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Abstract—In the recent years, there has been a tremendous
increase in the use of wireless medium and radio frequency
spectrum due to the development of new types of wireless
networks, applications and enabling technologies. Consequently,
the radio frequency spectrum is getting over crowded due
to this increasing demand. Traditionally, frequency bands are
allocated to licensed users for their specific use. Cognitive
radio allows secondary users to communicate using these
frequency bands. However, this may result in interference to
the primary users. Information of the relative positions of
the primary and secondary users and the distance between
them can be exploited to avoid this interference. In our
work, we use cooperative localization strategy to determine the
distance between the secondary and primary users. This distance
information is then utilized to adjust the transmission power of
the secondary nodes so that the interference threshold of the
primary users is not exceeded. The proposed methodology is
evaluated using simulation experiments. Different aspects of the
proposed algorithm including location and distance estimation,
channel availability and channel capacity against transmission
power and path loss are evaluated. The results show that the
proposed scheme is able to achieve considerable gains as a
consequence of interference avoidance.

Index Terms—interference, cognitive radio, localization,
positioning, interference avoidance, frequency resources

I. INTRODUCTION

MANY different types of wireless communication
networks have been developed and deployed in the

recent history. Examples of these networks include cellular
[1], [2], sensor [3], [4], Internet of things (IoT) [5], [6] and
wireless local area networks (WLAN) [7], [8]. An increased
use of these wireless networks has resulted in a very high
utilization of the wireless frequency resources. Traditionally,
most of these frequency resources in a given geographic region
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are allocated to licensed users for their use as and when
required. However, most of this licensed spectrum may remain
underutilized due to inactivity of the primary user (PU). This
leads to an inefficient use of the important frequency resources.
Meanwhile, numerous applications which utilize wireless
medium are being constantly developed. Consequently, these
newer applications and networks [9] may fall short of required
frequency resources.

Many options are being explored to address the problem
of frequency spectrum scarcity. Some of these options
include utilization of visible light communication (VLC) [10],
tremendously high frequencies, such as, terahertz [11], device
to device (D2D) communication [12], [13], and cognitive
radio (CR) [14], [15]. Particularly, spectrum scarcity can be
overcome by using the unique solution provided by CR. A
CR is equipped with cognition and intelligence which enable
it to sense the environment and thereby dynamically and
adaptively modify its operating characteristics and parameters,
such as, transmission power, modulation and frequency so
as to dynamically and opportunistically access the frequency
resources. The objective of a CR is to allow secondary users
(SUs) to utilize the frequency bands which are otherwise
allocated to licensed PUs so as to improve efficiency of
spectrum usage. To dynamically and opportunistically access
the frequency resources, either one or a combination of
three communication modes, namely, overlay, underlay and
interweave, can be used. However, this SU communication
may cause interference to the PU when the SU transmits on
the same channel as used by PU. For solving this problem,
several methods are proposed to control, manage and avoid
the interference. In general, the interference may be avoided
by employing spectrum management, antenna directivity and
power control.

Previously, some schemes have been suggested for
interference avoidance in cognitive radio networks (CRNs).
In [16], a primary receiver assisted interference avoidance
(PRA-IA) strategy for CRN has been presented. For the
interference avoidance, the scheme exploits the locations of
the primary network which are underutilized. According to
the reported simulation results, the throughput is enhanced as
a result of interference avoidance. In [17], a fog computing
aided spatial spectrum sharing mechanism with interference
avoidance is proposed. Guard zone along with interference
cancellation (GZ-IC) is used to provide spectrum access
to SUs while restricting the secondary interference to the
PUs. The work in [18] investigates optimal anti jamming
power allocation in the cooperative CRN in the presence of
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a smart jammer. The interaction between the CRN and the
jammer is formulated as a Stackelberg game. By analyzing the
optimal strategies for the CRN and the jammer, Stackelberg
equilibrium of the game is derived. The Nash equilibrium is
also derived for comparison with the Stackelberg equilibrium.
Results show that the optimal power control strategies can
minimize the jamming damage and help improve the CRN
performance. The scheme proposed in [19] improves the
sum rate of the secondary network and also guarantees the
secrecy rate of the PU. In addition, principle of interference
alignment is used for the elimination of interference at
each SU and PU. The work in [20] proposes to use
the secondary full duplex non orthogonal multiple access
(NOMA) relay for secure primary transmission in cognitive
radio networks. The primary transmitter transmits the primary
signal to the relay, which generates artificial noise to prevent
eavesdropping such that the primary transmission remains
unaffected. Next, the relay transmits the superimposed signal
to the primary and secondary receivers. Modified decoding
order and joint beamforming optimization ensure security of
the primary transmission. In [21], authors present a decision
based framework in cognitive radio networks which includes
different policies to decide which SUs can be dropped when
a PU activity is sensed.

