildfire risk and the penalty parameters. Figure 5 displays
the diagram of the test 6-bus grid that is subject to wind. This
network has seven lines and two generation units. The wind
direction and speed are represented by colored arrows, where
the respective wind speed range for each color is shown in
the legend. It is observed that this network can be regarded
as two regions with severe and mild wind conditions. The
wildfire risk score for the lines placed in the mild regions was
0 throughout the whole day. However, the lines in the severe
region have a non-zero wildfire risk during most periods of
the day. The wildfire risk of these lines changes according to
a hypothetical wind curve and only reaches zero during hours
8-17 of the day.

Bus112

5

7 4 3

6

Severe region

Mild region

≥50 mph

40-49 mph

20-39 mph

10-19 mph

0-9 mph

Bus2Bus3

Bus6 Bus5 Bus4

G1G2

Fig. 5. Demonstration of wind impact on a 6-bus system

The presented surrogate model provides system operators
with a tool to decide on the de-energization of lines based
on the quantified risk scores, load continuity priorities, and
expected wildfire costs. The line switching schedules as a
result of utilizing WRAP for the 24 hour operation of the
test 6-bus network are presented in Fig. 6. It is noticed that
line 1 is kept de-energized throughout all periods of the day
while line 2 is energized for the whole day. This is because
the wildfire risk associated with line 2 is equal to zero at all
periods of the day. As a matter of fact, the total daily wildfire
risk for the operation schedule of this network obtained by
WRAP is equal to 0. Since wildfire risk is associated with the
conductor clashing probability of power lines, this means the
lines are only energized when their risk is 0.

Fig. 6. Line switching status obtained by WRAP



8

It is noticed that compared with a naive PSPS scenario and
the approach proposed by Rhodes et al. [26], WRAP results
in considerably lower operation costs. One reason is that
WRAP incurs no expected wildfire costs since wildfire risk is
maintained at zero in its operations. Additionally, compared
with the naive PSPS scenario and the Rhodes approach,
WRAP serves the highest amount of demand to consumers.
A summary of the results obtained by each of these methods
is presented in Table VI. In the naive PSPS approach, utilities
shut off power to segments of the network where wildfire
ignition risk is deemed high. To simulate the naive PSPS
scenario, it was assumed that lines in the extreme wind region
are switched off. As a result, the naive PSPS case considers
the operation of the network with a fixed configuration where
lines 3, 4, and 5 are disconnected, and all of the other lines
are kept switched on for the whole duration of the day.

TABLE VI
COMPARING PERFORMANCE OF WRAP WITH TWO OTHER APPROACHES

Method Naive PSPS Rhodes et al. [26] WRAP
Total wildfire risk 2.32 0 0

Total served demand (MWh) 2398.56 1917.8 2760.2
Expected wildfire costs (×1000$) 72,696 0 0
Percentage of load shedding (%) 37.47 50.0 28.04
Total operation costs (×1000$) 73,434 974.4 561.4

In addition to a naive PSPS scenario, the performance of
WRAP is also compared with the approach introduced in [26].
Rhodes et al. propose a method that integrates the wildfire
ignition risk associated with each element of the power system
into the optimal operation problem of the network. The model
in [26] returns a relative value for the wildfire risk and requires
tuning of the control parameter ‘Alpha‘. This value adjusts
the weight of load serving and wildfire risk in the objective
function. The tuning process for this algorithm is displayed in
Fig. 7. With the best tuning, this method reduces the wildfire
risk to zero. However, it fails to meet 50.0% of the daily
demand as opposed to the proposed WRAP method, which
only misses 28.04% of the demand. The approach presented
in [26] yields a more conservative mitigation plan than the
one obtained by WRAP, because it does not account for the
implications of weather conditions on wildfire ignition risk.