In this article, we extend our previous work [22] and use
cooperative localization for the avoidance of interference.
The distance between an SU and a PU is estimated by
developing log normal shadowing path loss model of the
interference link between them. The estimated distance
is then leveraged to update the transmission power for
the avoidance of interference. Simulation results reveal
considerable performance gains due to the interference
avoidance using the proposed scheme. The key motivations
and contributions by this article are outlined in the following.

• Cooperation between the primary and the secondary
networks is exploited for the avoidance of interference
to facilitate effective spectrum utilization. A log normal
shadowing model of the interference link between a PU
and an SU is developed. This model is then further
leveraged for cooperation between the primary and the
secondary networks. In particular, the model is used for
the distance estimation between a PU and an SU.

• A complete and robust cooperative localization model is
presented. The model is used by a PU for the estimation
of its position in cooperation with the neighbor SUs.

• The SUs transmit periodic beacon messages for the
purpose of cooperative localization. A PU is able to
estimate its position using the information provided by
the beacon messages and the cooperative localization
model. This position information is then used for an
improved distance estimate between a PU and an SU.

• The distance information between the PU and the SU is
used for the adjustment of the transmission power of the
SU such that interference to the PU is avoided.

• A comprehensive set of simulation experiments is
conducted to evaluate the performance of various aspects
of the proposed method. In particular, performance

PBS PU SU

Fig. 1. System model.

with respect to distance and position estimation,
channel availability, bandwidth utilization and channel
capacity is investigated. The results reveal that the
algorithm achieves considerable performance gains as a
consequence of interference avoidance.

The rest of this paper is organized as follows. The system
model is presented in Section II. The position estimation by the
PU using cooperative localization is discussed in Section III. In
Section IV, the algorithm used for the interference avoidance
is described. Simulation results are presented and discussed in
Section V. Finally, the paper concludes with Section VI.

II. SYSTEM MODEL

Let us consider a CRN deployed alongside an active primary
radio network (PRN) as depicted in Fig 1. A PU is represented
by p, where p ∈ P = {1, 2, 3, ..., P}. Therefore, the set P, of
which p is a member, comprises of P number of PUs. In a
similar manner, an arbitrary SU is represented using q, where
q ∈ Q = {1, 2, 3, ..., Q}. The number of SUs in the set Q is Q.
We denote the transmission power of an SU q by Ptq , whereas
its maximum permissible transmission power is represented
by Pmax. The transmission power of the primary base station
(PBS) is represented using Pp. The maximum interference that
is allowed at a PU p is termed as threshold of interference and
is denoted by Ipt. The signal to interference noise ratio (SINR)
at the PU p has a corresponding threshold value which is
represented using β. The SINR γp of the transmission received
by the PU p from the PBS should always be greater than β i.e.
γp > β in order to satisfy the interference constraint threshold
Ipt and to avoid interference.

Let us now consider a scenario in which a PU p is situated in
an area where its communication with the PBS is interfered by
the transmissions of a nearby SU q. This is illustrated in Fig. 1.
An interference channel exists between the SU q and the PU p
due to the transmission of the former. The interference at PU
p caused by the SU q should be minimized. This interference,
denoted by Ip, is as below,

Ip = hqpPtq, (1)
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where hqp represents the gain of the interference link between
the PU p and the SU q. The SINR, γp at the PU p is obtained
by using Ip from (1), as under,

γp =
hppPp

Ip +BNo
, (2)

where B represents the channel bandwidth, No is the noise
power spectral density (PSD), and hpp denotes the gain of the
PRN communication link between the PBS and the PU p. The
threshold, Ipt of the interference, Ip allowable at a PU p so
that the SINR γp remains above the threshold SINR β, can
be obtained by substituting the threshold values, Ip = Ipt and
γp = β in (2), as follows,

Ipt =
1

β
(hppPp)−BNo. (3)

We use log normal distribution to model large scale fading
to estimate path loss and shadowing. It is assumed that each
SU in the CRN knows its location by the use of either an
appropriate localization algorithm, such as, adaptive location
estimation system [23] and ripple localization algorithm
(RLA) [24], or a global navigation satellite system (GNSS).

Let us now determine the path loss suffered by the
transmission of the SU q by the interference channel between
the PU p and the SU q. This path loss, denoted by Lp, is
obtained by using the log normal shadowing model, and is
given by,

Lp[dB] = Lpa(do) + 10η log

(
dpq
do

)
+ χσ, (4)

where χσ accounts for the shadow fading, Lpa(do) is the
average path loss at a reference distance do from the SU q,
dpq is the distance between the SU q and the PU p, and η
is the path loss exponent. Lpa(do) is denoted by Lo, if the
reference distance do is the unit distance, and in this case,

Lp[dB] = Lo + 10η log(dpq) + χσ. (5)

The PU p can use (5) to estimate the distance, dpq , between
itself and the SU q. This estimated distance is used for the
transmission power adjustment of the SU for interference
avoidance to the PU if distance estimates from no other SUs
are available. On the other hand, if the PU has distance
estimates from three or more SUs, then it can ascertain
its position using cooperative localization as discussed in
Section III. This position information can be used for
ascertaining an improved estimate of the distance between the
PU and the SU. The estimated distance can then be utilized for
SU transmission power adjustment to avoid interference. We
discuss and further explain this in Section IV. It is important
to distinguish distance estimation from position estimation.
The distance estimation is the estimation of Euclidean distance
between two nodes. The position estimation, on the other hand,
refers to the estimation of coordinates of a node. Moreover,
the PRN is considered to be an active network so that the PUs
may be transceivers which are able to transmit and receive
messages.

III. COOPERATIVE LOCALIZATION

Each SU in the CRN knows its position information. A PU
can also estimate its position with the assistance of SUs by
cooperative localization. For this purpose, a beacon message,
as shown in Fig. 2, is transmitted by each SU. In this beacon
message, ts denotes the time stamp, (xq, yq) represents the
SU q position, and Ptq stands for the transmission power.
When the beacon message is received, the PU determines
the received signal strength (RSS) which is then used for the
estimation of the path loss and hence, the distance as discussed
in Section IV.

The SUs transmit periodic beacon messages except when
the CRN is inactive and there is no interference. Hence, beacon
messages from more than one SU may be received by the
PU p. In case, beacon messages from three or more SUs
are received by the PU, the distances from all these SUs
are estimated by the PU. The beacon messages from these
SUs include their respective positions. Therefore, the PU can
perform multilateration with the knowledge of the positions
of the SUs and the distances estimated from them. Next, the
PU transmits a unicast message to the SU after estimating its
position. In the PU message, which is shown in Fig. 3, tp
represents the time stamp, dpq denotes the distance estimated
using the RSS information, and (x, y) is the position estimated
by the PU p using multilateration. It is to be noted that the
exchange of messages between the SUs and the PUs is in a
manner to provide real time performance. It is further to be
noted that the proposed algorithm is cooperative in nature.
Therefore, cooperation and sharing of information between
SUs and PUs, as given in Fig. 2 and Fig. 3, is required
for the algorithm to work. Primary user cooperation with the
secondary network is not a new idea and has been explored in
earlier work as well, for example, [16] and [25]. However, the
PUs share the information only in unicast messages. Therefore,
the information is shared only with a limited number of
nodes. As a result of the cooperative exchange, the PUs are
able to estimate their positions. It is to be noted that the
proposed method requires that the PU is able to transmit

SID ts (xq, yq) Ptq

SID – SU node identification

ts – Time stamp by SU

(xq, yq) – Position coordinates of SU

Ptq – SU transmission power

Fig. 2. Beacon message transmitted by SU.

PID – PU node identification

tp – Time stamp by PU

Lp – Measured path loss

dpq – Estimated distance

PID tp Lp dpq (x, y)

(x, y) – Estimated position

Fig. 3. Message transmitted by PU.
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unicast messages. Therefore, it can be deployed only with
those primary networks where the PU is a transceiver.

Let us consider that the PU p receives beacon messages
from n number of SUs for a further explanation of the
position estimation procedure. The PU is able to determine
the positions of these SUs from the beacon messages, and
are given by (x1, y1), (x2, y2), . . . , (xq, yq), . . . , (xn, yn).
Let the distances from these SUs are estimated to be
r1, r2, . . . , rq , . . . , rn respectively. If we denote the position
information of the PU p by (x, y), then considering the
positions of the SUs as centers and their respective distance
estimates r1, r2, ... rn from the PU p as radii, the following
set of equations of circles around the SUs are obtained,

(x− x1)2 + (y − y1)2

(x− x2)2 + (y − y2)2

...
(x− xn)2 + (y − yn)2

 =


r2
1

r2
2
...
r2
n

 . (6)

Expanding square terms on the left side and rearranging:
x2 + y2 − 2x1x− 2y1y
x2 + y2 − 2x2x− 2y2y

...
x2 + y2 − 2xnx− 2yny

 =


r2
1 − x2

1 − y2
1

r2
2 − x2

2 − y2
2

...
r2
n − x2

n − y2
n

 . (7)

Subtracting last row from each of the rows above it:
2(xn − x1)x+ 2(yn − y1)y
2(xn − x2)x+ 2(yn − y2)y

...
2(xn − xn−1)x+ 2(yn − yn−1)y



=


r2
1 − r2

n + x2
n − x2

1 + y2
n − y2

1

r2
2 − r2

n + x2
n − x2

2 + y2
n − y2

2
...

r2
n−1 − r2

n + x2
n − x2

n−1 + y2
n − y2

n−1

 . (8)

Separating the unknowns (x, y), this can be rewritten as below:


(xn − x1) (yn − y1)
(xn − x2) (yn − y2)

...
...