Fig. 7. Tuning the control parameter in Rhodes et al. [26]

An analysis of the trade-off between load shedding and
fire hazard risk by varying the load-serving percentage (α)

is presented in Fig. 8. With the gradual change in the value of
α from 0 to 100%, load shedding decreases from 1075.4 MWh
to 0 MWh, and the cumulative fire hazard risk increases from
0 to 5.15. The increase in the load-serving percentage leads to
an increase in objective cost from $0.56M to $230.8M, which
signifies the inherent cost of fire hazard risk. It is interesting
to observe that by increasing the load-serving percentage from
1% to 50%, the load shedding and cumulative score do not
change. This is because the lines that were energized to
serve the 1% of demand can still support 50% of demand
without needing additional support. Therefore, the fire hazard
risk taken into account to serve the load remains unchanged.
Another interesting observation in this figure is the jump in
risk and load shedding values by raising α from 0 to 1%.
When the load serving requirement is set to 0, the system
is able to serve 2760.2 MWh of demand without scheduling
lines that bear wildfire risk, which results in zero cumulative
wildfire risk. However, even if 1% of demand is forced to be
served at each location and time interval, the system has to
include lines with wildfire ignition risk in its operation.

Fig. 8. The balance between load shedding and cumulative fire hazard risk
based on enforced load serving in the 6-bus system

C. Demonstration of WRAP on the IEEE 30-Bus System

In this section, the presented surrogate model is applied to
quantify the risk of wildfire ignition in the modified IEEE
30-bus system during low and high wind speed situations.
The network is overlaid on a similar geographical area where
the meteorological information can be accessed at [36]. The
available meteorological data includes wind speed, wind gust,
and wind direction. Other structural features, including the
span of line, conductor diameter, and phase clearance, are
based on the data of the IEEE 30-bus system. The wildfire
ignition score during the low wind speed scenario is shown
in Fig. 9. Here, the wildfire ignition score ranges between 0
and 0.06, with the majority of them being 0 due to low wind
speed, with the maximum wind speed being 24 mph (11 m/s).
The highest risk value of 0.06 belongs to the line connecting
buses 6 and 8 because this region has the highest wind speed
and gust of 24 mph, causing a relatively higher but still small
fire hazard risk.

The wildfire ignition score during a high wind speed
scenario is shown in Fig. 10. Here, the maximum wind speed
reaches 62 mph (28 m/s), and the fire risk score ranges
between 0 and 0.51, where the highest score is associated
with the highest wind speed. The aggravating effect of higher
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Fig. 9. The quantified risk of wildfire ignition for low wind speed case in
the IEEE 30-bus system during 1st hour of the day

wind speeds on ignition risk is noticeable in these two cases.
Although the peak wind speed here is only 2.5 times that in
the low wind speed scenario, the maximum score in the high
wind speed scenario is 8.5 times that obtained in the low-speed
scenario. The system operator may adjust the value of α to
balance load-serving and the risk value. The presented WRAP
model provides a tool for the system operator to balance fire
hazard risk and service continuity by leveraging the rendered
risk score.
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The balance between fire hazard risk and load shedding
based on the percentage of forced load-serving is presented in
Fig. 11. In the low wind scenario, at 0% enforced load serving,
the objective cost is $193,024 with a load shedding of 8.9%
and the cumulative fire hazard risk of 0. As the value of α
is increased, the amount of load shedding is decreased while
the wildfire risk is elevated. It is observed that with raising
α from 0% to 10%, load shedding drops to 2.7% while the
wildfires risk is increased to 0.7. With 100% enforced load
serving, the cumulative fire hazard risk is only 0.81 for the 24
hours of operation.

The system operator’s challenge to balance service
continuity with load-serving is more complicated during the
high wind speed scenario, as shown in Fig. 11, where the
objective cost is $788,187 and load shedding is 41.6% at
0% load serving. The reason behind the difference in the
percentage of load shedding in these two scenarios is the
difference in the number of lines with a risk score of 0.
By increasing the enforced load-serving from 10% to 80%,
similar to what was observed in the 6-bus system case, the load
shedding and cumulative fire hazard risk remain constant. It is

Fig. 11. The balance between load shedding and cumulative fire hazard risk
based on enforced load serving in the IEEE 30-bus system

noticed that the fire hazard risk in high wind scenarios sharply
escalates when the system is forced to serve any amount
of demand, while no further sudden surges are observed as
the percentage of the served load is increased, and the load
shedding is decreased. This can be associated with the network
structure, where to serve an even lower percentage of the load,
several lines must become energized. With the 100% enforced
load serving, the objective cost is increased to $593.2M, and
the fire hazard score is increased to 27.44 for the 24 hours
of operation. A summary of the observations in these cases is
presented in Table VII.