(xn − xn−1) (yn − yn−1)


[
x
y

]

=
1

2


r2
1 − r2

n + x2
n − x2

1 + y2
n − y2

1

r2
2 − r2

n + x2
n − x2

2 + y2
n − y2

2
...

r2
n−1 − r2

n + x2
n − x2

n−1 + y2
n − y2

n−1

 . (9)

Using matrix notation, this can be written as:

Az = R, (10)

where z =
[
x y

]T
and

A =


(xn − x1) (yn − y1)
(xn − x2) (yn − y2)

...
...

(xn − xn−1) (yn − yn−1)

 , (11)

R =
1

2


r2
1 − r2

n + x2
n − x2

1 + y2
n − y2

1

r2
2 − r2

n + x2
n − x2

2 + y2
n − y2

2
...

r2
n−1 − r2

n + x2
n − x2

n−1 + y2
n − y2

n−1

 . (12)

To find the position of the PU p, which we represent by (x, y),
let us formulate (6) as a least squares problem as below:

ẑ = argmin
z

n∑
i=1

ei(z)
2, (13)

where z =
[
x y

]T
is the best-fit estimated position, ei(z) is

the residual function, and is expressed as,

ei(z) = r2
i − {(x− xi)2 + (y − yi)2}, (14)

where i = 1, 2, ..., n. The formulation of the problem in
(13), which is based upon (6), is nonlinear least squares.
Specifically, it is unconstrained nonlinear optimization
problem. The problem is reduced to linear least squares in
(9). We can formulate the least squares approximation based
upon (9), as under,

ẑ = argmin
z

n−1∑
i=1

ei(z)
2. (15)

In this case, the residual function can be written as,

ei(z) = bi − {ai1x+ ai2y} (16)

where
ai1 = xn − xi, (17)

ai2 = yn − yi, (18)

bi =
1

2
{r2
i − r2

n + x2
n − x2

i + y2
n − y2

i } (19)

and i = 1, 2, ..., n− 1. We can write the sum of the squared
residuals, S, as below,

S =

n−1∑
i=1

e2
i =

n−1∑
i=1

{bi − (ai1x+ ai2y)}2. (20)

The objective is to find the minimum of the function in (20).
The position coordinates, (x, y), for which the sum of the
squares of the residuals, S is the minimum, are evaluated as
under,

∂S

∂x
= 0, (21)

∂S

∂y
= 0. (22)

Differentiating (20) with respect to x and equating the result
to 0, we obtain,

n−1∑
i=1

(ai1x+ ai2y)ai1 =

n−1∑
i=1

ai1bi. (23)

Differentiating (20) with respect to y and equating the result
to 0, we obtain,

n−1∑
i=1

(ai1x+ ai2y)(ai2) =

n−1∑
i=1

ai2bi, (24)
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We combine (23) and (24) in the matrix form to obtain the
following normal equation,

ATAz = ATR. (25)

After subtracting the last row from the rows the other rows,
the order of matrix A in (9)-(11) is (n− 1)× 2. As matrix
A is not necessarily square, we cannot use

z = A−1R, (26)

to determine z. However, we can represent (25) in simplified
form as below:

Hz = T, (27)

where H = ATA and T = ATR. As noted earlier, the matrix
A has an order of (n− 1)× 2. Therefore, the order of matrix
AT is 2 × (n − 1). Consequently, the order of the resultant
matrix H = ATA is 2× 2. Therefore, (27) is, in fact, a
combination of linear equations. Using ordinary techniques,
we can solve this system of equations to find z =

[
x y

]T
.

It is to be noted that we choose to estimate the position of
the PU only when it receives beacon messages from at least
three different SUs. As a result, n− 1 ≥ 2 i.e. the number of
rows in the matrix A is always equal to or greater than the
number of columns, which is always two. This also ensures
that the number of rows in the matrix A is at least two so that
a solution for the two unknown values, x and y, is feasible.
As the matrix elements are derived from the independent
and random positions of SUs, the rows and columns are
linearly independent and the matrix A is full rank. As a result,
the matrix A is nonsingular and invertible and the achieved
solution in (27) is unique. This gives us an exact solution if
it exists and an approximate solution otherwise.

IV. INTERFERENCE AVOIDANCE

We describe the proposed interference avoidance algorithm
in this section. One part of the algorithm is executed by the
SU q and the other part is executed by the PU p.

An information beacon message, as depicted in Fig. 2, is
transmitted by each SU periodically. The PU p measures the
RSS when the beacon message is received. The path loss can
then be calculated using the RSS information. Let the RSS
of the SU q transmitted interference signal at the PU p be
represented by Pqp. The path loss is then given by,

Lp[dB] = Ptq[dB]− Pqp[dB]. (28)

After estimating the path loss with the help of RSS information
and (28), the distance is also ascertained as under,

log(dpq) =
1

10η

[
Lp[dB]− Lo − χσ

]
, (29)

dpq = 10
1

10η

[
Lp[dB]−Lo−χσ

]
. (30)

The PU p estimates this distance, dpq , using the RSS value.
The distance between the SU q and the PU p can also be
estimated using their respective location information. As stated
earlier, each SU already knows its location using GNSS or
a localization algorithm. Furthermore, as already discussed

in Section III, the PU p can also estimate its position using
cooperative localization. If beacon messages are received from
at least three SUs by the PU p, then the position can be
ascertained. For this, the distances from all these SUs are
estimated. The PU also knows the positions of these SUs
from their received beacon messages. Using the position and
distance information of these SUs, the PU uses a formulation
similar to (6), which is solved using (27) for the estimation
of the position (x, y) of the PU. On the other hand, if the
number of received beacon messages is less than three and the
position cannot be ascertained by the PU p, then an absurd
value, say, (−1,−1) is assigned to (x, y) to inform the SU
about unavailability of its position information. Therefore, the
SU then uses the distance estimate dpq for power control.

The PU p sends a message as shown in Fig. 3, after it has
estimated the distance dpq and determined its position (x, y).
When the SU q receives a PU message, it examines it for a
valid location detail of the PU. Given that the PU message
carries a valid position information, the SU q uses its own
position and the received information to estimate the distance,
dxy , between itself and the PU p.

dxy =
√

(xq − x)2 + (yq − y)2. (31)

If the PU p is able to estimate its position as a consequence
of receiving beacon messages from at least three SUs, then
two different estimates of the distance between the PU p and
SU q are available to the SU. The first estimate is the distance
dpq , which is found using the RSS value by the PU, and the
second estimate is denoted by dxy , which is calculated from
the location information of the SU and the PU. In the case,
when the PU p is not able to estimate its position because it
did not receive beacon messages from at least three SUs, then
dxy cannot be calculated and only one distance estimate, dpq ,
is available to the SU. The distance estimate dxy is preferred
by the SU when both the distance estimates are available. The
distance dxy has lesser chance of error [24], as information
from at least three SUs is used for its estimation.

The SU q is able to confirm whether the PU p is inside its
communication range R with the help of the distance detail.
After the SU q confirms this, it revises its transmission power,
in such a manner, that Pqp < Ipt, by a factor θ, which we call
as the reduction factor and 0 < θ < 1.

Pqp = (1− θ)Ipt, 0 < θ < 1. (32)

The updated transmission power, Ptqn, is then as below,

Ptqn[dB] = Lp[dB] + (1− θ)Ipt[dB], (33)

where Lp represents the path attenuation estimated by the PU p
with the help of the RSS details.

The transmission power updated in this manner should yield
a new value which is smaller than the transmission power
used previously. Nonetheless, a wrong estimate of the path
attenuation may lead to an incorrect estimate of the new
value of transmission power. Consequently, the new updated
transmission power may be greater than the previous value.
If this is the case and Ptqn > Ptq , then this is ascribed to
the shadowing in the interference channel. That being so,
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the estimated path attenuation is greater than the attenuation
when there is no fading. Consequently, the RSS is lower,
and hence the distance estimate is higher than the actual
distance. Therefore, when Ptqn determined using the path loss
information is found to be greater than the previously used
value, then the shadowing model is updated, and the path loss
calculation is performed as below,

Lp[dB] = Lo + 10η log(d) + χσ, (34)

where d is dxy if available and dpq otherwise. After this,
the transmission power is revised using the value of the path
loss calculated using (34) instead of the measured value in
(28) until Ptqn < Ptq and the corresponding new transmission
range R becomes smaller than the distance separating the SU q
and the PU p.

The exchange of a pair of messages between the PU p
and the SU q should result in the avoidance of interference.
However, the procedure may have to be repeated in the
presence of shadow fading. In the latter case, the SU q
transmits a periodic beacon message. In response, the PU
p replies with a response message, and the SU q again
updates its transmission power. The procedure is repeated until
the interference is below the threshold level, and no more
messages can be exchanged between the PU p and SU q. The
algorithms executed by the PU p and SU q are summarized
in Algorithm 1 and Algorithm 2 respectively.