TABLE VII
COMPARING THE RESULTS OF WRAP IN TWO DIFFERENT WIND

CONDITIONS

α (%) 0 50 100
Low wind condition

Total wildfire risk 0 0.701 0.814
Expected wildfire costs (×1000$) 0 6,289.4 6,629.9
Percentage of served demand (%) 91.11 97.27 100.0
Total operation costs (×1000$) 193.0 6,373.3 6,664.1

High wind condition
Total wildfire risk 0.006 27.264 27.435

Expected wildfire costs (×1000$) 12.9 590,385.8 593,162.0
Percentage of served demand (%) 58.41 99.72 100.0
Total operation costs (×1000$) 78.8 590,429.4 593,200.8

D. Wildfire Risk Monetization

The first term in the objective function (6a) aims to monetize
the overall wildfire risks. According to [37], the unpredictable
nature of wildfire aftermaths makes monetizing the risk of
wildfire very challenging. Based on metrics including but not
limited to suppression cost, property loss, damage to facilities,
rehabilitation costs, the authors in [37] performed a cost
analysis on several wildfire instances. The reported statistics
suggest that a wildfire could cost between $400-$22,500 per
acre. To monetize the risk of wildfires, we incorporated KL

into our model, a parameter that varies based on the conditions
of each region. The monetization values considered for the
33-bus test system are illustrated in Fig. 13. Regions with more
facilities and human activity are considered to have higher
costs.
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Fig. 12. The wildfire risk monetization factor in the IEEE 30-bus system

Our simulations indicate that WRAP tends to utilize lines
that are associated with lower wildfire costs. Results of a case
study on the 30-bus system with α = 50% are presented in
Fig. 13. This scatter graph shows the correlation between the
wildfire monetization factor of each line and its utilization. It is
noticed that lines with higher wildfire costs are not scheduled
by WRAP as much as potentially cheaper lines. The size of
the filled circles in this figure represents the total amount of
risk associated with the daily operations of each line. It can
be observed that larger circles are placed in the lower part of
this plot. This observation suggests that implementing WRAP
limits the operation schedule of lines with higher ignition risk
scores.

Fig. 13. Correlation of wildfire monetization factor and daily utilization of
line

V. CONCLUSIONS

In this paper, a machine-learning-based surrogate model
is developed that quantifies the risk of wildfire ignition
by power lines under different weather conditions with
a very high accuracy. We also introduced wildfire risk
aware operation planning problem, an optimization framework
that enables system operators to schedule the switching of
power lines based on the quantified risk values to balance
service continuity and wildfire risk. With the availability
of geographical data ,this tool can be applied to instantly
pinpoint the power lines that need to be de-energized by
system operators during public safety power shut-off events

while allowing flexible decision-making. The results of our
method show that compared with the naive public safety power
shut-off scenario, the wildfire risk aware operation planning
problem schedule reduces wildfire risk and operation costs
of the system while increasing the amount of load served.
Compared with another approach in the literature, the proposed
model reduces operation costs by 42% without increasing
the wildfire risk. Several analyses on the control parameter
α, which determines the amount of critical load, are also
performed. A discussion on the wildfire monetization risk
factor indicates that wildfire risk aware operation planning
problem tends to prioritize utilization of lines with lower
costs and limit the operation of high risk lines. Developing
a model that is able to incorporate all of the factors that affect
the risk of wildfire ignition within a power system such as
temperature, humidity, vegetation, topological, and historical
data is considered as the extension of this study.
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