It is to be noted that an SU may estimate and keep a record
of its transmission range using experimental calibration for
various power levels or by using:

R = 10
1

10η

[
Lpmax[dB]−Lo−χσ

]
, (35)

where Lpmax is the maximum path loss, which can be
estimated as following:

Lpmax = Ptq +Gt +Gr − Si − F, (36)

where Gt and Gr are gains of the transmitting and receiving
antennas respectively, Si is the receiver sensitivity and F is
the fade margin. All these parameters are specified in dB.

V. SIMULATION RESULTS

For our evaluation using simulation, a CRN with a 500 m
radius is considered. The number of SUs in the CRN is 5
unless otherwise stated. The maximum transmission power of
an SU is 23 dBm, and the minimum transmission power is
assumed to be -33 dBm. Furthermore, it is presumed that the
SUs update their location periodically. The number of PUs
is considered to be 2. The bandwidth of each subchannel is
0.3125 MHz [26]. The bandwidth of the interference channel
is assumed to be the same as that of the PU. The path loss
exponent η is assumed to be 2 to 4. Noise power, No is
considered to be 3× 10−15 W/Hz. Shadow fading standard
deviation σ is 6 dB. It is presumed that the interference
threshold Ipt of a PU is 5× 10−12 W [26]. The beacon
transmission interval is configured to be 102.4 ms, and beacon
frame collisions are avoided using time synchronization. In
the cooperative set up, the beacon frames are transmitted on
agreed up control channel. Therefore, this does not result in

Algorithm 1 The Primary User
1: procedure POSITIONESTIMATION( )
2: Receive beacon message
3: ts, (xq, yq), Ptq ← Beacon message
4: Pqp ← RSS
5: Lp[dB]← Ptq[dB]− Pqp[dB]

6: dpq ← 10
1

10η

[
Lp[dB]−Lo−χσ

]
7: if (n ≥ 3) then
8: Formulate Az = R
9: Derive Hz = T

10: Determine z from Hz = T
11: (x, y)← z
12: else
13: (x, y)← (−1,−1)
14: end if
15: PU message ← Lp, dpq , (x, y)
16: Transmit PU message
17: end procedure

Algorithm 2 The Secondary User
1: procedure TRANSMITPOWER( )
2: Transmit beacon message
3: Receive PU message
4: Lp, dpq , (x, y) ← PU message
5: if (x, y) 6= (−1,−1) then
6: dxy ←

√
(xq − x)2 + (yq − y)2

7: d← dxy
8: else
9: dxy ← −1

10: d← dpq
11: end if
12: if (d ≤ R) then
13: Ptqn[dB]← Lp[dB] + (1− θ)Ipt[dB]
14: end if
15: if (Ptqn ≥ Ptq) then
16: while (Ptqn ≥ Ptq) and (d ≤ R) do
17: σ ← σ − 1
18: Lp[dB]← Lo + 10η log(d) + χσ
19: Ptqn[dB]← Lp[dB] + (1− θ)Ipt[dB]

20: R← 10
1

10η

[
Lpmax[dB]−Lo−χσ

]
21: end while
22: end if
23: end procedure

any interference to the PUs. The simulation parameters are
summarized in Table I. These parameters are representative
of a typical wireless communication network [27]. Similar
parameters are also used by related work in this area, such
as [26] and [28].

In Fig. 4, we plot the distance estimated by the PU, dpq ,
against the received power. It is plotted versus the path
loss in Fig. 5. From the plots, it can be seen that a low
value of received power implies a large estimated distance
between the SU and the PU. On the contrary, an increase
in the path loss results in a relatively higher estimate of the
distance. In particular, beyond a distance of 85 m, the path
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TABLE I
SIMULATION PARAMETERS.

Parameter Value

Number of SUs 5
Number of PUs 2
Minimum transmission power of SU -33 dBm
Maximum transmission power of SU 23 dBm
Center frequency 500 MHz
Channel bandwidth 0.3125 MHz
Path loss exponent 2 to 4
Shadow fading standard deviation 6 dB
Noise power 3× 10−15 W/Hz
PU interference threshold 5× 10−12 W
Beacon transmission interval 102.4 ms

loss increases very quickly. Conversely, a rise in the path
attenuation up to 60 dB implies only a slight increment in
the distance estimation. Beyond this point, however, only a
slight increment in the path attenuation implies a substantial
increment in the estimated distance. For example, for an
increase in the path attenuation from 40 to 60 dB, the increase
in the estimated distance is from 40 to 85 m approximately.
This is a variation of approximately 40 m per 20 dB. On
the other hand, the distance estimate changes from 200 to
400 m with an increment in the path attenuation from 80 to
100 dB. This implies a variation of 200 m per 20 dB. The
results observed from Fig. 4 are similar. When the received
power is small, the slope is high. However, for large values
of the received power, there is a gradual and gentle decline
in the slope. A steep decline in the slope with large path loss
and small values of the received power can be ascribed to the
densely populated urban environment which results in a high
path loss exponent.

The distance dpq as plotted in Fig. 4 and Fig. 5 is
estimated by the PU between itself and the SU. Moreover,
the same distance is also estimated by the SU using the
position information, and is represented by dxy . The distance
estimation error, which is defined as the absolute difference
between the estimated and the actual distances, is plotted for
both dpq and dxy in Fig. 6 and Fig. 7. The distance estimation
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Fig. 4. Estimated distance versus the received power.

error is plotted against the average received power in Fig. 6
and versus the average path loss in Fig. 7. As can be seen from
the plots in Fig. 6 and Fig. 7, the distance estimation error is
high when the average received power is small or when the
average path loss is high. These results are in conformance
with the results plotted in Fig. 4 and Fig. 5. It was observed
from Fig. 5 that the slope is small for the small values of the
path loss while it is high for the large values. Therefore, a
small inaccuracy in the path attenuation is reflected as a large
error in the distance estimate when the path attenuation is
high. Likewise, a small inaccuracy in the value of the received
power results in a large value of the distance estimation error
when the received power is small. In either case, it is at
the long distances that the distance estimation error is high.
For small distances, the accuracy of distance estimation is
relatively better and the distance estimation error is small.
It is further observed that the distance estimation error is
comparatively smaller for dxy compared to that for dpq . This
can be attributed to a better estimate of dxy using position
coordinates. The actual position of the SU is known and only
position of PU is estimated using trilateration with three or
more nodes. Therefore, the error in the estimation is small.
From the plots, it is also seen that the difference in the distance
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estimation errors for dxy and dpq is high at those points where
the slope of the curve is steep. Again, this is due to a large
value of the distance estimation error induced by a relatively
smaller inaccuracy in the estimation of path attenuation and
the received power.

The distance estimation error is plotted against the average
SINR also in Fig. 8. At relatively closer distances, the received
SINR is large as the path loss is small. Therefore, with the
change in the distance with the movement of the object, the
relative change in the SINR with respect to the received
large SINR is also small. Hence, small variations in the
SINR do not significantly affect the distance estimation error
at close distances. At long distances, the received SINR is
comparatively small, and therefore, even a little variation in
the SINR is significant as it may result in noticeable change in
the received SINR. Even movement of objects in the vicinity
of the user may result in momentary fading, which results in
fluctuations in the SINR. As a result, a small variation in the
SINR translates to a large distance estimation error when the
receiver is at a long distance from the transmitter. Hence, the
plot in Fig. 8 corroborates the results in Fig. 6 and Fig. 7.

Error in the distance estimation leads to localization error
when the PU estimates its position with the help of position
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Fig. 7. Distance estimation error versus the average path loss.
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Fig. 8. Distance estimation error versus the average SINR.

information of known SUs and the distances estimated from
them. The localization error is plotted in Fig. 9 against the
number of SUs used for the estimation of the position. It is
plotted in Fig. 10 versus the average received power from
the SUs, and against the path loss in Fig. 11. It is observed
from Fig. 9 that the localization error decreases as the number
of reference SUs is increased for position estimation by the
PU. This can be attributed to multilateration where position
estimation with a large number of reference nodes results in
the reduction of localization error [24]. It is observed from
Fig. 10 that the localization error is large when the received
power is low. Similarly, from Fig. 11 it can be seen that the
localization error is high when the path loss is high. This
happens when the distance between the PU and the SU is large,
and as a result, the path loss is large and the received signal
strength is low. Consequently, any slight change in the received
signal strength is significant due to its low value and results
in large distance estimation error as discussed in the previous
paragraphs in this section. The large distance estimation error
results in large localization error. To further elaborate this, let
us denote the received power at a particular distance d by P
and the change in the received power at a distance d+ ∆d by
∆P . At closer distances, ∆P is small and P is large. At longer
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Fig. 9. Change in localization error with the the number of SUs.
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distances, ∆P is large and P is small. As a result, the distance
estimation resolution which is inversely proportional to ∆P

∆d is
high at close distances and small at long distances. Therefore,
distance estimates at close distances are better than those at
relatively longer distances. Consequently, the localization error
is relatively higher at long distances than at the close distances.

Channel availability is plotted versus distance estimation
error in Fig. 12. As can be observed, the channel availability
decreases with the increase in the distance estimation error.
The SU may estimate the PU to be within its transmission
range due to the distance estimation error. As a result, it does
not utilize the channel even though it may not be occupied.
This results in lowering of the channel availability with the
increase in the error in the distance estimate.

As the transmission power is updated based on the estimated
distance, an error in the distance estimation has an impact
on SINR and the channel capacity. The distance estimation
error can be either positive or negative. A positive distance
estimation error implies that the estimated distance is greater
than the actual distance whereas a negative distance estimation
error means that the estimated distance is smaller than the
actual distance. A positive distance estimation error will
result in the allocation of higher transmission power than
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capacity for secondary users.
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the required and a negative distance estimation error will
result in transmission power allocation which is lower than
the value needed for interference avoidance. The former case
may require more than one iteration in Algorithm 2 for
interference avoidance whereas the latter situation results not
only in interference avoidance in the first instance but may
also degrade channel capacity for the SU. The degradation
in channel capacity for SU with negative distance estimation
error is plotted in Fig. 13. A high value of negative distance
estimation error results in the allocation of transmission power
which is lower than that would have been sufficient for
interference avoidance. This achieves the desired result of
interference avoidance. However, the SINR at the receiver also
becomes smaller than the desired value. This eventually results
in lowering of the capacity.

Distance estimation error has adverse effect on the
bandwidth utilization as well. This is reported in the result
plotted in Fig. 14. The plot is similar to that in Fig. 13.
Distance estimation error results in inaccurate estimate of the
boundary of the transmission of SU, and as a result the SU
may reduce its transmission power considering the PU to be
within its range. This will protect the PU transmissions but will
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Fig. 16. CRN throughput with the variation in Ip.

have adverse effect on the bandwidth utilization of the channel
between the SU transmitter and SU receiver. High frequency
components and harmonics of the transmitted signal with small
amplitude will suffer greater path loss and attenuation. Due
to the attenuation of the high frequency signal components,
the signal bandwidth is reduced and, as a result, the available
channel bandwidth is not fully utilized.

The transmission power allocation as a function of the
estimated distance using the proposed algorithm is plotted
in Fig. 15. As expected, the higher the distance, the higher
the allocated transmission power. The CRN and the PRN
throughputs versus the interference at the PU resulting from
the SU transmission are plotted in Fig. 16 and Fig. 17
respectively. With the increase in the SU transmission power,
the CRN throughput increases although the interference at
the PU also increases as is shown in Fig. 16. On the other
hand, the PRN throughput decreases with this increase in the
interference at the PU as is depicted in Fig. 17.

The time required by the algorithm for different number of
SUs is plotted in Fig. 18. For Algorithm 1, the time increases
with the number of SUs. As the number of SUs increases, the
PU has to process a higher number of position coordinates for
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Fig. 18. Time required by the algorithm for different number of SUs.

the estimation of the position. Therefore, the time increases
with the number of SUs from which the PU receives beacon
messages. However, the time required by Algorithm 2 remains
the same as it is independent of the number of SUs.

Throughput of the secondary network against SINR using
the proposed method is compared with the throughput obtained
using two other existing schemes i.e. GZ-IC [16], and PRA-IA
[17]. The results are plotted in Fig. 19. It can be observed
that GZ-IC provides good results at small values of SINR.
However, overall performance of the proposed method is better
than the other two schemes.

We have evaluated the performance of the proposed
algorithm from various aspects. For example, we have
evaluated distance estimation, localization error, channel
availability, channel capacity and bandwidth utilization for
the proposed interference avoidance scheme. The results give
considerable insight into the performance of the proposed
method. We can infer that the proposed scheme provides
distance estimation based interference avoidance and its
performance is correlated with the accuracy of the distance
estimation. Performance of the network improves as a result
of the interference avoidance using the proposed algorithm.
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Fig. 19. Comparison of the throughput of the secondary network using the
proposed method, GZ-IC and PRA-IA.

VI. CONCLUSION

In this paper, primary user assisted localization has been
exploited to avoid interference. The localization along with
path loss model is used to estimate the distance between
the primary and secondary users. After the distance is
estimated, secondary user transmission power adjustment is
used for interference avoidance to the primary user. Different
aspects of the proposed scheme are evaluated using simulation
experiments. Estimated distance, distance estimation error and
localization error are measured against path loss, received
power and SINR. Similarly, performance of the proposed
method with respect to channel availability and channel
capacity is also evaluated. From the results, it is evident that
the performance improves due to interference avoidance using
the proposed method. We find that the achieved performance
is, however, a function of the distance estimation error.
The improvement in throughput and bandwidth utilization
decreases with the increase in the distance estimation error,
and increases when the distance estimation error is small.
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